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3.7.1

In our discussion of the game of mathematics at the start of this
course, we indicated that one often tries to abstract the crucial
aspects of a well-known system in order to see what inescapable

consequences follow from the most "reasonable" set of axioms.

With this idea in mind, let us observe that as of this moment,
we have not required our generalized vector space to have the
equivalent of a "dot" product defined on it. That is, we have
talked about bases of a vector space and about linear transforma-
tions, but we have not required that there be defined an operation

which allows us to assign to each pair of vectors a number.

Thus, if we were interested in developing the anatomy of a vector
space still further, it would next be reasonable to define that
part of the structure which is characterized by what the dot

product does for ordinary 2- and 3-dimensional vector spaces.

What mathematicians first noticed in this respect was the import-
ance of linearity among the various attributes of the dot product.
For this reason, they insisted that a rule that assigned to ordered
pairs of vectors a real number not even be considered an "inner"
(dot) product unless it possess the property of linearity. With
this in mind, they defined a bilinear* function on a vector space

to be any mapping

* %
f:VXV > R
such that for o, B, YeEV and ce R
1. f(o + B8, v) = £f(oo , Y¥) + £(B , ¥)

2. f(o ,B + ¥Y) f(a , B) + £(a , Y) (1)
3. f(a , cB) = f(ca,B) = cf(a , B)

I

*We say bilinear because the domain of f is ordered pairs.

**Recall that by A x B we mean {(a,b):acA, beB)l. Hence
S x S denotes the set of all ordered pairs of elements in
Ss
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Note #1
In keeping with the notation of the usual dot product, one often
writes o-B rather than f(o,B). With this in mind, (1) becomes

rewritten as

1. (a + B) -y oY+ B-y
2. o+ (B + v) a-y + o-Yy (L)
3. a+* (cB) = (ca) B = cla * B)

Il

Note #2
It is crucial to remember that o' is a number, not a member
of V.

Note #3

Later we shall add the requirement that w-B= B-+a , but for

now this property is not imposed on our definition of a bilinear
function. For this reason 1l. and 2. are not redundant.

In other words, if we assume that ao+fB = B-a for all a,BeV,
then

@ (B+y) =(B+Y) *o

so by (1),

a - (B+y) =8 -a+ y-a

or

a -+ (B+y)= aB + a'y.

Since, however, we do not assume a-f = f+a , we cannot

derive (2) from (1).

Note #4

There are, in general, many different ways (usually infinitely
many ways) to define f:V x V + R such that property (1) is
obeyed. (We shall discuss this in more detail later). Thus,
when we talk about «a-+-R we are assuming that we have chosen

one particular bilinear function.
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3.7.1 continued

With this as background, we now try to explore why the linear
properties are so important. What we shall show is that many of
the usual structural properties of a dot product follow just

by linearity. In particular:

a. o+ 0*=oq -(0 + 0)
=0 <0 +a-0. (2)

Since a * 0 is, in any event, a number (i.e., a member of R),
let us denote it by b. We then conclude from (2) that
b=Db+b (3)
and since b is a number, we conclude by elementary arithmetic
from (3) that b = 0. Thus, we have shown that
@+ B = 0** (4)
In summary, we have shown in part (a) that the usual property
o - 0 = 0 holds for any bilinear function.

b. Given,
(alul + a2a2) - {a3a3 + a4u4), we may treat ajaj; + a,o, as a

single vector whereupon we may use 1. to conclude that
(alal + azuz) - (a3a3 + a4u4}
(alul + a2a2) -y [where y = ajoq + a4a4]
= (ajay) =y + (ajzay) *y o
and this by 3. equals

al( oY ) + a2(a2 - Y). (5)

pr
*We have resorted to the notation 0 to reinforce the idea that
o *B in an operation on vectors not numbers.

**It is not an oversight that we have wyritten O rather than [
on the right side of (4). Namely, o+ 0 is a number, not a
vector.

8.3.7.3




Solutions
Block 3: Selected Topics in Linear Algebra
Unit 7: The Dot (inner) Product

3.7.1 continued

Replacing y by a +oa,a,, (5) becomes

393
al[al-{a3a3 + a4u4}} + az[uz-(a3a3 + a4a4)]. (6)
By 2. we know that

ayc(azay + aza,) = o - (azas) + ay-(ago,),

and this, in turn, by 3. is

a3(u1 -a3) + a4(al -a4). (7)
Similarly
o, -(a3a3 + a4a4j = a3(a2 -a3} + a4(a2 -a4]. (8)

From (7) and (8) we see that (6) may be replaced by
al[a3(al-a3) + a4{al -u4)] - a2[a3(a2 °u3) + a4(a2 '34)]. (9)

Since equation (9) involves only numbers*, we may use the rules
of ordinary arithmetic to replace (9) by

ajaglay) raj) + aja,la; -ay) + azazla, “a3) + aza,(a, -a,). v10)

In summary, then, provided that we keep the order "straight"

(i.e., oyt ad 4

we had to do in our study of the cross-product, we see from (10)

is not necessarily the same as o -al), just as
that the linearity of the dot product is what allows us to
treat it as we treat the analogous expressions of numerical

arithmetic.

*That is, while Q50,0 and o, are vectors, o, 0,, etc. are
numbers., That is, w%y we have parenthesized apFa,, etc., namely

to emphasize that o3 + o2 is a number.
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a. Once again we restrict our attention to n = 2 for computational
simplicity, but our results hold for all n. More importantly,
the technique we shall use here is the same one that is used in

the higher dimensional cases.

Keep in mind that our main aim in this exercise is to show that
a particular bilinear function is completely determined once

we know its effect on each pair of basis elements.

So suppose that V = [ul, u2] where {ul, uz}is an arbitrarily
chosen basis for V. Now let o and B be arbitrary elements of

V. Say,

xlul + x2u2‘

YUy + YU, (1)

™
I

From (1) and part (b) of the previous exercise we conclude

that

@ © B =Xy, (0 - u) Xy, (upeuy) Xy (uyryy) X5, (uyeuy),
(2)

Since XX 1y, are known once o and B are given, we see from

2’3
(2) that a+B is determined once the values of Uptuys Ugtu,, Uyclgy,

and u,-u, are fixed.

Note #1
With a little insight, equation (2) gives us a hint as to why
our matrix coding system is used in yet another context in

vector spaces. Namely, if we let

ul-ul ul°u2
7 - —
e | T
R ¥y
X = [xl,le and % = :
Yy

we see that equation (2) says that

5.3.7.5
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3.7.2 continued
u.*u u

Uthy  Bytuy| ¥ (2")

As a check on the equivalence of (2) and (2'), we have

Yy
3 + 1
X AEY = [xl(ul-ul) + x2(u2-u1), xl(ul'uz) + xztuz-uz)]
2
= [xp(ugrug) + xp(uyu)lyy + Ixg(ugtuy) + x5 (uyeuy)ly,
= lel(ul'ul) + Xzyl(uz'ul) + xlyzful-uz] + xzyz(uz-uz} (3)

and it is easily seen that the number named by (3) is the same
as that named by (2).

Note #2

The converse of Note #1 is also true. Namely, suppose we let

A =

denote any 2 by 2 matrix. We may now use A to induce a bilinear

function £ on V x V. Namely, if V = [ul,uzl, we define f as

Il
I
=t
=
I

£(uyruy) = uyeuy = apyi flug,uy) 179 = 2357 £(uy,ug)

e
I

1 ayqyi and uz-u2 = a22'

We then use (2) to extend the definition to all of V.

