Solutions
Block 3: Selected Topics in Linear Algebra

Unit 2: The Dimension of a Vector Space

3241 (1s)

a. Since S(al) = {cal: ceR} and since a; = (1,2,3,4), we see that
Bsstal) if and only if there exists a scalar c such that
B = cay = (c,2¢,3¢c,4c) . (1)
Hence, by (1),
a, = (2,5,7,7) ¢ S(a;) .

b. S(al,az) = {cla1 + Cy0yt cl,czsR}.

Hence,
BeS(aq,a,)
if and only if there exist real numbers cq and c, such that
B = clal + czaz
= cl(l,2,3,4) + c2(2,5,?,?)
= {01,2cl,3cl,4cl) + (2c2,502,7c2,7c2)

= (g, + 202, 2c1 + 502, 3c1 + 7c 401 + ?cz). (2)

1 2.7

The main problem with (2) is that it may not seem apparent how,
for example, the last two components depend on the first two.
That is, we know that once two of the four components of (2) are

given, c, and c, are determined, whereupon the other two components

1
are uniquely determined.

One thing that we might do is replace the first two components of
(2) by the single symbols, say, x, and x,. That is, we could make

1 2
the substitutions
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3.2.1(L) continued

+ 2¢

i | 2
and
2c1 + 5c2

*1
s (3)

= X

2

J

from which it follows that

i | 1
and
c2 = -2x1

' (4)

+X2J

In terms of row-reduced matrices, we obtain (4) from (3) by

s M B s
[
1 2 1 0 1 2 1 0 1 0 5 =2
2 510 1 0o 1 -2 1 0 1 -2 1
From (4), it is readily seen that
301 + 7c2 - 15x1 - 6x2
-14x1+7x2
= x1 b x2
while
4cl + 7c2 = 20x1 - 8x2
-14x1 + ?x2
= le - xz.
g.3.2.2
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Block 3: Selected Topics in Linear Algebra
Unit 2: The Dimension of a Vector Space

3.2.1(L) continued

Thus, in terms of Xy and Xy (2) becomes
{xl,xz,xl 4+ xz,sxl - xz). (5)

[In terms of c, and c,, (5) says that 3c; + 7c, = (cl + 2c2) +
(201 + 5c2} and 401 + 7c2 = G{cl + 202) - {ch 2 502), so that the
last two components of (2) are then expressed in terms of the

first two components.]
The advantage of (5) over (2) is that we can now tell by inspec-

tion whether (xl,xz,x3,x4) £ S{al,uz}. Namely

(xl,xz,x3,x4) € S(al,az) —

and . (6)

Letting ay = (3,7,8,9), we see from (6) that o, ¢ Sl r0,) .
Namely, in this case, X = = X, = 7, and Xy = 8; hence,
X4 # Xy + Xye

Knowing that B = (3,7,v,2), we see from (6) that

B € S(ul.az} +—+ vy =3+7and z = 6(3) - 7.

Hence, for B to belong to S(al,uz), it must be that
B = (3,7,10,11).

We shall revisit this exercise as a note to Exercise 8.2.2.

3.2.2(L)

The main aim of this exercise is to illustrate some "tricks of the
trade" in finding the space spanned by a set of vectors. We have

chosen some special cases, each of which shall be expanded within

S3:2:3
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3.2.2 (L) continued

the context of our solution, to show how we can replace vectors in
the given set by other vectors which span the same space. This
new technique will supply us with a "neater" way of obtaining the
same results as those of the type obtained in the previous

exercise.
4
W = S(ul,uz,a3.u4) = E cjoyt © € R &
i=1

Thus, B € W means there exist real numbers Cyr Cyr Cyr and €y such
that

191 * 0, * Ca3 + Cua,. (1)

But since vector addition is associative and commutative, we have
from (1) that

B = cyoy + (cya, + cia3) + cya,
= cyoq * (cju3 + cyay) + c4ay
=cikeg 8y * agag) len ey
(cqoq + c3a3) + (cuay + cyay)
= Cy0q + Cy04 + Ch0y + Cy0,- (2)
Note

(i) The significance of this part of the exercise is to show that
the space spanned by any set of vectors, {al, . sy an} does not
depend on the order in which the vectors are listed. True, we
have taken the special case n = 4 and the particular reordering
given by (2), but in the same way we derived (2), we could have
shown how other rearrangements could be made, and the case n = 4
was chosen only to get away from the usual geometric association

of ideas. Any other value of n would work just as well.

