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Solutions
Block 3: Selected Topics in Linear Algebra

Unit 8: Fourier Series

3.8.1(L)

The fact that sin mx cos nx, for all choices of the constants m
T

and n, is an odd* function guarantees that .r sin mx cos nx dx = 0.
-

Thus, each member of the sine family is orthogonal to each member

of the cosine family.
To show that each member of the sine family is orthogonal to every
m
other member of the sine family, we must show that J- sin mx
-

sin nx dx = 0 whenever n # m (when n = m, we are "dotting" sin nx
with itself).

If we recall the trigonometric identities

cos (A + B) cos A cos B - sin A sin B

cos (A - B) cos A cos B + sin A sin B

then we see at once that

cos (A - B) - cos (A + B) 2 sin A sin B, or

sin A sin B = % [cos (A - B) - cos (A + B)]. (1)
*Recall that f£(x) is odd means f(x) = -f(-x) while f(x) is even
means that f(x) = f(-x). 1In terms of area, it is easy to see that

a a
if f£(x) is even then .f f(x)dx = 2 .[. f(x) dx while if f(x) is
-a 0

odd, then j. f(x)dx = 0, i.e.

y = f(x) y = £(x)
|

: : » 3 (—3,0) L
(-2,0) | (a,0) E/| (a,0)
f(x) even f(x) odd

S.3:8.1




Solutions
Block 3: Selected Topics in Linear Algebra
Unit 8: Fourier Series

3.8.1(L) continued

Similarly,

cos A cos B = [cos (A + B) + cos (A - B)]. (2)

B =

]
]

We may now use (1) with mx and B = nx to obtain

I

m m
J. sin mx sin nx dx¥* J- = [cos (mx - nx) - cos(mx + nx)]dx

™ ™ 2
1 m
= 5'.[ [cos(m - n)x - cos(m + n)x]dx.
-
Hence
m m i
; . _sin(m - n)x _sin(m + n)x
£W51nm51nnxdx——2—(-m-)—J T J . (3)
X==T X=-=T

Since m and n are integers, so also are m + n and m - n; and since
the sine of all integral multiples of #7m is 0, we conclude that
the right side of (3) is 0.

Hence, for m # n,

m

]- sin mx sin nx dx = 0. (4)
-

Note #1

Notice that the first term on the right side of (3) contains m - n
as a factor of the denominator. Hence, since division by zero is
"taboo," equation (3) is invalid when m = n. Since (4) is prefaced
by m # n, this does not affect our equation (4). If we let m = n,
then

*Since sin mx sin nx is an even function [i.e. sin m(-x) sin n(-x) =
sin(-mx) sin(-nx) = (-sin mx)(-sin nx) = sin mx sin nx] you may

b kil
replace J~ sin mx sin nx dx by 2 j' sin mx sin nx dx, if you

- 0
prefer.

S.3.8.2
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3.8.1(L) continued

m L 2 % 1l - cos 2nx
f sin mx sin nx dx f sin“nx dx = f B SO i

x| _sin2nx| % . T _
=T =7
Thus, for the sake of completeness, we have
T 0, ifm#n
J. sin mx sin nx dx = (6)
- m, if m = n
Note #2

The fact that n appears as a factor of the denominator in one term
on the right side of (5) warns us to beware of the validity of (5)
when n = 0. Now it turns out that n = 0 is of no concern to us
here since sin nx = 0 when n = 0. Indeed, this is why the family
{sin nx} begins with n = 1 rather than n = 0. On the other hand,

when = 0, cos nx = 1. Hence, when we consider later the situa-

n
" 2
tion .f cos“nx dx, it may be wise to remember n = 0 as a special
=

case.

Note #3

Some authors, because they prefer orthonormal to orthogonal, in-

troduce the weighting factor 1 and replace sin nx by jé sin nx.
™ ™
The reason for this is contained in equation (5). Namely, the

factor ;%:does not alter the orthogonality of the sine family, but
s
it does make the dot product of any member of the sine family with

itself equal to 1. That is, from (5), we conclude that

% 4 1 1. T
f —-sinmx—sinnxdx=-ﬁ-f sin mx sin ndx dx
-1 /T ves -7
20=0,ifm#n
1 i
= T=1, ifm=n
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3.8.1(L) continued

For our purposes, we prefer to stress the orthogonal property

rather than to introduce j& as a weighting factor. As we shall
m™
see, this has no bearing on the general techniques which we employ

in this unit.

All that remains now is to look at

™
f cos mx cos nx dx when m # n.
=

From equation (2), we have

™ ™
f cos mx cos nx dx = %‘- f [cos(m + n)x + cos(m - n)x]dx
= -
m m
_ sin(m + n)x sin(m - n)x
~ 2(m + n) J T m - J * (7
==T X==1

Since *sin(m * n)m = 0, we conclude from (7) that

m
n#m-»f cos mx cos nx dx = 0. (8)
-7

All that remains to tie together any loose ends is to compute

T
.[. cosznx dx (i.e. the case m = n), even though this is not asked
-7

for explicitly in this exercise.

1l + cos 2nx

Since cosznx =7 we have that

Il
=

™
f cosznx dx

m
f (1 - cos 2nx)dx
-

=

m
_3a sin 2nx
X=-7
=7,

5.3.8.4
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3.8.1(L) continued

except (review Note #2) that equation (9) is not valid when n = 0.

In the special case n = 0, we have

m 2 m
f cos nx dx = f dyx. = 2.
| -

In summary then, for any whole numbers, m and n

m 2 , ifn=20
f sin“nx dx = (10)
- w, if n #0
s 2 27, if n=0
f cosin¥ Ak = (11)
- m, if n#0
™ 5
.f sin nx cos mx dx = 0 (even if n = m)
-
- (12)

Il

. T
J sin nx sin mx dx ‘[' cos nx cos mx dx = 0, when n # m
g &

m J

m
In particular, if f£-g means df f(x)g(x)dx, then the family
~9r

{1,cos x,cos 2X,...,COS nX,...,sin x,sin 2x,...,sin nx,...} is
orthogonal. If we want an orthonormal family, then we see that
from (10) and (11), our family of functions should be

—l—, 2 CO8 X5 ses § -l-cos NS s b —l-sin %5 @y —L-sin Ay siikis
v2n /7w v /T VT
3.8.2(L)

What we have is the assumption that

o0

f£(x) = a  + :E: a, cos nx + E b sin nx. (1)
n=1

n=1

S.3.8.5
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3.8.2(L) continued

Since l<cos nx = l*sin nx = 0 for n > 0 (where l:-cos nx means

T
J' 1 cos nx dx etc.) we may use this orthogonal property to find
=T

a,- Namely, we integrate both sides of (1) from -m to m, to

obtain

T m =
f f(x)dx = f a_ + a_ cos nx + b_ sin nx|dx. (2)
” Lt o :E: n 2 : n

n=1 n=1

Assuming that we are permitted to interchange the order of inte-
gration and summation (which, as we know for infinite sums, is not
always wvalid) , equation (2) yields

(==}

m T i T b
f f{x)dx=f aodx+z: f a  cos nx dX+E f bn sin nx dx
-1 -1 e i . PR . P B

= 0 = 0

Hence

m
f f(x)dx = 21730,

-7
or,

T

g =if £ (x)dx (3)
(e} 2m J_. .

