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Solutions
Block 3: Selected Topics in Linear Algebra

Unit 5: Determinants

3.5.1(L) |
a. 3+ 2 1 #5|_ [3 + 5 (1)
4 7 7
= (21 - 4) + (14 - 20)
= 11. (2)
Check:
3+ 2 1+ 5 5 6 (3)
4 7 4 7

35 - 24 = 11,
Which agrees with (2).

Note #1

Given specific numbers, as in this exercise, we would most
likely use (3) rather than (1). The technique used in (1) is
most useful when we are working with "literal" constants.
That is, since we cannot simplify aj;q + bll' we would use (1)

to obtain

Ayg ¥ Byy R

= + (4)
421 422 321 422 Aoy Rogl
[This is analogous to the situation in algebra where one learns
that (a + b)2 - a2 + 2ab + b2, yet computes (3 + 4)2 as ?2 = 49,

rather than as 32 + 2(3) (4) + 42-]

Note #2
The validity of (4) stems from the fact that

3 ¥ Byy By ¥ Py

a a

21 22

5:3:5.1




Solutions
Block 3: Selected Topics in Linear Algebra
Unit 5: Determinants

3.5.1(L) continued

denotes
L o Ml L
D(v1 + vl', vz} where vl' = bllul & bl2u2
Ve = &pi% 8500

and one of our axioms for D is that
L] o ]
D{vl + vyt vz) = D(vl,vz) + D(Vl i v2)

Note #3
While our demonstration was for n = 2, the result is valid for
all n. This is due to the fact that D is defined to be linear.
That is

D(vl,...,vi+vi',...,vn} = D(vl,...,vi,...,vn) + D{vl,...,vi',...,vn)

for any space V = [ul,...,un].

Note #4

While we shall not bother to prove it here, there is an interesting
result which relates the determinant of a matrix to the deter-
minant of the transpose of the matrix. Essentially, any

theorems referring to the rows of a matrix remains valid for

the columns. In particular, the determinant of a matrix equals

the determinant of its transpose. We shall illustrate these

ideas in part (b).

b. We may use the technique of part (a) successively to obtain

3+ 2 1+5]_ 3 1 4 2 5 (5)
4 + 6 7+ 9 4 + 6 7+ 9 4 + 6 7+ 9
But
3 1 _ ] 4|3 B (6)
4 + 6 7 9 4 6 9
and
2 5 _ |2 5 " 2 5 (7
4 + 6 7+ 9 4 7 6 9| .

S.3.5-2
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Solutions
Block 3: Selected Topics in Linear Algebra
Unit 5: Determinants

3.5.1(L) continued

Using (6) and (7) in (5) we obtain

Bl S B0 s e

+ 2 I9 5 |3 1 + 3 1 + 2 5 P 2 5
4 + 6 74+ 9 4 7 6 9 4 7 6 9
= (21 - 4) + (27 - 6) + (14 - 20) + (18 - 30)
=17 + 21 - 6 - 12
= 20.
As a check,
2 1451 _ |35 6 - go-60=20,
+ 6 7+ 9 10 16

which agrees with (8).

Note #5

as follows:

342 145/ _[3 1+5 2 1+5
4 + 6 7 +'9 4 7+ 9 6 7+ 9
3 1 3 5 2 1 2 5
= + + +
4 7 4 9 6 7 6 9

(21 - 4) + (27 - 20) + (14 - 6) + (18 - 30)

17 + 7 8 = 12

20.

More literally

+ b a

5 11

11 12

asy + b21 a5, + b

11 1o

a + b a22 + b22

o

(8)

We could have used columns rather than rows to solve this problem

§.3.5.3
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Block 3: Selected Topics in Linear Algebra
Unit 5: Determinants

3.5.1(L) continued

a a a a b b b
C Ptz " i), Pn P12), Pn
831, ®Rag by; by, 833,  Zap by
= (ay7355 = a5535) + (a)7by, = a;50,) + (byja,,
+ (byiby

by

b

(9)

22

= @z-De)

- b

20012

12P21) -

As a check of this last result we may obtain by direct compu-

tation:
a + b a + b
s b1) (ayy + byy)
a + b a + b
21 T Byy @5y * by,
(aj5 + byy)lay; + byy)
= ajjay, + a; b,y + byja,, + byyby,
T 815351 T a35by) —ayby,
= byobyy
(@aj7355 = aj5ay7) + (aggbyy = aj5byy) + (byjay, = ajby,)
+ (by1byy = byobyy)-

On the other hand, using columns rather than rows, we would

obtain
dy3 ¥ byy 845 * Byy a;; a2 * by b1
= +
dyq ¥ Byj 85 * by, ay7 dzy t by, Boy
%1, S a;1 Pz
. +
a2 a1y by
Byy 22
+
b1 33

+ b

212 12
a5 + by,
Ry By
b1 Py
(10)

5.3.5.4
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Solutions
Block 3: Selected Topics in Linear Algebra
Unit 5: Determinants

3.5.1(L) continued

The right sides of (9) and (10) agree since the right side of

(10) is (a);a,, - aj;a,,) + (aj;b,y - a
+ (byybyy = byobyy).
Note #6

Equation (9) reveals a result that may

b,,)

2) * (byjay, = aj5by,y

21b1

seem a bit "unpleasant".

Namely, it might seem nice to believe that "the determinant of

a sum equals the sum of the determinants". But, equation

(9) shows that this need not be true.

we let
a5, 23y, by B
A = and B =
ay; A by b
Then
33 ¥ by &y by,
A+B =
A5y ¥'hgy 85y * bgy

In more detail, suppose

Now, letting |A| denote the determinant of A, etc., we have

from (8) that

231 Pap By %12
|a + B| = [a] + + + |B] . (11)
Y by 422
Hence ’
a;; by, b,y a5,
A+ B| = |a] + |B| «» + = 0.
a1 by T
We illustrate this idea in part (c).
c. We have
3 1 2 5
A= and B =
4 7 6 9] .
Therefore,
SindsiB o B
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Block 3: Selected Topics in Linear Algebra
Unit 5: Determinants

3.5.1(L) continued

3+ 2 1+ 5 5 6
4 + 6 7+ 9] 10 16| .

Hence,

|a + B] = 80 - 60 = 20

while

|la] + |B] = (21 - 4) + (18 - 30) = 5.

