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Solutions
Block 3: Selected Topics in Linear Algebra

Unit 4: Linear Transformations

3.4.1(L)

Given any veV = [ul,uz], we may write v uniquely in the form
v = xlul + xzu S (1)
Then, since f is linear,

£(v) = f(xlu1 + xzuz) >

f(v) = xlf(ull + xzf(uz). (2)
We are told that

f(u -3u, + 2u (3)

1) 1 2

and

(4)

f(uzj = 4u1 - uz.

Hence, using (3) and (4) in (2), we conclude that

f(v) = xl(—3u1 + 2u2) + x2(4ul - u2)
= (--3xl + 4x2)ul + (2x1 - x2) u,. (5)

If we agree to view {ul,uz} as the coordinate system for V
[i.e., we use (xl,le as an abbreviation for X4y + xzuz], we

may rewrite (5) as

v = - 1
f(xl,xz) = 3x1 + 4x2, 2xl xz). :5%)
With v, = 7u1 - 5u2, we obtain from (5) that
f(vl) = (=21 + 20)u1 + (14 - 5]112
= —ul 4 9112: {6)

and with vy = Zul + 3u2, we see from (5) that

(-6
6u

+

f(v2] 12}ul + (4 - 3)u2

u,. (7)

+

1
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Block 3: Selected Topics in Linear Algebra
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3.4.1(L) continued
Hence, from (6) and (7), we conclude that

f(V1} + £(v,) = 5u; + 10u, = 5(u; + 2u

1 2)-

On the other hand,

vy + v, (7ul # 5u2} + {2ul + 3u2)

9u1 + Buz.

Consequently, by (5), we see that

(8)

f(vl + vz) = (=27 + 32)111 + (18 - 8}u2
= 5u1 + 10u2. (9)
Comparing (8) and (9), we conclude that f(vl + v2} = f(vl) + f(vz).
c. If we identify uy with 1 and u, with 3, we see from (5') that f
is the linear mapping of the xy-plane into the uv-plane defined
by
f(x,y) = (-3x + 4y, 2x - y). (10)
That is,
u = -3x + 4y _
v=2x -y . (10'")
Pictorially,
¥ f(v3}=f{vl+v2)=
’F N I (5,10) =
f(Vl)=(—1,9) |f(v1,+f(v2}
) (9,8) \
v,=(2,3) 7 |
2 YL o -
|
flv,) =
(6,1)
> X 5 u
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Block 3: Selected Topics in Linear Algebra
Unit 4: Linear Transformations

3.4.1(L) continued

Notice from the figure that f "preserves structure"; that is, the
image of vy + v, is the same as the sum of f(v1) and f(vz).
Pictorially, parallelograms (with a vertex at the origin*) are

mapped onto parallelograms.

Note:

We have limited our discussion in this exercise to the case n

= 2 only so that our computations would be relatively easy and
also so that we could still interpret our results pictorially.
The point is that our results apply to any dimension. More
specifically, if V = [ul,...,un] and if Wyreees and w, are any

n arbitrarily chosen elements in another space, W, then there is
one and only one linear transformation £:V =+ W such that

f(ul) =W,

f(uz) =w (1)
f(u) = v

Namely, if v = XYy + 5w ¥ x u, is an arbitrary element of V,
then f(v) must equal X Wy + e F X W In different perspective,

if we start with just the information given in (1) and then
insist that f be linear; then the mapping defined by f(v) =
KWy o+ oLl + X W "fills the bill" and no other linear mapping
f:V + W can obey (1).

We must be careful in our reading of the above paragraph. We
can't conclude that if dim V = n that we can define a linear
mapping f:V >+ W just be requiring that any n elements in V be
assigned to n elements in W. The key point is that the vectors
in the domain must be a linearly independent set. That is, the
1Vy toeer ¥ cnvn) is
determined once we know the effect of f on Vireeos and Vie

property of linearity is such that f(c
Namely, by linearity,

fle.v, + ... + Cc_V

1V1 o n) = clf(vl) F aaw cnf(vn).

*Identifying xz ¥ y? with (x,y) requires that xz + yg originate
at (0,0). Consequently, the natural tendency of thinking of

a linear transformation as a mapping which maps lines into
lines must be amended to say it maps lines through the origin
into lines through the origin.

S.3.4.3
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3.4.1(L) continued

For example, with reference to part (b) of the present exercise,

once f{vl) = -u + 9u2 and f(vz) = 6ul + Uy

2

As a special case if dim V = n and m > n, then it is impossible

then £ cannot be
linear unless f(vl + vz) B Sul + 10u

to find a linear transformation f:V + W by arbitrarily prescribing
the values of f(vl},..., and f(v ). Namely, since m > n the

set Vireees Ve is linearly dependent and this means that some

of the v's are linear combinations of the others. In turn, if

f is to be linear, this means that the images of these v's must

be the same linear combination of the images of the other v's!

x = 61V, + saa B Cr—1Vk-1" then f(vk) =

c fl(vy) + ... + ck_lf{vk_l]. Hence, f(v,) cannot be arbitrarily

In other words, if v

prescribed once f(vl),..., and f(vk—l) have been chosen.

3.4.2

vV = [ul,uz,u3].

al = (1,2;3)% 0-2 = (4,5,6), 0-3 = (7,8,9).

The major point is that since o, = 2a2 - a,* and T is linear,

then

T(a3) = T(Za2 - 31)
2T(a2) - T(ulj. (1)

From (1) we see that T(a3) is completely determined by the
values of T{al) and T{uzj.

In particular, if T(a
see from (1) that

l) (3,1,2,4) and T(‘IzJ = (4,2,1,5), we

T(a 2(4,2,1,5) - (3,1,2,4)

(5,3,0,6). (2)

Il

3)

Il

*This observation has nothing to do with linear transformations.
Rather, it is obtained by the row-reduced matrix technique of
the previous units wherein we discussed such things as finding
the dimension of S(ul,uz,a3).

S.3.4.4

Al S S S bR S A N O EE W Ya bE e




Solutions
Block 3: Selected Topics in Linear Algebra
Unit 4: Linear Transformations

3.4.2 continued

Thus, we see that if T:V + W is linear and T(1,2,3) = (3,1,2,4)
while T(4,5,6) = (4,2,1,5), then T(7,8,9) must equal (5,3,0,6).
Consequently, there is no linear transformation T from V to W
such that

(1,2,3) ¥ (3,1,2,4)
(4,5,6) 3 (4,2,1,5)
(7,8,9) % (2,3,4,1).
Pictorially,

v

Analytically speaking, linear transformations"preserve" sums
and scalar multiples. That is

£} w and v, 3

1 w

Vl 2

implies that

T
vy tav, >+ a;wy + asv,.