To find a, for k # 0, we multiply both sides of (1) by cos kx and
integrate from -7 to m, to obtain

™ o @
.I' ag + E a  cos nx + E bn sin nx|cos kx dx
=T

I

m
.[ f(x)cos kx dx

-n n=1 n=1
m [ »
= f aocos kx dx + J’ E a, cos nx cos kx|dx +
- =M\ h=1
TF [ee]
+ f 2 b sin nx cos kx|dx. (4)
-
n=1

5.3.8.6
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3.8.2 (L) continued

Again, under the assumption that we may interchange the order of
the infinite sum and the integration, we deduce from (4) that

™ . m o il
f f(x)cos kx dx = a f cos kx dx + E a f cos nx cos kx dx
A -
J

=N
L — n=1

=0 0, when n # k
m, when n = k

™
+E bn f sin nx cos kx dx

-1
n=1
[N —

0, for all n

Hence,

m
J. f(x)cos kx dx = 0 + a, m + 0+ 0 = may .
-

Therefore, for k = 1,2,3,...

m
% f f(x)cos kx dx. (5)

%k =1

To find bk’ we multiply both sides of (1) by sin kx and integrate
from -1 to 7 under the assumption that we are permitted to inter-
change the order of the infinite sum and the integration. This

yields
m m & i
f f(x)sin kx dx = a, f sin kx dx + E a, f cos nx sin kx dx
- - - -m
o v J n=1 |8 v J

o0 m
+ E bn f sin nx sin kx dx
=T

n=l " 3
0, if n # k
m, if n =k
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3.8.2(L) continued

Hence,

b
'f f(x)sin kx d&x = b

-

ke

or
m
3 .
bk =k f f(x)sin kx dx.
-
Note #1

We used k rather than n simply to
term with the general term. That

(6)

avoid confusing a particular
is, we did not want n to have

two different meanings in the same problem. With this in mind,

(5) and (6) may be rewritten as

™
an=%J £(x)cos nx dx (n # 0) (5')
-
and
m
b, = %--[ f(x)sin nx dx (n =1,2,3,...) (6")
-m
Note #2
Notice that we do not say that
f(x) = ag + E a  cos nx + E bn sin nx
n=1 n=1
m L m
=-21-'1?f f(x}dx-l-%— f f(x)cos nx dx|cos nx +
% n=1\ "
o ™
+ L E j f(x)sin nx dx]sin nx. (7)
L -
n=1
S$.3.8.8
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3.8.2(L) continued

Rather it is F(x) which is defined by the right side of (7). 1In
other words, the right side of (7) was derived under the not-
always-valid assumption that we were justified in interchanging
the order of the integration and the infinite sum. In summary,
then

oo

T m
f(x) ~ 2% f f(x)dx + -i- E : f f(x)cos nx dx)cos nx +
-

n=1 il

m
+ J- f(x)sin nx dx|sin nx
-

v
= F(x);

and F(x) is called the Fourier representation of f(x).

3.8.3(L)

In the previous exercise, we had you compute the Fourier coeffi-
cients of a function f (x), pointing out that the Fourier series
need not actually equal the function. At the same time, re-

call that we pointed out in our lecture that if £(x) is
piecewise-smooth on [-7,n], then the Fourier series, F(x), of f(x)
converges to f(x) everywhere in the interval where f(x) is contin-
uous and to the average of the jump wherever f(x) has a jump-

discontinuity.

In this exercise (as well as the next two), we continue our drill
in deriving Fourier coefficients, but at the same time, we choose
f(x) to be piecewise-smooth so that we can see how the Fourier
series actually converges to the function in this case.

Given that
-L; =T €K < 0
fix) = (1)
l, D<x<m

5.3.8.9
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3.8.3(L) continued

we have that

m 0 m
(i) f f(x)dx f f(x)dx + f f(x)dx* (2)
-7 -7 0
0 m
f -1 dx + f 1 dx
- 0
-T m
dx +‘j- dx
0

= -1+ T

]

1}
o

(3)

il
o
.

T
cos nx dx (n # 0)

S“‘\

s 0
(ii) f f(x)cos nx dx f -cos nx dx +
- -T

T
=1 m™
=f COS nx dx+f cos nx dx
0 0

(4)

l
o

m
*We rewrite f f(x)dx in the indicated way as the sum of two

-
integrals to take into account that f behaves one way on <X S m
and another way on -m < x < 0.

S.3.8.10
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3.8.3(L) continued

-sin nx dx + sin nx dx (n # 0)

- ™
= [ sin nx dx + f sin nx dx
0 0

Il
Dt
é\ﬂ

™
(iii) f f(x)sin nx dx

=i

ilk; m
-COS nx cos nx
n n
x=0 X=
|
_ [-cos(=mmn) _ [ﬂcos 0]\ _ (cos mn _ cos 0 :
n n n n
_-cos mn . 1 _ cos m , 1
n n n n
2 2 cos mn
== - — (5)
n n

We observe that for even values of n, cos ™ = 1 while for odd

values of n, cos "™n = -1. Hence,
% - %, when n is even
2 _2cos mn _
n n
% - (%%) = %, when n is odd

Hence, we conclude from (5) that

m 0, if n is even
.f f(x)sin nx dx = (6)
—% %, if n is odd

Now using the results of our previous exercise, we have that the

Fourier series representation of f(x) is given by

oo

o0
F(x) =aj + E a cos nx + E b ~sin nx (7)
n=1

n=

S.3.8.11
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3.8.3(L) continued

where

m
a =—11;f f(x)cos nx dx (n # 0)
-m

=

m
f f(x)sin nx dx.
-

Thus, from (3), (4), and (6), we conclude that

8 T 27 (0) =0
a =% =0m#0
and
% 0 =0, if n is even
b =
’ L& -4, ifnis oaa

Hence, (7) yields

4 .
0+ 0 + Z;{—H51nnx

F(x) = (8)
n odd
_ 4 E sin nx (8.1)
"noda "

_ 4 § sin 3x , sin 5x sin(2n + 1)x

M oo (snl x + 3 i3 5 + goi *F o T I + ...) (8.2)
_ 4 ™ sin(2n + D)x

o :E: 2n + 1 " (8.3)

n=0
S.3.8.12
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Unit 8: Fourier Series

3.8.3(L) continued

Note #1

Notice that our Fourier series contains only sine terms. This

happened because f(x) in this exercise is an odd function.