This is sufficient to prove that |A + B| need not equal
|a] + |B

-

Note #7
In this exercise we saw that |A + B| - |A| - |B| = 15. Accord~
ing to (11), then

a;y * by, b, Ay

+

b

ayy * by 21 32

should equal 15. As a check,

3 5 2 ¥
+ = (27 - 20) + (14 - 6) =7 + 8 = 15.
4 9 6 7
Note #8
Do not confuse parts (b) and (c). What (c) showed was that we

could not replace |A + B| by |A| + |B| . What (b) showed was
that we could obtain a "correction factor". In other words, (b)
showed that we could expand |A + B| by taking one row (column)

at a time.

3.5.2(L)

In the previous exercise we may have been a bit crushed to dis-
cover that the determinant of a sum need not be the sum of the
determinants. If nothing else, such a result should at least
make us a bit wary of trusting our intuition, and accordingly,

$.3.5.6
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Solutions
Block 3: Selected Topics in Linear Algebra
Unit 5: Determinants

3.5.2(L) continued

it should make us seem a bit more tolerant when it comes to
giving proofs.

Our point is that one very important property of determinants is
that the determinant of a product is the product of the deter-
minants; but we cannot pass this off as being "self-evident" if
only because the corresponding statement about sums seems just

as self-evident.

What we shall do in this exercise is prove the result for the
case n = 2. Our technique shall be the one which generalizes
to all dimensions, but by restricting our attention to n = 2
we may avoid part of the mass of computational detail and
notation that often obscures the structure of the proof. As
we shall see, the proof relies rather strongly on the results
of Exercise 3.5.1.

Since
a1 By Pa1. Pra] _ PP Y YPa PP ¥ wbs
A1 By by1  Pa 31011 * 230051 231015 + 250,

we can be certain that

s a11Py; ¥ aggbyy @by +agob,, i
AB -
331P11 * 3Py @ybyp taysby,
By the linear properties of the determinant, as discussed in
Exercise 3.5.1, we see from (1) that |AB| may be written as
211°11  %maPia| | PP PadPa o PPy ParPag
axP11 21bys aP11 220y 23921 3Py
a, b a. .b
o |P12Pa  P10% o
aP21  23P))

Factoring out the common factors in the rows or columns of the

terms in (2), we see that (2) may be rewritten in the form

83 5a7




%2 %12
%31 %23
is a number not a matrix, and can be factored from the given
expression.
5.3.5.8
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Block 3: Selected Topics in Linear Algebra
Unit 5: Determinants

3.5.2(L) continued

by Pya 31 212
A11251 . 9 * Byqbsy R R
11 P12 21 222
But both
b b b b
1 Pi2| o (P21 P22
b); by, by Pay

+ b

+ a

21712

12%22

12

22

21

21

11

21

22

22
(3)

are 0 since each of these determinants has two equal rows

[i.e., D{vl,vl) = 0, etc.].

Moreover,
O T Y N L E .
R[5 Ay %51 @33

since one determinant is obtained from the other merely by inter-

changing two columns [i.e., D(vl,vz)

With these observations, (3) becomes

231 23 Y %9
b,1P55 |- by1Py2 . )
= 53 21 22
213 %
= (b..b.. = bab.s).
a,; 11°22 21”12

= —D(vz,vl},etc.]

(4)

*Remember
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Solutions
Block 3: Selected Topics in Linear Algebra
Unit 5: Determinants

3.5.2(L) continued

Finally, since

by by
byiPy3 = PayPy = . "
21 Paa |7

we see from (1) and (4) that

231 g [P Piz
|aB| =
351 @3] |Par P22
= |al|B| . (5)
Note #1
In the relatively simple case n = 2, we could verify by direct
computation that |AB| = |A||B| but notice how cumbersome the

direct computation becomes for large values of n. Our technique
never involves our having to expand by cofactors, etc., but
rather has us repeatedly write a determinant as a simpler sum

of determinants. Moreover, our technique does not require

that we conjecture the result in advance. That is, we began

with |AB| and showed that |AB| = |A||B].
b. Since D{ul,...,un) = 1, our coding system says that
1 0 <25 0
0 O sxi 0
0 L e 0 = 1.
0 0 0 .30 1

In other words, the determinant of I is 1.

Now suppose A is invertible, than A_l exists such that

amt =1,
Accordingly,
a7t = 1] . (6)

5.3.5.9
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Block 3: Selected Topics in Linear Algebra
Unit 5: Determinants

3.5.2(L) continued

By part (a) we know that |AA_1[ = IA|[A—1I and we have just re-
called that |I| = 1. Hence (6) becomes
|a]|a”t] = 1. (7)

From (7) we obtain

1
|a] = — .
|7t
That is
i T ) (8)
Note #2

The beauty of (8) is that it identifies the inverse of a

matrix with the inverse of a number. That is, |A-l] refers to
finding the determinant of the matrix which is the inverse of A,
while |A |_l refers to finding the determinant of A (which is a
number) and then taking its reciprocal. We illustrate this in
part (c).

With
1 2
A =
2 7
we see at once that
|al =7 - 4 = 3. (9)

We may now find A™Y, namely:

e =
-~ N
o

| = O

2

| o i
w
1
NI

i |

Wik

o i
[ %]
-
e L

5.3.5.10
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Il Pa Em = .

3.5.2(L) continued

7 2
1 0 35 -
& 3 3
2 1
¢ X =5 3 ¢
hence,
A
3 3
-1
ATl 1
3 3 |- (10)
Accordingly,
- 7L o222
IA | = 3 (3) ( 3)( 3}
-1 _4_3
9 9 9
=_§.. (11)

Here are a few points which occur just within the confines of

the present exercise.
1. The matrix A-l in (10) can be written as

ik 7 =2
3

-2 1 |a

That is, when we multiply a matrix by a number, each entry of
the matrix is multiplied by that number.

On the other hand, when we multiply the determinant of A*l, i.e.,

-1
|2~ 1
both) of A by that number. For example, in computing |a”

from (10), we find that

, by a number we multiply any one row (or column, but not
Y

-t ]
_1

2 d] 4l 1

3 3 3 3

5.3.5.11
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Block 3: Selected Topics in Linear Algebra
Unit 5: Determinants

3.5.2(L) continued

S O I T
3 3 ) 1
_ l T -2
9

=

TK
= = (7 - 4) That is, we "factored out" 1/3 twice, once for

each row (or column) in which it was a common
factor.

o

|
w|+

Had we simply written that

WiN W~
Wi WK

we would have obtained the incorrect answer, 1, as the value
of the determinant.

