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Solutions
Block 3: Selected Topics in Linear Algebra

Unit 1: The Case Against n-Tuples

3.1.1(L)

In our discussion of this exercise, we shall restrict our study
to 2-dimensional spaces, but the discussion is easily genera-
lized to higher dimensional spaces, as we shall show in the later

exercises.

Let us imagine that we are viewing E2 as the space of vectors
in the xy-plane, and that, as usual, we think of all vectors as
being linear combinations of 1 and 3. In this context, it is
conventional to view the 2-tuple (x,y) as an abbreviation for
xi + y3.

In particular, then, if
¥ =51+ 43 (1)

we would abbreviate (1) by writing

.

y = (5,4). (2)

Now suppose we consider a second pair of vectors in the xy-
plane, say,

o =31 + 43 (3)
and
g =21 + 33. (4)

With respect to our given convention, (3) and (4) may be re-
written as

a = (3,4) (3')
and
B = (2,3). (4")

§:301.1
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3.1.1(L) continued

We notice, at least pictorially, that each vector in the xy-plane
has a unique representation as a linear combination of a and B .
Namely, quite in general, if o is not a scalar multiple of £ we

have

non

o.
8.3
+ +
T o
oy W

Since vector arithmetic and numerical arithmetic have the same
structure, we may "invert" (3) and (4) to express 1 and 5 in
terms of a and E. Namely:

-2a = -61 - 83
3 = 61+ 93 .
Hence
J=-20 + 38 (5)

and similarly

32 =91 + 123
-48 =-81 - 12314 .

5.3.1.2
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3.1.1(L) continued

Hence,

1=32 -48. (6)
Using (5) and (6), we see that (1) may be rewritten as:

5(36 - 48 ) + 4(-2a + 38 )
= 70 - 88 . (7)

1]

-
Y

If we now elect to view ? with respect to o and E coordinates by
-+ +
letting (a,b) now denote aa + bR , equation (7) becomes

-

Y = (?1_8)- (8)
5 . S s - T

Now Yy is the same vector whether we view it in terms of 1 and jJ

z >
components or in terms of o and § components.

Comparing (2) and (8), it appears that (5,4) = (7,-8), but this |
is no contradiction since (5,4) is the representation of ? with
respect to i and j, while (7,-8) is the representation of ; with

respect to 3 and g.

The definition which says that (al,az) = {bl,b2}++ a; = bl and
a, = b, presupposes that (al,azj and (bl,bz) are representations
with respect to the same pair of vectors.

Our main point is that the notation (a,b) is ambiguous since it

means ao., + baz, and this in turn depends on o, and o

1 1 2°
For example, with respect to 1 and 3, (5,4) denotes 51 + 43;
but with respect to o and E, it denotes

5(31 + 43) + 4(21 + 39)
231 + 32 3.

5a + 48

Note #1:

Our main aim in this exercise was to back up our assertion
that there is some ambiguity involved when we write vectors
of E™ in n-tuple notation. Nevertheless, it would be a shame
to throw away the nice structure of n-tuple arithmetic just
for this one reason.

§.3,1.3
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3.1.1(L) continued

So what we do is make some sort of compromise, or convention.
Namely, given E" we assume that we have a specific set of n
vectors, {El,...,ﬁn} . such that each vector of En can be
expressed uniquely (i.e., in one and only one way) as a linear
combination of Gl""' and En' With this explicit assumption,

we then abbreviate each vector in E" by (al,...,an}, where
(al,...,an) means alﬁl + ees * anﬂn' Since no two different
linear combinations of ﬁl,..., and ﬁn can yield the same vector of
En, we see that our n-tuple abbreviation obeys the usual rules

for n-tuple arithmetic.

The question of how we find a set of vectors such as the above-
described {Gl,...,ﬁn} will be discussed within the next few
Unit of this Block.

The question of how we translate (al,...,an) into (bl,...,bn},
-+ - e -

where {bl,...,bn) means blvl + ... bV and {vl'ﬁ"'vn}

is another set of vectors such that any element of E= can be

expressed uniquely as a linear combination of Viresss and v,

will be discussed in Exercise 3.1.3.