This is another form of (a). The only difference here is that
since we have more vectors than dim V, the set must be linearly
dependent. 1In particular, using our row-reduced matrix technique,

we have

5.3.4.5
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3.4.2 continued

1 1 1 1 0 0 0 1 1 1 1 0 0 0
1 2 3 0 1 0 o0 |nvjo 1 2 -1 1 o0 o
2 3 5 0 0 1 0 0o 1 3 -2 0 1 o0
3 7 6 0 0 0 1 o 4 3 -3 0o o0 1]
1 0 -1 2 -1 o o
o 1 2 -1 1 0 o0
“lo o S o=1 T @
0 0 -5 1 -4 0 1
91 Y Y3 ¥y Vo Y3 Yy
12 31’2 37
1 0 0 1 -2 1 0
0o 1 0 1 3 -2 o0

0 0 1 -1 -1 0 (3)
0o 0o o0 -4 -9 1

The last row cof (3) tells us that -4Yl - 972 + 5Y3 + Ya ™ 0 or
Y ™ 471 + 9Y2 - 5Y3-

Consequently, T(Y4) = 4T(Y11 + 9T(w2) = 5T(Y3). Thus, we cannot
prescribe T(Y4) arbitrarily once T(Yl), T{Yz), and TIYB} are
given.

3.4.3(L)

In the first two exercises we deliberately avoided any reference
to matrices, at least with respect to linear transformations.
The reason for this is that the concept of linear transformation
does not require a knowledge of matrices. It is true, however,
that judicious use of a matrix coding system allows us to
express linear transformations rather nicely. We have made use
of this matrix coding system not only in the present lecture
but also in our introductory treatment of linear mappings in
Block 4 of Part 2.

In the present exercise, what we want to do is emphasize how

we may use matrix notation to compute f(v) for any v in V where
V = [ul,.
that V = W in this exercise but the general approach works for

..,un]. For the sake of simplicity we have assumed

S.3.4.6
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3.4.3(L) continued

any linear transformation f:V -+ W.

We also want to make sure that you are not confused by the two
different conventions whereby linear transformations are
represented by matrices. Consequently, we use the technique of
the lecture in doing part (a), and the transpose of this method
in doing part (b).

vV = [ul,uzl
f:v > v
f{ul) = -3u1 + 2u2

f(u2} = 4u, - u (1)

1 2

Then, as we saw in Exercise 3.4.1(L), for any v = xuy + X, U, eV,
£(v) = (=3x; + 4x,)u; + (2x; - x,)u,. (2)

I1f we now let

=3 4
A=

2 =1
be the transpose of the matrix of coefficients in (1) and if we
let X denote the column vector (matrix)

.

we have
-3 4 b
AX = x
_2 -1 xz
~3xl + 4x2
_ (3)
_le x2

Notice that (3) is a column vector whose components are those
of f(v).

In summary, then, we may identify the matrix equation AX = Y
with the vector equation (2), where

=3 4

2 =1

S.3.4.7
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3.4.3(L) continued

%3
2. X =

| %5 ]

e
3. Y =

*2]

where f(v) = (yl,yzl = y;u t+ y,u,. Notice in this context that
XA wouldn't make sense since X is 2 by 1 while A is 2 by 2.

If we want to use the matrix of coefficients in (1), then we let
*

-3 2

o
I

4 -1 .

In other words, B = AT.

We now let X denote the row vector (matrix) [x1 x2]. In order not
to confuse the row vector X here with the column vector X in part
(a) , let us agree to write X is S is a row matrix; and ; if X is

a column vector.

At any rate, we easily verify that

XB

[x4q x2]

[-3xl + 4x2 2x1 - x2]

so that ﬁB also names the components of f(v), but now as a row

matrix.

The connection between parts (a) and (b) is simple. Namely,
i€

AX = ¥ (4)

*We use B rather than A only so that we do not confuse the
notation in part (b) with that in part (a).

S.3.4.8
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Block 3: Selected Topics in Linear Algebra
Unit 4: Linear Transformations

3.4.3(L) continued

Consequently,

x'aT = yT, (5)
-+ T ¥ . ¥ T -+

If X = X, then X~ = X; and conversely if X = X, X = X

Thus, if we recall that B = AT, we see from (4) and (5) that
¥ + > >

AX =Y » XB =Y

so that parts (a) and (b) are indeed two different matrix

equations which code the same information.

It is not important which of the two conventions we use, but
as we shall soon see, we must be careful not to confuse the two.

-+
For example, with A as in part (a), we could still compute XA.

We would obtain
-3 4
[xl xz] 5 4 & [-3xl + 2x2 4xl - x2]

which is a row vector but it does not code the information

. . T
given in (2). In other words, both ﬁA and AX make sense, but

in general, the row vector defined by XA does not have the same
components as the column vector AX.

The advantage of the notation used in (a) is that it allows us
to write X after the matrix A and this preserves the notation
f(x) as opposed to (x)£f. The disadvantage is that we must
remember that A is not the matrix of coefficients in (1) but

rather the transpose of that matrix.

Conversely, the advantage of (6) is that B denotes the matrix
of coefficients in (1); while the disadvantage is that we must
write XA rather than AX.

S5.3.4.9
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Block 3: Selected Topics in Linear Algebra
Unit 4: Linear Transformations

3.4.4

vV = [ul,uz,ua]

f:V + V is linear and is defined by

f(ul) u., + u, + u

i
f(uz} = 2u; + 3u, + 3u, (1)
f(u3) = 3u1 + 4u2 + Gu3

a. Letting

u., + x

xll 2u2+x

3¥3

we obtain from (1) that

f(v) = xlf(ul} + xzf(uz) + x3f{u3)
xl(ul + u, - u3] + x2(2ul + 3u2 + 3u

]

3)
+ x3(3ul + 4u2 + 6u3)
(xl + 2x2 + 3x3}ul + {xl + 3x2 + 4x3)u2
+ {xl - 3x2 + 6x3)u3. (2)

b. Letting
1 1

-

—r
B = |2 3 3 and X = [xl X, x3],
3 6
we have
1 1 1
[xl X, x3] 2 3
4 6
= [x1 + 2x2 + 3x3 X+ 3x2 + 4x3 x; + 3x2 - 6x3].

In other words, if f(v) = Y14 + You, + YjUy, we may find Yyr Yyr
B
and Y3 by letting Y = [yl, Yor y3] and solving

-

XB = Y. (3)

c. Taking the transpose of both sides of (2), we obtain

(xg)T = ¥T

§.3.4.10
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3.4.4 continued

or
-
pTxT = vT.
Hence,
vy
BIX = Y. (4)

Finally, if we let A = BT, (4) becomes

¥ +
A = Y

where A is the transpose of the matrix of coefficients in (1).