2. If AB = 0 (where now 0 denotes the zero matrix), then it
is not true that either A or B must be the zero matrix. For

example,

BN

but neither

i o
F

is the zero matrix.

This should not be confused with the numerical result that if
|AB| = 0 (where now 0 is the number 0) then |A [= 0 or [B| = 0.
In summary, the product of two matrices can be the zero.

§.3.5.12
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Block 3: Selected Topics in Linear Algebra
Unit 5: Determinants

3.5.2(L) continued

Comparing (9) and (11) we conclude that

1
[af = L 5

-1
|a 7|
Note #3

This exercise proves that if a matrix is invertible, its deter-

minant cannot equal zero. Namely, since
a2 = 1,

neither |A| nor |A-l| can be zero.

More generally, since |AB|= |A| |B| , we see that |A| # 0 and

|B| # 0 «>|AB| # 0; or from a different emphasis, if |AB|= 0+>|A|
=0 or |B| = 0.

Note #4

Because of all our previous work with matrices and the relatively
little work we've done with determinants, there is a danger that
we may confuse matrix properties with determinant properties,

Many non-zero matrices (recall that the zero-matrix is the matrix,
all of whose entries are zero) have a zero determinant. In fact,
this is precisely the definition of a singular matrix. At any
rate, notice that the product of two matrices can be the zero-
matrix even though neither matrix is the zero-matrix. For

example,

o

1
0
The two matrices on the left side of the equality are singular
but non-zero. However, the product of two matrices cannot be

singular unless at least one of the two matrices is singular.
It is this fact that is stated in terms of determinants by

|AB| = 0 if and only if |A| = 0 or [B| = O.

Stated without the language of determinants, all we are saying

is that if both 2™l ana B! exist then (AB}—l also exists, and
in particular, it is given by B-lA_l [since (AB]B-lA_l = A(BB—l)Aﬁl
=AA_1= I]_

543.5.13
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3.5.2(L) continued
In summary, we must not confuse the zero matrix with a matrix

whose determinant is zero (as examples of which are all singular

matrices).

3.5.3(L)

If P is an n by n invertible matrix and A is any n by n matrix,

then we have:

l| | (ea) P~}

|PAP~

1
|

[pa| |P”

-1
|

([ef|a]) [P

|p||a] |27, (1)

The fact that P is invertible means that |P| # 0. Hence,
|P_1] = T%I is well defined. Hence, the (numerical) factors
|P~!|cancel in (1) to yield IPAP_1| = |a

A NOTE ABOUT LINEAR TRANSFORMATIONS
In the previous unit we discussed how the same linear trans-

formation could be coded by many different matrices, depending
on the basis being used to describe the domain of the trans-
formation. We showed that if A and B were any two such matrices,
then there existed a non-singular matrix P such that B = PAP-I.
In fact, we used this fact as the motivation for our definition

of what it meant for two matrices to be similar.

During the discussion we also mentioned that the transformation
itself did not depend on the basis being used. Only the matrix
depended on the choice of basis. Thus, one would like to feel
that there should be some invariant about the matrix of the
transformation; that is, some fact that would be true for

every similar matrix. What we have shown in this exercise is
that there is at least one such invariant (there are also
others but we shall not pursue this here). Namely, since
|PAP-1| = |A| we know that if A and B are similar then these

S.3.5.14
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3.5.3(L) continued

two matrices have the same determinant. In other words, the
infinitely many different matrices which code the same linear
transformation are characterized (among other ways) by the fact
that they all have the same determinant.

3.5.4 (optional)

We have
all a12 . 1 0
A+ I-=
(%21 %22 6 4
By L By
821 A5 * 1] -
Hence,
all 4 L a12
det (A + I) =
azl a22 + 1
(aj; + Day, + 1) - aj,ay
= 33735, Y aj; tay, +1-ajay
(aj735; = ajp3y;) + 1+ (a); + a,,). (1)
Now
a17855 T 81,35 = det (A)
and
a1 0
1l = = det I.
0 1
Therefore, we may deduce from (1) that
det (A + I) = det(A)+ det(I)+ aj; + ay,. (2)
S+34bs15
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3.5.4 continued

In itself, (2) might not seem like a very impressive result, but

it has several important ramifications. From our immediate point
of view, perhaps the most important consequence of (2) is that

it shows us that "the determinant of a sum equals the sum of

the determinants" is usually a false statement. Indeed, we have

shown in (2) that

det (A + I) = det(A) + det(I)

is true only when a), +a,, = 0. That is, unless the sum of the

diagonal elements of A is zero,
det (A + I) # det(A) + det(I).

It is also interesting to note that the sum of the diagonal
elements of a square matrix is given a special name. It is
called the trace of the matrix. We shall exhibit an interesting

property of the trace of a matrix in part (b).

b. i 2 3 0 G A | 2 1 51
3 5 0 1 0 -1 -3 1
1 0 -5 3
0o -1 -3 1)
i o -5 2]
Hence, we conclude from (1) that if
1 2
B =
3 5
then
-5 2
5=
3 -1| .
S+ 3e5.1lb
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3.5.4 continued

Therefore,

]

8 15| . (2)

Thus for (2) we conclude that the trace of B_1AB, written
Tr(B-lAB), equals -3 + 15 = 12.

Note #1:
We have written B-lAB whereas in the part we have talked about
BAaB™L. Notice that if we let P = B™! then B™laB takes the

PAP—l. In other words, we may write either B_lAB or BAB_l in

our definition of similar matrices. In computing the matrix
of the transformation, however, it does make a difference
128 or Bap™?t

whether we write B~ but we shall say more about

this in the next unit.

Note #2:
In what may seem to be a coincidence, the trace of A is also
12 (namely, the diagonal elements of A are 4 and 8). Thus, at

least in this special case, we have that A and BHIAB have the
same trace. The interesting point is that this is not a coinci-
dence. While we shall not bother proving this result in our
course, the fact is that if B is any non-singular n by n

matrix and A is any n by n matrix then A and B-lAB always have
the same trace.

Recalling our definition in the previous unit that A is similar
to C means that C = B_lAB, we see that similar matrices have
the same trace. In particular, then,in reference to our coding
a linear transformation by a matrix, this shows that the matrix
which denotes the transformation, while it varies with the

choice of basis, has the same trace, regardless of the basis

5.3v5.,17
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3.5.4 continued

being used. In other words, when we talk about the trace of the
matrix, it makes no difference which basis is being used. 1In
still other words, the trace of the matrix which describes the
linear transformation is also an invariant with respect to the

basis.