Note #2

Because of the similarities between vector and numerical

arithmetic, we may invert (3) and (4) by the row-reduced matrix

technique. Namely,

3 4 1 0

L")
2 3 0 1
6 8 2 0 |

LY
6 9 0 3
6 8 2 0]

"
0 1 =2 3 |
(6 0 18 -24 7]

"
0 1 =2 3

8.3.0.4
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3.1.1(L) continued

(9)

From (9) we see that 1=13 - 4§ and 3 = -20 + 38 which

agrees with (5) and (6).

This connection between representing a vector in different
coordinate systems can be extended to show how matrix multipli-
cation allows us to transform a vector from an n-tuple with res-
pect to one coordinate system to an n-tuple in another coordinate
system. The technique is very similar to the one we described in
the course of our discussion in Block 4 of Part 2 concerning the
inversion of a system of n linear algebraic equations in n unknowns.

We shall follow up this connection also in Exercise 3.1.3.

3.1.2(L)

In the usual mechanical way, we obtain

1 0]
) 0 a (1)
3 8 0 1
1 1 1 0 0]
0 p 0 N
0 2 -3 0 1]
(1 B8 =1 3 ~i 0
0 2 -2 1 @ "
0o o 1 -2 1
1 0 O0 4 -3 1
0 -4 5 =2 N (2)
o 0o 1 1 -2 1

If our coding system in (a) is that the first three columns of
our matrix denote I, 3, and k while the last three columns denote |
3, §, and ? then (1) becomes

S.3.1.5
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3.1.2(L) continued

w 0o e
o + o
= o o

and this says that

|

‘ (3)

F4
4

<4 ™ 24
i nu
w N
H4 B
+ +
uow
U U+
+ + &Y
w &
A

Matrix (2) then codes the inverse of (3). Namely
=40 -38 +%

+
1
J=-40 +58 -
kK= a-28 +7%

2y (4)
-

£ =51+ 37 - 2k, (5)
then we obtain from (4) that

5(4a - 38 +Y) + 3(-40 + 58 -2y ) -2(a -28 +7Y)
60 + 48 - 37 . (6)

™
I

Il

(5,3,-2) is relative to the
(6,4,-3) is relative to the

Comparing (5) and (6) we see that E

coordinate system {I,f,ﬁ} while E
. - B
coordinate system {o ,B » Y}-.

d. Every polynomial of degree < 2 can be written uniquely in the
2 ; 2
form ag +a;x + ajx". We may now abbreviate ay + a;x + ayx
by (ao,al,az). In this way 1 = (1,0,0), x = (0,1,0), and
x2 = (0,0,1). Our first observation is that we need no longer
think of arrows and I, 3, and kX to interpret (1,0,0), (0,1,0),

and (0,0,1).

Now, suppose we let

§.3.1.6
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3.1.2(L) continued

L. # 3¢ % x2

pl(x) =
Py(x) = 2 + 3x + x>
p3(x) = 3 4+ 5x #+ 8x2

Then, our matrix (1) may be viewed as the code:

2
e E_ B B BE
I~ 1 71 I~ 70 0
2 3 4 0 1 0
3 5 8 0 0 1

Loox ¥ om0 pp(e) byl
1 0 0 4 -3 1
0 1 0 -4 5 -2
0 0 1 -2 1

This, in turn, tells us that

= 4p1{x) - 3p2(x) + p3(XJ
X = -4pl(x) + 5p2(x) - 2p3(xJ

x* = p () = 2p,(x) + py(x)

or, by (7),

= 2 2 2
1= 4(1 +x + x°) - 3(2 + 3x + 4x°) + (3 + 5% + 8x°)
Xx = -4(1 + x + x2) + 5(2 + 3x + 4x2) - 2(3 + 5x + 8x2)
.4

= (1 + x + x2) - 2(2 + 3x + 4x2) +(3 + 5x + 8x2)

e. Using (8)

(7)

(8)

5+ 3x - 2x2 = 20(1 + x + x2) - 15(2 + 3x + 4x2} + 5(3 + 5x - 8x2)
= 191 # % 4 %°) 4 15(2 & Bx & 4x2) — &(3 + 5x + 8x%)

— (L ¥ x4 K2 % A2 # G+ D) = (3 4 Sx 4+ 8x2)

= UL ¥ x+ x%) % 42 % 3% + A5°) = 33 + Bx 4 82

5.3.1.7
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3.1.2(L) continued

That is,

5 % 3x - 2x2

]

(5,3, =3), if fa,b,¢) means 4 ¢ by + cx-
but

5 + 3x - 2x2

+ cp3{x).