This is the essence of part (b) wherein we illustrate our last
remark more concretely. ’

Let V = [ul,uz], then if a = (3,2) [i.e., 3ul + 2u2] and
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3.7.2 continued

1
= [3 - 10, =3 + 12]
4
1
= [-7 9]
4
= -7 + 36
= 29. (4)

In "long hand" our matrix A codes the bilinear function defined
by
Uty = i 98 u;cu, = si)is u,cuy = -5, and uy-u, = 6.

We would then obtain

(3u1 + 2u2)-(ul + 4u2) 3(ul-ul) + 12(u1'u2} - 2(u2'u1)

+ 8{u2-u2)

2(1) + 12(-1) + 2(-=5) + g(6) = 29,

which checks with (4).
Note #3

What we have essentially shown is that if dim V = n (although
we used n = 2) then there are as many bilinear functions which
can be defined on V (relative to a fixed basic { ul,...,un} )

as there are n by n matrices. Namely, if A = [aij] is any n
by n matrix, we define a bilinear function by ui-uj = aij
whereupon

yrecsqn (| ¥1
{xll"'!xn)'(yl!"'llyn) = [xl X ] - .

is the bilinear function induced by A.

S.3.7.7
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3.7.2 continued

Note #4

Since there are many different bases for the same vector, two
different n by n matrices may code the same bilinear function
but with respect to different bases. When we become concerned
with this problem we have yet another situation in which we must
define what we mean for two matrices to be equivalent. That is,
in the same way that we have identified different matrices as
being equivalent (in this case, called similar) if they denote

the same linear transformation of V but with respect to (possibly)

different bases, we might want to identify different matrices as
being equivalent if they define the same dot product. Certainly
these two definitions of "equivalent" need not be the same.

That is, two matrices may code the same linear transformation

but not the same dot product.

3.7:3

Hopefully, our treatment in the first two exercises makes it clear
that one does not need the bilinear function to be commutative in
order for it to have a nice structure. We observe, however, that

the "usual" dot product does obey the commutative rule. That is,

= e T -+ -+ =
for any "arrows" b and ¢, b - ¢ = ¢ * b.

Thus, to capture, even more, the flavor of the ordinary dot

product we add another property to the bilinear function £, namely

that f(a ,B) = £(B ,a); or in the language of the dot product,

a-B = Bro .

We call the resulting bilinear form a symmetric bilinear form,
and we notice that nothing new happens that didn't already occur
in our previous treatment except now all of our matrices which
represent the dot product are also symmetric. In other words,
for a symmetric bilinear function we know that u,tu, = uyctugy
and even more generally that ui-uj = uj-ui. Hence the matrix

Uy " Ugpeee, Ug Uy
i % : X

u_-u

P b L o
n 1'™Y"'n n

is a symmetric matrix (that is, we get the same matrix if we

interchange rows and columns). In any event, it is the study

5.3.7.8

4



R AN N L A B A P B e em

Bl . aa & & e, e

Solutions
Block 3: Selected Topics in Linear Algebra
Unit 7: The Dot (inner) Product

3.7.3 continued

of symmetric bilinear functions that makes the study of symmetric

matrices especially important.

a. If we assume that V = [ul,uzl then the symmetric matrix

1 2
A =
[; é] (1)

codes the symmetric bilinear function defined by

= 2 u2-u2 = 3 (2)
We then have that
(%yu; * xu5) - {78y + yuy)

= %y (uyuy) + X0y, (Uy2u)) + Xoyy (U uy) + x5y, (uytu,)

x,¥, + 2{x1y2 + X,¥1) + 3%5y,. (3)

Had we wished to arrive at (3) using matrix notation, we would

have
1 2 Yq
(xju; + x,u,) " (yyu; + yzuz} = [:v:1 le
2 3 Y,
1
= (xl + 2x2, 2%y + 3x2]
Ys

(xl + 2x21yl + {le + 3x2)y2
= XY, + 2(xly2 + xzyl) + 3x2y2,

which checks with (3).

5.3.7.9
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3.7.3 continued

b. We know from our geometric treatment of the dot product earlier in
our course that the length of the projection of v, on vy is given
by

¥y

so that the vector projection of vy onto vy is given by

Vl v

(v, - j ot
2 Tyl 7 Tyl

—_— ) v..
Vi v, 1

Pictorially,

_ -+
~ Vo = 0oQ
v v
( v2 . vl )vl = 65
1 il
0Q - OP = v,*
=V, - ( 72 : :l ) vy
E b 1

(Figure 1)

§.3.7:10
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3.7.3 continued

We may now divide v, and v,* by their magnitudes to determine an
orthonormal basis for the space spanned by vy and Vo

Before proceeding to the actual illustration of this exercise,

let us observe that while it was convenient to use geometry to
construct vz*, it was not necessary to do so. We could have done
the same thing algebraically (axiomatically). More importantly,
the algebraic approach remains valid for n > 3 while the geometric

approach doesn't.

The algebraic determination of v2* comes from observing that
op = XV, (where x is to be determined), that

xv, + vz* = v, (ox vz* = Vg = xvl}and that vz* = Wy = 0. Namely,
vz* vy = 0o -
(v2 = xv1)° vy, = 0 =
(v2 . vl) - x(vl - vl) =0 >
1 1

2 1
voa* = v, - ( ) v (5)
2 2 vy Vi 1
which agrees with the geometric situation.
Turning now to our specific exercise, we have
iy = 1+ 2; + 3k
(6)

v, = 21 + 53 - 2k
Hence, =
b T T 1+4+ 9 =14
v, vy =4+ 25+ 4=2337 (7)
vy * VvV, = 2+ 10 -6 =6

J
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(Figure 2)

vy * is the vector projection of 5@2 onto 5?1.

= Op
¥y T Sy

= OpP
v, = 2 -
The space spanned by v, and v, is the plane determined by O, Py

and P2.

S+3.7.12

Then, |
v, * V
2 1
Va* = vy = | ) v
2 2 Vit vy 1 II
= e
TV2T 1M l
=i+ 53 -2k -2 @ +23+ 30
_ 11+ 29+ _ 233 I
= —.i— 1 + 7— J 7 k
= 2 (i + 203 - 23%). (8) I
Pictorially, I
z
il
Pl(l,2,3)
- g 2V
‘ :
/
/
4 b
Pz(zrsr-z)
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As a check that v,
spanned by v, and v,, we need only check that v,* belongs to

and vz* is an orthogonal basis for the space

this space, and v, - vz* = 0.

That vyt vz* = 0 may be checked at once from (6). In particular,

I

1
vy o Wt (1,2,3) - 5 (11,29,-23)

I

% (11 + 58 - 69)

0.

As to whether vz* belongs to the space spanned by vy and Vyr we

need simply row-reduce the matrix

I. 2 8 I~ HJ
2 5 -2 0 1

1 2 3 1 o0, [t o 19 5 1
0 1 -8 -2 1 o0 1 -8 -2 1
from which we conclude that S(v,,v,) = {x1(1,0,19) + xz(ﬁ,l.-BJ}

or,

{ (xl,x 19xl -8x2)} :

2’
In particular,

(11,29,2)¢€ s(vl,v2}++z = 19(11) - 8(29)

-~—+Z

209 - 232

Il

>z = =23.

Hence, {11,29,—23)€S(v1,v2). Therefore, v2* = %(11,29,-23)€S
(Vlfvz) -

§.3.7.13
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Note:

Do not let the fact that we are now dealing with dot products make
you forget that one uses the row-reduced matrix technique quite
apart from any knowledge of a dot product. 1In particular, we
analyze the space S(vl,v2) in the same way as we would have in

the first three units of this Block. What we should be beginning
to feel now is the number of different ways in which matrix
notation is used to code completely different aspects of vector
spaces.