In other words, since the product of an odd function and an even
function is odd, f(x) cos nx is odd because f(x) is odd while
cos nx is even.

m
Consequently, .f f(x) cos nx dx = 0.

-

™
In a similar way, .f f(x)sin nx dx = 0 when f(x) is even. Thus,
=1
the Fourier series representation of f(x) will be purely a sine

series when f(x) is odd; and purely a cosine series when f (x) is
even. In fact, in deriving equations (3), (4), and (6), we could
have telescoped a few steps by recognizing at once that since f was

m T
odd, .f f(x)cos nx dx = 0, while 'f f(x) sin nx dx =
- -
™
2 f f(x)sin nx dx.
0
Note #2
Since £ ; FCx). g always an even function and £ (x) = £(=x) ;g4

always an odd function, the identity

£t = [f(x) ;f(-X)] 3 [f(x) - ft—x)]

o J 1§ e

T
even odd

tells us that we may always decompose the construction of a Fourier
series into two problems, one involving a sine series and the

other, a cosine series.

b. DNotice that our general theory tells us that at any x between -w

and m for which f is continuous F(x) = f(x). In particular, x = %
is such a point. Now, by definition of f, when x = %, f(x) =1

(since 0 < % < m). Hence, F(%) = 1, and we conclude from equation

(8.3) that

5.3.8.13
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3.8.3(L) continued

sin(2n + 1)%

o X
1= ™ :E: 2n + 1 -

X

Now odd multiples of > have the property that their sine is either

1 or -1. More specifically

i E = stn 3% = sip 9% - -
sin 5= sin 5 = sin 5 T s = i i
while

o DM e B e e LS -
sin e sin il sin TG e =

More succinctly,

& 1, n even
sin(2n + 1)5 =
-1, n odd

Hence, (9) may be rewritten as

oo
| =
1
|

11

U RN TS S )
E e e - e s
n=

Note #3

(=]
There are certainly other ways of deducing that 2: I+ I1- 1

Indeed, the beauty of (10), at least from one point of view, is
that there are methods of deriving the result without reference to
Fourier series. Consequently, (10) serves as a reinforcement of

the theory which states that f (x)

T T S |

= F(x) wherever f is continuous.

(9)

™
7 (10)

-1 ¢

n=0

5.3.8.14
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[ S |

3.8.3(L) continued

Note #4

- +
In this same context, notice that £(0 ) = -1 and £(0 ) = 1. Hence,

the general theory predicts that

+ -
g0y = £10) ;f(o ) _ 1+2(-1} = B

As a check of this result, we see that with x = 0 in equation (8)
[or (8.1),(8.2),(8.3)], we obtain

F(0) = 0.

Note #5

To get a better idea of what we mean by the Fourier series con-
verging to f(x) "in the large" it may be helpful to graph

k
_ 4 sin(2n + 1)x
Y= 5 2n + 1 (11)
n=0

for k =0 and k =1 (k =1 and k = 3 were sketched in the lecture).

[Notice that (11) represents the kth partial sum of the series

defined by equation (8.3).]

When k = 0, we have
4 -z
y = 7 sin x,

from which we have
s7¢ indicates y = f(x)

A g
4—y = 7 sin x

(-“ro) .
X
[ (m,0)
|
Figure 1
S.3.8.15
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3.8.3(L) continued

Observe that y = % sin x does not look too much like y = f(x).
terms of our remark in the lecture (proved in Exercise 3.8.6)

In

about least square approximations what is true is that if we let

g(x) = ag + a;cos x + b151n X

then

m™
f [£(x) - g(x)]%ax

m

= |

is minimum when ag = a; = 0 and bl =

With k = 1, we have

E1ES

y = [sin x + % sin 3x].

To graph (12), we have

4

y' = = [cos x + cos 3x]
n _4 . .
Sl [- sin x - 3 sin 3x].

(12)

(13)

(14)

A method for determining sin 3x and cos 3x in terms of sin x and

cos x is given by DeMoivre's Theorem. Namely,

(cos x + i sin x)3 = cos 3x + i sin 3x,

from which we obtain

cos3x + 3 coszx (i sin x) + 3 cos x (i sin x]2 + (i sin x)3 =
cos 3x + i sin 3x.

Hence,

{cos3x - 3 cos X sinzx) + i(3 coszx sin x - sin3x) =

cos 3x + i sin 3x.

(15)

(16)

S.3.8.16
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3.8.3(L) continued

Equating the real parts in (16) and equating the imaginary part,

we conclude that

3 i 2
cos X - 3 cos X sin x

cos 3x
and

2 . o
3 cos X sin X - sin X.

sin 3x
Putting these results into (12), (13), and (14), we obtain

y = % [sin x + cos’x sin x - % sinax]

= — [sin x + (1 - sinzx}sin X - % sin3x]

= = [2 sin x - % sinJx] (17)
y' = % [cos x + cos3x - 3 cos x sinzx]

= % [cos x + cos3x - 3 ‘cos: % (L ~ coszx)]

s % [4 cos3x - 2 cos xI (18)
etc.

From (18), we conclude that

0 +~— 4 cos3x - 2 cos x =20

<
Il

+«—+ 2 cos x (2 coszx - 1) =0

or cCos X = t/zg.

When cos x = 0, sin x = +1; so that (17) yields

I
o

<+ cos X

S.3.8.17
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3.8.3(L) continued

y=1—':-[¢21%]
te-h oty
-2
=2 ~o0.85
When cos x = if/% = éi, sin x==£i. Hence, (17) yields

= 18/5 % L A
3

Pictorially,

e — —
4

| o1 3w ow
/‘\ 7 27 4

Figure 2
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3.8.3(L) continued
Again, in terms of least mean squares, if

h(x) = ag a5 a,cos x + azcos 2x + ajcos 3x + b181n X + b251n 2x +

+ b351n 3x

then

m
f [£(x) - h(x)]%ax

=T

- R R B = oA s =k w A
is minimized when ao - al = a2 - a3 = b2 = 0; bl = = and b3 I

[i.e. these are the values of the Fourier coefficients as deter-

mined from (12)].

Note #6
k
_ e A sin(2n + 1)x
F(x)—iﬂ!wz n F 1
n=0

so that by the major theorem, y = F(x) is the same curve as
y = f(x), except that F(0) = 0 while £(0) is undefined.