3.4.5(L)

With Vv = [ul'u2] and the linear mapping f: V + V defined by

f(u2) = 3ul + 5u2
it follows for any v = xlul + xzuzsv, that
f(v) = xlf(ul) - xzf{uz}
= xl(ul + 2u2} + x2(3ul + 5u2)
= (xl + 3x2)ul + (2x1 + 5x2)u2 (2)

or in 2-tuple notation, relative to {ul, u2} as a basis fo V,

f(xl,xz) = {xl - 3x2, 2xl + 5x2}. (3)

So far we have just been reviewing the technique discussed in
the previous two exercises, but the new point we want to make is
that while f does not depend on the choice of basis (i.e., the
same linear transformation can be expressed in terms of
[infinitely] many bases), the 2-tuple notation used in (3) does

depend on the particular basis being used.

In other words, had we found another basis for V, say vy and Voo and
if veV; then f(v) would not depend on whether we wrote v in terms of

S5.3.4.11
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3.4.5

terms of u, and u, coordinates or in terms of v

(L) continued

1 2

1 and v, coordinates,

but the resulting 2-tuple notation would depend on the basis. This
is what we want to show in part (a) of this exercise.

a. We are now told that we want to express f in terms of the vectors
vy =up + u, and Vy - 2ul + u,. (4)
Again, primarily as a review, we may use row-reduction to show

that vy and vy do indeed form a basis for V and at the same time

we can see how vy and v, are expressed as linear combinations of

uy and u,- More specifically:

so that

W =" Y } o
u2 = 2vl -V,

Now we may compute f(vl) and f{vzi as follows: From (4),

f(vl) = f(ul + u2) } (6)
f(vz) = f(2ul + uz)

Then, by the linearity of f, we conclude from (6) that

£(v)) = £(u;) + £(u,) } (7)
f(vz) = 2f{u1) + f(uz)

so that by (1), (7) becomes

f(vl) = (ul + 2u,) + (3u1 + Su2) = 4u1 + 7u2
and I (8)
f(vy) = 2(u; + 2uy) + (3u; + 5u,) = 5u; + 9u, J

Sediail 12
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3.4.5(L) continued

We may now use (5) to rewrite (8) as

f(v 4(-v1 + v2) + ?(2vl - vz}

5{-Vl + vz) + 9(2v1 - V2}

1)
5)

Il
I

10v1 = 3v2 }
13vl - 4v2 -

from which we see that the matrix of coefficients of f relative
to the bases {vl,vz} is given by

i0 -3 :
B =113 <&, (9)
b. Let
v = 4u; + Tu,. (10)

Then, f(v) = ylul - Yz“z' where

[? i]

[4 71 = [y vl (11)
3 5 1 2

That is,

[4 + 21 8 + 35] = [yl y2].

Hence

¥y - 25

Yy = 43.

In other words,

f(v) = 251.1l + 43u2. (12)

Notice that in terms of column vectors, (11) could have been

rewritten as
2
T _ L

or

S5.3.4.13
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3.4.5(L) continued

AN D

On the other hand, combining (5) and (10) we have

v = 4(—v1 + vz) + 7(2vl = Vz)
= 10v1 = 3v2.
Hence, to compute f(v) = z1vq + z,v, we have

10 -
(10 =31 |33 4| =127 20

or

[L00 - 39 =30 + 12]

I
—
N
[
o]
3%
—

so that

61
-18.

G|
)

That is, relative to the basis {vl, v2}

£lv) = lel - 1av2. (13)

We may check (12) and (13) by replacing uy and u, in (12) by

their values in (5). This yields

£lv) = 25(-v1 + v2] + 43(2v1 ] vz)

= 61 v, - 18v

1 2

which checks with (13).

From a geometric point of view, we are saying that a linear
transformation of the xy-plane into the uv-plane is completely
determined as soon as we know the image of a pair of non-
parallel vectors in the xy-plane. In other words, a linear
mapping is defined by its effect on one pair of non-parallel
vectors, and there are infinitely many ways in which such a

pair of vectors may be chosen. What does vary with the choice

S.3.4.14
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Unit 4: Linear Transformations

3.4.5(L) continued

of basis, however, is the representation of a given vector as a

linear combination of basis vectors.

What is interesting is how the matrix of coefficients,

in (1) is related to the matrix of coefficients,

10 -
13 =
in (9). This is what we investigate in (c).

We have:

L. W= {ul,uzl.

25 T(al) = a;;0 +- a) 50,
T(uz) = azlul + a22a2

3 Bl = bllal + b1202

82 = bzlal + b

22% -

Assuming in (3) that [81,82] is a basis for V, we may invert
(3) to obtain

4. o

1 C1282

+ Cy85

g, = Bggh
@, = S8

where (3) and (4) are related by

e |0 P2 i1 C12| b _ 1
boy P €31 %22

If we now look at the same T but in terms of its effect on Bl

and 82, we have by (3)

T{Bl) = T(bllal + blzaz)
T(Sz) T (b + b )

21%) 22%>

5.3.4.15
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3.4.5(L) continued
so that by linearity

B T(Bl) = bllT(al) + blzT(az)
T(B,) = bZlT(al) + bZZT(azl-

Using (2), (5) becomes

T(B)) = byj(ajja; + ajy0)) + byy(ayja) + ayya))

T(By) = byy(a 0y + ajy0)) + byylayy0) + ayya,)
or

6. T(By) = (bjja;y + byjayy)oy + (byja;, + byrayyla,
T(By)) = (byja;) + byoay )ay + (byra), + byray))a,.

If we now replace o and oy in (6) by their values in (4), we
obtain

T(B)) = (byja;) + byyay,)(cg48;) + cp,8))

+ (byjaj, + byjazy) (cy8) + c,y585)
T(By) = (byya;; + byoay;)(eg16) + ¢ ,8))
+ (byja)5 + byjay5) (€587 + ©5585)
or
7. T(By) = [(byya;; + bjyaj))cyy + (byja;, + byyazsle,, 18,
+ [(byya)7 + byjyayy)cy,+ (byqay, + byjyay5)c,,18,
T(By) = [(byyay) + byyayy)cyy + (byya)y + byrazslcyl8y
+ [(byya)) + byrazyle),; + (byyay, + byyays)e,,l8,.

It should be noted that our derivation of (7) was very straight-
forward, if a bit messy. However, if we think in terms of

matrices, we see that the matrix of coefficients in (7) is very
closely related to the matrices of coefficients in (2), (3), and

(4). In particular, we have that:

5.3.4.16
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3.4.5(L) continued

(Bygdyy * Byslygdeyy + (Byydyy ¥ 0585506
(bya3yy * Pyadygleyp * (by3315 + byadyyiey
(byrayy *+ byyaygdegy + (Byi315 + Dyrd55)cy
i (Byyayy * Byp8p)eyg * (Bydyp + Byodap)ean)
Bryfya ¥ Bya®ey Bra®ps ¥BpPol %3 Sp
boi®1i * Rasfar  Paifiz Y R:fas| P %»
1By Pgg T B %11 %2
Pai. a3 b €21 ©22]
= BAC
= BAB™L,
This result is of extreme importance. What it tells us is that
if the n by n matrix A (we have dealt with the case n = 2 but
this is of hardlylany consequence) represents a linear trans-
formation of V into V relative to the basis{al,...,an}then 1F
B is any non-singular n by n matrix, we have that BJAB_l
represents the same transformation relative to the basis
{Bl,...,Bn} where
81 - bllal 5 aiw K blnan
Bn - bnlul ' a ww F bnnan .
To see what this result means in terms of the present exercise,
we form from part (a) that
s |F 2
3 Bl @
S:3.4.17




Solutions
Block 3: Selected Topics in Linear Algebra
Unit 4: Linear Transformations

3.4.5(L) continued

[~ i i
B =
2 1].