To conclude this part of the exercise we need only divide both
vy and vz* by their magnitudes and we have obtained the desired
orthonormal basis. To this end we have:

lvll =Vv, - vy =12

vt = SE v = % /121 + 841 ¥ 529 = % 1451 .

u = -ivl= L d + 23+ 3%
v1d V14
w, = — vy* = —I (1l + 207 - 23%).
V1491 V1491
Then,
S(vl,vz} - [ul,uZ] where U, sy = u, touy = 1 and up tou, = 0.
c. At first glance it might seem that part (b) was an interruption
of our train of thought in going from part (a) to part (c),
but this is hardly the case. Rather what we wanted to show is
that the technique used in part (b) which is so obvious from a
geometric point of view works, word for word, in the more
abstract situations.
In particular, in this exercise we want to express the space
v = [ul, u2] described in part (a) by replacing u, by an
z i * =
appropriate uz*, where ul u, 0.
S.3.7.14
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To this end, we need simply take

* = =
u, u |

[
=
|

—2u1 + u, - (9)

That is,

Il

{ wt = oy (10)

* =
u2 2ul + uz.

Moreover, we see from (10) that

up* s owg* =y osuy =1
ul* 0 uz* =y e (-Zul +u,) = —2u1 *up tuoeou, = -2+ 2=0
uz* v %= (-Zul + u2) . (—2ul + u2) = 4ul uy - 4ul - u,
+u, .ou,
=4 -8+ 3 =-1. (11)
Note #1:

As we may see from (11), the matrix of our symmetric bilinear

function relative to the basis {ul*. uz*} is given by

B = (12)

That is, the matrix A of part (a) and the matrix B of (12),
code the same symmetric bilinear function but with respect to a

different basis.

The matrix B shows us why {ul*, uz*} is a "better" basis than

{ul, uz} at least with respect to the given bilinear function.

S$.3.7.15
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Namely from (12) we see that

(alul* - azuz*) . (blul* + bzuz*J

I

a.b,u. * - ul* + albzu * . uz* + azbluz* . u, + a2b u,* « u *

e | 1 1 252 2
= albl = azbz. (13)

In matrix form, (13) may be derived from

1 0 b
1
[a; a2]
0 =1 b%
bl
= Iy )
2
= albl = azbz.
Note #2:
We may use (11l) to find a matrix P such that PAPT = B. That is,

we may diagonalize a symmetric matrix A by appropriately choosing
P. This choice of P comes from the following.

l. We know that ul* . ul* = u:L * uy, SO relative to {ul,uz} as a
basis we may code this piece of information by writing
1 2 3] 1
[1 0] (= [1 2] =1). (14)
2 3 0 0
i * = - o *
Since u, 2u1 + u,, we may represent u, u, by
1 2] [-2 -2
(-2 1] (= [0 =] = =1J.. (15)
2 3 L} 1

Putting (14) and (15) into a single form we have

S5.3.7.16




Solutions
Block 3: Selected Topics in Linear Algebra
Unit 7: The Dot (inner) Product

P2 Bm &am | .

-m BN m Pn Bm WM D L P D Em e

mm ol

3.7.3 continued

1 0 1 2 1 -2 e 0
-2 1 2 3 0 1 0 -1 ,
where
1 0
P =
=2 1
and
1 -2
pT =
0 1l
Note #3:

The procedure used in obtaining the diagonal matrix B from the
symmetric matrix A generalizes to n-dimensional space. The
strange part, at least in terms of our usual experience, is that
the diagonalized matrix may include negative entries as well as
zero among its diagonal entries. For example, with respect to
(12) , notice that -1 appears on the diagonal.

What this means is that if we still want to identify v - v with
the "length" of v, then some symmetric bilinear functions produce
the "disturbing" results that a vector can have an immaginary
length and that a non-zero vector can have a zero length. While
it is understandable that such a result may seem disturbing, it
is important that we try to understand the structure of mathe-
matics to an extent which allows us to accept such results in a
natural way. In essence when we say that we want to think of

v - v as the square of the magnitude of v, we have to realize
that unless our axiomatic approach has captured every pertinent
ingredient of the system we are trying to characterize, it is
possible that certain concepts may possess strange properties

in the generalized, abstract system. This happened to us in
Block 1 when we introduced modular arithmetic as an example

that obeyed much of the structure of ordinary arithmetic, yet

was different enough to cause us some startling results.

S+3e 717
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In any event, let us observe that this exercise shows us that
relative to our present axioms, a symmetric bilinear function
may define a dot product for which v «+ v < 0 or v - v = 0 even
if v # 0.

Note #4:
Pursuing the previous note in somewhat more detail, we see from
(13) that relative to the basis {ul*, uz*}

(x,y) * (xy) = x% - y2. (16)
That is,

(x,y) = (xul* + yuz*),

hence

(x,y) - (x,y) = {xul* + yuz*] * (xul* + yuz*}

xziul* . ul*} - 2xy(ul* - uz*) + y2(u2* . u2*)

e ——— —_—
=] = 0 = =1
5 52 i,

Thus, using (16), we see that if v = xul* + yuz*, then
2 2

o o = 0 e X =

Y
3+ ¥ =-|:y.

In other words, the vectors v, which are non-zero scalar

multiples of ul* + uz"‘,r are distinguished by the fact that they
are null vectors (v is called a null vector if v # 0 but v * v =
0).

We may use (10) to investigate how null vectors look relative to

the basis {u;, u2} . Namely,

* * = =
Uy + u, uy + 21.11 + u2)

—Lll + u2

5.3.7.18
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while
x - = il
uy u, ¥ uy ( Zul + uz}
= 3u1 - uz.

Check:

(—ul + uz) (—ul + u2) =y & Wy - Zul u, + u, u,
=1-4+3=0

(3ul = uz) . {3u1 - uz) = 9u1 Ty - 6u1 u, +u, - u,
=9 -12 + 3 = 0.

Note #5:

The material discussed in Notes 3 and 4 leads to an application
of symmetric bilinear functions in the study of the algebraic
topic known as quadratic forms. In n variables a quadratic
form is any expression of the type

2

2 2
1t agXyt ... A x T+ 12 g bijxixj' (17)

a X

i
In the special case n = 2, (17) becomes

x 2 + b..x. X, + a x22.

1%y 12%1%2 + 2y (18)

The connection between quadratic forms and symmetric bilinear
functions should become clear rather quickly once we realize

- -1
that if we let a =5 blz,then

12

2 2
allxl + 2a12xlx2 + a22x2

12 22 2 2 2

831%; F DaX ¥ * 5%, e

l—l

[\®]
N

]

S.3.7.19
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In other words, any equation of the form

2 2 .
a19¥) * byoX X, + ax," =m

may be viewed as the vector equation

where v * v is defined by the symmetric matrix

ol
[
[

Relative to our present exercise, we have that

xlz + 4xlx2 + 3x22 =m (19)
| is equivalent to solving v * v = m where v = X 4y + x,u,. That
| is,
I 1 2 xl
| ¥ - =[xy x2]

’ More concretely if we let m = 0 in (19), then we want to solve
the equation
2 2

+ 4xlx + 3x = 0. (20)

A 2 2

1

This can be done rather simply here (since there are only two
variables) by completing the square to obtain

2 2 2
Xy + 4xlx2 + 4x2 - Wy = 0
or

2 2
(x; + 2x,) x," =0
'.
| S.3.7.20
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3.7.3 continued
or
X, = % (x; + 2x2).