Our main observation in parts (d) and (e) is that they exhibit

an isomorphism between the "arrows" of xyz-space and the poly-
nomials of degree no greater than 2. That is, with respect to
addition and scalar multiplication we cannot distinguish between
these two different models. 1In other words, both are models of
a 3-dimensional vector space; where in one model the "coordinate"
vectors are 1 = (1,0,0), x = (0,1,0), and x2 = (0,0,1).

Thus, it seems that both models used in this exercise are special
cases of the following more general problem.

Suppose that the vectors in E3 are each linear combinations of

the vectors o and o and that they are also linear

1’ 0-2! 3?
combinations of the vectors Bl, 82, and 83. Given a vector

which is expressed as a linear combination of o and o how

1’ 0-2! 3’
do we express it as an equivalent linear combination of Byr By

and 83? We pursue this in the next exercise.

3.1.3(L)

We have that every vector in E3 is a unique linear combination
ofajﬁ oo and (5'* Hence, we may use (a,b,c) as an abbreviation

for acy + buz + Co5e

-

-
o o, since there is no need to

g 12 % %3 .
restrict E° to the "arrow" model. For example, &, could be

* -
We no longer write o

a polynomial of degree < 2.

S:3.1.8
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3.1.3(L) continued

We

If

that (x,y.,2)

are now told that

= al + az + a3

20, + 3a., + 4o

1 2 3

= 3p, * 5&2 + 8a

1 3

.

(1)

we now let (x,y,z) denote xBl + sz + 283, we have from (1)

xBl +

yB, + 2B,

x(al +oo, + a3) + y(Zu.l + 3a2 + 4a3)

+ z(3al + S0, + 833)

(x + 2y + 3z)u1 + {x:+ 3y + 5z)u2

+ (x + 4y + Bz)u3.

In other words, we see from (2) that if

Y = xBl + sz + 233.

then

Yy = (x,y,z), relative to {Bl’ Byr 83}

while

(2)

y = (x + 2y + 32, x + 3y + 5z, x + 4y + 8z) relative to{al,az,a3}
(3)

Equation (3) may be viewed as the product of two matrices.
Namely,

T 2 3 X X + 2y + 3z

¥ 3 5 y | = |x+ 3y + 52 (4)

1 4 8 z X + 4y + 8z| ,

S.3.1.9
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3.1.3(L) continued

where the right side of (4) is the 3-tuple (3), written as a

column matrix (vector).

The major "hang-up" in (4) is that the matrix

1 2 3
1 3 5
1 4 8

is not the matrix of coefficients in (1). Rather it is the
transpose of that matrix. (Recall that the transpose AT of

the m by n matrix A is the n by m matrix which is obtained from

A by interchanging its rows and columns).

If we want our matrix product to reflect the fact that we are

using the matrix of coefficients in (1), then instead of using

(4) , we express (3) in the form

[+ 2y + 32 X + 3y + 52 x + 4y + 8z]l=[x ¥ 2] [2 3
3

(== BN =

The relationship between (4) and (5) can be summarized and some-
3

what generalized as follows. Suppose that every vector in E

may be expressed uniquely as a linear combination of Bl' 82, and

83; and that Bl'BZ' and 33 are themselves linear combinations

of Oqrlys and a3EE . Suppose, in particular, that

By = a1 93 * ajy a; + aj;3 0,
By = 857 9y * a5, 0y + ay5 a,
B3 = a3y a; + az, o, + a3 04

Then, if

Y = %38y + X8, + %38,

(xl,xz,x3) relative to {81;82:63]

(5)

(6)