From B we see that B © is determined by

1 1, 1 o[ 1 1 0]
2 1, 0 1 |0 -1 -2 1
u 1 1 0
Ylo 1 -1]
s 0 -1 1]
Lt | 2 -1

so that

(03]
|
|.._l
I
1
N
i
=y

Therefore,

BIAB“1= 1 | 1 2 =1 1
2 1 3 5 2 -1
4 71 [=1 il
5 9 2 -1
(10 -3]
|23 ~4]

which agrees with the matrix of coefficients in (9).

Note:
Two n by n matrices A and B are called similar if and only if
there exists a non-singular matrix X such that XAx_l = B. 1In

terms of linear transformation of a vector space, the signi-
ficance of similar matrices is that they represent the same
linear transformation, but with respect to a (possibly)

different basis.

From a structural point of view, it may be worth observing

S.3.4.18
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3.4.5(L) continued

that the relation "is similar" is an equivalence relation.
q

Namely, since IAI“1 = A, we have that any matrix A is similar to

itself. Secondly if XAX_l = B, then X-I(XAxﬂl)X = X-le, so that
letting Y = x L1, we have that A = vBy 1. Hence, if A is similar

to B then B is similar to A. Finally, if XAx_l = B and YBY-l = C,

we have by substitution that

1 1

Y(XAX )Y ~ =C

or

(YX)A(x_lY-lj =C

or
-1 _
(YX)A(YX) =C
or
-1
ZAZ = C, where Z = YX.

Hence, if A is similar to B and B is similar to C, then A is

similar to C.

What becomes confusing in the study of matrix algebra is the
different types of equivalences involving matrices. For example,
we have already talked about two types of equivalence; one when we
talked about row-reducing matrices and again here in the context
of linear transformations. It seems that one of the best ways
not to get confused is to keep the model of a vector space in
mind. In terms of such a model, we usually talk about row
equivalence when we want to see whether two sets of vectors

span the same space; and we talk about the equivalence defined
by similar matrices (a similitude) when we want to examine
whether two matrices represent the same linear transformation

but perhaps with respect to a different basis.

In summary, similar matrices represent the same linear trans-
formation but with respect to (possibly) different bases. More
specifically, suppose
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3.4.5(L) continued

vV = [alr--tran] s [Bl;---:B ]

n
and that
flay) = ajq0y + .00 + @y 0y
f{un) = a ,0q + ... + a n%
while
?l = bllal + s F blnun
Bn = hnlul + ... + bnnun'
Then,
f(Bl) =By * eee + oy B
f(Bn) = C By * e F nbh

where the matrix C = [cij] is obtained from the matrix
_ _ =1 -
A = [aij] by C = BAB ~ where B [bij]'

As a final remark, notice that

c =BaB ! >

c® = (sas™HT
c? = 8TaT ez HT o
c? = pTaT(8T) L.

Hence, we see that the concept of "similar" does not depend
on whether we deal with the matrices of coefficients or
with their transposes.
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3.4.6 (optional)

The major objective of this exercise is to offer an insight to
the idea of what is meant by "invariant properties". In essence,
this is part of the "Number-versus-Numeral" theme. Namely, we
have a property which we wish to examine and this property does
not depend on the "coordinate system" being used, but its
appearance does. We must then make sure that when such a pro-
perty is stated in terms of a particular coordinate system the

derived consequences are valid in any coordinate system.

To apply this notion specifically to the ideas of this Unit,

let us observe that the notion of a linear transformation defined
on a vector space does not depend on the basis we are using for
the vector space. The matrix of coefficients, however, does
depend on the basis. Thus, we want to make sure that any con-
sequences of a particular linear transformation are independent

of the basis being used.

This investigation can become a bit sticky, so we have limited
our investigation to two rather elementary situations. Namely,
every vector space (other than the vector space which consists
only of the zero vector) allows at least two linear trans-
formations to be defined on it. In particular, there is the
identity mapping defined by f(v) = v for each veV; and the
zero-mapping defined by f(v) = 0 for all veV. It is readily
checked that both of these mappings are indeed linear.

a. Relative to a particular basis, the identity mapping is defined
by the fact that each element of that basis is mapped into
itself. Since this is true for any basis, it means that our
matrix of coefficients in this case must be the n by n identity

matrix I no matter what basis is being considered. In particular,

then it means that according to our definition of similar matrices,

no n by n matrix other than I would be similar to I.

Stated abstractly, we are saying that for the sake of consistency
it had better turn out that if A is an n by n matrix and if X is

also an n by n matrix such that xlax = I, then A = I.

The proof of this result follows from the usual rules of

matrix arithmetic.

Namely,
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3.4.6 continued

xtax =1 -
x(x lax)x1 = x(pxt -
(xx'l)A(xx'l) = (xDxt +

IATI = XX x >
I(AI) =TI -~
IA=1I =
A= 1.

Hence, as it should be, the only matrix similar to I is I
itself.

b. If f is the O-transformation and{ul,...an} is any basis for V.
Then f(a;) = 0 for i = 1,...,n. Thus, relative to{al,...,an} 7
the matrix of coefficients is 0 (the zero matrix) and this
must be true for all bases of V. Thus, our definition of
similar should also guarantee that the only matrix similar to
the zero matrix is the zero matrix itself. To this end, then,
suppose x1ax = 0. Then x(x lax)x7! = x(0)x~ ! or (xx Ha(xx~t
x(ox~Ly. Therefore, since 0A = 0 for all matrices A, we have
IAI = X0 or I(AI) = 0, whence IA =0 or A = 0. That is, if

A is similar to 0, then A = 0.