The key computational point is that relative to the basis
{u; *, u,*} equation (20) may be written as

where now v = ylul* + yzuz*.

In summary, the process of replacing the symmetric matrix A by
the diagonal matrix B allows us to replace a quadratic form by
an equivalent form in which only the square terms are present.

3.7.4

Since the matrix

3 4
A = (l)
4 5

is symmetric, it codes a symmetric bilinear function. In parti-
culax, if Vv = [ul,uZ], then the matrix A codes the symmetric
bilinear function defined by

u, = 3 u, * u, = 4
- (2)

5

=]
I

where we have written (2) in a form which we hope suggests the
matrix A given in (1l). We then have
3 4 Yy

(x;r x,) * (¥, ¥5) = [x x, ]
s Ll 1F 22 1245},2

[3xl + 4x2, 4xl + 5x2]
Y2

Il

(3x1yl + 4x2yl) + (4x1y2 + 5x2y2}

3x1yl + 4xly2 + 4x2y1 + 5x2y2. (3)
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In particular, we see from (3) that if {xl,x2] = (yl,yZ) then

_ 2 2
(xl.xz) (x70%,) = 3%;7 + 8x X, + 5%, (4)

By way of review, the right side of (4) is known as a gquadratic
form. We may always view

2 +: 2b%x. %, + ox 2

o, 1%2 2 : (5)

as v * v where the dot product is defined by the symmetric

matrix
a b
b c

with a, b, and ¢ as in (5).

b. So far we have that

v = [ul, u2]

and
ul u, = 3
u, U, =u, oy = 4 (6)

=]
(]
=
[N
Il
w

We also know that if {ul, u2} is a basis for V so also is
{ul
do is choose x so that

+ xu,, uz} where x is any real number. So what we try to

(u1 + xuz) vy 0. (7)

To solve (7) we see that
u; oy, + x(u2 . u2) =0

so that

S.3.7.22
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3.7.4 continued

=u *u
X = % " (8)
2 " %

Using (6), we see that (8) becomes

(9)

and we choose as our new basis for V, {ul*,uz} =

From (9)
LR il (“1'%“2) (“1‘%“2’
='I.ll ul——-g—-uz-ul—-g—ul-u2+%u2-u2,
so by (6),
w*r s owr=3-3 (4+4) + 32 (5)
--1. (10)
We also know that
ul* T, = 0 (1

since this is how ul* was chosen.

Check:

I
)

1

I
=

u.®* +u

L 2

i
=9

I

(S

—
wu
—

1]
o

5347423
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3.7.4 continued

Finally

Hence, from (10), (11), and (12) we conclude that the matrix of the
given dot product relative to the basis {ul*, uz} is

(13)

In other words, if veV is given by v = ylul* + ¥,y then

- é ylz + Syz2 and the Yy, term is missing. Again, by

v+ v =
way of review, (13) may be obtained from (1) as follows. We
know that

th 5= f = _i 5 -i
% Myl =y = e ) ¢ ey =g )
e [l 4] 3 4
r _5' 4 4 (14)
5 s
5
and that

3 i 0
u, - = [0 1]
2" %2 4 5 3 (15)

1 o-3 [3 4 10
o 1 [& 5] |- 1
F;% ol[ 1 o
e s -2 1
-
" N
S.3.7.24
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c. What (b) shows is that the equation 3xl2 + Bxlx2 + 5x22 =m is
2 2

equivalent to - % Yq + 5y2 = m where the x's and y's are re-

lated as follows.

If v = ylul* + yzuz*, then

<
I

4
Y(uy = 5u3) + ¥ou,

4
Yiu + ¥y, - 5¥)9,

xlul + x2u2

4 :
where X, = Yl and Xy = ¥, ~ 5 yl. In particular,

1.2 2
5% v =0 ¥

Hence ,
. 1
= * * = —_
V= yu*t+oy,unt is oa null vector pizo £ 5 ¥
+* Vv is a non zeroscalar multiple of u,* + % uy*
<> Vv is a non zero scalar multiple of (ul - % uz) + % Y,

— v = kTul = u2) or k(ul - % uz), k an arbitrary non-zero
constant.

Check:

(ul e uz) g (ul - u2) =u; -y - 2u1 © o, + u, *u,

I
w

1
@
+
w
[
{=]

S5.3.7.25
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_ 3 -3 - z B : @ 2
(W = 5uy) = (uy - Fuy) =u) ~uy -5 W U+ U, - ou,
=3 -4 =5
1 2
=i = ¥ E
= .

3.7.5 (Review of the Lecture)

As described in the lecture, the process of finding an orthogonal

basis may be extended to an n-dimensional space. The procedure
is inductive. Namely, we have already seen that if

vV = [ul,uz,...,un] then we may replace u, by

u *u
2 1
* = = e
Yo Ny [ u; -ouy ] s I )
whereupon, V = [ul,uz*,...,un], but now u; - u2* = 0. Once we

know that uy and u, are orthogonal we use the fact that if u,

is replaced by u3* where u3* had the form:

U = W = u
1 X

3 1 2°2
then ul,uz, and u3* span the same space as to ul,uz, and u3.
We then try to determine x, and X, in such a way that uy u3*
- * =
u, u,y 0.
As long as neither u; - u; nor u, u, = 0, this can always be
done. Namely, given that
* = Pt =
u,y U X 4y X5, (2)
and that u, tou, = 0, we may dot both sides of (2) by uy to
obtain
~ * = = =
u,y u3 u1 (u3 xlul x2u2)
= - — - -_— - 3
u; - ouy Xy (u; - uy) X, (uy uz), (3)
=0
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3.7.5 continued

whereupon the condition that u, - u3* is to equal 0 allows us to
conclude from (3) that

= l_r__l (4)

Similarly, if we had dotted both sides of (3) with u, and set

2
u, - u3* equal to 0, we would have obtained
u, - u
W el |
o R S T (5)
So, putting (4) and (5) into (2) would yield
u, - u u u
1 3 2 3
u* = u, = ( - } 4y — ¢ ¥ as (6)
3 3 uy u,y 1. u, u, 2

Equation (6) represents a generalization of our approach in
Exercise 3.7.3. Notice that

u = u

1 3
1" ™
is the vector projection of u, onto u; . while

)ul

) u,

is the vector projection of us onto u, - The procedure indicated

in (6) is known as the Gram-Schmidt Orthogonalization Process.

It works as follows. Suppose {ul,...,un} is an orthogonal set

and that u, - Uys...y and u._y v, , are all different from

zero. Given u , we let

* = - — -
u, u X 4, oles xn—lun—l' (7)
We then dot both sides with u, where k = 1,..., or n — 1 and
this yields
* = = = = = &

uk u, uy u Xquy Uyeee xkuk u, . X 1% u_q-

(8)

S+ 3727
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i . - = i - *
Since Uy U # 0 but u, uy 0 for i # k, we may set u, u,
equal to 0 in (8) to obtain

u_ - u
k n
X ='—._, k= 1,..«,11— L. {9]

k Uy u,

Putting the result of (9) into (7) we have that if u, - uj =0
for i # 93 i; § = Iseew,n = 1 then if

n-1

E B & Wy
u*=u - (—/——— ) u,, (10)
n n B uk © U k

* =

uy u 0

Looking at (10) one dimension at a time, notice that the coefficient

of uy is the vector projection of u, onto u In other words, the

K
coefficient of Uy has its numerator equal to (minus) U Uy and
its denominator equal to U ot U With this as background, we

proceed with the present exercise.