Again, pictorially,

Jky
T

mpe 3 e <

This point belongs to y = F(x), but not

toy = f(x). Otherwise, y = F(x) and

BT y = f(x) are identical on -7 < x < .

Figure 3
Note #7

By its very definition, F(x) is periodic of period 27 since cos nx

and sin nx are each periodic of period 2m. Thus, the graph

S.3.8.19
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3.8.3(L) continued

y = F(x) with F as defined in equation (8.3) is defined on the en-
tire x-axis, not just on the interval -m < x < 7. For this reason
we often view f(X) as being extended periodically, but this point

is usually clear from context.

3.8.4
a. f£(x) = |x| for -7 € x § 7 means that
x, Dg=x $m
f(x) =
X, “wE %X <0
Hence, |

-xdx + xdx

| —
3 3
-
—
ot
ot
»
1
—
(=]
é-‘§

Consequently,

s (1)

INTE

m
3 ais
a, * s f_“ f(x)dx

Similarly, since f(x) is even,

b
f f(x) cos nx dx (n # 0)
0

o
I
3|8

S.3.8.20
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3.8.4 continued

m
= 2 f X cos nx dx. (2)
0

Using integration by parts (or tables, etc.) let u = x,
sin nx

dv = cos nx dx. Then du = dx and v = == Hence,
m m m
fxcosnxdx=MJ —lf sin nx dx
0 B nJo
x=0
m
= 0 F cosznx
R x=0
_¢cos mn _ 1
= ————— 5 (3)
n n
Now when n is even, cos m = 1; while when n is odd, cos mn = -1.
Hence,
—-15-—12—=0, when n is even
n n
cos Tn .
n2 n
-——]‘5--—-15=:%, when n is odd
_ n n n
Therefore,
m 0, n even
fxcosnxdx=
0 -2
—5: I odd
n

Consequently, we see from (2) that with n > 0,

& (0) = 0, n even
T
A % (4)
% (:%) = *:%y n odd
i n ™
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3.8.4 continued

Finally, since f(x) is even, f(x)sin nx is odd; hence,

w
J- f(x)sin nx dx = 0,
-1

and this in turn means that
b.i= 0, Fof B = 1,2, rses = (5)

n

From (1), (4), and (5), we conclude that

I

vl
o

+
™

v
=

Q

o

wm

=

t

+
[

F(x) b sin nx
n=1 n=1
=127-+ Z -—42cosnx+0
n odd m
=1__4_Z cos nx
2 m n2
n odd
_m_ 4 cos(2n + 1)x (6)
2 “Z t2ni % 12
n=0
b. Since f(x) = |x| implies that f is piecewise smooth on [-w,7T], we
conclude that F(x) = f(x) except at those points at which f is
discontinuous; but since f is everywhere continuous on [-m,7],
f(x) = F(x) on [-m,m].
Hence, if we let x = 7 in (6) and observe that f(m) = |n| = 7, we
obtain
o0
& % _ % cos (2n + l%n_ (7)
et (2n + 1)
S.3.8.22




“ﬂnnﬂmﬂ-ﬂ"-ﬂ-i

Solutions
Block 3: Selected Topics in Linear Algebra
Unit 8: Fourier Series

3.8.4 continued

Since cos(2n + 1)m = -1 for all n (i.e. all odd multiples of T
have their cosine equal to -1), we conclude from (7) that

S

T2 0w 2

p—o (2n + 1)

or

r=3edyy ——— (8)
A (Gn )

From (8), it follows that

1=12 1
2 m 21
r (2n + 1)
or
2 4 ‘2" " 8¢
— {(2n ¥ )
In other words,
T | 1 2
l+-—2'+—2+'—2+...+-—-—————2+...=?.
3 5 7 (2n + 1)
3.8.5(L)
a. Since
0, -T<xg&0
Flx) =

it follows that
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3.8.5(L) continued

I
\—__é

m m
f f(x)dx f(x)dx + f f(x)dx
- - 0

il
%
o
o
[ 1)
»
o+
h
|
%
(3]
o
L]

B 1.3
—0+'§'X
x=0
3
= X_
= 5.
Hence,
m
_ 1
B =5 J. f(x)dx
-
I P
T 2w | 3
“2
= . (1)

We also have that

m
0003nxdx+f xzcosnxdx (n # 0)
0

"
~—
= (=]

m
J. f(x)cos nx dx
=y

m
- f x2 cos nx dx.
0

Hence, for n # 0,

S.3.8.24
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3.8.5(L) continued

m
_ 1
a. =% f f(x)cos nx dx
-
m
=l f x%cos nx dx. (2)
™
0
Aside:
Letting u = xz, dv = cos nx, we have du 2xdx, v = Hence,
™ 2 ™ m
f chosnxdx=XS1nnx _2f X sin nx dx
0 n 0
=0
[ J
Ll
0
m
- -Ef x sin nx dx. (3)
n
0
Again, using parts with u = x and dv = sin nx dx, we have du dx
and v = -5 cos nx. Hence
m T ™
. =X il
X sin nx dx = — cos nx + = cos nx dx
n n
0 0
o=
=T cos mn + — sin nx
T n 2
— n
=(-1)" v
=0
_ (_l)n+1ﬂ ki
= .
Combining (3) and (4), we have
S.3.8.25
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3.8.5(L) continued

™
f x2 cos nx dx = % (-l)nﬂ"ﬂa
0 n

so that from (2),

n+l

I

n#0->a =2 (-1)
n n2

n+l

2(-1)1(-1)
2
n

%=1y B2

2 r
n

]

or, since (--1}n+2 = (-1)7,

_2(-n"
B &=t
n
Similarly,
o
_ 1 .
bn = = f f(x)sin nx dx

=T

m
f x2 sin nx dx.
0

Again, by parts, we can show that

3|

3

m
2.2 "
.I- xzsin R Al = (2 n“x“)cos nx + 2xn sin nx
0 n x=0

znz)cos ™ - 2

3
n

(2 - n

(3 = nowe) (=1 - 3

n3

(5)

(6)
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3.8.5(L) continued

[2¢=-1)® = 21 = n272(-1)"
3

n

2 =" = 11 _ 7218

3 n
n

2
m 5
e when n is even

-4 n mn? - 4
—-§+?=—3,whennis odd
n

~

Hence, from (6),

-

-%w when n is even

o 8t 4 (7)

Tn -4 hen n is odd

Combining (1), (5), and (7), we have

2 = n
f(x) = %;—+ E zi—%l— cos nx + E %% sin nx +
n=1 n

n even

ﬂznz - 4
+ E ——=—— gin nx (8)
n odd I8

b. Here we see the difference between F and f in terms of periodicity.
Notice that f is not defined either at -m or m, but we may think
of a new function f that is obtained by reproducing f with period
2m.