*The remainder of this summary is equally valid if we replace

E3 by E" and talk about n-tuples rather than 3-tuples.

s.3.1.10

Bl 0B &5 oa

-l D e e




S O &5 S A A PR A G R Ph S e e o

FY £ M

Solutions
Block 3: Selected Topics in Linear Algebra
Unit 1: The Case Against n-Tuples

3.1.3(L) continued

and we want to express y relative to {ul,az,a3} then vy

(Yl:yzoy3} = yy0p t Y,0 + ¥aog, where

a a

11, %12 B3

[¥y ¥y ¥y = Ixy %, %)  Byy Byp @3 (7)
831 932 %33

More symbolically, if we let Y = [yl Yo y3], X = [xl X, x31 and

A the matrix of coefficients in (6), then (7) becomes

Y = XA. (8)

Moreover, since {AB)T = BTA?, if we want (8) expressed so that

the 3 by 3 matrix appears to the left of X, we may deduce from

(8) that

YT - {XA)T

or

vT = alyT, (9)
That is,

.4 (10)

Note:

Hopefully our present discussion of inverting systems of equations
resembles our discussion in Part 2. To carry this analogy still
further, an associated problem with coordinate system repre-
sentation centers around inverting system (6). Namely, suppose

we are given the vector v EE3 but in terms of o -coordinates rather
than B-coordinates, say, v = {yl,yz,y3) =¥;% + Yy, t Y, and

we want to express v as

S.3.1.11
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3.1.3(L) continued

v = {xl,xz,x3)

X8y * x8, + x84,

Clearly, this is the invers of the problem we just tackled.

Qur point is that if A-l exists (i.e., A is a non-singular
matrix), we may then multiply both sides of (8) on the right
by a~! to obtain

-1 1

YA (xA)A~

x(AAHl

)

xI3
That is,

x = YA . (11)
Since A is known and A_l exists, we may compute A_l and since

Y = [y1 Y, y3] where Yir Ypr and y3 are given values; we may
solve (11) for x = [xl X, x3].

3.1.4

To invert

1 2
A= (2 5 (1)
4 9 9

we have

I

o N

0 o9 W

o o

o o
o o
¢

S.3.1.12
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3.1.4 continued

1L 2 3 1 0 0
0 i E 1 =2 0 "
0 1 =3 =4 0 1
1 0 5 =2 0
0 1 =2 i 0 ~
0 0 -4 -2 -1 1
4 4 20 -8 0
0 -8 4 0 v
0 -4 -2 -1 1
4 18 =9 1
0 =10 3 1 v
0 -4 -2 -1 1
- 8 9 1
1 0 0 = T 7
10 3 il
o 1 07 7T 7
2 1 1
0o 0 1 £ = = ,
| 4 4 'i

from which we conclude that

18 _9 1
4 3z 7
-1 10 4 1
A= 7 71 1 (2)
2 1 1
4 4 4
b. Given that
l Bl=a1+2a2+3a3
I 62 = 20;1 + 5{12 + ‘?0.3
' 33 = 4Cf.l + 9{12 + 9u3
S.3.1.13
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3.1.4 continued
and that ¥y = (3, =2, 1) relative to {81,62,63} » That is,

Vi = 361 - 232 + 63. Then using equation (7) of the previous
exercise, we have that

Yl = (Y]_:YZ:Y3)

relative to {al.a2.03}: where

2 3
[yl Y, y31 = [3 -2 1] |2 5 7
4 9 9

[(3 -4+ 4) (6 =10 + 9) (9 - 14 + 9)

= [3 5 4];
whereupon
Yl_
Yy, =5
¥4 = 4.

In other words,

(3,-2,1) relative to B -coordinates

-
'_l
I

Yy = (3,5,4) relative to a -coordinates.

c. Make sure that you notice the difference between this part
and part (b). In this part ¥y 5 = (3,-2,1) is relative to
a-coordinates, while in the previous part (3,-2,1) was
relative to B -coordinates.