a. With V = [ul,uz,u3], the matrix
1 1 1
A= |1 2 3 (11)
1 3 4
defines the symmetric bilinear function given by
uy u, = 1 u; ot ou, = 1 R 1
u, +u; =1 u, - u, = 2 u, - uy =3¢ (12)
uy - ouy = 1 u; - ou, = 3 Uz + ug = 4
Hence to find an orthogonal basis for V we begin by letting
* =
uy uy (13)
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and
u, - u
5 2
u* = m, = { ) ug;
2 2 ul uy 1
or by (12),
1
* = - (=
u, u, (1) uy
= - " 14
By ™ My (14)
Hence,
= * * =
vV = [ul*, uz*, u3] and u* L ou, 0. (15)
Since ul* and uz* are orthogonal, we use the Gram-Schmidt pro-
cess to replace u, by
u, - u wLE o
s 3 2 3
* = - —_— = * o *
ug* = vy = (G ) WY - (G o) wpt- (16)
1 1 2 2
Using (11), (13), and (14) we have
* . = . - —
uy u3 ul u3 1
®x * = - —
ul ul u,y uy 1
* . = - - F—3 - -— - = - =
u, us (u2 ul) u, u, ug Uy uy 3 1, 2
u2* - uz* - (uz - ul} . {u2 ul) u, *u, - 2ul Ty, + uy uy
=2 -=-2+1=1. (17)
Thus, using (17), we see from (16) that
* = -— - * = - - -
u3 u, ul 2u2 U, ul 2(u2 ul}
=u - 2u2 + uj- (18)

From (13), (14), and (18) we conclude that an orthogonal basis

for V is given by
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{ul. “up ot ouy, uy - 2u2 + u3} (19)
Check:

u; {—ul + uz} = -(ul . ul) + u; - ou, = -1 +1=20

u, - (ul - 2u2 B u3) = {ul B ul} 2(u1 - u2) + Uy ot oug

il
—
I
N
+
=
I
o

(—ul + uz) - (ul - 2u2 - u3) = -(ul & ul) + 2(ul . uz)

-(ul » u3} + {ul . u2)
- 2(u2 . u2) + u, * U,
= w42 cA % 1 =4 % 30

b. From (17) we already know that ul* - ul* = 1 and uz* . u2* = 1.
From (18),

u3* . u3* = (ul - 2u2 + u3) . (ul - 2u2 o u3)

(ul ©ouy) + o 4(u, - u,) + (u3 - u3)

- 4(ul - u2) + 2(ul . u3) - 4(u2 - u3)

=1+8+4-4+2-12
= -1.
Hence, relative to {ul*, u,*, u3*} ¢ U RO & XU ¥ 4 XU ks
v v = xlzul* - 1. % + xzzuz* . u2* + x32u3* u3*
\_1:f__/ \__:i__/ ‘-::E-/
= x12 + x22 - x32.

Therefore,
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v - v=2~0 %y

(20)

Given that v = 3u1* + 4u2* + 5uj* we see that equation (20) is

obeyed.
Again using (13),

and (18) we have

v = 3u1 + 4(u2 - ul) + S(ul - 2u2 - u3)

I

4u, - 6u, + 5u

1 2 3

Check:

v - Vv

I

0.

+ 40(111 .

0]

[N

0]

= = !

1]

= =

Hence, putting these three

yields

w N

16(u1 . ul) + 36(u2 . u2) + 25(u3 . u3}

u - 60{u2

3)

16 + 72 + 100 - 48 + 40 - 180

1 1] 1]
3 0l =
4] o]
¥ '-1‘\
2 3 1| =
4] | 0]
1 X [ ]
2 3| |-2| =
34 [

H
(1]
0
ot
H
Tt
0]
Po
=]
+
o
v

=1 1
0 1 -2 =
0 0 1

Hence v - v = 0, and, accordingly, v is a null vector.
(14),

- 48(ul . uz)

- u3)

single matrix equation

1 0 0
0 - 0
0 g - =L
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e. The equation

2 2 2 2
Xq + 2x2 + 4x3 + lexz + 2xlx3 + 6x2x3 =m (21)
is equivalent to solving

2 2 2
Y1 t Y, -y3 =m (22)

Namely (21) evolves from computing v - v = m relative to
{ul,uz,uB} and obtaining

1 1 i X,
[xl x2 x3] 1 2 3 X, =m
1 3 4 Xy

(i.e., ¥y = X 44 + X,u, + x3u3} and (22) evolves from solving

v v = m relative to {ul*, uz*, u3*} ; namely,
W 0 0 ¥y
vev=m - [yl. Yyr y3] 0 1 0 Y, =m

0 0 -1 Yq

where v = ylul* + yzuz* + y3u3*.

376

We now define an inner, or a dot, product on a vector space V to
be any mapping of ordered pairs of elements of V into the real
numbers, say, f£:VXV » R which has the following properties.

For vl, vz, v3ev and c,eR

(i) f(vl, vz) - f(vl,vz)

(ii) f(vl,v2 + v3) = f(vl,v2) - f(vl'VB}

(iii) f(vl,cvz) = cf{vl,vz}

(iv) f(vl,vl) > 0; and f{vl,vl} = ) ¥ ¥ = 0.
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Rewritten in terms of the dot notation we have:

(1) vy Vo, ® Wy ¢ 9y

(ii) vy (v2 + v3) = vl - v, + vy ot Vg
(iii) vy o (cvz) = c{vl - vz)

(iv) vy vy 2 0 ¥y » V= 0« vy = 0.

When a symmetric bilinear function satisfies property (iv), the
function is called positive definite. From another point of view,

what positive definite means is that when we replace the symmetric
matrix by the equivalent diagonal matrix, every entry on the
diagonal is a positive (real) number.

The crucial point is that once we have a positive definite,
symmetric, bilinear function, then we can identify the traditional
definition of a dot product [namely the definition which says that
. = : n n
(al,...,an} {bl,...,bn) albl + ... *+ anbn] with our "new

definition.

More specifically, and we shall illustrate this more concretely
in the present exercise, if we have a positive definite, symmetric,
bilinear function defined on V (and this usually is abbreviated by
saying that we have an inner product defined on V), then we may

use the Gram-Schmidt Orthogonalization process to find an orthogonal
basis for V. Of course, that much we could do before; but now the
fact that u,* - u * is positive for each member of our orthogonal

k k
basis, means that

is real. In this case we can let

whereupon V = [wl,...,wn] and {wl,...,wn} is not only orthogonal
but also orthonormal, meaning in addition to Wi wj =0 1if i # j
that Wy K

«w, =1 for each k = 1,...,n. This shall be summarized
as a note at the end of this exercise.
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Turning to this exercise we have that

3 4 4
A= |4 6 5 (1)
4 5 6

codes the symmetric bilinear function, defined on V = [ul,uz,u3],

by
u; touy = 3 ul . u2 =4 uy - u3 = 4
u, - uy = 4 u, - u, = 6 u, * u,y = 5L (2)

(3)