3.5.5(1)

Using the method of cofactors and expanding along the first row,
we obtain

1 2 3 !
1 3 4 6
2 5 8 9
3 4 9 8
3 4 1 6 1 3 6 1 3 4
= |5 8 9| =2 |2 91+3 |2 5 9i| =4 5 8 (1)
4 9 8 3 8 3 4 8 3 4 9.

We may now expand (:) ' (:) ,(:) , and (:) by cofactors along

the first row to obtain:
8 9
@ =
9 8

3(64 - 81) — 4(40 - 36) + 6(45 - 32}

5 9 5 8

-4 +6

4 8 i 9

= -51 -16 +78
= 1l. (2)
8 9 2 9 2 8
@: il +6
9 8 ERR: 3 9

(64 - 81) - 4(16 - 27) + 6(18 - 24)

-17 +44 -36

= =9, (3)

5.3.5.18
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3.5.5(L) continued

®

= (40 - 36) - 3(16 - 27) + 6(8 - 15)

=4 + 33 - 42
= -5.
5 8 2 8 2 5
® - =3 +4
4 9 3 9 3 4

= (45 = 32) - 3(18 - 24) + 4(8 - 15)

=13 + 18 - 28

= 3. (5)

Using the results of (2),(3),(4), and (5) in (1) we obtain

1 2 3 4
1 3 4 6] _ 37 - 2(-9) + 3(=5) - 4(3)
2 5 8 9
3 4 9 8
=11 + 18 - 15 - 12
= 2, (6)
Note #1

Our main aim in having you do part (a) is so that you can con-
vince yourself that the method of cofactors, while structurally
sound, is extremely cumbersome to apply in even simple numerical:
cases. That is, a 3 by 3 determinant can hardly be called
complicated, yet the amount of computation in part (a) already
seems to be getting quite heavy.

§.3.5.19
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3.5.5(L) continued

Our point is that the method of cofactors is extremely important
when we are dealing with "literal" matrices, but in the case
that we are dealing with numerical examples, it is much easier
to "row-reduce" the determinant, just as we did with matrices.
In this respect, we invoke the axiom that the determinant is
unchanged if we replace any row (column) by itself plus a
constant multiple of any other row (column). Here, again we
see the difference between matrices and determinants; when we
row-reduce a matrix we get different though equivalent (i.e.,
they span the same space) matrices, but when we row-reduce a
determinant in the above-mentioned context, we do not change
the determinant. With this idea in mind one usually evaluates
an n by n determinant by row reducing it to a form in which in

one row (or column) all the entries, but one, are zero.

In part (b) we illustrate this technique by getting the deter-
minant into the form in which all but the first entry of the

first column are zero.

b. 1 2 3 4 1 2 3 4
1 3 4 6| _ |0 1 1 2 (7)
2 5 8 9 0 1 2
3 4 9 8 0 -2 0 -4 .
(1) (ii)
We obtained (ii) from (i) by replacing the 2nd row of (i) by
the 2nd minus the lst; the 3rd, by the 3rd minus twice the
first; and the 4th, by the 4th minus three times the first.
The first column of (7) has 0's everywhere except for a 1
in the first row. Hence, if we expand (ii) by cofactors
along the first column we obtain
¥ 2 2 2 3 4 2 3 4 2 3 4
i 2 1({4-0] 1 2 1| +0| 1 1 2 -0|1 1 2 (8)
-2 0 -4 -2 0 4 -2 0 -4 1 2 1
\ . o
=0
5.3.5.20
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3.5.5(L) continued

Comparing (7) and (8) we see that the 4 by 4 determinant (i) is

equal to the 3 by 3 determinant (iii) where

1 1 2
(iii) = 1 2 1 (9)
-2 0 4.

1 1 2 1 1 2
1 2 1{ = {o 1 -1
-2 0 -4 0 2 0 (10)
(iv)

and expanding (iv) by cofactors along the first column, we

obtain

1 2 1 -1

0 -1 = =0 - (=2) = 2. (11}
0 0 2 0

Combining steps (7) through (11) [and we reproduce these
steps so that you see the "big picture"] we obtain

1 2 3 4| |1 2 3 4
1 3 4 6 o 1 1 2
2 5 8 9| " |o 1 2 1
3 4 9 8 Jo -2 o -4

2

=1 2 1

w5 -4

1 2

= 1

2 0

§.3.5.21
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3.5.5(L) continued

2
= -1
2 0
1 -1
2 0
= 2. (12)

Clearly (12) agrees with (6), but certainly there is no doubt
that the method of part (b) is more "sane" than that of part
(a) .

Note #2:

As a compromise between the techniques of (a) and (b), we should
observe that we may continue the row reduction technique until
we have a diagonal 4 by 4 matrix. The idea is that for a
diagonal matrix the determinant is simply the product of the
diagonal elements. The key point here is that if we use this
method, no reference at all is made to cofactors. In other
words, we may evaluate the determinant without recourse to
anything but the axioms under which the determinant function

was derived.

More specifically, we have:

1 2 3 4 1 2 3 1 0 1 o0
1 3 4 6| _ |0 1 _lo 1 1 2 (13)
2 5 8 9 o 1 2 1 0 0 1 -1
3 4 9 8 0 -2 0 -4 0 0 2 0

We may now factor a 2 out of the bottom row of the last deter-

minant in (13) to obtain

1 0 1 o0 1 0 o0 1 0 0 ©
, 0 1 1 2 _,0 1 0o 2/_, |0 1 0 o0
o o0 1 -1 0o 0o 1 -1 0o 0 1 0
o 0 1 0 o 0 o0 1 0o 0 0 1
= 2,
5.3.5.22
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3.5.5(L) continued

Observations

1. The reason that we know that the determinant of a diagonal
matrix is the product of the diagonal entries is as follows (we
use the 4 by 4 case, but the generalization should be clear):

Given:

a), 0 0 0

0 ass 0 0

0 0 a23 0

0 0 0 Ay,

we may "factor out" ajg from the first row; Ay from the

second row; a from the third row; and Ayt from the fourth

33’
row to obtain

1 0 0 0
311222%33%4 |0 L 0 O
0 0 1 0
0 0 0 1
and this, in turn, equals a)13,73333,, Since x| = 1.