S.3.2.4
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Block 3: Selected Topics in Linear Algebra

Unit 2: The Dimension of a Vector Space

3.2.2(L) continued

(ii) In terms of linear structure, this exercise is analogous to
the statement that the solution set of a system of algebraic equa-
tions does not depend on the order in which the equations are

written.
b. Let
Wy

and

W, = S(3ul,a2,a3) = {k13a1 + kya, + kqoy:

2
Then, if B € Wll

B = ciay + cya, + C404

(o
3 (39;) + cy0;, + cya,,

I
|

(o
A _ 1 _ =
or letting kl = 3 kz = cz, and k3 = c3,
g = k1(3a1) + kzuz + k3a3
€ S(3al,a2,a3} = Wz.

That is, B € Wy, = B € wz. Hence,

1
1‘C W,.
Similarly,

Y- E W2 -+

Y = 3k1a1 + kzaz + k3a3.

so letting cq = 3k1, c, = k2, Cy = k3,

kyrkgaks

= S(al,uz,a3) = {clal + Cy0, + Cal4: € 4C,,Cq € R}

€ R}.

(3)

(4)

(5)

(6)

§.3.2.5
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3.2.2(L) continued

Y = cj0q + o, + Ch0q € Slajr0,,0q) = Wy

Therefore,

W, CW,. (7)
Hence, (6) and (7), together, imply that Wl = Wz.

Note

(i) Again what is important here is the fact that the space
spanned by {al, - Wiy an} is unchanged if one of the vectors oy is
replaced by a non-zero multiple C oy In our example, we took

i = 1, but by part (a) this was no loss of generality. Namely,
whatever oy was replaced by C 05, wWe could have rearranged

{al, g an} so that a, appeared first in the listing. Moreover,
we picked c; = 3. All that was important was that cy # 0. For if
gy = 0, we see from (5) that we would have to divide by 0, which
is not permitted.

(ii) The analogy here to systems of equations is that if we re-
place one equation by a constant multiple of that equation, we do
not change the solution set of the system.

C. Wl = S(ul!a2r33}

W2 = S(a1 + Uyr Gy a3).
Hence,

B € Wl -+

B = C, 04 + c, 0, + Cy04

cjoq *+ [ega, + (e, = cj)a,]l + cjaq
= cyloy + ay) + (¢ - cylay + cyo3 € S(ay + ay,ay,a3).
Therefore,

w, CW,. (8)

5:3.256
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Block 3: Selected Topics in Linear Algebra
Unit 2: The Dimension of a Vector Space

3.2.2(L) continued
Similarly,
Y € W, >

2

Y = cltal + “2) + c,0, + c404

]

clal + cluz e czuz *+: c3a3

c10% + (cl + cz)a2 + cjaq € S(al,az,a3}.

Therefore,

W, C wl. (9)

So comparing (8) and (9), we have that W2 =W .
Note

(i) What we have illustrated here is that if we are studying the
space spanned by {ul, . S ip an}, we may replace any oy by itself
plus any multiple of another, say, oy by oy + kjaj (where in our
example i = 1, j = 2 and for computational simplicity, kj =1),

without changing the space spanned by the vectors.

(ii) Since the three properties developed in parts (a), (b) and
(c) are precisely the properties that one needs in order to use
row-reduced matrix techniques, it should be clear that this matrix
technique may be used to find the space spanned by a given set of
vectors. To illustrate this idea, we shall revisit Exercise 3.2.1
in the form of a note.

NOTE ON MATRIX CODING SYSTEM

Suppose we want to determine the space spanned by o = (1,2,3,4)

and o (2,5,7,7). We may use a 2 by 4 matrix in which the first

2=
row represents the components of oq and the second row, the com-

ponents of o We then have

2°

(1)

8.3.2.7
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3.2.2(L) continued

Now we have seen in this exercise that the space spanned by oy and
a, is not altered if we replace @, by a non-zero multiple of 0y s
say, -2a1 [which is precisely the multiple of the first row of (1)
that must be added to the second row when we use the usual row-

reduction technique].
Thus, the matrix
-2 -4 -6 -8

' (2)
2 5 7 7

which is row-equivalent to (1), tells us that the space spanned by
oy and a, is the same as that spanned by -2al and Oy

In fact, proceeding quite mechanically, we have

" (1)

" (2)

-2 -4 -6 -8
" (3)
0 1 1 -1

e =

. (4)*

5 2 3 e
0

In terms of our code, (1), (2), (3), and (4) say that

S{al,uz) = S(~2al,u2) = S{—2al,02 - 2ul) = S(ul,a2 - 2a1).