In terms of a picture, we have

S.3.8.27
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3.8.5(L) continued

/¢/ indicates y = f(x)

From the picture, we see

() + E(n)

F(m) = 3 =
or

2
F(m) = 15

In other words, the graph y

Jy

27 3T

F(x) is given by

The hatching, together
with the circled points,
represents y = F(x).

=27 =T

2m 37

c. If we now return to (8) and recall that on (-w,m) f(x) = F(x) but

™

that F(m) = 5 and if we observe that sin nm = 0, we obtain from
(8) that
2 == n
F(m) = %? ¢ E zi:%l— cos nm + 0.
n=1 R
““;‘ =
L
2
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3.8.5(L) continued

Hence,

2 2 = n
Tto_m 2(-1) G o
=% 2, B v

n
n=1

or, since (—1)n(-1)n = {-1)2n =1,

2 6 }E: n2'
n=1
Hence,
oo
2 _,y 1
3 n2’
n=1
or
(==
1.2 _§Y L
6 - 2=
n=1 o
That is,
2
1 1 1 _m
1+E+§~+...+—2—+...——6—.
n
Note

This was our first exercise in finding the Fourier series of £ (x)
in which f(x) was neither even nor odd. For this reason, our solu-
tion contained both sine and cosine terms. If we want a way of
seeing what portion of the answer comes from the sine terms and
what part from the cosine terms, we need only observe that the co-
sine terms come from the even part of f while the sine terms come
from the odd part of £. By the even part of f, we mean

£(x) +éf(—x], and by the odd part of f, we mean £ix) ; f(-x),
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3.8.5(L) continued

Applied to this particular exercise, we have

0, m<[1]1<¢0
£[ ] =
112, 011 <

Hence,
Op =m <=k g0
f(-x) =
2
(-x)°, 0 -x<m
That is
0, m>x > 0
f(-x) =
2
X, 02x> -7
or
xz, -T <X %0
f(-x) =

Coupling this with the fact that

0,-TI‘<X$O

we see that

f(x) + £(-x) =

while

S.3.8.30




|

3 £» £ £’

E O =Em W

Solutions
Block 3: Selected Topics in Linear Algebra
Unit 8: Fourier Series

3.8.5(L) continued

0 - x2, -T < % 250
f(x) - £(-x) =
x2 =0, DEX <N
In other words,
fix) + £(-x) - I xz
2 2

and this is the even part of f(x), which is represented by the co-
sine terms in (8).

On the other hand, the sine terms in (8) represent

fix) - £(-x) _
3 =
% xz, 0Lz <7
Pictorially,
{
v = jalx) = f (x) +2f(-x)
= ¥ =
(a)
'
= G0 = f (x) -éf(~x)
_ﬂ: = > %

(b)
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3.8.5 (L) continued
N
y = e(x) + 0(x) = £(x)

(c)

3.8.6 (Optional)

b b
f (£ - £_) 2ax =f (£2 - 2t f + t2)ax
a n a n n

b b 2
tnf dx +f tn dx

b
=ff2dx—2
a a

b b
=f fzdx—zf
a a

J“ﬂ

n

B2
qubkfdx +f tn dx
0 a

k=
b, B b b,
=f £f°dx - Zz:vk f f¢kdx +f tn dx
a k=0 a a
2
n n
- bfzdx -2 c, + " 6, | ax
= Yk Yk %%
2 k=0 a8 \k=0

L J

b b
[ Enlel ax + [ Tnorse0qax
a

9 k#3 St
© - J = 0 by
orthogonality

= 1 by orthonormal property
of {¢ }
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a2l U9 8 O O N N e T

3.8.6 continued

Hence

b b L L
f{f—t)zdx=ff2dx-2§\fc+§y2
n k 'k k

2 = k=0 k=0

b n n

_ 2 _ 2

-fa £5dx + z: 2 Eyk Sk EYk Eck
k=0

k=0

[i.e. we add and subtractz:ck2 to get a perfect

square]

b n n
= f%dx + (c & 2y 0. # ) = c 2
A :E: k Kk T Yk :E: k
k=0 k=0
n
» k Vi)
=0 k—lIJ‘-————v-———-J
0; =0 ¢ =¥
Since f and ¢, are fixed, we see from (5) that
b
2
J. (f - tn} dx
a
is minimized + Y = for: k = 04l ie v ilte
Note #1
If we let Yy = Cp in (5), we conclude that
b
J- 2 :?: 2 b
fdx - ck=f(f-t)dx>,0,
a
=0
so that
838433
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3.8.6 continued

n

b
Eckz \«;f £2 %y dx. (6)

=() a

b
Since J’ f2(x}dx is a finite (positive) number, we see from (6)
a

n

that E ck2 is a bounded positive series; hence, it converges. In
k=0

particular

lim Q. = 0,
n-+x

and this at least shows that the Fourier coefficients do at least
get small.

Note #2

If f happens to be continuous, then one can prove

m m
(i) 1If f f(x)cos nx dx = f fix)sin nx dx =0 (n=0;1,;2,3;:4:)
=1 -

then f(x) = 0. Consequently,

(ii) If £ and g are both continuous and have the same Fourier

series, then f(x) = g(x).

(iii) Moreover, when f is piecewise smooth

2m 2
limf (f - s )"dx =0
n
n+e 0

so that the error does get squeezed to zero.
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ra ©M

3 I r3

3.8.7
The key step in proving the orthogonality of {sin nx, cos mx} lay
m
in the fact that sin(m * n)x = 0. If we now replace [-7,7] by
X==7 P

[-p,p], the important computation would involve sin(m + n)x

X==-p
The problem is that sin(m * n)p need not be zero.

If we observe that sin(m * n)7 is zero, it is easy to conjecture
that it would have been nice had a factor of % been introduced in
the expression sin(m * n)p. That is

sin g (m + n)p = sin(m * n)m = 0.

This suggests that if we want the Fourier series for f(x) on the
interval [-p,p], then the series should have the form

=] o0
mTmxX . mTmx
f (x) a, + E a  cos 'ET'+ E bn sin - (1)
n=1

n=1

A direct check, similar to the one used in Exercise 3.8.1, shows
that

{1 cos T, ops 21X cos TX  gin TX sin TDX
I p r p r r p r r I p r

is orthogonal on [-p,p].

