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Study Guide
Block 2: Ordinary Differential Equations

Unit 8: The Use of Power Series

1. Overview

The method of variation of parameters quarantees us the general
solution of L(y) = f(x) once we know the general solution of
L(y) = 0. There is a very general class of equations of the
form L(y) = 0 for which we can not only be sure the general
solution exists but for which we can also construct the general
solution in the form of a power series. Among other things,
therefore, this unit supplies us with another important appli-

cation of power series.
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Lecture 2.060
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2. Lecture 2.060 continued
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3. Do the Exercises. (Every exercise in this Unit is designated
as a learning exercise. The main reason is that the material is
not covered in the text).

Note #1:

All exercises are given in the form L(y) = 0. The reason for
this is that we can use variation of parameters to solve L(y) =
f(x) once the general solution of L(y) = 0 is known.

Note #2:

To help supply you with a brief review of convergence as well
as with a few manipulative devices which are helpful in the
study of series solutions, we have included at the end of the
exercises a special preface as a "preamble" to the solutions of
the exercises in this unit. Feel free to read this preface before
you begin working on the exercises.

4. Exercises:
2.8.1(L)

a. Rewrite

(= 4] o0 o0
Z p g E na_x" + 2 a_x"
n n n
n=1 n=1 n=20
in an equivalent form which involves a single infinite series.
b. Determine each of the coefficients A r@yree @y if
oo = -] oo
2: nanxn-l - 2: nanxn + E: anxn = 0,
n=1 n=y»1>1 n =240
c. Let
n
y= 2 ax
n=20
and use the power series technique to find the general solution
of (1 - x)dy/dx + y = 0.
2.8.4
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Bl S S S 9 Ve = e

£E2 €3 €2



http:ao,al,...an,..

&3 e

|

D S 0 D B D h B aE

em 0 &a

rMma M

Study Guide
Block 2: Ordinary Differential Equations
Unit 8: The Use of Power Series

2.8.2.(L)

Use the power series technique, letting
-—‘
y = L anxn
n=20

to find the general solution of (1L - x)dy/dx - y = 0.

2.8.3(L)

Find the general solution of dy/dx - 2xy = 0 in the form

oo
y = 2:: a x
n=20

where a, is arbitrary.

2.8.4(L)

Find all the solutions of

X %% +yv =0

which can be written in the form

Read the optional note which follows the solution of this

exercise for a deeper look at what happened here.

2.8.5(L)

Use series to find the general solution of
{l 2 L L] —
- x°)y" - xy' +y =0, where [x]| < 1
in the form
=]
n=20

with ag and aj arbitrary.
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2.8.6(L)

Find the general solution of (1 + xz}y" - xy' + y =0 in the
form

@
Y = n;o anxn

with ag and a; arbitrary.

2.8.7(L)

a, Find the general solution of y" - xy = 0 in the form
oo
y= 2 ax
n=20
where a_ and a, are arbitrary.

b. Find the particular solution, y = £(x), of the equation
y" - xy = 0, given that £(0) = 0 and £'(0) = 1.

c. With f(x) as inpart (b) compute f£(1) to the nearest hundredth.

2.8.8(L)

Find all solutions of x3y" + xy' - y = 0 which are analytic at

x =0 (i.e., find all solutions which have the form

y = E anxn}.
n =20

Preface: Part 1 - A Brief Review of Convergence

1. Suppose {fn{x): n=1, 2, 3,...} is a sequence of functions

defined on some common interval, I.

Definition #1

The sequence {fn(x)} is said to be pointwise convergent on I
if

lim £ (x )
Ny n o

2.8.6
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exists for each X, € Ei

2. If the sequence {fn(x)} is pointwise convergent on I, we

&l 0 &h S N e e e

3 £ E3 BN

[ S B o

S |

[ |

M ™M

define the limit function, f(x), of this sequence by
f(xo) = lim fn(xo}, for each x eI. (1)

3. Notice that in computing &ig fn(xo), our "tolerance limit",

€, usually depends on X - That is, to say that f(xo) = Jim fn(xo)
means that given €>0 there exists N such that n > N -+

|f(x0) — fn(xo)[< e; and for the same g, different values of x

may determine different values of N.

4, If I had a finite number of points (which it doesn't since
an interval is a connected segment of the x-axis, and hence
has infinitely many points), the fact that N dependent on X
would be irrelevant since we could examine each N and then
choose the greatest. But with an infinite set there need not
be a greatest member. For example, if 0 < X, < 1 and for a
given X N = l/xo, then as X, * 0, N+ o,

This in itself is not bad. What is bad is that certain "self-
evident" results need not be true. By way of illustration,
recall the example in Part 1 of our course in which we defined
£, on [0,1] by

£.(x) = X', 0 < x < 1.