2. Actually if the entires of A are all zero below the main dia-
gonal (i.e., aij = 0 if i > j) then the determinant of A is
still the product of the diagonal entries. Namely, given

1 M2 %3 Y4
0 B33 Gag Aoy
0 0 233 asy
0 0 0 a44

we may expand by cofactors along the first column to obtain

successively
a a a
22 23 24 a33 a34

21|09 a33 34| T 351 | %22 * By TRy
0 0 a g a44

44
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3.5.6
1 1 1 2 3 11 1 2 3
2 3 2 4 5 0 1 o0 -1
2 5 3 4 70=1]0 3 1 1
3 4 4 4 8 0 1 1 -2 -1
4 9 2 3 9 0 5 -2 -5 -3
1. ¥ & 2z 3
o 1 0 0 -1
=lo 0o 1 o 4
0o o0 1 -2
0 0 -2 -5
.I
i 4 a 3
0o 1 o0 0 -1
o 0 1 0 4
o 0 0 -2 -4
o0 0o o0 -5 10 (1)

' and factoring out 2 from the 4th row of (1) and -5 from the
5th row, we obtain

] 1 1 1 2 3 I 3 2 3

| 0o 1 o0 0 -1 0o 1 o -1

-10 {0 0 1 o0 4| =-10/0 0 1 0 4

J 0 0 0 -1 =2 0 0 0 -1 -2
o 0 o0 1 =2 o 0o o0 0 -4 (2)

(i)
Since (i) is a triangular matrix (i.e., all entries below the
main diagonal are zero), its determinant is the product of
diagonal entries, i.e., (1)(1)(1)(-1)(-4) = 4. Combining this
result with (1) and (2) we have that

-40.
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3.5.7 (optional)

Our main aim in this exercise is to try to explain how the
formula of expanding by the use of cofactors evolves from our
three basic axioms used to define D. The key step, of course,
is the linear property of D. For example, we know by linearity
that

dns e 4 &

D(a,.u, + a 2191 22u2)

5 12%2°

a,-.-u, + a

a., Uy ¥+ a ) + D(alzuz, 1% 22u2).

= Dla; uy, a5y 2242

If we now write this same result in the more conventional

notion for determinants, we obtain that:

%11 12 11 12
ay; 3 a1 3y (1)

An interesting guestion is that of determining how (1) could
be derived directly from our previous recipes without reference
to the D-notation. This is answered in part (a) of this

exercise.

Using as hindsight the facts that

o i

a1 223

" n -
codes D(allul, aZlul + azzuz}, and a4 = apuy + Ouz, we

rewrite

B %z

@21 %22 (2)
as

all + 0 0 + al2

SRx o2 . (3)

5.3.5.25
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3.5.7 continued

Notice the position of 0 in the first row of (3). In the first

column it follows a but in the second column, it precedes apy.

11#

The reason for this is that ajq is the coefficient of uy while

a, is the coefficient of u,; so that we may think of aj, in
(2) as denoting a; vy + 0u2; while aj, denotes Oul + a Uy Be
this as it may, however, we now use the result discussed in

exercise 3.5.1 and rewrite (3) as

(4)

We may now rewrite the bottom row of each determinant of (4)
by replacing asq by asq + 0 and a5, by 0 + ajye We then obtain

a;;p 0 a1 0 By P a; 0
= o= +
ayq a,, ay + 0 0+ as, a5, 0 0 a,, (5)
and
0 a, _ 0 a, _ 0 a, + 0 a,
asqy 322_ as + 0 0 + as, asq 0 0 a5, . (6)

If we now put the results of (2) through (6) together we have:

a;;, O ay ¢ i A3 LI

a,; 0 0 ay

©) ©) ©) @® o

Determinants (:) and (:) are 0. We may see this by observing
that each has a column of 0's or by observing that in each
determinant one row is a scalar multiple of the other. 1In

any event, we are left with

o9 = D T P = ws

5.3.5.26
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3.5.7 continued

a1 Cr2|_ |fr 0 |, [0 P12
a1 2 0 252 az; 0
1 0 0 1
* 83489 * 832853 -
0 1 1 0

Determinant (:) has an interesting form. It is a permutation

of the identity determinant. That is, we can obtain the identity
from (:)by'interchanging the two rows. Now, we know that we
change the sign of the determinant whenever we interchange two
rows. Hence,

0 1 1 0
1 0 0 1] .,
and since
1 0
=1,
0 1

we conclude from (8) that

a

11 12
R A = Byyan < Byphpys )
2. 22
b. 1In all candor, it should appear that our derivation of (9) was

liking snatching defeat from the jaws of victory! After all,
we derived this result in the lecture. Indeed, the technique
used in this exercise was precisely the same as that used in
the lecture except for the symbolism used to denote the deter-

minant function.

The important point is that in the format used in part (a) of
this exercise we begin to see the structure which justifies
the sign convention of the method of cofactors. The key idea

S+3.5.27
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3.5.7 continued

is that whenever we interchange two rows (columns) of a square

matrix we change the sign of the determinant of the matrix. Thus,

given a permutation of the identity matrix I, we can count how
many times we must interchange two rows to obtain the identity
matrix. If the number of times is even, the determinant is 1
(since every interchange changes the sign) while if the number
of interchanges is odd the determinant is -1.

Before pursuing this in more detail, let us reinforce the
technique by verifying the formula for computing

s 1 LT
9231 %22 %23 (10)
931 %33 833

We have that (10) is equal to

a + 0+ 0 0+ a + 0 0+0+ a

11 12 13
As1 Ao 223
=50 45 233 ’
which in turn is equal to
a;; 0 0 0 a;, 0 0 0 a,
ay; 3y ap3|t|ag) 3y, ay3|* |ay; ay; aj (11)

31 233 233] 1237 839 833 a31 232 333

® @

We may now rewrite the second row of each determinant in (7)

as

azl+0+0 O+a22+0 0+0+a23

in which case we obtain:

0
all 0
(:) = |ag; + 0+ 0 0 + asg + 0 0+ 0+ as3
931 430 233
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3.5.7 continued

a;; 0 0 aj; 0 0 a, 0 0
ay 0 0 + |o a,, 0 |+ |0 0 a,, (12)
a31 232 %33 8331, Hgg Ray 831 %3z %33

Since the first two rows of (:) are scalar multiples of one
another, we have that the value of (:) is zero (more formally,
11 from the first row of (:) and ay from the
second row, so that the determinant has the form:

we factor out a

0 o0
alla21 1 0
231 332 233

in which case two rows of the new determinant are equal).