Moreover,

P
J- dx = 2p (2)
-P

P P
f 0052 Inx dx = 1 f 1l + cos 2Tnx dx
_ p 2 -p P

P
P
- Her oy oan 2228 |
2 2mn P/

(2p + 0)

N

= P. (3)
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3.8.7 continued

Similarly,

P p
f sin2 TnX ax = lf 1l - cos (M) dx
-p P 2 J_ P

= p. (4)

From (2), (3), and (4), we see that p replaces m when the interval
switches from [-7,7] to [-p,pl. That is, if f(x) is integrable on
[-p,p], the Fourier series of f(x), F(x) is given by

_ TRX . TnX
Plx) = &y ¥ E a, cos o= + Z bn sin 5 (5)
n=1 n=1
where
1 P
ao = "2"15' f f(x)dx (6)
-P
P
a_ (for n # 0) =—1-f f(x)cos I2X gx (7)
n P J_ P
P
. P
I 3 . Tnx
bn =% J: f(x)sin 5 dx. (8)

P

With this general background, we see that our present exercise is
the special case with p = 1 and f(x) = x. Under these conditions,
we deduce from (6), (7), and (8) that

since f(x) is an odd function [hence, f (x)cos 135 is also odd],

1
b =f X sin Tnx dx.

3k -1
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3.8.7 continued

Letting u = x and dv = sin mnx dx, we have

—COS Tnx

that u = dx and

v = ———, Hence,
™
1 il 1
fxsinﬁnxdx=MJ +if cos mnx dx
b m™m ™ J_;
x=-1
1
_ -2 cos Tn A
= == = "2 5 sin mnx
xX=-
[} ~—
0
_=2(-1n"
m™m
_2(-1) (-1n"
™
4
15 v (9)
o .
Putting these results into (5) yields
= n+1l
F(x) = E gl—l%——— sin mnx
n=1
or
0
2 z : _1yn+l sin wnx
F(x) = = (-1) Ll (10)
n=1
= 2 ; _ sin 27x | sin 37x _ sin 47x i
- (s:.n = 5 + 3 7 + .) (10')
Note #1
As a partial check of (10'), we know that if -1 < x < 1, f(x) =
F(x). Hence, letting x = % in (10') yields
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3.8.7 continued

-1 =1
=1 =0 =0
e\ =

rdy = g(dy =1 2(ggpT-sinT, 2 _ginzx T3

2 2 "2 W 2 2 3 1 5 :
or
L2 ff-2gi-1
2" (} FTFTFT - )'
or
A N [ Ry
'4——1 3+5 7+..

and this checks with the result of Exercise 3.8.3(L).

Note #2

The result of this exercise can be generalized to any interval
[a,b], not just intervals which are symmetric with respect to

x = 0. Without going into detail here, the gist of the argument
is that if f(x) is integrable on [a,b] and {¢n{x)} is orthogonal
on [a,b]l, then we may shift our coordinates by letting 2 ; ) (i.e.

the midpoint of [a,b]) serve as our new origin. Pictorially,

:}p—a} :p 9 ? — > transformed axis
0 a atb b=a+2p > original axis
2
Here we let p = l{b - a) so that
atb_ a+b 2
g viewing —5 as our new origin,
,.E%E [a,b] becomes [-p,p].
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3.8.7 continued

To find the Fourier series of f(x) on [a,b], we need only replace
-p by a, p by b, and the period 2p by b - a. Leaving the details
to the interested reader, we then find that equations (5) through

(8) are amended by:

If f(x) is integrable on [a,b], then the Fourier series, F(x) of

f(x) is given by
oo 2 * 00 2 *
_ TNX ; mnx
F(x) = aj + E a, cos(E—:—E) + E b, Sln(sf:jg)
n=1

n=

where

o 1
& e J- f(x)dx

Q

)
v
o
Il

b
1 2mnx
o F=a fa f(x)cos(b = a)dx

b
o s _2mnx
= = J; f(x)cos(b = a)dx

b

- 2 : 2mnx

T s fa f(x)s:.n(—-—b — a‘)c:f’tx
Note #3

As an example, suppose we try to find the Fourier series of the
function of period 1 defined by

fiz) =—%; 00 x££ L
Pictorially,
%1 cos | Tnx _ cos Tnx _ cos 2Tnx
- = = & ey =
sin P sin b - a sin| b - a
2
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3.8.7 continued

—>= X

We have that

= _2mnx
F(x) = a  + E a cos(b = a) + E bn
n=1

n=1

where

x dx

w
o
Il
o\
(]

1 5
a =2f X cos 2mnx dx
0

3

b =2f X sin 2mnx dx
0

We then obtain

By parts, we have that

; -X cos 2TnX 1
= +
fx sin2mnx dx TR e

3 2Tnx
51n (m)

(11)
(12)

(13)

(14)

cos 2m™nx dx
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3.8.7 continued

and in a similar way

fx cos 2mnx dx = = S;ﬁnzﬂm‘ - 21];n fsin 2mnx dx.

Hence,

1 1
_ X sin 2mnx| _ 1 .
(n # 0) = Cry jo- sin 2mnx dx

2 2mTn
x=0
[ 3 . . J
0 0
= 0'
while
1 1
_ —X cos_2Tnx 1
bn = 5eh + S fo cos 2m™nx dx
x=0 " )
0
_ —_cos 2mn
2mn
)
2Tn
Hence,
o ok 1 sin (2mnx)
Fix) =5 = 3= s . (15)
Note #4
% = f% Eiﬂ_éélﬂil (the result of Note #3) and equation (10')

both converge to f(x) on [0,1]. Notice, however, that they behave
quite differently on [-1,0]. 1In other words, unlike in the case
of power series, different Fourier series may express the same

function on certain subintervals.
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3.8.7 continued

Pictorially,

/.,

/.

7

?/z @3/4/”

SLN LSS

@ y = F(x)
with F as
in (10').

® y=F(x)
with F as
in (15}

Both (10')
and (15) agree
on the hatched
region.

In summary, if f£(x) and g(x) are convergent power series and if
f(x) = g(x) on some interval [a,b], then f and g are identical
everywhere. That is, once f and g fit well on one interval, no
matter how small the (non-zero) interval, then they fit well
everywhere. On the other hand, there are many different Fourier

series which fit the function f on a particular interval, but

which are very different on other intervals.
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Block 3: Selected Topics in Linear Algebra
Quiz
1. continued
u, = = 2v2 + Vg
U, = 3vy + 3v, — 2v
1
€ 2 4 I (2)
uy = -vy + Vy TV,
Uy =vp - v Ty
-
Check
- 2v2 + vy = - 2u1 - 4u, - 6u3 - 6u
+ 3u1 + 4u2 + 6u3 + 6u4
9
3vl -+ 3v2 - 2v3 = 3u1 + 3u2 + 3u3 + 3u4
+ 3ul + 6u2 + 9u3 9u4
= 6u1 - 8u2 - 12u3 - 12u4
%
vy + Vg = W= =3 =5 B < u, - u,
+ 3u1 + 4u2 + 6u3 + 6114
- 2u1 - 3u2 - 4u3 - 5u4
Us
V1T V3 + Vg = — U4 = u, = u, - u,
- ul - 2u2 - 3u3 - 3u4
+ 2u1 + 3u2 + 4u3 + 5u4
v
(b) We have that
w = 4u1 + 3u2 + 2u3 + u4,

so that from (2),

E)
I

4(-2v
6v1 - v4

(6,0,0,=-1).