Then, since %ig fn{x) =0, if 0 < x<1and l, if x =1, the
limit function f(x) exists and is inﬁeed given by

0, 0 < x ;1
£lx) = _—

3, x s
Thus, each member of the sequence f (x) is continuous on [0,1]

but the limit function f is discontinuous at x = 1.

This violates our "intuitive" feeling that the limit of a

sequence of continuous functions should be a continuous function.
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£33 €3

5. Since the afore mentioned trouble arose because N depended
on x, we try to eliminate the trouble by defining a stronger*
type of convergence in which N will not depend on X This
leads to Definition #2.

Definition #2

{fn(x)} is said to be uniformly convergent to f(x) on I if for
every € >0 there exists an N such that n > N =+ | £(x) - fn(x)| < g
for every x eI.

6. Thus, in uniform convergence the choice of N depends only on
the choice of ¢ not on the choice of x . This "slight" modifi-
cation is enough to quarantee the following results.

If {£,(x)} converges uniformly to £(x) on a < x < b(= [a,b] = I)
and each fn is continuous on [a,b], then f is also continuous
on [a,b].

If {f_ (x)} converges uniformly to f(x) on [a,b], then for each

x ela,bl,

> 4 >4
lim f £ (t)at =f lim £_(t)dt =f £ (t)dt.
n-w A n-+o a

If {f (x)} is a sequence of continuously differentiable functions
which converge point-wise to f(x) on [a,b] and if {fn'(x)}
converges uniformly on [a,b], then f'(x) exists on [a,b] and may
be computed by f'(x) = lim fn'(x).

n-w

7. While we have thus far been talking about sequences of
functions, notice that our results also apply to series since

every series is a sequence of partial sums.
That is, when we write

oo

DIRE NS

n=1

*Recall that "stronger'" means a definition which includes the
previous one. In other words, everything that obeys the
stronger definition obeys the weaker one, but not everything
which obeys the weaker one obeys the stronger one.

i » €2

£33 ¢
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what we mean is;
k
iiﬂ F) (x) where Fk(x) = £, (x) +...4 £ (x) = 2;& £,(x).

One very important series is the power series
[=+]
Mo
a_x
n
n=0

The usefulness of power seriles stems from the following theorem:

Theorem 1l:

If the power series
(=1 ]

2, &

n=0 =°

converges for some value of x = X then it converges absolutely
for every x such that |x|<k0|, and this convergence is also
uniform on every closed interval defined by [x| < |x;|<[x,].

B. If

& usd
a_x

n=0 n

converges uniformly and absolutely for |x|< R, we can take the
same liberties with the power series as we could have taken
with polynomials. That is, by the properties of absolute
convergence we can add series term-by-term, we can re-arrange

the terms, etc.

For example, if

oo
n
DI
n=0

converges absolutely we may, if we wish, rewrite the series as
the sum of two series, one of which contains the terms in
which the exponents are even and the other, in which the
exponents are odd.

~s—
n

*More generally, one usually talks about g an(x - b) " but as

usual we take the special case b = 0 simply for convenience.

2.8.9
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That is,

™

dil-‘
xi?!
I

E:. a_x" + E: anxn

n=0 n even D n odd

il

2 4
(ao +ayx” +oagx + o...) 4 (alx + a3x3 + a5x5 L )
etc.

Moreover by uniform convergence, we may differentiate and inte-
grate power series term-by-term.

9. 1In particular, the results we shall use most in this Unit
are:

0.2 a x")"

n=0 n=1

|
[vj
=
:Jﬂl
N‘.:‘l
|
=

( 2 nanxn_l) v = Z n(n - l)anxn_2
n=1 n=2

( E anxn)“

n=0

oo o0 oo
n n n
2 a s Y, bt = Y (a4 bx
n=0 n=0 =~ n=0 a =
=] [+ +]
cxk % anxn = cr:xn:‘cn"'}c
n= =0

o0
n _ n
E:ax=2bx ++ a_ = b_ for each n.
n n n n
n=0

Preface: Part 2

Now that we have reviewed the theory behind power series, we
should like to present two computational techniques that are

employed very often when we look for series solutions of

2.8.10
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differential equations.