To compute or @ we rewrite the third row of each as

azy + 0+ 0 0 + az, + 0 0+ 0 + ajq-
For example, @ becomes
3 g 0
0 0
423
ayq + 0+ 0 0+ 2z, + 0 0+ 0 + asg
a), 0 0 ajq 0 0 a;q 0 0
= |0 0 asq| + 0 0 asq + |0 0 asg
231 0 0 0 332 0 0 0 a3 3

@ @ (L3)
Now @ and are each zero. Namely in @we see that the

first and third rows are scalar multiples of one another (or in
terms of the transpose matrix, the second column of (:)
represents the zero vector); while in the second and third

rows are scalar multiples of one another.

It is (:) which is of interest to us. That is, we may factor

from the first row; a from the second row, and a from

e o | 23 32

the third row to obtain:

5.3.5.29
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3.5.7 continued

1 0 0
a;135333, 0 0 1
0 1 0
Notice that is a permutation of the identity. 1In particular,

@ may be converted into

simply by interchanging the second and third rows. More speci-

fically
1 0 | 0 0
1l =-(0 1 0| = -1. (15)
0 0 0 1

Combining the results of (13), (14), and (15), we see that

ajg 0 0
0 0 a23 = i a11a23a32. (16)
231 B33 %13
Note:
We could have said that
+ - +
a 0 0
11 0 ass
¢ 0 8yl Tqqh L o = 2y, (0 - aj3a3,)
32 33

a3 B3g A3y

® = By Raefys

and this seems much simpler than our method of deriving (16).
Keep in mind, however, that the purpose of this exercise is to
justify the method of expansion by cofactors. In other words,
the "short cut" is a form of circular reasoning in that it

5.3.5.30
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3.5.7 continued

presupposes the validity of the method of cofactors.

In any event we can perform a similar analysis on determinants

@ and . Sparing you the details, the overall technique
takes on the form:

21 Pz gl |8y 0 O 0 a,, 0 0 0 a5
a1 333 3,3 a1 3 33(*ay 2y, 333|*[221 %22 223
31 %3z %3 f31. 992 933l %31 Bap 33l P31 932 A5

@ (17)

[You may want to observe that the right side of (17) is equivalent
to expanding the left scale by cofactors with respect to the
first row.]

As we saw, (:) may be rewritten as

0 0 all 0 0 a 0 0

[ == (% -~ J L% ~
= 0 /
A
r's X
ajq 0 0 a; 0 0 ajq 0 0
=0 a22 0| + |0 a22 0| + |0 a22 0
aj, 0 0 0 a32 0 0 0 a3
4 +
0 0
v
A A
r
a;, 0 0 ajq 0 0
+ (0 0 a23 + 0 a23
a.. 0 0 Agg M
21
1\
0
a11 0 0
* 0 a5
0 a
4 33
0
S5.3.5.31
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1. 0 0 1 0
= alla22a33 0 il 0 + a21323a32 0 1
0 0 1 0 0
= 879855833 = 837953345 (18)
Similarly (:) becomes
0 a, 0 0 a, 0 0 0
asy 0 0 + |0 a22 0 + |0 a23
A5t 3 gy 231 %45 933
|. i TR ! v =
= 0 since first
two rows are
scalar multi-
ples of each
other.
A
-
0 a12 0 0 a12 0
=lasy 0 0| + asy 0 0| +
azqy 0 0 0 azy 0
3 +
0 0 S
0 a, 0 0 a o 0
+ |0 0 as, +|0 0 a,g
asy 0 0 2 ass 0
0
0 al2 0
+]0 0 a23
0 0 Az,
0 1 0 0 0 4
0
= a12a21a33 1 0 0 s a12a23a31 0 1 (19)
0 0 1 1 0| .
S.3.5.32
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3.5.7 continued

Both Gla and are permutations of the identity matrix.
How can we convert to the identity. Well, we would want
1 0 0 to be our first row, but it is now our second row.

Hence, we would first interchange our first and second rows

to obtain
0 0 1 0 0
0| =-1/0 1 0 = -1.
0 1 0 0 1

On the other hand, to convert @ , we notice that 1 0 0
is the third row, so we interchange it with the present first

row to obtain

0 1 0 1 0 0
0 0 1| = -(0 0 1 (20)
1 0 0 0 1 0 .

Looking at we would like 0 1 0 to be the second row
rather than the third, so we interchange the second and third

rows of to obtain

0 0 1 0 0
0 0 l|= -1|0 1 0 = -1, (21)
b | 0 0 0 1

0 1 o0 1 0 O 1 0 0
@= o 0o 1/ =-l0 0o 1l =-4-1]0 1 o0
1 0 o0 0 1 o0 0o o0 1

= -(-1) = 1.

5:3.5.33
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Thus, (19) becomes
“8y2857833 TR aR5483y (22)

Finally, leaving the details to you, reduces to
313351335 ™ B3%55%37¢ (23)

A quick "unethical" way of verifying (23) is to expand by
cofactors along the first row. Again, this is circular
reasoning since our aim here is to establish the validity of
the procedure.

If we now combine (18), (22), and (23), we obtain the well
known result:

1 %12 P43
231 @22 %3 = 877855333 + 27535333, + A;325585,
a a a
31 32 33 _ _
838953 ~ B985 ®a3
- a11a23a32. (24)
Note:

The major impact of what looks like a "shaggy dog" story here

in part (b) is that there was a systematic way of predicting
what (24) was going to be, and that this systematic way extends
at once to any n by n determinant. Using the 3 by 3 case as

an illustration, we observe that the given determinant may be
written as the sum of 27 very special determinants. Namely,

we get one determinant for each way there is of picking

exactly one element from each row. We then factor out the
various coefficients and we find that each resulting determinant
involves a matrix which either has at least one row (column) of

0's or else the matrix is a permutation of the identity matrix.

The permutation of the identity matrix occurs if and only if
we had one of the 27 special matrices in which the selected
entries from each row also were from distinct columns. What

this means is the following:

5.3.5.34
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3.5.7 continued

If we loock at any term which consists of three factors of the
aij's, this term will be absent from (24) unless both the set of
first subscripts and second subscripts are permutations of the
numbers 1, 2, 3. For example, notice that the term allalza23
does not appear in (24) since the first subscript of the a's
form the set {1,1,2} which is not a permutation of {1,2,3} .
Recall that a permutation of a set S is a 1-1, onto function

f:S > S, hence at most a re-arrangement of the order of {1,2,3} .