*We usually obtain (4) from (1) by the single step of replacing
the second row of (1) by the second minus twice the first. We
have included (2) and (3) to emphasize the validity our claim that
(1) and (4) code the same space in terms of the basic properties
described in this exercise.

S.3.2.8
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3.2.2(L) continued

In still other words, if we let B2 =0, - 2a1 = (0,1,1,-1), then

S(a = S{al.BZ).

1,a23

If we now complete the row-reduction of (1), we see from (4) that

Using our code, (5) tells us that
S{al,az) = S(By,8,)

where

g, = (1,0,1,6)

and

B, = (0,1,1,-1).

Now, 81 and 82 have a very nice form which help us express
S(al,uzj more conveniently. Namely,

Y € S(al,azl -

m

Y € S(By/B8,) >

Y= BBy ® Xk ¥

-
I

= xl(lrollrs) + xz{olllll-l) +

<
I

(xlrosxlrsxl) i (0,x2,x2,—x2) -
Y = {xlrxzfxl +* xztaxl L xz)l

which checks with our result in Exercise 3.2.1.

(5)

«2.9
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3.2.2(L) continued
From another perspective, we are saying that
(xlrx2:x3:x4) £ S(alraz} R

+ X

(%) X5 0X3,%X,) = X18) + X,8,

so that {81,82} seems to be a natural coordinate system (basis)
for S(al,az).

Again, with respect to Exercise 3.2.1, observe that

Il

381 + 782 3(]-:0;1:6} + 7(01'1!1!-1)

(3;0’3'18) ¥ {0'7]?'-?}

(3,7,10,11)

which checks with our result in Exercise 3.2.2(d).

Notice also that we may use the augmented matrix technique to con-

vert from the a's to the B's; namely, we may write

5 %
r |
1 2 3 4 1 0

‘ ~
P 5 7 7 10 1

| Y Y
]

1 0 1 6 : 5 =2
]

0 1 1 -1, -2 1

from which we see that

§.3.2.10
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3.2.2(L) continued

Bl - 5&1 - 2a

We shall continue to reinforce this idea in the remaining exercises.

3.2.3(L)

Using our matrix coding system, we have

1 2 3 4 [1 2 3 4]
> 5 7 =~lo 1 ¥ -1
3 7 8 9 o 1 -1 -3]
1 o0 1 6]
~ |10 i 1 -1
0o o0 -2 -2
1 o0 1 ¢
~10 1 1 -1
o o -1 -1
1 o o 5]
~lo 1 o -2 (1)
o o 1 1]
From (1), we see that
5(0'-1:0'-2'0'-3) = S(Blpszyﬁa}
where
S.3.2.11
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3.2.3(L) continued

81 - (1,0,0,5)
32 = (0,1,0,-2) ¢ (2)
63 = (0,0,1,1) )
Therefore, B8,,8,,8; belong to S(al,az,a3) and (xl,xz,x3,x4] eV
belongs to
S(al.az,a3} +
(xl,xz,x3,x4) = xlBI + x262 + x3B3. (3)
b. From (2),
xlsl + XZBZ + x383 = (x1!0f035x1) ¥ (Urxzroa“zxz) + (ololxalx3)
= fxl.xz,x3,5x1 - 2x2 P x3}. (4)
Combining the results of (3) and (4), we see that
(%9 ,%X5,Xq3,%,) € S(ay,0,,05)
if and only if
x4 = le - 2x2 + x3. (5)
[As a check of (5), observe that (1,2,3,4), (2,5,7,7), and
(3,7,8,9) each obey (5). Namely, with X, = 1, x, =2, xq =3,
we have from (5) that X, = 5 -4+ 3 = 4; with X, = 2 X, = 5,
Xy = 7, we have x4 =10 - 10 + 7 = 7; and with xl = 3, x2 =17,
Xy = 8, we have Xy = 15 - 14 + 8 = 9.]
At any rate, we have from (5) that
(4,9,13,y) € S(a;,a,,03) <
y = 5(4) = 2(9) + 13 = 15.
S22
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3.2.3(L) continued

Hence, in particular,

(4,9.13,14) ¢ S(a;,a,,03).

Here we emphasize the salient feature of the vectors obtained by

our row-reduced matrix technique. Namely, the very form of Bl'
B,, and B, guarantees that [81,82,83} is linearly independent.