Yy =

3.4.7

The matrix of f relative to [ul,uz,u3] is given by

1 1 i A
A= |2 3 3
3 5 4] . (4)

We are also told that

<
Il

u, + 2u2 + 3u3

1 1
vy, = Zul + Su2 + 6u3
v, = 3ul + 6u2 + 10u3 (2)

To show that V = [v,,v,,Vv;], we need only show that B™Y exists
where B is the matrix of coefficients in (2). Using row-reduction

again, we have
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3.4.7 continued

e P L TR O T

1 2 1 0 0 2, 2 1 0 O

2 6 0 1 o |~ [0 1 =2 0

3 6 10 0 0 1 o o 1 -3 o0 1
1 5 -2 0
0 -2 1 o0
0 -3 1

————— 3 — G— E— w—. S e—
1 0 0 14 -2 =3
0 0 -2 1 0
0 1 -3 0 1§ (3)
From (3) we see that
. 14 -2 -3
-2 g 0
=3 0 L] (4)

Therefore, {vl,v ,v3} is a basis for V and the matrix of

2
coefficients for f relative to [vl,vz,v3} is given by

i 2 3 1 1 14 -2 -3

-1 1]
2 6|2 3 3f|-2 1 o (5)
4

BAB =

u

3 6 10 3 5 -3 0 3
14 22 19] [14 -2 -3]
30 47 41| [-2 1 0 (5')
45 71 61| |-=3 0 1

T95 -6 -2ﬂ
203 -13 -49 (5")
305 -19 -74].

"Decoding” (5"), we have

f(vl) - 95vl + 50v2 - 23v3
f(v,) = 203vy - 13v, - 49v, (6)
f[v3) = 305vl - 19v2 - 74v3
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3.4.7 continued

Partial Check:

t(vl = f(u1 + 2u2 + 3u3]

f(ul) - 2f{u2) + 3f(u3)

- (ul + u, + u3} + 2(2ul + 3u

14u1 + 22u.,, + 19u3

+ 3u3) + 3(3ul + 5u, + 4u3]

2 2

2

[and this checks with the first row of first matrix in (5")].
Hence by (3),

fv = 14(14vl = 2v2 = 3v3] - 22(-2v1 + vz] + 19(-3v, + v

95vl - sz - 23v3

1t v3)

Il

[which checks with the first row of (5")].

3.4.8(L)

Some Basic Review:

Suppose that f:V + W is linear (where W may be the same as V
but doesn't have to be); and let N
relative to £. That is,

£ denote the null space of V

Ng = {vev:£f(v) = 0} . (1)

We have already seen in the lecture that N is indeed a subspace
(rather than just a subset) of V and that Nf is not empty since
at least the zero element of V belongs to Nf.

Some Additional Terminology
The image of V relative to £, that is, £f(V),where

£(V) = {f(v):vev }

which we already know is a subspace of W is called the rank of f£.

Moreover by the nullity of £ we mean dim N..

Ea
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3.4.8(L) continued
Main Result
If dim V = n and f:V—+ W is linear, then dim V = dim Nf + dim Rf

where Rg denotes the rank of fli.e., £(V)].

Interpretation of the Main Result

Suppose dim N, = r. Clearly r may be as small as zero, and this
will be the case if Ne consists of 0 alone; or as great as n,
and this will be the case if Ne =V [i.e., if £(v) = 0 for every
vev].

In any event, if we let{a .,ur} be a basis for Nf, we may

17"
augment this basis to become a basis for V. That is, we may

find o .,anav such that V = [al,..., r'ar+l""’an]' Our

1"
claim is that

f(v) = [f{ar+l),...,f{un)]. (1)

That is, N is mapped onto 0 and the image of f is determined

by the images of o , and a - Pictorially,

r+l’**°

All of this
(NfJ maps into
0.

A formal proof is given as an optional note at the end of this
exercise but for now we prefer to illustrate the main ideas

in terms of this explicit example.

We are given that
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3.4.8(L) continued

and that £:V -+ V is the linear transformation defined by

f(ul} = + 21.12 + 3u3
f(u,) = 2u; + 5u, + 8u, (3)
f(u3} = uy + 4u2 + 7u3

We want to describe f(v). What should be immediately clear is
that {f(ul), f(u2}, f(u3)} spans f(v). The proof is clear since
each veV may be written in the form v = ¢ uy + c,yu, + C3ug,

1
whereupon

f(v) = f(clul + cou, + c3u3). (4)
Hence, by the linearity of f, we see from (4) that
£(v) = cyf(uy) + cyf(u,) + cyf(uy), (5)

and since f(v) is any member of f(v), we deduce from (5) that

every member of f(v) may be expressed as a linear combination
*

of f(ul), f(uz), and f(u3) «

What we can't say for sure, in general, is whether {f(ul),
f{uz), f(u3)} is linearly independent. In our particular
exercise we can use (3) together with our by-now-hopefully-
familiar row-reduced matrix code to fine a basis for f(v).
That is, f(v) is spanned by {f(ul, f(uz), f(u3)} and we obtain
from (3):

*We say "may be expressed as..." since {u,,u,,u,} is but one

particular basis for V. 1In this respect, thére is nothing
special about {ul,u ’u3} except that as the problem stands, it
indicates the "coorainate system'" being used to describe V.

OB W= U O vS ¥ 2 o8 U o2 o v = 9 =S =
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3.4.8(L) continued

1 u, u3 f(ui) f(uz) f(u3)
1. 2 0 0
2 5 8 0 1 0 N (6)
b 4 0 1
i 2 i 0
0 -2 0 "
0 2 -1 0

u u, u3 f(ulJ f(uz) f(u3J

(7)

Comparing the right half of (6) with the left half of (7), we
see that the space spanned by f(ul), f(uz) and f(u3} has as a

basis

w0
[\ 5]
il
lo o M
I
]
o
b
o

and (8)

also have from (7) that

W
]

L = 5E(u)) - Zf(uz-}} -
62 = -2f{u1) + u, v

Hence by the linearity of f we see from (9) that

Bl = f(5ul - 2u2}
n 82 - f(—2ul 2 u2) (10)
: In other words, to emphasize the domain of f, we see from
(10) that if we define ay and azsv by
S.3.4.27
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3.4.8(L) continued

a, = Sul - 2u2 s
u2 = -2ul + u2
then

£(v) = [£(a)), flay)]

and

{al,az} is linearly independent.

Important Aside:

If T:V + W is any linear transformation of V into W and if
vl,...,vnsv are a set of linearly independent vectors we cannot
be sure that {T(vl),...,T(vn)} is linearly independent. 1In
the present exercise, for example, {ul,uz,uB} is linearly
independent but {f{ul},f(uz},f(u3)} isn't since dim f(v) = 2.
On the other hand if {f{vl),...,f(vn)} is linearly independent

so also is {vl,...,vn} . Namely, suppose
R TR T 0 (12)
then

f{clvl + S5 8 e Vn) = £(0) = 0,

n

or
clf(vl) + ...+ cnf(vn) = D (13)

Hence, since {f{vll,...,f{vn]} is linearly independent, we see
from (13) that gy =acimg = 0; and combining this with
equation (12) we may conclude that {vl,...,vn} is linearly
independent.