We now want to express Y, in B-coordinates. Using equation
(11) of the previous exercise, we have that
Tg ™ %38y F Xahy ¥ Fily

S.3.1.14
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3.1.4 continued

where [xl %, x3] = [3 -2 1] A-l, or, from part (a)
18 9 I
4 4 4
_ 20 31
[x; x, x3] = [3 -2 1] 7} 7 7 (3)
2 1 1
- 4 4 |
[54 + 20 + 2 =27 =6 + 1 3 -2 - l]
- 2 4 4
= [19 - 8 O0].

Therefore,

X = 18, X, = -8, X3 = 0;

and
Y5 = 198l ol 882 + 083
= (19, -8, 0) relative to B =-coordinates.
Check
19Bl - 862 = 190;l +* 3Bu2 + 57a3
- lﬁal - 40&2 - 56{:.3

= 3a1 - 2a 2 + u3

— 'Yz.
Note:

What should be the same as part (b) is that if we hadn't done
(b) and were told to convert y = 3al + 5&2 + 4a3 into B-
coordinates, we should obtain as our answer y = 381 - 262 7+ 83-
That this is the case, follows just as in our derivation of (3),
only with [3 5 4] replacing [3 -2 1]. Namely, y = xlﬁl + xzﬁz +

x383 where

8.3.1.15
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3.1.4 continued

1
J

18 _9 1
T~ 7 12
_ -0 3 1
[xl x2 x3] = [3 5 4] 7 3 "
2 1_1
7 7 7|
~ (24 - 50+8 <27+15+4 345-~4,
4 4 4
= 3 -2 1 1.
3.1.5(L)

Our aim here is to reinforce the role of the cancellation theorem
in determining the structure of a vector space V. We begin with
the proof of the cancellation theorem.

Since B + o = vy + o , we may add -a*

(B+a)+ (=a) = (y+a)+ (~a),

or since addition is associative

B+ loa+ (-a)]l =y +[oa+ (-a)].

This, in turn, since o + (- a) = 0, implies that

and by the property of 0, the conclusion B =y follows. That

is, for o, B,YeV; B +ta =y +a +* B =y .

b. We could mimic part (a) but the gquicker way is to use the
commutative property and then invoke the result of part (a).
Namely,
*Notice here that we are using the fact that V is a vector space
by assuming that the element -0 €V exists. That is, we are
using the property that for aeV, there exists =-0eV such that
a + (-a) = 0, etc.

S.3.1.16
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3.1.5(L) continued

o +B=0o + Yy >

B +a= ¥ + a, and this, by part (a), implies that B = Y.

Notice that (a) and (b) together tell us that the cancellation
theorem allows us to cancel the common term regardless of the
position it occupies in the equation.

We now look at a few consequences of the cancellation theorem

on the structure of a vector space.

Il

0o (0 + 0)a ~
Oa Oo + 0 +
0+ 0=+ 0a ~»

0 = 0a, or Oa = 0.

> - >
c0 = c(0 + 0) -
> > >

c0 cO + c0 ~»

ca + 3 = ca + ca

+ -+ -+ -

0 = c0, or cO0 = 0.

a+ (-l)oa = la + (-1)a +

o (=sLye: = L1 (=1) Leg ==

o + (-1)a = 0a; hence from (c),

a + (=1)o = 0.

o + (=a) = 0, by definition of (-c). Moreover, by (e),a +
(-1)a = 0. Since 0 = 0, it follows that o + (-l)a = at+ (-a);
so that by cancellation, (-l)a = - a.

Part (f) can be generalized as follows. If ceV and BeV and if

a + B =0, then B = - a(that is, -a is usually uniquely
determined by o« ). Namely, sincea+ (- a) is also 0, we have
that « + 8 = o + (- o). Hence, by cancellation, B = - a. Part

(f) was a special case of this more general result with
B = (-1)a . This special case plays an important role in many

applications, one of which will occur in the next exercise.

Since o + B = o and since a + 0 = a, we have that o + B =

o + 0; whence, again by cancellation, B = 0.

Notice that part (g) tells us that the element 0 of V is
uniquely determined. In other words, it is not possible to have
two elements of V, say 0 and 0' such that v+ 0 = v + 0' = v
for veV, unless 0 = 0'.

o o [ b
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3.1.5(L) continued

From another point of view, what this says is that suppose we

have a non-empty subset S of V with the property that there

exists an element 0S in S usch that s + OS = s for each seS.