Namely, suppose
X8y + x282 + x3B3 = 0. (6)
Then

xl(1'0'0'5) + x2{0'1;01-2) + X3(0'0'1'1) = 0-

Hence,

(Xlrororsxl) ¥ (Dcleol-zle +: {0r01x3lx3) =0 [= {0t0:0:0}]0
Therefore,

(xl,xz,xs,Sx1 - 2x2 = x3) = (0,0,0,0)

so that

[and 5x1 - 2x2 + Xy = 0].

since x; = X, = X, = 0, we see from (6) that {81,82.83} is lin-
early independent.

More generally, when we employ the row-reduced matrix idea to com-

pute S(ul, T un), we look at our final reduced matrix and

8.3.2,13
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3.2.3(L) continued

delete the rows which consist entirely of zeroes. The number of

remaining rows will turn out to be the dimension of S(ul, SR un).

In particular, if we name the non-zero rows of the reduced matrix

by Vir sees and . (where m & n) then
S(ul, wwie i un) = S(vl, P vm}

and the set {vl, N vm} is linearly independent.

3.2.4(L)

a. To find the space spanned by {al,az,a3,a4} where a, = (L:2:3:4);
0‘.2 = (2,3;5,5}; 0.3 = (2'4’?;6) Elnd 34 = (_1;2;3'4)’ we I’OW'reduCe
the matrix

1 2 3 4
3 5 5
2 4 7 6
-1 2 3 4
Namely,
2 3 4 1 2 3 4]
2 3 5 5 - 0o -1 -1 -3 (1)
2 4 7 6 0 0 1 -2
-1 2 3 4 | 0 4 6 3_
i 8 1 -=2]
0 -2
0 0o 2 -4]
1 o o 0]
0 -1 0 =5 (3)
0 0 1 =2
o o o0 o
S.3.2.14
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3.2.4(L) continued
From (3), we see that

S(ul:a20u3ra4) o S(Bl;Ber3rB4}

where
Bl = (1,0,0,0)
Bz = (0;1;0'5}
(4)
83 — (0'0'1,-2)
84 = (0,0,0,0)

But the 0-vector is redundant in any spanning set. Namely,
= + =

1% + Cyy + 036 1% Cylys etc

Hence,

S(aliu2!a3:a4) = 8(81062083)

where Bl' 82. and 83 are as in (4).

Consequently,
(xlrxz:x3rx4) > S(al.az.a3,u4) Roa
(g0 Xy wRigoRy) = gy * Koy * Xg8y

-2x

(xlroro:o) b {0:x2f0f5x2) + (Drorxsr 3)

(xl,xz,x3,5x2 - 2x3). (5)

That is, for {xl,xz,x3,x4) to belong to S(ul,az,a3,u4l it is nec-

essary and sufficient that Xy = 5x2 - 2x3. Notice that OqrQysqy
0y all have this property.
For example, with (1,2,3,4), x2 = 2, Xy = 3 whence 5x2 - 2x3 =
10 - 6 = 4 = Xy
5.3.2.15
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3.2.4(L) continued

b. We now use the augmented matrix technique to see why {al,az,a3,a4}
spanned less than 4-dimensions. We have
: G Gy %3 Oy
1 2 3 4,1 0 0 O
2 3 5 51 0 1 0 o0
2 4 7 6 : o o 1 of”~
-1 2 3 4 | 0 0 0 1
1 2 3 4 1 o o 0]
0 -1 -1 -3 =2 1 0 0
0 1 -2 =2 0 1 of"
o0 4 6 8 1 0 0 1]
i1 0 1 -2 -3 2 @ 9]
o -1 -1 -3 =2 1 0 0
0o o 2 =2 o 1 ol”
0 0 -4 =7 4 0 -4
: % % @3 %
1 o 0o 0 -1 2 -1 0
0 =1 0 -5 | -4 1 1 0
I (6)
0 0 1 =2 | -2 0 1 0
0 0 0 0 1 -3 4 =2 1
From (6), we may conclude at once that
(1;0,0,0) = 'Gl + 20‘.2 L] 0'.3
(0,1,0,5) = 4&1 - o, - o3 ¢ (7)
(0,0,1,-2) = —2&1 + u3
and
(0,0,0,0) = -3&1 + 4&2 - 2a3 + oa,.
8:3.2.16
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3.2.4(L) continued

That is,

a, = 3a; - 4o, + 204. (8)
In other words, we see from (7) how to express Bl' Bz, and 63 as
linear combinations of Y and Gye From equation (8), we see
that o, is "redundant" in the sense that it is a linear combina-

4
tion of Ops Gy and oy

c. Since 5(7) - 2(12) =11, (4,7,12,11) € S(al,az,a3,a4). In fact

(4,7,12,11) = 48, + 78, + 128,

so by (7),

(4,7,12,11) = 4(-&1 + 2&2 - a3) + ?{401 - a, - a3) + 12{—2&1 + a3}
= a, + a;. (9)

Check

o, + oy = (2,3:5+5) % (2,4,7,6)

(4,7,12,11) .