Summarized pictorially, we have
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3.4.8(L) continued

=]
Il

Sul - 2u2

—2ul + u,

" {al,az} is linearly independent
2. f(v) = [£(a;), £(a,)]

Suppose we let Vl be the 2-dimensional subspace of V spanned
by oy and Oy - Then, the only member of Vl which belongs to the

null space, N of F is 0. Namely, if

f'

f(v) = 0 and v = C104 + cya,

then

f[clal + czaz} =0

or

clf{all + czf(azi =0

but since {f(al}, f(az)} is linearly independent, we have that

€1 = ¢y = 0, and hence, that v = C 0y + Cya, = 0.

In other words, if f., is the function f restricted to the domain

1
Vl' flzv1 + W is both 1-1 and onto.*

*See Note at the end of this solution for more details.
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3.4.8(L) continued

(Recall that in the lecture we showed that the linear transforma-
tion T:V - W was 1-1++ Np = {0} ; i.e., T(v) = 0 v = 0.)

The fact that VfﬁNf = {0} now gives us a final hint to the
structure of £(V). Namely, we know there must be an element

u3€V which does not belong to Vl (since dim V = 3 and dim Vl = 2).
Moreover, oy must generate the null space of f since the zero
element is the only element of the null space that belongs to Vl.
To find a specific candidate for a; we need only look at the last
row of (7) to conclude:

3f(ul) = 2f[u2) + f(u3) = 0. (14)
Hence, again by the linearity of f, (14) implies that

f(3ul % 2u2 + u3} = 0. (15)
Looking at (15) we decide to let

a; = 3ul = 2u2 + u,. (16)
Clearly, oy # 0 (since {ul,uz.u3} is linearly independent and
f(aa)ng [since f(a3) = 0 by (15)]. Therefore, since

NeNv, = {0}

f

and
0'3#0!'

we conclude that a3¢vl. Hence,{al,az,aB} is linearly independent.
We also observe that the null space of V with respect to f con-
sists of all scalar multiples of g Namely, if f(clal + cyo, +
c3a3) = 0, then clf(al) + czf(uz} + c3f(a3) = 0, or since f(u3) =
0,

clf(al) - czf(az) = 0. (17)
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3.4.8(L) continued

Since {f(ul), f(az)} is linearly independent, (17) implies that

c, = = 0; therefore,

1.~ %
f(clul + Cy 0, + c3a3) = 0 +> Cp =¢y = 0.5
Hence,

N = {c3a3: C3ER}

Again, pictorially W

£(V)

£(V)
[£(a)) s £(a,)]

> 8= f(a;)

> 82= f(az)

‘0

(All of N is
mapped into 0 by f)

1. All multiples of 054

2. The rest of f£(V) comes from vl.

map into 0.

Structurally what we are saying is that if fl is the restriction
of £ to V then f£(V) = fl{Vl) and

fl:V1 + f(V) is 1-1 and onto, but £: V + V is neither 1-1 nor onto.

Moreover, if aeV;, then fla) = f(B)+*16—a)ENf ++B = qa + n
where neN Namely, f(a) = £(B)> £(B) - f(a) = 0+£(B - a) =0

B - aeNf.

£
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3.4.8(L) continued

In summary,

V= [al,azl (:) [33]

dim [al.azl = dim £(V) (= 2)
dim [a3] = dim Ne (= 1).
Hence, at least in this case,
dim V = dim £(V) + dim Ne.

Optional Note:

We may outline the more general case as follows: Suppose
f:V » W is linear and that

dim V = n

dim Ne =« (where 0 < r < n)
Case 1:

r = 0, then Nf
V and W are "essentially" the same space (see the note on

= {0} so that f is 1-1 and onto. Consequently,

isomorphisms which follows).

Case 2:
r = n; then f(v) = {0}

Case 3:
(The General Case; it includes cases 1 and 2 as special cases)

0 < F < na
Let
Nf = [al,...,ar].

Then since N is a subspace of V, we may find vectors

A yyreeer and anav but not in Nf such that

vV = [Cf.l,---'ar;ar+lf¢|-;an]-
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3.4.8(L) continued

Pictorially:

Clearly{al,...,an} spans f(V) for if veV, then

Vi = i;c.u..
i1
i=

Hence,
f(v) = £( c ay)
i=1

or by linearity

n
f(v) = :E: e, f(a.).

i=1 *+ *
That is,
v = cyoy B w0 R P
f(v) = c;f(ay) + ... + c £la,).
Moreover, since f(al) = e w = f(ar] = 0, we see from (18) that
f(v) = cr+1f(ur+l) + wew cnf(an).

Hence, from (19) we conclude that
{f{ur+l},...,f(an)}

span f(V).
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3.4.8(L) continued

All that remains to be shown is that {f{ar+l),...,f(an)} is
linearly independent, for if this is so,

n - r elements

A

L]

£(v) = [f( r+l)o---:f( n)]

in which case

dim V = dim N_. + dim £(V).

£

I.E. r
n=r+ (n -1r).
So assume

£( ) + ...+ xnf(an) = 0. (20)

X
r+1* %41

By linearity (20) implies

f(xr+1ur+1 + caw + xnan} =0
so that
xr+lar+1 + see + xncneﬂf.

Since Nf = [al,...,ar], there exist constant -xl,...,—xr*
such that

+ eea F Ll * see o -
xr+lar+l xnan xlul xrur
Hence,
X * ewa F + +' v e F R = 0. 21
s xrar *r+1%r+1 n%n (21)

But since {a ..,an} is linearly independent, (21) implies that

1’

*The reason for using the minus signs is for arithmetic
convenience.
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3.4.8(L) continued

Xp = oeee =X < 0. In particular, then, Xyl = +o0 = X so

from (20) we see that {f(ar+l),...,f{an}} is linearly independent.

Note:
From (7) we have that

w = xX.u, + X + x

19y ¥ XUy uzef(V) (22)

3
Wi By M By

= xl(ul - u3) + x2(u2 + 2u3)

= X4 + x2u2-+ (-xl + 2x2)u3. (23)
Comparing (22) and (23), we see that
(xl,xz,x3)af(V) > X3 = Xy + 2x2.
Geometrically, then, if we view this problem as one in which
xyz-space is mapped into uvw-space, we see that the image of
our mapping is the plane

w = -u + 2v.

The scalar multiple of it - 23 + k map into 0. That is, our
null space is the line

x = 3t
y = -2t
z = t

A NOTE ON ISOMORPHISM (OPTIONAL)
By this stage of the game, we should feel very much at home

with the notion of a mathematical structure. In terms of our
axiomatic approach, we have seen that the only valid conclusions
are those which follow inescapably from our axioms. Hence,

in this respect, we cannot mathematically (logically) distinguish

between two different physical models if the only listed axioms
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are the same for both models. (In somewhat different perspective,
any difference between the two models depends on additional
axioms which have not been stated.)