* o= =
8y B3 (ul s ) By
-, =
o2 371
4
-3y tou,. (4)
= * * * . * =
Then [ul,uZ] [u1 r Uy ], and uy u, 05
We next let
ul* - u u2* . u3
* = == W S T T *
Ut =g < e rae) YT G Wt (3)
1 1 2 2
Now,
* . == - =
uy ug uy u,y 4,
* * = . =
ul ul 1:.1..L ul 3;
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_ .
ut o wp = (- oguy )t (5 guy touy)
- 16 . _ 8 ; ;
=g {ul ul) 3 (ul u2) +u, u,
_ 16 8
= ?T'(B) 3 (4) + 6
_ 16 _ 32 -6 - 16
=i 3 3 + 6 6 3
- 2
3!
and
u,* u, = (- 1u, +u L | T & (o e Ug) + g =0
2 3 3 T} 2 3 3 1 3 2 3
o i
= 3 (4) + 5
= -]—'
T -
Consequently (5) may be rewritten as
o
_ _4 - {2
Wyt = oy = gt z | %"
3
- - L o @
=u3 -3tz
_ o 1 1 ._4
=y =3y tyil-gn tu)
s 1
= 2u1 + 3 u2 + u3.
Matrix Check
1 0o 0] [3 4 4 [ -5 -7
i L
3 1 0 4 6 5 0 3
2 3 1 |4 s ¢ [0 o L
4 IO -5 -2 3 o 0
_ 2 1 if _ 2
= 3 3 0 I 3 = 0 3 0 (6)
1 1
1 ] I 1
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From (6) we conclude that
= * * *

v [u1 ¢ Uy*, ug ]

where

=]
[
*
ol
*
]
w
=
(=
*
=
[
*
I

2 1

* * = = = _—
b L) 3 2 2 376

1 1

* . u*=2 . o F T F=/L2=21
U3 Y g i Vg Y =372

In particular, (6) tells us that our bilinear form is positive

definite since each v = V has the form

= * ¥ *
v xlul + xzuz + x3u3

whereupon
v oo N = 2(u * . ou.*) + x 2(u * « oy *) + x 2(u * . u,¥)
2 1} 1 1 2 2 2 3 3 3

2 2 2

_ 2 1 .
= 3x1 + 3 x2 + 5 Xy > 0;
=0 Xy =X, = Xy = 0 «»v = 0.
Finally, if we let
5
Wy =
V3
u*
“’2=1?,— =Zur=g BT+
376 3
= -2 1
=-35/u +35 /60
u3* 2u3* 1
wy = 7 = = /2 Ug¥ = YZ (- 2u; + Fu, + uy)
5 vz V2

= < 1
= =2 V2 u, + 3 V2 u, + V2 uy
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we may verify that {wl, W w3} is an orthonormal bases for V.
In particular, relative to {wy, wy, wol , (X, %5, %X3) = (¥;, ¥y
y3) = XY, + X,¥, + X3¥,-

Check:
~ ul* ul* ~ u1 . ul 3 ‘
w .w’_ - 4 —_— e—
1 1 /3 /3 3 3
_ -2 L - 2 L
wy swy =6 (- Fu tzuy) - 6 (-Fu s
— 4 - —g - ym,
=6l gu +u -Fu U, +Fu, - ul
" 4 -2 1
=6l 5 (3) -5 (4) + 7 (6)]
- 4 8.3 3 _4,_ 9 =B 5 & as
1 )
W, w3=%—/?(—4ul+u2+2u3)-2—/2'(-4ul+u2+2u3j
= 1 [l6u, - u, + u, = u, + 4u, - u, - 8u, * u
2 1 1 2 2 3 3 1 2
- 16u1 . u3 + 4u2 . u3]
=;‘—[48+6+24-32-64+20]
= 1.
Note:

This is the crucial exercise if we are to identify our definition

of a dot product with that given in the text (for that matter,
with that given in most texts). Notice that in the text, one
identifies vectors with n-tuples, whereupon the dot product is
defined by

(xl,...,xn) . (yl,...,yn) = XY, + e F X Yo (7)
The key point is that there are as many different ways of repre-
senting an n-dimensional space V in terms of n-tuples as there
are ways of choosing a basis for V. What this exercise shows

is that if our symmetric bilinear function is positive definite
(i.e., a dot product), then we can always construct an ortho-

normal basis for V. If Ugresesty denotes this orthonormal basis,
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then relative to this basis, our dot product is as given by (7).

In other words;

{xlul T wmiay xnun) ’ {ylul SRR ynun)

=Xyt el XY

since u; - u, =1 and u, - u, = 0 if i # j.
i i 1 J

Notice, however, that if all we know is that Upreearty is an
arbitrary basis for V, then we are not allowed to conclude that
relative to this basis (xl,...,an B (yl,...,yn) = lel + e ok
X Y . since we do not know that u, - u. = 1 or that u. - u. for
n‘n i 1 i 3j

i# 3.

The key point is that once we know that we have a positive
definite, symmetric, bilinear function then relative to this
there is an orthonormal basis (which may be found by the
Gram-Schmidt ortogonalization process). If we now agree to use
this basis, thenwe may think of the dot product in terms of the

usual n-tuple definition.

377

By the usual use of the cross product we know that u. x u, is

1 2
perpendicular to the plane determined by uy and u,. We also

2
know that

i L
U, X u, = i § 1 1
2 I 1

Il

10) - 3(-1) + k(-1)
=3 - k. (1)

On the other hand,

1 F o F > 1 = R > -
S = ! -5 +3+% + 2T+ 3+
uy 3 Uy + uyg (1 + 3 + k) 3 (21 J ) (21 J 2k)
=-1-F-=%k-1-= % 3 - % K+ 27+ 3 + 2k
8:3.7:.38
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T 1>
j+5k

3 - % . (2)

Comparing (1) and (2) we have that “uy - % u, + u, is parallel
to (i.e., is a scalar multiple of) u; X ou,. Hence “uy - % u2+ u,
is perpendicular to the plane determined by uy and u,. In fact,

2
if we want to make the geometric interpretation complete, our
construction of u2* in the lecture was equivalent to taking the
component of u, which was perpendicular to u - Clearly uy and

u2* determined the same plane as did uy and u, .

It is worth noting that the usual geometric procedure seems much
easier to handle than the more abstract Gram-Schmidt Orthogona-
lization Process, but the fact remains that the latter method
applies to all vector spaces in which an inner product is defined,
while the more intuitive geometric technique applies only to 2-

and 3-dimensional space.

3.7.8

You may recall in our first Unit in this Block, we emphasized
the fact that there were infinite dimensional vector spaces and
that one such space was the set of continuous functions on an
interval [a,b]. In this exercise we want to point out that the
idea of a dot product and the associated concept of "distance"
make sense in this rather abstract model of a vector space. In
fact, the study of orthogonal functions (of which the special

case of Fourier Series will be discussed in the next and final
unit) makes excellent sense in terms of the generalized notion

of "distance".

More specifically, we know that since f(x) is continuous on [a,b],
.Qbf(x} dx exists; and we also know that the product of two
integrable functions is an integrable function. Consequently,
since both f and g are continuous on [a,b],,gbf(x)g(x)dx is a
well-defined number. Thus, the definition

b
£ g ==d/‘f(x}g(x}dx (1)
a
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is at least a function which maps ordered pairs of continuous
functions, defined on [a,b], into the real numbers; and accord-
ingly the definition given above is at least eligible to be
considered as a possible dot product. Our aim in this exercise
is to show that indeed (1) does define a dot product; and we do
this by showing that the definition given in (1) satisfies
properties (i), (ii), (iii), and (iv) required of any dot product.

Given that

b
£ - g=f f(x)g(x)dx
a

then

b
(i) £ « (g + h) f f(x) [g(x) + h(x)]ldx
a

b
f [£(x)g(x) + £(x)h(x)]dx
a

b b
f f(x)g(x)dx + f f(x)h(x)dx
a a

=f g+ £f ¢« h.

b
(ii) (cf) - g f[cf(x)]g(x)dx
a

b
= ci[.f(x}g{x)dx
a

cif - g).

b
-L £(x) g(x)dx

b
fg(x)f(x)dx
a

=: g * f.