Now, from (8),

3a; - 4o, + 203 - 0, = 0. (10)
Hence, for any real number c, (10) implies that

3cot1 - 4ca2 + 2ca3 - ca, = 0. (11)

Combining (9) and (11), we have

*Notice how we "pick off" this information.simply by inspection.

5.3.2.17
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3.2.4(L) continued

a, + o

(4,7,12,11)

+ ., F 0

% 3

= 0, + Oy + {3cal - 4ca2 + an3 - ca4)
= 3cc¢1 + (1 = 40)&2 # [l & 20)a3 - cay,. (12)

Thus, from (12), we see that there are as many ways of expressing
(4,7,12,11) as a linear combination of Opr Qo Qg and a, as there
are ways of choosing a value of c.

In other words, since {al,az,a3,u4} is a linearly dependent set,

every member of S(a,,q,,0,,0,) may be expressed as a linear com-
A Vol [t i
bination of Apr Qor Ogs and ay, in infinitely many ways.

Note
This exercise is a concrete illustration of a more general result;
namely, any finite set of vectors contains a linearly independent
subset which generates (spans) the same subspace. This linearly
independent subset can always be obtained by our row-reduced
matrix technique.

3.2.5(%)
a. Using our matrix code for Oqr Ogr Oagr Oy and ag, we have
1 2 3] i 3 3]
2 4 6 0 0 0
3 1 8 ~ 0 1 -1 (1)
1 3 2 0 1 -1
1 -2 7 0 -4 4
g = 3]
0 -1
~ |o -1 (2)
0 -4 4
o o 0
&.3.2.18
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3.2.5(L) continued

1 o 5
0 1 -1
0 0 0 (3)
o0 0 0
0 0 0

From (3), we see that S(ul,az,a3,a4,a5} is the same space as that
spanned by Bl and 82 where Bl = (1,0,5) and 82 = (0,1,-1). [The
last three rows of (3) all represent the 0-vector (0,0,0) and this

adds nothing to the space spanned by B8, and 82.]

We next observe that

S(By/85,) {xlsl + X Byt XX, € R}

I

{xl(l,O,S) + x2(0,1,—1}: X 1%, € R}

{(xl,O,le) + (0,x2,—x2): X X, € R}

= {(xl,x2,5x1 - x2): X 1%, € R}. (4)
From (4), we see that each element (xl,xz,x3) € S(Bl,Bz) can be
expressed in one and only one way as a linear combination of Bl
and 82. In particular,
(xllxzpr) £ 5(81'82) = S(ul'a2'a3'a4'as) ¥
(xq,%,,%3) = x1B) + X,8,.
Hence,
dim S(al,az.a3,a4,a5) = dim 5(81,82) = 2.

Using the augmented matrix idea in which our last five columns de-

note Upr Qpy Ogy Cyy and g respectively, we have

S$.3.2.19
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3.2.5(L) continued
1 2 3 1 o 0 o0 O] 1 2 1 0 o0 o0 0 I
2 4 6 0 1 0 0 0 0 0 -2 1 0 0 0
3 7 8 0 0 1 0 0o ~ |0 1 -1 =3 0 1, 0 0 I
1 3 2 0 0 0 ) | 0 0 1 -1 -1 0 0 ! 0
1 -2 7 o o0 o0 0 ﬂ 0 -4 4 -1 0 0 0 1 l
1 o 7 6 -2 0 0
0 0 -2 1 0 0 0 l
o ) 1 -1 -3 0 1 0 0
0o 0 0 2 0 -1 1 o0 l
o o 0-13 0o 4 0 1
: % 9 U3 %4 @5 I
1 0 5 7 0 -2 0 0
0 1 -1l -3 0 I 0 0 '
~lo o o: -2 1 0 0 0
0 0 0, 2 0 -1 1 8
o o o0!-13 o 4 o0 1 .
Hence, '
BZ = (0,1,-1) = —3a1 + g
and .
= ) [ =
-2a; + o, = 0 a, 204 l
2al—a3+0r.4=0 pl.e..‘a4=-2a1+a3 '
-13a1 + 4a3 + ag = 0 | I og = 13“1 - 4a3
Note l
Geometr:.cally speaking, if we view each 3-tuple as a vector in 1, l
3, and k components originating at the orlgln, then 1 + 23 + 3k
2t + 43 + 6k, 37 + 73 + 8k, 1+ 33 + 2k, and 1 - 23 + 7k all lie
S.e3.0.2.:20
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3.2.5(L) continued