Thus, we see that there will be as many distinct.terms in (24)
as there are ways of obtaining a permutation of the identity
matrix. To this end, notice that in the 3 by 3 case there
exactly 3! = 6 such ways. Namely, the row (1 0 0) may be
placed in any one of the three rows; once this is doné, the row
(0 1 0) may be placed in any one of the two remaining rows;
and once this is done (0 0 1) must be placed in the last
position. Notice that (24) bears out this remark since the

determinant in (24) involves six terms.

All that remains to account for in (24) is how to determine
whether one of the terms occurs with the plus sign or with the
negative sign. Conceptually this is easy to do. We look at
the permutation determinant from which this term results and
then see how many interchanges are necessary to convert it to
the identity. If it takes an odd number then the sign is
negative (since each interchange changes the sign of the deter-
minant) while if it takes an even number the sign is positive.
(It is an interesting aside that the number of interchanges
depends on how we elect to make the changes, but whether the
number of interchanges is even or odd does not depend on how

we choose to make the interchanges.)

The question is how can we tell the sign without having to
reproduce the matrix. This, too, is not very difficult - once

you get the central idea.

All we do is order the factors so that either the first sub-
scripts or the second subscripts occur in the "natural" order;
i.e., 1, 2, 3. We then look at the other subscript and see

how many interchanges are necessary to get them into the natural

order. One relatively quick way of doing this is to count the

5315435
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3.5.7 continued

number of inversions (which means to count the number of times

a lesser number comes after a greater number).

Since the idea of inversions may seem new to you, let us pause

to illustrate this idea with a specific example. Let us consider
the permutation on the set 1,2,3,4,5 which leads to the re-
arrangement

4 5 2 1 3. (25)

We notice that:

1. Starting with our first member 4, three lesser numbers
follow it (namely 2, 1, and 3). So this gives us 3 inversions
so far.

2. Our second number 5 is also followed by three lesser ones.
So this gives us three more inversions, for a total of six,

so far.

3. Our next entry 2 is followed by only one lesser number
(namely 1). This yields one more inversion, for a total of

Tw

4. Our next number 1 is followed by no lesser numbers. (This
is the nice thing about 1. It can't be followed by a lesser
number. In a similar way if n is the greatest number in our
set, everything which follows it is a lesser number.) So our
total number of inversions is still 7.

5. Our last number is 3 and since it is the last number listed,
nothing follows it. In particular, no lesser number follows it.

Thus, our total number of inversions is 7 which is odd.

Obviously we could have re-arranged (25) into the natural
order in a less mystical way. For example, we might have
noticed that we wanted 5 to come last but since it was listed
second in (25), we would have to interchange the second and
fifth entries of (25). That is, our first interchange would

yield
4 3 2 1 5, (26)

Looking at (26) we know that 4 should occupy the fourth

position, but it is presently in the first position, so we

5.3.5.36
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3.5.7 continued

realize that we must interchange the first and fourth terms of
(26) , and this yields

l 3 2 4 5. (27)

We then observe that 2 and 3 should be interchanged in (27) for
us to obtain the natural order

1 2 3 4 5,

so that altogether we have had to make three interchanges to
get (25) into the natural order. This checks with the fact
that we had an odd (7) number of inversions.

Keep in mind that we could have put (25) into natural order

in other systematic ways. For example we might have decided
that we first wanted 1 to appear first, in which case we would
have interchanged the 1 and 4 to obtain

1, 58 2 4 3.

We might then have interchanged 5 and 2 to get 2 in the right
place, thus yielding

1 2 5 4 3

We might then have interchanged 3 and 5 to put 3 in the right
place, and this would have yielded

1 2 3 4 5,

so that again three interchanges brings about the natural order.

In fact, the method of inversion is a special way of counting
interchanges. Namely, to get 5 into its proper place, we must
have it "jump over" every lesser number and this is equivalent
to interchanging it with each lesser number. That is the number
of inversions (7) corresponds to the following succession of

interchanges:

mE om &Ea e
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In terms of our determinant idea, if we were expanding the 5 by
5 determinant Iaijl then the sign of

214%25%32%41%53

would be negative because with the first subscripts in the
natural order the second ones are the permutation 4 5 2 1 3
which is odd.

In more general terms, the expansion of an n by n matrix will
consist of n! terms since this is the number of permutations
of I.- Half of these n! terms will be positive and the other
half negative. To see which sign a term has, we line up the
factors in the order in which, say, the first subscripts form
the natural order 1,...,n (if this cannot be done, the term is
not one of the n! being evaluated*). We then look at the per-
mutation formed by the second subscripts and count the number
of inversions. If the number of inversions is even, we use
the plus sign, otherwise, the negative sign.

* In the method of part (b), generalized to the n by n case,

we observe that we get one special determinant for each way
that we can form a matrix using one entry from each row. Since
there are n rows and n entries from each row, there are n™ such
special determinants (note that this accounts for the 27 in our
example wherein n = 3). O0f these n" special determinants, all
will equal 0 except for the n! which are permutations of |In| .

5.3.5.38
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c. Given

H O O O o
c H O O O
QO QO O M
QO = O
o O Ko o

we may think of r, coding the row (1 0 0 0 0); Ty the row
(0 1 0 0 0), etc. 1In this way, I is represented by the

sequence of rows

r, r, r; r, rg. (28)
Our determinant has the rows of I in the order
ry r, Irg r, Ir,. (29)

As a short cut, we may use just the subscripts in (28) and (29),
and we see that we must only count the inversion in

which is

2+ 24241 =7

(i.e., 2 and 1 follows 3; they follow 4; they follow 5; and 1
follows 2).

Hence, the given determinant is -1. More concretely:

|t == S < SR = Y =
o o O = o
o o H o o

= o O O O
o = O O o
Q0 O D
o O O - O
o O = o O
]
|
(= B = U = R =
o +H o o o

5+.34:5.39
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1 0 0 0 0
0 1 0 0 0
= |0 0 0 0 i )
0 0 0 1 0
0 0 1l 0 0
1 0 0 0 0
0 1 0 0 0
==|0 0 L 0 0
0 0 0 1 Ol)
0 0 0 0 1
= —l-
Summary :

What we have tried to give you a feeling for in this exercise is
where the formula for evaluating determinants comes from, and
how the method of expansion by cofactors is a convenient way

of keeping track of these results without consciously having

to determine whether a given permutation involves an odd or an

even number of interchanges to convert it to natural order.

Keep in mind, the fact that we've stressed before. Namely, we
worry about cofactors, etc., usually when we are working with
literal expressions. In the case of concrete numbers, we often
use row-reduction methods, etc. since this often yields the

correct answer with much less labor.