As a very simplistic non-mathematical illustration, consider the
plight of a champion chess player who is called upon to play a
game in which the pieces have been disguised so that he does not
recognize which piece is the king and which is the gueen, etc.
Notice that he cannot play the gamenow! For example, he can't
even be sure as to how each piece is to be placed on the board.
However, his difficulty is only temporary (hopefully), since
once he learns the identity of the pieces, the game is the

same as the one he is champion in. In other words, he soon
discovers that except for how the pieces are named(in this

case, how they look) the structure is the same as in the
"regular" game. In short, the strategy of a game hinges on the
relationship between the various terms (rules or axioms) rather
than on the names of the terms themselves. An even easier
example might be to observe that if a baseball buff did not know
a single word of Japanese he could still enjoy a baseball game
played by Japanese, in Japanese, in Japan.

Applying this idea to mathematics, we often agree to identify
two systems as being the same if the only way we can tell them
apart is by the name of the terms. For instance, relative to
our present discussion of linear transformations of one

vector space into another, we have already seen that such a
mapping preserves structure. That is, a linear combination

of elements in the domain of f is mapped into the same linear
combination of the images of the elements in the domain. In
other words, the image of

ClVI + szz + sew # cnvn

is
le[Vl) + czf(vz) + ... + cnf(vn).

Of course, f need not be either 1-1 or onto.
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We know, however, that if the null space of f consists of 0 alone,
then f is both 1-1 and onto. In this case we call f an
isomorphism. This ominous term is just what the name implies.

It implies that V and f(V) have the same form or structure.

Namely, any valid result involving a linear combination of

Vireeor and vnsV remains valid in f(V) when Virees, v, are replaced
by f(vl),...,f(vn).

As an example, consider the set of integers J relative to the
structure of addition, and consider the function which doubles

a given integer. 1In other words, if f(x) = 2x for each xeJd

and if E is the subset of J consisting of all even integers,

then

f:J - E

is both 1-1 and onto.

But much more than this, J and E are isomorphic as far as
addition is concerned since

f(x + y) 2(x + y)
2x + 2y

f(x)y + £{y)-.

What this means is that if we replace integer x by its double
2x, any additional fact which is walid in J remains valid in E.

Diagramatically, if we line up elements of J with the correspond-

ing element of E:
-2 -1 o 1 (2) + 4 6 7 8
-4 -2 0o 1 (& + [6] 8 12 14 16

That is 2 + 3 = 54«+£f(2) + £(3) = £(5), etc.

Notice that it is not enough for f to be 1-1 and onto; we
also require that f preserve structure. For example, with
J, E, and f as above notice that £ does not preserve the

structure of J relative to multiplication. Namely,
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f(xy) = 2xy, while f(x)f(y) = (2x)(2y) = 4xy. Hence f(xy #
f(x)£f(y) [i.e., £(x)f(y) = 2f(xy)].

Again, diagramatically

E o« ()
A« &

In other words, we would say that the integers and even integers

(=]
=
I
w
=9

o
b
L=

6 - These do

not "match".

are isomorphic with respect to the structure of addition but
they are not isomorphic with respect to the structure of
multiplication.

A complete discussion on isomorphism is beyond the aim of the
present course, but as a closing aside, we can now explain in
terms of isomorphism why one usually writes n-dimensional vector
spaces as n-tuples and often fails to talk about "coordinate
systems". Namely, if dim V = n and if we specify a particular

basis for Vv, say, V = [vl,...,vn]; then relative to the

particularly chosen basis, V is isomorphic to E". More speci-

fically (and we have done this several times informally in this
Block) given v in V we know that v can be written uniquely in
the form

1V1 R BV (1)

and we define f:V » E" by
£(v) = (cysenescy) (2)

where CprevesCps and v are as in (1). It is then trivially
established that f is 1-1 and onto and also that f is linear.
In our informal approach we said all of this simply by saying

L

"Let (cl,...,cn) be an abbreviation for c1vy + e F c V"~

Certainly, the connotation of "abbreviation" seems to be that

it is a different (shorter) way of saying the same thing.
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Solutions

Block 3: Selected Topics in Linear Algebra

Unit 4: Linear Transformations

What we must be careful about, however, (as we have also empha-

sized in other lectures) is that two different bases lead to

different structures of E". That is,

element with respect to one basis and

element with respect to another basis.

we write V 2 W.

3.4.9 (optional)

(cl,...,cn) names one

(possibly) a different
If V and W are isomorphic,

Here we have generalized the previous
W # V. To find £(V) [and notice that
not V; in the previous exercise, this

apparent since then V = W] we want to

exercise in the sense that
this is a subspace of W
distinction wasn't so

find the space spanned by

f(vl), £(vy) ., f(v3), and f(v4). This leads to

T (Bl fhel Rl &g

1 1o 0 0 0]

23 o0 1 0 0 .

3 5 | 0 0 1 0

4 ) 0 0 0 il

ly | =

1 1 1 0 0 0]

0 1 -2 1 0 0 %

0 2 -3 0 1 0

0 -3 -4 0 0 1]

1 0 |3 -1 0 0 |

0 1 l -2 1 0 0

0 0 | 1 -2 1 0

0 0 : -10 3 0 1 (1)
From (1) we deduce that
w, = 3f(v1) - f(vz} = f(3vl - vz) (2)
W, = —2f(vl) + f(vz) = f(-2vl + Vz} (3)
0 = £(vy) - 2£(v,) + £(vy) = £(v; = 2vy + vy) (4)
0 = ~10f(vl] + 3f(v2) + f(v4) = f(-lOvl + 3v2 %+ VQ). (5)
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3.4.9 continued

From (2) and (3) we see that

f£(v) = [f(al), f(az)] =W (6)
a; = 3vl - V5 (7)
o, = —2vl -+ vy (8)

That is, f:V + W is onto; in particular dim £(V) = 2. From (4)
and (5) we deduce that

Nf = [030 0'-4]r (9)
where

a3 = vy - 2v2 + v, (10)
a, = -lOvl - 3v2 + V- (11)

Thus, if we now let

Vl = [ul,azl and Nf = [a3,a4}.
we have
l. Vv=1Y + N
1 f
2w

2. If fl is the restriction of f to Vl’ then flzv

1

That is, fl:v + W is 1-1 and onto. Pictorially,

I

/oy ﬂl :

-
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3.4.9 continued

b. To obtain a basis for Nf in row-reduced form we have

1 -2 1 o] ., 1 -2 3 0]
-10 3 0 1 0 =i 10 1]
17 -34 17 0]
Y lo 34 -20 -2
17 0 -3 -2]
4"
0 34 -20 -2
p—
- 3 2
1 0 o
10 1
d L T i (12)
From (12),
where
- - e
By =¥ “TrY3 “I7 Y
(13)
= . _ 1
By =V = T7 V3 " I7T Vs
Hence,
Ng = {xlﬁl + x282: xl,xzeR];
so by (13),
- -3 _2_ _ 1o .
Ne = {0xyvy = T3 x3V3 = 53 XVy) + (x5vy = 33 X,V = 75 X,V,) }