in the same plane. This plane is determined by the pair of vec-
Y -+ -+ -+ > -+ -+ - .
tors o, =1 + 2j + 3k and @, = 31 + 7j + 8k. It is also deter-
1 3 - - -+ -+ -+ -+
mined by the pair of vectors Bl = 1 + 5k and 82 = j - k.
= > T + e .
In terms of Bl— and B,—components, x;i + X,] + x3k lies in the

plane ++

& - -+ > -+
xll -+ xzj + x3k = xlB1 + xzﬂz,

so just as in equation (4), we see that the equation of the plane

is

(or in more common notation, z = 5x - y).

3.2.6(L)

In a manner of speaking, this is the most important result in the
first three units. What it says is that if we have a set of m
linearly independent vectors in V, then no fewer than m vectors
can span V. To make this a bit more concrete, we are saying, for
example, that if Vs Vz, Var and Ny all belong to a vector space
V, and if {vl,vz,VB,v4} is linearly independent, then no set of
three, or less, elements in V can span V. As a still more con-
crete illustration, since I, 3, and ﬁ are linearly independent, no

fewer than three vectors can span Xyz-space.

Before we prove the theorem, let us explain why the result (assum-
ing its true) is so important in the discussion of the dimension
of a vector space. To begin with, let us notice that the con-
structive techniques used in the lecture seem to indicate that
the answer might depend on how we choose our vectors. In other
words, suppose we carry out the construction described in the lec-
ture and find two sets of linearly independent vectors that span
V. How do we know that these two sets have the same number of
elements? And if they don't have the same number, then it is
ambiguous to define the dimension of a vector space to be the num-

ber of elements in a linearly independent set which spans V.
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3.2.6 (L) continued

1f the theorem is true, let us suppose that {ul, SRR ur} is one
set of linearly independent vectors which span V and that

{v . vs} is another such set. Then by the theorem, since

lf
{ul, ammiiE ur} span V and {Vl, o Ealy vs} is linearly independent,
r > s. Reversing the roles of the two sets we have that

{vl, —— vs} span V and that {ul, P ur} is linearly indepen-

dent. Hence, s > r.

But since r > s and s > r, it can only be that r = s. In particu-
lar, this proves that if {ul, o axmild ur} is one set of linearly
independent vectors which span V, then any other set of linearly
independent vectors which span V must also have r elements. It
can also be shown in this case that any set of r linearly indepen-
dent vectors span V. (Namely, we can express these r vectors as

linear combinations of Ups eeer Uy etc.)

We then define a basis for V to be any set of linearly independent
vectors which span V, whereupon we may then unambiguously define
the dimension of V to be the number of elements in any basis of V,
since all bases have the same number of elements.

In other words, when we say that the dimension of V is r (written
dim V = r), we mean that there exists a set of r linearly indepen-
dent vectors which span V. If {ul, AR ur] is such a set, then

we write

V=V[u1; P ur]'
or more simply,

v = [ulg RN ur].

Returning to the proof of the theorem, we let

S, = {Bl,al, e un}. (1)
Certainly, S, spans V since {al, ey an} already spans V and 8
is linearly dependent since Bl is a linear combination of Ogr =eer

o . Hence, in the order given by (1), at least one of the members

of S is a linear combination of the preceding ones. It can't be
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3.2.6(L) continued

81, so it must be one of the a's. This o can be deleted from Sl

without changing the space spanned by Sl. Let us delete such an «

and renumber the remaining a's to be a;, .., 0 4. Thus,

{Bl;(lly .- nt Cf-n_l}

spans V also.

Now let

82 = {811623‘:‘1! EECRCN un_l}- (2)
Since {Bj,0y/s «vuys un_l} spans V, so also does S, since

{Bltulf LI L J an'—l} C {Blf82tal: LI LB | O‘.n_l}

and since B, is a linear combination of Byrags «v. o, 4, we have

that S, is a linearly dependent set.