2+ V3) ¥ 3(3v1+ 3v

2-—2v3}+ 2(—v1+ % v4)+-[-v1

- v, +
vyt Vv

4

)

S.3.0.2
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Quiz

1. continued

Check

v, = Vy = 6u1 + 6u2 + 6u3 + Su4

—Zul - 3u2 - 4u3 = 5u4

4u1 + 3u2 oa 2u3 + u,

="

(a) Technically speaking, we do not need to use the augmented
matrix technique to do this part of the exercise. However, the
augmented matrix technique is useful in parts (b) and (c) so we
might as well introduce it in part (a). We, thus, have:

b S T T S A S BT
(1 2 0 1 0 0 O]
=5 [ ST 3 0 1 0
8 -5 6 0 0 1 o0
(1 -4 7 -6 0 0 0 1
E < 5 1 0 0 ]
0 -3 i 1 @B (1)
0O 6 -6 6 -1 0 1 o0
0 -6 6 -6 -1 0 0 1]

To continue our row-reduction of (1) we might observe that the

last two rows are related to the second since (0,-6,6,-6) =
-(0,6,-6,6) = -2(0,3,-3,3); but we are not always this fortunate

in our use of inspection. The more general approach is to rewrite
(1) in a form in which each element of the second column is divisi-
ble by 6. To this end, we may multiply the first row by 3 and the
second row by 2 to obtain

3 3 0 0 0
0 -6 2 0 0 -
0 -6 =1 0 1 0
0 =6 6, =6 =L 0 0 1

5.3.0.3
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2. continued
3 0 9 -6 1 =2 0 0
0 6 -6 2 2 0 0
0 0 -3 =2 1 0
0 0 1 2 0 1
1072 7374 T2 T3
= 1 2 =
1 0 3 =2 3 -3 0 0
1 1
0 1 -1 1 3 3 0 0
g =3 =2 1 0
K 0 I 2 0 : i
From (2) we see that W is spanned by Bl and 62 where
Bl =u, + 3u3 - 2u4
fag =Ny~ Uyt uy,

(2)

(3)

where the reduced-echelon form of (2) guarantees us that {81,62}

is:

Since B and Bz are linearly independent and span W they are a

basi

inearly independent.

s for W. Hence:

dim W = 2.

(b)

0 =

and

Looking at the last two rows of (2) we see at once that

-3w1 - 2w2 + w3

+ 2w, + w,.

Yy 2 4

Therefore,

3w1 + 2w2

Wy < 2w,

(4)
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Quiz

2. continued

(c) There are several ways of tackling this part of the problem.
Perhaps the most efficient way is to utilize equation (3). From
the echelon form of (3) we see that the only linear combination of

8, and B, that can have the form 3u; + 5u2 + xuy + yu, is

1

38, + 5B,. (5)

(Quite in general, if weW, the ul-component of w must be the
coefficient of Bl and the uz-component of w must be the coefficient
of 62).

From (3) we see that

38l + 582 = 3{u1 & 3u3 - 2u4) + S(u2 - u, 4+ u4J

= 3ul + 5u2 + 4u3 - u,. (6)

From (6) we see that

It
|
[l

-

X =4 and y

(a) From the previous exercise, we know that Bl = uy + 3u3 - 2u4
and By = u, -~ U, + u, span W. Hence, to find the space spanned by
81,62 and the three given vectors, we may use the following matrix

technique:

1 0 3 -2] [1 o 3 -2]
o 1 -1 1 0o 1 -1 1
11 1l~fo 1 -2 3| ~
2 1 =3 0 1 -1 1
3 2 -4] o 2 -2 2]
1 0o 3 -2] [1 o g ]
o 1 -1 1 1 (1)
o o -1 2|~ -2
- o
0o o 0
0 0 0

§.3.0.5
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The right side of (1) tells us that Gy = uy + 4u4, 0, =1
and Oy = Uy - 2u4 form a basis for U + W, Hence,

dim(U + W) = 3.

(b) vy = (xl,xz,x3,x4)gu — + x ¥ g

e L B o Tl

= ¥y (uy +duy) +x,(uy - u,) + x5(uy - 2u,)
= Xjuy +x2u2+ Xju, + (4x1— X, = 2x3)u4
> Ry - 4xl - X, = 2X4 (2)

Now from the previous exercise

I
»

Y = {xl,xz,x3,x4)ew — Y
= xltul + 31.13 - 2u4) + x2(u2 - ug + u4)

X Uy + XU, + (3xl = leu3 + (x2 - 2xl)u4

— (3)

Replacing X4 and x, in (2) by their values in (3), we obtain:

X, = 2x1 = 4x1 - Xy - le + 2x2
or
0 =0. (4)

What (4) indicates is that once x4 and Xy satisfy (3), they auto-
matically satisfy (4). In other words, in this particular example,
we have the special case in which

W C U.
5.3.0.6
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WNU=W
or
dim(W N U) = dim W = 2 (from the previous exercise).

(c) We already know that

dim W = 2
dim(U N W) = 2
dim(U + W) = 3

Since W (C U, dim U = dim U + W = 3 and the result follows. We
could have shown more explicitly that dim U = 3. Namely,

[
=

{Yy =uy - uy, Notice that"Yl,Tz,Y3 are simply the

Gy r0y 0y of part (a) since U= U + W.

Y3 = u3 - 2u4

Hence, dim U = 3.

4. We have by linearity that
> - > - - B3
T(xi + yj + zk) = xT(i) + yT(j) + =zT(k).

> ->
Hence, from the given values for T(i), T(j), and T(E} we conclude
that

§.3.0.7
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4. continued

> - >
T(xi + yj + zk)

xtzi + § + ﬁ)
S
+ y(-1i + 23 + 7k)

-
+z( i~

> >
j - 4k)

- -+
(2x -y + 2)i + (x + 2y - 2)]

-
+ (x + 7y - 4z)k

(a) From (1) we see that

- =5 +
Tlxd + vy + z2k)

2% = gy 2

x+ 2y = =z

x + 7y - 4z

Solving (2), either by matrix

X+ 2y - z=
x + 7y - 4z =

2x - y + =z =

5 + 10y - 5z

loy - 6z

From (3) we see

of the form

(-%f '*3‘55; Z)

0

.

that the null

-3
0 +—

*

-

X+ 2y - z=0
~ Sy—3z=0>~

- S5 + 3z =0

N
I

o

"
I
|

%+

L
N U

59 = 3z =0 y =

W

X+ 2% =

z =0
59 = 3z =0

(1)

(2)

methods or otherwise, yields

(3)

space of T is given by those vectors

*Recall that since {I,;,E} is a linearly independent set,
b

> - -
ai + bj + ck =

-
04—>3=

=c = 0.