(iii) £ - g
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b
f fx)f(x)dx

a
b
[£(x)]%ax,
a

(iv) £ - £

1

I

and since [f(x)]2 > 0 for all x, ~£b[f(x)]2dx > 0 for all x and
LP1E(x)1%ax = 0 «>£(x) T 0% «>£=0; £ £>0and £ - £=0
+«+f = 0. Hence, since (i), (ii), (iii) and (iv) are all obeyed
£f + g, defined by f - g = _gbf(x}g(x)dx is a positive definite,
symmetric, bilinear function. In other words, it is an inner

product.

Note:
Once we have a dot product defined on a vector space, it makes
sense to talk about orthogonality. In particular, suppose that

fl,...,fn are any linearly independent functions which are con-
tinuous on [a,b] and that for i # j, fi - fj = 0. That is, for
i43,

b
JLlfi{x)fj(x)dx = 0. (2)

We then have a simple way of computing the coefficients Corenny

and ch in an expression such as
g(x) = cif(x) + ... + c f (x). (3)

Indeed we need only employ the usual technique of dotting both
sides of (3) with fk(x) (for any k = 1,2,3,...,n) in order

to find each Cy -

In particular, this leads to
g- f = clfl S A - TR S PP R (4)

Each term on the right side of (4) is zero except for ckfk . fk’

since fi % fj = 0 whenever i # j.

If we rewrite (4) in terms of definition (1), we obtain

*Here we use the fact that f is continuous for otherwise we
could allow f(x) to be unequal to 0 at, for example, a finite
number of points in [a,b] and yet

LP rex) 12ax = 0.
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b b 2
Lg(X)fk(x}dx= Lck[fk(x}] dx (5)

from which we conclude that

b
f g(x) fk (x)dx
a

k =
b
L [£, (x)1%ax

[Notice that fk # 0 since {fl“”'fn} is linearly independent,
hence by (iv), _gb[fk(x)]zdx # 0 and, consequently (6) is well-
defined.]

C

If also we assume that the f's are normalized, i.e., £ - £ =
_gb[f(x)]zdx = 1*, then (6) may be further simplified to read

@, = fg(x) fk(x) dx. (7)

Using the result of (7) in (3) we obtain

b b
g(x) = [f g(x) fl(x)dx‘ fl{x} + ... +[[ g{x)fn(x)dx] fn(x).
a a

As is usually the case, very few serious problems arise as long
as we look at finite linear combinations. The deep study begins
when we assume that we are dealing with an infinite sets of
functions defined and continuous on an interval [a,b]. For now,
just as in our study of power series in Part 1 of this course,
we must ask the question of whether every continuous function
defined on [a,b] can be represented as a convergent series in

Gl GG S h IS B S aE e

*If £f - £f # 1, we are in no great trouble. Namely, if
f - f=%k#1 (k #0), then since f + £ > 0, k > 0, Yk is real.
We then replace f by f/ vk whereupon

£f E£.£:¢f k

1/ vk is then called a weighting factor for f.

Bl A & E O UE W e
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which the series is an infinite linear combination of elements of
our set S. Once we have answered this question (hopefully, in the
affirmative) we must then ask whether the process of dotting term
by term as we did in this exercise is valid. 1In other words, as
usual, such statements as "the integral of a sum is the sum of
the integrals" depends on the fact that our sum involves only a

finite number of terms.

The discussion hinted at here forms the foundation of such topics
as representations by Fourier series. We shall not go into the
theory of Fourier series in this course, but we shall, in the
next unit, talk about a few properties of Fourier series.

3.7.9 (optional)

Suppose

Clul + - . + cnun = 0 r (l)
then

uy (clul + ... + cnun) =u; - 0. (2)
Since {ul,...,un} are orthogonal we have that u; - uj = 0 for
j =2,...,n. This, coupled with the fact that u; - 0 =0,
reduces (2) to

cl(ul . ul) = 0. (3)
Now, since cy and u, - u, are real numbers, we conclude from (3)
that either c, = 0 or u; - ul = 0.

But u, -ouy = 0 « u, = 0 (i.e., a dot product is positive
definite). Hence, if uy # 0, then ¢, = 0. We may repeat this

procedure by dotting both sides of (1) with Uys Ugpeees OF U ;
and we conclude that if {ul,...,un} is any set of non-zero

orthogonal vectors, then c,u, + ... +cu =0++c, = ... =c = 0.
171 nn 1. n

In other words, any set of non-zero orthogonal vectors is
linearly independent. This does not mean that one needs the
concept of a dot product to study linear independence but rather
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that once one knows about a dot product, there are easier ways

of testing for linear independence.

Along these same lines, notice how we used this idea when we
dealt with I, 3, and k components in E3. Quite generally, if

V=0cu + ... FCul (4)
where Ugreees and u are orthogonal, we may compute c by dotting
both sides of (4) with uq. Since

we deduce from (4) that
u, - v= cltu1 ; ul). (5)

If we now assume, in addition, that {ul,...,un} is orthonormal,
then u, - vy = 1, whereupon (5) yields

cy =uy * V. (6)

What equation (6) corroborates is our usual property of

3-dimensional orthonormal coordinate systems. Namely, if
{ul,...,un} is orthonormal and if v is any linear combination
of Upreens and u i then we find the ui—component of v merely

by dotting v with u; .

In this part of the exercise we are trying to show how the
concept of an orthogonal complement extends the idea of perpendi-
cularity as studied in the lower dimensional cases. For example,
in 2-space we know that the l-dimensional subspaces are lines.
Any two non-parallel lines span the plane, but we can always

pick our lines to be perpendicular. In a similar way, given a
plane W in 3-space then any vector in 3-space is the sum of

two vectors, one of which lies in W and the other of which
doesn't. We can always choose the second vector to be perpendi-

cular to W.

Our point is that this idea extends to any vector space on which
a dot product is defined. The basic idea is as follows:

S.3.7.44
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(i) Suppose that W is any subspace of V. We then define a new
set W_ b
p ¥

wp = {veV:v - w = 0 for each weW} (7)
Clearly, by its very definition, wp is a subset of V, but as we
ask you to show in this part of the exercise, Wp is also a
subspace of V. To show this, all we have to do is prove that the
sum of two members of Wb is also a member of WP, and that every

scalar multiple of an element of Wp belongs to Wp.

Computationally, this is certainly easy enough to do. Namely:

vl,vzswp TV W=V, oW 0 for each weW

0 for each weW

t3)
I

* OV WY, e

1

> (v, + vz) - w =20 for each weW

i
- vl + Vzewp

vewp + v + w =0 for each weW

I

> c(v « w) 0 for each weW, where c is any scalar

I

+ (cv) -+ w 0 for each weW

+ CVEW .
P

(¥d) IE vswp then v - w = 0 for each weW. In particular, then,
if v also belongs to W, then by virtue of it being a member of
wp, v - v = 0. Since our dot product is, by definition, positive
definite, v - v =0 - v = 0. Hence, vst\Wp + v =0, or

wnwp = {0}

(iii) We now show that V = W (:) Wp. That is, each veV may

be expressed in one and only one way as a sum of two vectors,

one of which is in W and the other of which is perpendicular to

W (i.e., in Wp)-
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Since WfWWP = {0} , it is sufficient to show that each veV may be
written in at least one way in the required form.*

We introduce the Gram Schmidt process to solve our problem.
Namely, we begin by constructing an orthonormal basis for W, say

{w,,...,w_}. We may now use the Gram-Schmidt Orthogonalization
il r

Process to augment this basis to become a basis for V. That is

vV = [wl,...,w VireseasV 1 (8)

o n-r

where dim V = n.