2
Hence, in the order given in (2), one of the elements of 52 can be
expressed as a linear combination of the preceding ones. But,
since the B's are linearly independent, B, cannot be a scalar
multiple of Bl; hence, it must again be one of the a's which is
expendable. Deleting this a, let's again renumber the a's and
conclude that

{Blrszralr seey U-n__z}
also spans V. We now let

S3 = {Bll82!83ral! LA BB an_z
and apply the same argument as before. Since S3 is linearly de-
pendent, the B's are linearly independent it must be one of the a's
which is redundant. Continuing inductively in this manner, each
time we tack on a B, we must be able to delete an a. In particu-

lar, then, there are at least as many a's as there are f's.
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3.2.6(L) continued

As a final note to this part of the exercise, let us observe that
the procedure outlined here tells us how to augment any set of
linearly independent vectors into a basis. Namely, we use the
procedure outlined in our proof whereby we list one of our inde-
pendent vectors followed by a set of spanning vectors and then
using some computational technique such as row-reducing matrices,
we find that one of the spanning vectors can be deleted. We then
augment our set of vectors by listing the next member of the lin-
early independent set and finding another of the spanning vectors
to delete. We continue in this way until the last member of the
linearly independent set is added and we may then use the row-
reduced technique to prune out the remaining redundancies. What
we are then left with is a basis which includes the originally
given set of linearly independent vectors.

This technique will be employed in more concrete form in the fol-
lowing units of this block, but for now, we close with the example
given in (6).

The main aim here is to add concreteness to part (a) and at the
same time, to show one way of augmenting a set of linearly inde-
pendent vectors to form a basis. What we do is augment {al,az,aB},
one at a time by Uy /Uy, Uy, etc., until we have a basis for

ES. Thus, we begin by row-reducing

to make sure that {al,az,QB} is linearly independent. This leads
to

o [ (O 1 I i 0 0 =] =1 12 0 gi =1 =3
1 1 2 2|~]|0 1 1 2 ~il i 0 3 0 (1)
1 2 1 4 0 0 1 =1 0 0 1 =1 2

so that {al,az,aB] is linearly independent.

From (1), we see that S{ul,uz,a3} = 8(81.82'83) where

Bl = {(1,0:;0;~1;~1); 82 = (0,1,0,3,0), 83 = (0,0,1,-1,2). We

S§.3.2.24

l A = e D Ea

B O I O oS B B T B UL oa =




S S S —

Solutions
Block 3: Selected Topics in Linear Algebra
Unit 2: The Dimension of a Vector Space

3.2.6(L) continued

augment S(ul,az,a3) [= 5(81,62,83)] by uy to obtain

1. 0 0 =1 -1 1 0 D =3 = 1 0 0 0 0
0 i 0 3 0 N 0 i 0 3 0 N 0 1 0 0o -3 (2)
0 0 1 =1 2 0 0 L. =1 2 0 0 1 0 3
1 0 0 0 0 0 0 0 1 1 0 0 0 1 1

From (2), we see that S(ul,az,a3,u1} is a 4-dimensional, so we
next look at S(ml,az,a3,ul,u2) by row-reducing

1 0o o o o [1 o o o o [ o o o o
o 1 0 o -3 lo 1 o o -3 lo 1 o o o
0o 0 1 0o 3~lo o 1 0o 3~fo o 1 o o &
o o o 1 1/ fo o o 1 1l Jo o o 1 o
o 1 o o o 0o o o o 3 o o o o 1
5

We see from (3) that E
combination of Gp r Oy rOqgy and u, , we would have deleted it and used
row-reduction on S(al,az,a3,ul,u3) etc., until we wound up with

= S(alraz,a3,ul,u2). Had u, been a linear

the five elements which span V.

3.2.7
a. =1 3 -1 2
2 1 ~ 40 ~h 3 =1
-1 0 4 -1 2

4 12 -4 8

0o 12 -3 6_!

