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Study Guide
Block 2: Ordinary Differential Equations

Unit 7: Variation of Parameters

1. Overview

In this unit, we show how to find the general solution of any nth
order linear differential equation once we know the general solu-
tion of the reduced equation. The method employed is known as
Variation of Parameters and while it is often computationally

cumbersome, it always works even if our equation does not have

constant coefficients. Moreover, it does not require the right
side of the equation to have any special form (other than to be
integrable) .
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2. Lecture 2.050
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Unit 7: Variation of Parameters

3. (Optional) Read Thomas, Sections 20.10 and 20.11.
(The reading material offers nothing different from the discussion
in the lecture, but what is interesting is that every exercise
lends itself to the method of undetermined coefficients discussed
by us in the previous unit. It might be of interest to you to try
a few of these exercises, doing them both ways, but the real value
of the method is in the case where either the coefficients are not
constant or the right side is more "complicated.")

4. Exercises:
2:7.1(L)
Find a particular solution of y" - y = L =

1l g
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Find the general solution of

y" = 2y' + y = eX1n x (% > 0).

2.+ 7.3 (L)

Suppose we discovered that y = x is a solution of
y"+-i2-y'——l3—y=0(x#0).
X 3%

Find another solution of this equation which has the form

y = xg(x) where g(x) is not constant.

2.7.4

Use the technique of Exercise 2.7.3 to find a solution of

y" - 2y' + y = 0 which is not a constant multiple of e*. (we
solved this type of problem in Unit 5. This exercise supplies us
with another technique for obtaining the same result, and also
supplies us with additional drill in the use of variation of
parameters.)
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2.7.5

a. By writing

y" + [x2 - 4)y' - 4x2y =0

in the form
" L] 2] e
(y" - 4y') + x"(y' - 4y) =0

find one (non-zero) solution of the equation.

b. Use the answer in (a) and the method of Exercise 2.7.3 to find the
general solution of ‘

y" + (xz - 4)y" - 4x2y = 0.

2,7.6(L)

Observing that v = x is a solution of

yn__._._x_._i_yl.l._y_2=0 (le(l)
1 -x 1+ x

find the general solution of

2.7.7 (optional)

[This problem is not difficult but rather lengthy and perhaps a
bit abstract (at least part (a)). The aim is to show how the
method of variation of parameters works in higher order equations.
If you have time try the entire exercise or at least read the
solution. If you are pressed for time but want to get an idea of
what is happening, accept the result of part (a) and try to solve
(b) using this result.]

(continued on next page)
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2.7.7 continued

Suppose y, = clul(x) * czuz(x) + c3u3(x) is the general solution
of L(y) = y" +p)y" + gq(x)y' + r(x)y = 0. Show that

Yp = GI{X)ul(X) ¥ gz(x)uz(x) + 93(x)u3(xj is a particular solu-
tion of L(y) = f(x) provided that

9;'4 * 94, +g3'uy =0

I
o

L] 1] | ] L "
g;'u;" +gy'uyt +gjytug

|
Hh

" " L]
g1'8y" ¥ gy "+ gyt

3 {11

Find a particular solution of xy"™ + xy' -y =x 1In x (x > 0)

knowing that the general solution of the reduced equation is

2
cq X - C, X 1n x + c3x(ln =)

2.7.5
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