The key lies in the fact that Wp = [vyseeeyv _ ] where v,,..., and
V, .y are as given by (8). To prove this assertion we first notice
that it is trivial to show that Vireses and S all belong to Wp.

Namely each of these vectors is by construction orthogonal to each
of the vectors Wyreses and Wi hence to the space spanned by
Wyreeoy and W As a computational review, we have that for each
wEW,

V. = W= V. =« (clwl + cew ¥ crwr}

[vi . (clwl) F o ¥y o (crwr)]

Hence, v.eE W _.
1 p

*Recall that if WNwW, = {0} and w, + w, = wl‘ + wz', where
1 1

wl,wl'ewl an? Wos ?z'ewz, the? vy =.wl and "w, = “w, . N?mely

w, tw, = w + w -+ wl - wl = w2 = w2. Hence, w, - wl EWz

S}nce wz' -, is“in W,, Since W= wl' Wl we have that w,o- wl' B

W, M W,"; and"since W Uz = 0 J w, = w,"= 0 from which

wé conclude that w, = wl'. A similaT argument shows that w, = wz'.
S5.3.7.46
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Conversely if Wp is any element of Wp then since Wpc V, we see from
(8) that

w_ = clw + .e. + C W, 4+ alvl + ... + a (9)

v .
Al n=-r n-r

Now, since wp + w = 0 for each weW, we know that in particular

Wy “ Wy = e =W, W W, = 0. Thus, for example, if we dot both

sides of (9) with W, we obtain

Wy, wy = (clwl + ..o tow o +a;vy oLl t an-rvn-rJ * Wy

or

W, = W +02W2'Wl+...+CrWr'Wl+alVl'Wl+.....+

1 1
- W (10)

v
4-rVn-r 1

and since {wl,...,wr, Vireeor V —r} is orthonormal, we conclude

n
from (10) that 0 = cq- Similarly, we may show that Cy = .. =cCp =
0, so that by (9),

W, = a vy ... ta v o,
and this shows that {vl,...,vn_r} span Wp. This completes our
proof that
V=w (:) W -
3.7.10 (optional)
We have
By T ¥y S Ly By & 8y = Le - T 2 = B e 1
By » By m Ly Uy e Ay % Ty Uy Mg = 3 Wy My =2 ! (1)
ug - u; = 2 uy - u, = 3; uy - uy = 25 u3 . u4 = 1
u, ul =1, Uy u2 = 2, u4 u3 =1, u, u, = 9
We first let <
* =
U u - (2)
Su3a 747
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Then by the Gram-Schmidt process we have

u, *u *
u,* = u, - —— u_ *
2 2 % g i
u *. u
u, - u
_ 2 il
= 112 N . ul.r
1 1

= .
uy* = u, - Fuy. (3)

1 - ) . 4
up s (uy —guwy) =u s u, -7Fu -u

1 s g S
1= 1(4) =1 1 =0.]

With ul* as in (2) and u,* as in (3), we next define u3* by

2
u3 u,* Vs @ uz*
u3* = uy - ul* - u,*. (4)
ul*.u* u_* u*
NOW,
ul* . ul* =ul . ul=4 (5)
Uy * y* =uy s uy =2 (6)
= i -1 = . -1 .
Uy o Wyt =uy c(uy - FYy) =uy U, - Fug Yy
=3-1 (2
- 2
=2 (7)
1 1
* . * = e P —1
Ut oty (uy = 7uy) + (uy = 7uy)
_ . o L . 1 .
=yt Y T Lt Y™ M
SR S
= 7 2+16(4)
- 1.1
=7-3%7
_ 21
=5 (8)
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Putting the results of (5), (6), (7) and (8) into (4) yields

5
_ 2 2 1 .
u3* = 1.13 - z’ ul —'g——? (u2 I ul) H
4
or
- - i - 10 -1
uz* = uy -z uy - 57 (U - gy
-l 10
=3 Ay My T 27 Bt (9)
Finally,
u, * u,¥* W, & u.* u, * a.*
u4* = u4 - ____1_ ul* - _4—2 uz‘* FH L__3 u3* N {10)
ul*. ul* u * . uz* u ®a u *
Now,
* . * = = £
ul u ul ul 4
L] * = . —]
u u u, uy 1
1 1
- * = - —_— — — - -_— -
Uy~ By =il blm, &0 ) = 8oty S iRy S8y
ey s -
i - 27
u,* 112* [by (8)] = 7
- * = - -_— ]._'.]_' - E
u, ug [by (9)] u, (u3 57 4 57 uzl
, S _ 10
T T R T S o T
=7 - 11 10
= 1 57 (1) 57 (2)
=3 - 11 _ 20
=1-57" 37
— — i
27 *
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11 11 10
% - *x = B R . - TR o PR e
uz* - u (uy3 = 35U - 379 (43 - 554 - 55 u,)
~ 121 . 100 _22
=My Uyt ESE N, U FiEmg Uy 2 Wy T 37 Byt Yy

Il
38}
IR
+

[

l

|

I
+

1458 + 484 + 700 - 1188 - 1620 + 220
729

54

729
2

27 °

Putting these results into (10) yields

7 4
(—5=)
B 1 7 MLy 11 _ 10
Ug® = Uy =By =gy Uy = W) By = 7 = ay )
2
=u, - 1 (F ;l-(u - Zzu,) + 2(u, - u, - >= u,)
s " 1% " 27 (9 1 3 1737 %
_ 1, 7 22 7 _ 20
=ut (-7t Wt gy Py t Ay
= u4 - ul -~ u2 + 2u3.

Summarizing, we have from (2), (3), (9), and (11)

* = .}
b | i |

K = e =
v 3 9 Yy

s
ugt = - 2w - Du, +u, (12)
u4* = -ul - u2 + 2u3 + u4
S.3.7.50
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Note:

If we write (12) in matrix form we have

1 11 -1
1 0 0 0 4 4 8 2 1 1 7 37 -1
10
= 1 0 0 1 7 3 2 0 1 57 3 8
11 10
37 37 1 0 2 3 2 1 0 0 1 -1
-1 -1 2 1 |1 2 1 9] |lo o o0 1
[l T 1. 1 11
4 i 2 1 1 -3 =35 T
27 5 7 o
o = 3 7||° 1 =33 -1
0 0 237 -% 0 0 1 2
0 0 0 8 0 0 0 1
4 0 0 0]
27
0 = ©° 0 (13)
0o 0 = 0
0 0 0 8 ”
Matrix (13) tells us that
ul* . ul* = 4, ul* . uz* =0, ul* . u3* =0, ul* u,* =0
u* « u,* =0, u* - u,* = 27 u,* - u,* = 0; u,* u,* =0
2 1 r 2 2 E Sl 3 v E2 4
uz* - ug* =0, ug* - u* =0, ug* coug* = %7 rug* s u,* =0
* . * = - - * . * = * . =
u4 ul 0, u4* u2* 0, u, u3 o , u4 u,* 8.
53 151
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Hence, ul*, uz*, u3*, u4* is an orthogonal basis for V; and

* = *
(xlul* + xzuz* + X5u -+ x4u4*) {ylul* + Y,yu, - y3u3* + y4u4*J
27

+ —_—

1Y, ¥ T %Y, il

(i8] w
= L

= 4x + X

3¥3 Yy

This is much neater than the corresponding result using
Ug Uy, Ugy, and u, as a basis - in which case we would also have
had to worry about the terms involving X ¥yr X Y3r XY, X
X¥3r Xp¥gr X3¥ys X3¥pr X3¥40 X4V X¥y s and X,y,.

2Yll’
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