-
4 0 2 6
~ilg =12 -2
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3.2.7 continued
12 0 6 18
~| 9 =12 6 =2
0 0 -6 -8

- =

12 0 0 10
~| 0 =12 0 -10

(1)

Wi v a|n
! 1 o

From (1), we see that 5(01332333} = S(Bl,82,83) where
_ 5 - 5 - 4
Bl = {lroro:g)r 62 = (Otlrofs)r and 33 -(0r0r1r3)-

Moreover,
(xlrxz:x3lx4) (4 S{ulraerB) = S(BI:BZrB3J e

(%9 0X50%30%,) = X389 + X8, + X484

le 5x2) ( 4x3
- (xyr000) + formy0,2) + o0,
5% 5% 4x
_ 1 2 3)
= (xl’xz'x3' 5 T 6 3
~ ( N 5xl + 5x2 + 8x3)
= ety 3
Hence,
_ v - le + 5x2 + 8x3
Slagragrag) = 9Ky 05, X3,X4) 2 X, = 6
= -@xl,xz,x3,x4): le + 5x2 + 8x3 - 6x4 = 0}.
5.3.2.26
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3.2.7 continued

b. The dimension of W = S(al,az,uB) = 3. Any three linearly inde-
pendent members of W span W and conversely any set of three ele-
ments of W which span W are linearly independent. The "natural"
basis for W is {81,82.83} since {xl,xz,x3;x4] E W+
(210X 0Kq0%y) = X418y + X8, + X485,

3,28
a. lal ay @3 @,
1 2 311 0 0 0 1 2 3 1 0 o0 0]
2 5 4:0 1 0 o0 0o 1 -2 -2 1 0 0
3 8 9:0 0o 1 o0 0o 2 0 -3 0 1 0
4 9 9,0 0 0 1 _O 1 -3 -4 0 0 1]
1 o 7 5 -2 o0 0]
0 1 -2 =2 1 0 0
0 0 4 1 -2 i 0
o 0 -1 -2 -1 o 1]
1 o o0 -9 -9 0 7
0 3 0 2 3 0 =2 (1)
0 0 0 =7 -6 1 4
o o 1 2 1 o0 -1
From (1), we conclude that
(L,0,0) = -9a; - 9a2 + 7a4
(0,1,0) = 20, + 3a2 - 2a4 (2)
(0,0,1) = 2&1 +* Oy ~ Oy i
and
b. (0,0,0) = -7a, - 6a, + a3 + 40,. (3)
88227
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3.2.8 continued

Hence,

ay = Tay + 6a, = 4da,. (4)
[0f course, if we so desire, we may use (3) to obtain

3y = § 95 * 5 oy~ g nge (=)

From (4') and (2), we could express (1,0,0), (0,1,0), and (0,0,1)
as linear combinations of Y and Qye Equation (4') is more
conventional in the sense that for linear dependence, we like to

express a vector as a linear combination of its predecessors.]

(2,1,4) 2(1,0,0) +1(0,1,0) + 4(0,0,1)

It

2(-9a, - 9a., + 7u4) + (20, + 30, - 2a4) +

1 2 1 2

A+ 4(2&1 + ay - a4)

= -Bul - llu2 iE 8a4.

3.2.9(L)

The main aim of this exercise is to illustrate the existence of an
infinite-dimensional vector space. First of all, since every
polynomial is continuous and since the set of all continuous func-
tions is a vector space (with respect to the usual meanings of the
sum of two functions and the product of a scalar and a function),
we know that the set of all polynomials is at least a subset of
the space of continuous functions. To prove that this subset is a
subspace, we need only know that the sum of two members of this
subset belongs to the subset as does any scalar multiple of a mem-

ber of the subset.

Clearly, the sum of two polynomials is a polynomial and a scalar
multiple of a polynomial is also a polynomial. Therefore, the set
of all polynomials is itself a vector space. But we know from our

treatment of elementary calculus that the powers of X are linearly

S$.3.2.28
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3.2.9(L) continued

; . n : :
independent. That is, x cannot be expressed as a linear combina-

tion of 1, X, ..., and xn—l.

In other words, for any value of n no matter how large

{1, x, ..., x"} is a linearly independent set. Yet, the space
spanned by {1, x, ..., x"} can never yield the entire space P
since x®*1 ¢ P put 1 & BTy By e sn B )

Hence, in the language of today's lecture with o = xn-l, we see

that for each n

S(ul;--ora ) gs(alrov'a(‘n)

n+l
but for no n will S(al, s aty an) yield all of our vector space.
That is, the constructive device described at the end of the lec-

ture never terminates and accordingly, we refer to the space of

all polynomials in x as an infinite-dimensional vector space.

As a final note to this exercise, recall that since every analytic
function may be represented as a power series, the space spanned
by the finite set {1, x, xz, cow p By eew¥ 18 Ehe space of all

analytic functions.

5.3.2.29
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