3

I

{ x

10 2 1
1V F XV - T Xy - T Xyt - I3 Xy - g7 X,lvy,d
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3.4.9 continued

Hence, relative to VirVyiVarV, as a coordinate system

e
*¥3==AFE ™ T 0T 2
{xl,xz,x3,x4}aNf - 5 1
Xg T T I7¥1 TI7T % -

In other words,

xlvl + x2v2 + x3v3 + x4v4eNf =

3xl + le2 - 1?x3 = 0}
le B X, + l’?x4 =0
Check:
03 = vl ™ 2v2 + vy
Hence, X = ¥ i X, = -2, Xq = L; Xy = 0, whereupon
3x1 + 10x2 + 17x3 =3 -20 + 17 =
=2 - 2+ =

2x1 + x2 G 17x4

0y = -lﬂvl + v, + v,

Hence, Xy = -10, X, = 3, Xq = o, Xy = 1, whereupon
3xl + 10x2 + 17x3 = =30 + 30+ 0 =0
le + X, + l7x4 = -20+ 3 + 17 = 0.

In other words, relative to {vl, vz, v3, vd} as our coordinate
system,

3 g 10 _ 1.
(lror = ﬁ r = -]'_-7_) and {0!13 1_7_! 17)

form a basis for N_. so that any element of N has the form

£
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3.4.9 continued

3 2 10 =&
x(1,0,- ﬁr = T—?} =t Y(Orl:“‘ 17 # 17 )
_ _ 3x + 10y _2x +y
- (lel’ 17 r 17 )I (14}
f(xlvl + X,V, + X,Vg + x4v4) = 5wl + 6w2.

Hence, by (2) and (3)

f(xlvl + X V, + X3V, + x4v4J = 5f(3vl - vz) + 6f(-2v1 + v2) (15)

= £(15v, = 5v,) + £(-12v, + 6v,)
(16)
= f(3vl + v,) (17)

(where (16) and (17) follow from (15) by the linearity of f).

Hence, one veV such that f(v) = Swl + 6w2 is v = 3vl + Vg

Check:
f(3v1 + Vz) = 3f{vl) + f(vz)
3(wl + wz) + (2wl + 3w2)

Swl + 6w2.

In n-tuple notation, using {vl,vz,v3,v4} as a coordinate system,

(3,1,0,0) maps into 5w1 - sz.

Now since f(v) = 0 for every veNf, we conclude from (14) that

£(3,1,0,0) + f(x,y, - 232, - ZZ V) -

r
or

503 & 5, L * gy & 3x 17102 . = 2xl; LYy = .

In other words, the set of all veV such that

V={3+x’l+y'-¥X"-2]{T;y_}

has the property that f(v) = Swl + 6w2.
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3.4.9 continued

In summary,

Y = 3vl + v,

is the only member of Vl - [al,azl = [vl,v2] such that

f(y) = Swl + 6w2.

The set of all veV such that f(v) = 5w:L + 6w2 is then given by

{y + n:ne Nf}

More generally, if Nf = [al,...,ar] and V = [al""'ar'ar+l""’
an], define vl by [ar+l,...,an]. Then, if fl is f restricted
to Vl'

ot

£.:v, = £(V).

i s

That is, for wef(V) there exists one and only one uevl such that
fl(u) = f(u) = w. We then find all veV such that f(v) = w by

adding any element of Nf to u. That is

{v:f(v) = w} = {u+n : ne Nf} .

Pictorially

aE S s
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3.4.9 continued

f(vl) =W

£(n) = 0

f(vy) + £(n) = w,
therefore f{vl + n) = w.

1. For wef(V) there exists a unique viEV, such that f(vl} = w.
2. The set of all veV such that f£(v) = w is then given by

{vl + n: neNf} .

3.4.10 (optional)

Suppose that f:V + V is a linear transformation of V into itself
and that W is a subspace of V. Then we already know that £(W)
must be a subspace of £(V) = V. What need not be true, however,
is that f(W) must be a subspace of W. For example, consider

the linear mapping of the plane which maps 1 into 1 + } and 3 into
= 3. This mapping carries the l-dimensional subspace (i.e.,

the line) yv = 0 onto the l-dimensional subspace y = x, but
certainly the lines y = 0 and y = x are different subspaces of

the plane.

If it happens that f£(W) is a subspace of W then we refer to W

as being an invariant subspace of V with respect to f. Without

going into any detail, it should be clear that one is often
happy to deal with invariant subspaces. That is, it's nice to
know what subspaces are preserved by the given linear trans-

formation.

The aim of this exercise is to show that for any given constant

c, the solutions of the equations
f(v) = ecv (1)

are not only a subspace of V but are an invariant subspace

relative to f.

To this end, suppose

w= {vev:f(v) = cv} (2)

where in (1), ¢ is a fixed constant.
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3.4.10 continued

Then for vy and vzew we have

Il

f(vl) = cvy (3)
f(vz) cv,

Hence, by the linearity of f, we see from (2) that

f(vl - v2} = cvl - cv2

]

c(vl b vz).
Therefore, by definition of W,
V] ~ VyEW. (4)

Moreover, for any scalar k and any vector weW we have

f (kw) kf(w)
k(cw)

c(kw),

so again by the definition of W,
kweW. (5)
From (3) and (4) we conclude that

Vl' vzew + vl - vzew

and "

keR, weW -+ kweW y .

Consequently W is a subspace of V.

To prove that W is an invariant subspace of V relative to f,
we must show that weWw + £(w) = W. So suppose weW. Then,

f(w) = cw. (6)

S5.3.4.46
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3.4.10 continued

But since W is itself a vector space, weW implies that cweW.

Hence from (5) we see that
weW -+ f(w) [= cw]eW.

Hence W is invariant with respect to £f.

Note #1:

Observe that the notion of invariant subspace depends on the
particular linear transformation being considered. For example
if W is a subspace of V, certainly this fact does not depend
on the transformation f. Namely, the study of subspaces of a
given space is independent of the notion of mappings. However,
it is equally clear that what the image of W is does depend on
the mapping being considered. Relative to our earlier remarks
the lines y = 0 and y = x are both subspaces of the plane, but
what their images are with respect to a linear mapping depends
on the particular mapping. In summary, a subspace W of V may
be invariant to one linear mapping f£:V » V but not invariant

with respect to another linear mapping g:V + V.

Note #2:

From a geometric point of view, the vectors defined by (1) are
those which have their direction preserved with respect to a
given linear transformation. If a basis consisting of such
vectors exists, then this is a very nice basis to use for

this transformation since then the basis vectors of W are also
basis vectors for f£(W). In other words, relative to this basis,
our coordinate axes are preserved under the transformation.

We shall illustrate this in more detail in Exercise 3.6.3(L) in

our discussion of Eigenvectors.

A S B S e e
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