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Study Guide

Block 2: Ordinary Differential Equations
Unit 9: The Laplace Transform, Part 1
1. Overview

The Laplace transform has application far beyond its present role

in this block of being a useful device for solving certain types

of linear differential equations (usually ones in which we have

constant coefficients) for prescribed initial conditions. In this

unit, we introduce the concept in our lecture and we then divide

the exercises into two categories. The first five exercises are

designed just to help you become more familiar with the definition

itself, and the last three exercises illustrate how the concept is

used to solve differential equations.

Additional fine points concerning the Laplace transform are left

for the next unit (a unit which is optional since it is not

necessary for the student who for one reason or another prefers

not to study this concept in any more depth at this time).
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Lecture 2.070 continued
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Study Guide
Block 2: Ordinary Differential Equations
Unit 9: The Laplace Transform, Part 1

3. Exercises:

2.9.1(L)
a. Use the linear properties of the Laplace transform to compute

X(cosh bt), knowing that Jﬂeat) == E = (s > :a):
b. Prove that if zif(tﬂ = f(s) then x1eatf(t)] = f(s - a).
c. Use the results of (a) and (b) to compute

o1 s — a

(s - a)2 - b2
That is, determine g(t) if
s - a
Lla(t)) = ;
( ) (s - a)z - b2
2.9.2
. . : _ 1 3t -3t :

a. Use the identity that sinh 3t = > (e - e ) to determine

Z(sinh 3t).
b. Use (a) together with (b) of the previous exercise to determine

g(t) if Kg(v)) = 32 ;

(s - 4)° -9

2.9.3(L)
a. Compute X(cos bx) by using the fact that

cos bx = % (eibx + e_lbx).
b. Determine f(x) if f is continuous and

wEe - 52 i-g g
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2.9.4(L)

By writing &> ~ 4s + 20 in the form (s - a)z + b2, use the tables
at the end of the solution of the previous exercise to find f(t)
if f is continuous and

few) = s? fs4: i 20

2,9.5

Determine f£(t) if it is known that f is continuous and that

Ze() is

1 1
(a) ————v (¢) ———————
s(s + 1) & 05 i 2}2
1 3s + 1
) s? + 4s + 29 @ TFDG+2G I
2.9.6(L)

Use the Laplace transform method to find the particular solution
of y" + 2y' + y = e which satisfies the initial conditions
y(0) = y'(0) =0.

2.9.7

Use Laplace transforms to find the solution of

2
d dy
¥ 2 + 2y = 2
ax dx
which satisifes the initial conditions y(0) = 0 and y'(0) = 1.
2.9.8

Use Laplace transforms to find the solution of

L1 2t

y' -yt =e

which satisfies y(0) = 0, y'(0) = 0, and y"(0) = 0.

2.9.4
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Block 2: Ordinary Differential Equations

Unit 10: The Laplace Transform, Part 2

1. Overview
As far as defining the Laplace transform and seeing how it is
used to solve linear differential equations with constant
coefficients, our task is satisfactorily completed in the pre-
vious unit. Yet Laplace transform and other related forms
occur very often both in theory and in application. For this
reason we have elected to supply additional exercises involving
the Laplace transform. The exercises were chosen not only to
give you drill in computing transforms, but also because they
bring up important new areas of discussion.

2. Exercises:

2.10.1

a. Compute 1l[ua(t)] where

ua(t} = ‘0 £ @&
1 t<a

b. If(£(t)) = F(s), show that [u_(t)E(t - a)] e 2% E(s).

e_35/52+ 4s + 5.

c. Determine f(t) if f is continuous and (£(t))

2.10.2

Suppose there exists a positive number p such that f(t) =
f(t + p) for all t [in this case, f is said to be periodic with
period pJ.

a. Show that

p
Lier)) = f e~Ste(t)at/1 - e7PS,
(o]

(Continued on next page)

2,10.1
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2.10.2 continued

Compute (£(t)) if

1, 0<t<1

£ 0, 1 <t<?2

and £ has period 2.

2.10.3

By computing

g-g fme‘s" £(t)at
(o]

show that if f(s) exists, then & [tf(t)] = -df(s)/ds. Extend
this result inductively to obtain a formula for 2 [t"f(t)] for
any positive integer n.

Use the result of part (a) to determine y(s) if y(t) satisfies
2

&y 48 =
t e + 3% + ty = 0.

2.10.4

Recalling that T'(x) is defined by
f 2 le"%t (x > 0)
o

develop a formula for computing af(xnj where n is any real
number greater than -1.

2.10.5 (To reinforce the definition of T (x))

Compute F(%).

Use the fact that I'(n + 1) = nl'(n) to compute F(%) and P(%}.

2.10.2

S S - Ea S
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Block 2: Ordinary Differential Equations
Unit 10: The Laplace Transform, Part 2

2.10.6

a. By making appropriate use of the fact that the product of two
integrals may be viewed as a double integral, show that

u
Sf(f);E(g) = EE[,[ f(v)g(u - v)dv].
(o)

b. Use (a) to determine h(t) if

Bls) = otz -

2.10.7 (Checking some of the properties of convolution)

Define the convolution of f and g, written f*g by

u
f*g = f f£(v)g(u - v)dv.

v=0

Show that
a. f*g = g*f
b. f*(g + h) = (f*g) + (£f*h)

2,10.8

Make appropriate use of convolution to determine h(t) if

a. Hn) = 2

(s - 1)(s? + 1)
b. L) = 2

(32 + 1)2
c. ¥ = 2

(s - 1) (s? + 1)

g, L) =nfug
(52 + 1)2

I

(continued on next page)

2.10.3
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2.10.8 continued

e. Use the results of parts (a), (b), (c), and (d) to find the
solution of the system

dx _ t
Je Yy

4 + x

subject to the initial conditions that x(0) = 1 and y(0) = 0.
[Actually (e) can be tackled by the transform method without
doing (a), (b), (c) and (d). What happens, however, is that to

I
(0]

]

sin t

solve (e) we ultimately wind up having to solve these four parts
anyway. ]

2.10.4
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Block 2: Ordinary Differential Equations

Quiz

1.

Find the general solution of each of the following differential
equations:

dy _
(b) X = 2xy + x?
dx = ¥ T8
(c) g% = —5351—5 (where not both x and y equal 0).
X +y

(a) Find the envelope of the family of lines

Yy = ¢cx - 202,

where c is an arbitrary (real) constant.

(b) Find the first order differential equation which is satisfied
by both the family y = cx - 2c2 and its envelope.

(c) The curve C satisfies the equation

Describe the curve C if it is known that C passes through the point

(1) (4,2)
(ii) (4,3)

(iii) (4,0)

Let L(y) = y" + 4y' - 2ly. Find the general solution of L(y) =
£iix) if:

(a) £(x) =¥

(b) f(x) = sin x

(c) £(x) = 3e* + 5 sin x

@) f£(x) = &X

2.0.1
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Quiz

4, The curve C satisfies the differential equation

e—x
yr R 2T B = ey

(where C doesn't intersect the line x = -1). Find the equation
of €,
5. The curve C satisfies the differential equation y" - 3xy' - 3y =

It passes through the point (0,1) and has its slope equal to 0 at
that point. Use the series technique to find the equation of C.
(Write the series explicitly through the term involving x7.)

6. A particle moves along the x-axis according to the rule

d™x dx = :
— +* 2 at + 5x = 8 sin t + 4 cos t.

dx

0.

At time t = 0, the particle is at x = 1 and has speed Fc ™ 3. Use

the Laplace transform method to determine x explicitly as a func-
tion of t.

2.Q.2
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