3.5.8 (optional)

In our study of investigating the linear independence of the
set

r. x r x
{e ! '

we had to evaluate the Wronskian determinant

S.3.5.40
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r.x r.x S i 4
e 1 =) 2 s el
r.x r. X r x
1 2 n
r}e r,e <...r € (1)
n-i rlx n-1 r2x n-1l r x
rl e I'2 e PREIPIRES: o e .
rlx r.%

We could then factor e from the first column of (1), e 2 from

the second column, etc. to obtain

1 1 R I
(rl+ ees + rn)x " r r (2)
e l 2 - 8 = w n
r:n—l - n-1 % n-1
1 2 cees X

The determinant in (2) is called the Vandemonde determinant and
its value consists of the product of all terms of the form r, - rj
where i > j.

For example,

e 2 2] oo co.
- 2 1
1 I
2. |1 1 1
1 5 3 | = (r3= rp)(r3- xry) (ry- ry).
2 2 2

31 % I3 X
2 2 2 2| _ _ _ =
)" Iyt Tyt r,t(= (rymry))(rg- ) (ry- rg) (r3- )
3 3
ri° £ Ep T G AN P

etc.

s ¥ 50
This result shows that the Wronskian of {e L o trae O equals

5.3.5.41
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0 « r, = rj since i ¥ j. In other words, if r, # rj for i # 3,

then the determinant in (1) is unegqual to 0.

Of course, one does not need the study of linear independence to
motivate the Vandemonde determinant. This determinant is
valuable in its own right and the purpose of this exercise is

to verify its value, at least in the cases (2) and (3) mentioned
above [Case (1) is,hopefully, completely trivial].

a. Since we are more used to row-reduction than to column reduction
we may use the fact that a matrix and its transpose have the
same determinant (otherwise we do use column reduction, which
is equivalent to the row-reduction of the transpose). In any

event,
2
1 ik 1 1 rl rl
2
rl r2 r3 =|1 r2 r2
2 2 2 2
rl r2 r3 1 r3 r3
2
i r1 rl
2 2
=|0 - r, r, (3)
2 2
0 ;- 1y ry .

We may now factor r

r3 - X
1 1
rl r2 r3 =
- 2 3
1 %2 X3

2
1 from the third row to obtain

(r

(r

(r2

(since the two rows are

1

ry) (r3- ry)
ry) (x3- ry)
ry)(rz= rp)
equal)

- r., from the second row of (3) and

2
5’ £y
1 r2+ rl
1 r3+ r,
r2+ T
|
xr, j B r,
+
h 1 r
3 2
» =0
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[

b. |1
r, r, 3 ry |
52 .2 2 2|

1 2 £3 )
3 3 3 3
1 %o 3 Ty
2
1 r1 rl
= 0 TTEy Ty wEy
0 r.—-r r. - rl2
2
0 r-rl 3 -rl
r,- ry (r2- rl)(r2+
= r3- r, (r3- rl){r3+
rgmry (rym ry)(r,t

{r3- rl)(r3— rz)(rz- rl).

= (ry= ry) (ry= ry) (ry- ry)

(ry- rl)(r3— ry) { (r3— r,) }

1 2 3
ry r, ry
1 r r 2 r 3
2 2
3
1 r3 r3 r3
3
1 r4 r4 r4
& 3
1
3 3
R |
. 3_ # 3
As r13
Ty 1
£.)  fry= 50ile 2 s i 2)
1 2 1 2 27 1
2 2
ry)  (rz- ry)(r™+ rpri+ ")
2 2
rl) (r4~ rl){r4 + r4rl+ r, )
2 2
1 r2+ rl + r2r1+ rl
2 2
1 ry+ r; + rori+ rg (4)
2 2
1 r4+ rl + r4r1+ rl .

Since the determinant in (4) has a second column, each of whose

entries is the sum of two numbers, we may write the determinant

as the sum of two simpler determinants, one of which is zero.

Namely,

2
= 1 r,
1 r,
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1 ry r2+ r2r1+ ry
* |5k ¥ r 2+ h s i i
s 3 371 1!
2 2
1, Ty I, + r4rl+ ry
\ _—

0 (since the second column is a multiple of the

first)
2 2
i r, r, o+ r,r+ r,
0 3= r, I, + rary- I, r2rl
2 2
0 I~ I, I, + r4r1 r2 - r2r1
2 2
1 r2 r2 + r2r1+ r,
_ - 2 s 2 =
= |0 ry- r, (r3 r, ) * (r3 rz)rl (5)

2 2
0 r,- 1, (r4 -r, ) + (rq- r2)r1 =

Now,

(r 2 . o 2) + (ry, = )r; = (ry = xr) (s + ¢, + ;)
3 2 3 2=k 3 2 3 2 1

(x 2. Tt 2) + [, = E)Fe = (X, = Ey) (B o+ Ty o4 EL)
4 2 4 P | 4 2 4 2 1"

Hence, (5) may be rewritten as
(r3- r2} (r3— r2)(r3+ ry+ rll
(ry= 1) (ry= ry)(rg+ ry+ ry)

1 e + o *£ ¥

=5 (I3 = rz) (r4 = rz) {6)
Iy + (B oF oE
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Again, the determinant in (6) has a column in which each entry
is the sum of three numbers. Hence, we may rewrite it as the

sum of three simpler determinants. Namely,

1 ry + r, + r1 1 r3 1 r, 1 rl
= + + =1~ ry. (7)
1 r, +r, + ry 1 Ty 1 r, ik Ty
_—71— J
A—

r
s ; )
These are both 0 since in each two rows are the same.

Combining the results of (5), (6), and (7) with (5) we obtain

the desired result.

Perhaps the most significant part of this exercise (aside from
the actual result) is to see how one can avoid much painful com-
putation by having the patience to invoke the various theorems
rather than to try to "bludgeon out" the answer from the basic
definition of a determinant or from the method of cofactors.
You might want to try part (b) by working directly from the
method of cofactors without row-reducing or factoring. If you
do, you will soon notice how involved the arithmetic gets.
Moreover, in the case of an n by n determinant in which n
exceeds 4, the arithmetic blows out of proportion very rapidly
if we're not careful. The technique used by us in our solution
of (a) and (b) generalizes very nicely to higher dimensions,
and - at least relative to most other methods - it manages to

keep the arithmetic fairly simple.

In summary, if you have to work much with numerical determinants,
it is wise to cultivate techniques for row reduction, factoring,
and rewriting determinants as a sum of simpler determinants,

preferrably as a sum in which most of the terms are zero!
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