S.3.0.8
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or

(-z,3z,52) .

In particular, letting z = -1, we see that

(1’_3;-5)

is a basis for the null space,N, of T.

Check
> -+ -+
T(1,-3,-5) = T(i) - 3T(3) - 5T(k)
=@l +3+%) + (31 - 63 - 21%K) + (-51 + 53 + 20k) = 0.
Hence,
dim N = 1. (4)

(b) To find the space spanned by T(I], T(g), and T{i), we need
only row-reduce the matrix

2 i 1
-1 2 71,
1 -1 -4

and we see that

(=
~

2 1 1 1 -1 -4 1 el
-1 2 71~]-1 2 Tl= 10 1
1 -1 -4 2 1 1 0 3

© W o
1
o o

-+ -+
Hence, the image of T is the space for which al =i + 7k and

32 = 3 + 3i is a basis.

In particular, dim [T(EB}] = 24

S.3.0.9
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Geometric Interpretation

T maps 3-space onto the plane determined by El and o,. The "loss

2
x=t
of dimension" occurs because the line =-3t 1is mapped into the
z=-5t
origin.
5. We have:
+
1 1 1 i 1 1 s U P 1 1
1 2 2 3 3 0 1 L 2 2
2 3 3 3 4| = |0 1 & i & 2 (1)
3 4 5 4 5 0 1 2 Al 2
4 5 A 4 4 0 1 0 0 0
Expanding (1) with respect to its first column we obtain:
+
1 i 5 2 2
EEE 2
il 2 i Y 2
1 0 0 0
We now expand (2) along the last row to obtain
L 2 2
- |1 1 2
2 1 2
and this equals
1 2 2
- |10 -1 0]. (3)
0o -3 =2
Expanding (3) down its first column, we obtain
S5.3.0.10
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5. continued

-[(-1) (=2) - (=3)(0)]

= -20

Hence,

det A = -2.

6. We know that the values of c come from the equation:

det(A - cI) =0

where A is the matrix of coefficients and I in this case is the 3
by 3 identity matrix.

Since

3 2 2
A= 1 2 2

-1 -1 0

and

c 0 0
cI =10 c 0

0 0

or

(3-¢) [-c(2-c) + 2] - 2[1(-c) - (-1)2] + 2[1(-1) - (-1)(2-e)] = O.

Collecting terms we obtain,

§.3.0.11
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-c3 + 502 - 8c + 4 = 0. (1)

Noticing that ¢ = 1 is a root of the above equation, we may divide
the left side of the equation by ¢ - 1 to conclude that

~c3 + 5c2 - 8c + 4 =-=(c - 1}(-::2 - 4c + 4).
Hence, we conclude from (1) that

c=1 or ¢ = 2.

-3
Letting X = [x,y,z] where v = Xuy + yu, +: zu,, we see that with
c = 1 we obtain

T(v) = v

or in matrix notation

- -
XA=X,
That is,
3 2
[x v z] h & 2 2 =[xy z]. (2)
-1 -1 0

[Ha? we desired to write v as a column vector, we would have
AT X = X, but this will yield the same answer as the one we shall
obtain from (2).]

Equation (2) implies

Az + y ez =X

2x + 2y -z =Y
2x + 2y = 2z
or,

S.3.0Q.12
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2x + y-z=20
2x + y -z =20 : (3)
2x + 2y —z =0

System (3) reduces to

I
o

-2x -y + z
: (4)

Il
o

2x + 2y = 2

Adding both equations in (4) yields y = 0.

With vy = 0, equations (4) imply z = 2x. Hence, T(x,y,2z) =
(x,y,2) ~y =0 and z = 2x.

In other words, every vector v of the form

(x,0,2x) = Xu, - qu3
has the property T(v) = v.

In particular, letting x = 1, we see that u, + 2u, = (1,0,2) is
one such vector. Therefore, letting oy = uy + 2u3 we have that

T(v) = v = v = X0q

If we let ¢ = 2, we obtain

- -
XA =2X
or
3 2 2
[x vy z] 1 2 2| =2[xy z]
=], =% 0
Hence,

5.3.0.13
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3x + vy 2x

|
N
Il

2x + 2y = = 2y ¥ .

2x + 2y = 2z
Hence,

xX+ y~- Z2=0
2x - z=0

2x + 2y - 2z =0

or

2x -z=0
or
X+ ¥=z=10

-2y +z=20

The second eguation in (5) says that z = 2y and putting this in
the first equation yields x + y = 2y = 0 or x = y.

In other words, for an arbitrary value of y

Il

T(y,y,2y) 2{Y:Ya2Y).

l, we obtain that

Letting y

T{lrlrz} = 2(1]1f2) e (2;2;4).

Summary

Let al

multiple of o and T(v) 2v ++ v is a scalar multiple of a

2"
Otherwise,

(5)

= (1,0,2) and a, = (1,1,2). Then T(v) = v «— v is a scalar

§.3.0.14
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T(v) = cv (c # 0)
can be solved «+ v = 0.

The component of u, orthogonal to u, is given by

* Yy ¢ ¥p
u =u, - ———— 1
2 2 uy uy 1
- - - (3r0r4) " (-1r017}
b ( 110!7) [(3'0'4) = ( 3'0'4)] t310;4}
_ -3 + 28
= (-1,0,7) - [—g—;—ig] (3,0,4)
= (-1,0,7) - (3,0,4)
= {‘4;0,3).
*
Next letting Gy = (3,0,4) and uz* = (-4,0,3) we replace uy by
* *
* uy  couy % Uy tou, -
1.13 = 113 - — 1.'11 - ——— u2
Y4 Y e T
s _ 1£2,95;11)-(3,0;,4) _142,9,11)-(-4,0,3) | ,_
(2,9,11) [(3'0' 4),(3'0,4)](3,0,4) [(_4'0,3)'(_4'0'3)]( 4,0,3)
. _[6r o0+ aa T TES P
- (219111} [9 + 0 F 16](3;014) [6 + 0 + 9]( 41073)
= (2,9,11) - 2(3,0,4) - (-4,0,3)
= (0,9,0).

Hence, an orthogonal basis is

* *

*
ul = (3;0;4); uz = (‘4;0'3); u3 = (0;9;0)-

Therefore, an orthonormal basis is given by

=
ro

SI3IQ.15
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= (51:0 rg‘)

= (0,1,0).
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