The first, and probably easier, of these techniques involves
adding series when the summation starts at different values of
n. For example, suppose we want to express

oo e o]
n 2: n
Z: anx + bnx

n=0 n=2
as a single series. What we observe is that if the first term
had been

o0

a_x"
n=2 =°

we could have simply added the two series term-by-term to obtain

2 (a, + bn)xn.

n=2

We, therefore, convert
oo

n=0

into

Y, a x"

n=2

by "splitting off" its first two terms. That is,

:E: n _ 2 n
S apx = ag + a,x +anx” + ...+ ax o+ ...
n=0
= (a_ + a,x) + (a x2 + + ax" +
o) & 2 2 &2 n
o0
= a_ + a.x + a_x"
(o) 1) neo n
Thus,
o o
2: anxn + 2: bnxn
n=0 n=2

2.8.11
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oo

oo
oy
ao + a;x + L anxn + Z -bnxn
n=2 n=2

[++]

_ n
= a, + a;x + E: (an e bn)x 5
n=2

Notice that the procedure used here is applicable to all finite

sums quite in general. Namely,

o

n;lcn=cl+c2+...+ck+ck+l+...+cm

]

(€ + v + Q) + (Gpuq + ove + cp)

2 >
=2 o+ c .
n=1 " n=k1 "
We use absolute convergence when we allow ourselves the luxury
of assuring that we may regroup terms at will, even when the
sum involves infinitely many terms.

The second technique involves summing two series which don't

"line up" term-by-term. For example, suppose we want to

express

L] L=2]

2: anxn + 2: bnxn-l (1)
n=0 n=1

as a single series. Granted that the summations do not begin
at the same value of n, there is even a worse problem in the
sense that the general term in the first sum involves x" while

in the second sum the general term involves ARCY

The key to this problem lies in the fact that given,

k

C
Zn’

n=1

we may replace ¢, by Cpiig provided we add r to both our lower
and upper limits of summation. That is

k k+r
&éa n = ngg;r “ner

2.8.12
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As a more concrete example,
5 8

d, e, =2 ¢

s T 4 &% n 3 =

To check this, we need only observe that

5
2%_Cn =¢; +cy +c3 +cy t Cgi
n=
while
8
r;q Cn_3 = 04_3+ 05_3 + 06"‘3 + C-?__\3 + CB___I3 = Cl + C2 + C3 + C4 + 05.

Thus, returning to (1) we notice that to change xn-l into x" we
must add 1 to n. Therefore, we replace each n in } bnxn_l by
n + 1 and adjust for this by subtracting 1 from each of our

limits of summation. That is:

o0 o0
Z bnxn-l = Z bn+1xn
n=1 n=1-1

n *
= b X
n§ n+1l . (2)

Using (2), (1) becomes

which, in turn, is

oo

2:.(a + b ) x7.

) n n+1l

As a final point, we should observe that "lining up" exponents
usually shifts the summation to start at a different value of
n. The proper procedure is first to "line up" the exponents

*Again, as a quick check,

n-1 _ 2 3 .
bnx = bl + bzx + b3x + b4x + 4w vi while

n _ 2 3
bl + b2x + b3x + h4x i LT

o
]
I

2.8.13
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and then to alter the lower limit of the summation (if necessary).

For example, given

f:_ nanxn_l + Z anxn+1
n=1

we either raise n by 2 in the first series or lower n by 2 in

the second series, we must add 2 to the limits of summation.
This yields

o0

o

Z a L o z; !
= g ’

n=0 =° n= n=2

so that (3) becomes

E nanxn_l . ngz 5 o -1

(3)

(4)

We now "split off" the first term in the first series in (4) to

obtain
[=2] =]
n-1 n-1
a, + :E:_ na_x + :E: a__,X i
1 n=2 B n=2 =° 2
or

n-1
a; + Eg; (nan + an~2)x .

Note
We could have elected to raise n by 2 in the first series in
(3). That is, we could have written

oo oo

z: nanxn_l = 2: (n + 2}an+2xn+l,
n=1 n=-1
whereupon (3) would become

+1 n+l
‘E: (n + 2)a x" + :E: a_x .
n=-1 T n=0 =

We would then rewrite

=]
n+1l
éé;l(n + 28 iy *

(5)

(6)

2.8.14
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as

(=]
n+1
a; + 2: (n + 2)an+2x i
n=0
so that (6) becomes

n+1l
a; + Eg% [(n + 2Jan+2 + an]x 3

(7)

It is left for you to check that (5) and (7) are the same, each

being
a. + (2a, + a )x + (3a, + a )x2 + (4a, + a )x3 +
1 2 o 3 1 4 2 e

Further drill is left to the exercises.

2.8.15
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