Then 0S = 0, itself. Namely, since S is a subset of V, the fact
that seS implies that seV; and since seV, the definition of 0
implies that s + 0 = s. Hence, s + OS = s + 0, so by calcellation,
0S = 0. Some of the implications of this discussion will appear

in the next exercise.

3.1.6(L)

a. Qur main purpose here is to emphasize the difference between a
subset and a subspace. For a start, then, let us oassume that V
is a vector space in the sense that it satisfies the nine pro-
perties mentioned in the lecture; and that S is any subset of V.

Suppose now that o,B,y now refer to members of S while ¢, Cyv
Cyr etc. still refer to real numbers. Then, each of the follow-
ing axioms (or, properties) for V are automatically obeyed by S.

(2)* a+ (B+v) = (a+ B) + ¥

(5) o+ B=B +

(6) c(o + B) =ca+ cB

(7) {cl + c2) =c + c,

(8) cl(cz ) = (clc2}

(9) la = a.

The reason for this is that since S ¢ V, the fact that «,B ,Ye S
also implies that a, B, YeV; and axioms (2), (5), (6), (7), (8),
and (9) hold for all elements of V since V is a vector space.

b. What we can not be sure of, however, is
(1) o, BeS+ o+ BeS.

In fact, all we know for sure is that a+ BeV, since o and B both
belong to V. In essence, if a structural set is closed with
respect to a given operation, it need not be true that an arbitrary
subset of the structured set is also closed with respect to

this given operation. For example, the integers are closed with

respect to addition since the sum of two integers is again an

*These numbers refer to those used in numbering the vector space
axioms as presented in the lecture.

S.3.1.18
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3.1.6 (L) continued

integer. S = {1,2} is a subset of the integers but S is not
closed with respect to addition since, for instance, leS and
2eS, but 1 + 2 = 3¢S.

(3) There exists 0, eS such that a+ 0, = for each neS. We have
written 04 to emphasize that the identity element must belong to
the set under consideration. For example by property (3)a + 0 =

for each weS but there is no guarantee that 0eS.*
(4) a + (-a ) = 0.

Again, what we do know by virtue of V being a vector space is
that there exists ( - a)eV, but not necessarily in S, such that

a + (-a) = 0, for each aeS.*
(6') aeS + caeS.

We use (6') here to take into account the fact that our blackboard
writing was "sketchy". When we talk about scalar multiplication,
it is assumed that ca belongs to the same set as o . Notice that
since ScV, oeS + weV; so that since V is a vector space, we can
be sure that cae V but we cannot be sure that ¢ oeS.

Pictorially, these are things that could happen.

*What we showed in the previous exercise is that if 0 exists,
then it is the identity element, 0, of V itself.

**Apgain consider our earlier example S = {1,2} . Certainly there
exists an integer -2 such that 2 + (-2) = 0 but -2¢ S.
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3.1.6(L) continued

c. Using part (a) for background, suppose that we now have the
following additional knowledge about S.

l. o,BeS »a+ BeS
2. CeR, deS » caeS

Clearly, (1) and (2) make sure that S now obeys (1) and (6').

il =S TS G - =

So all we have to do now is show that (1) and (2) are also
sufficient to guarantee that (3) and (4) are also obeyed by S,
since then all nine axioms will be obeyed by S.

Since - = (-1)o , and (-1)eR, we see by (2) that aeS + (-1)aeS
+ -0eS. Now by (1), since o and -a both belong to S so also does
o + (-a); but a+ (- o) = 0. Hence, 0eS. The facts that 0 and -a

belong to S is all that we need to verify that S obeys (3) and
(4) .

This justifies the criteria described in the lecture. Namely,

if S is a subset of the vector space V, then S is a subspace of

vV >,

l. «®eS, BeS » o + BeS
2. CceR, 0eS - caeS

3.1.7(L)

Here V = E2 {(xl,xz): xl,xZER]

a. S = {(0,0)}

Clearly, S is a subset of V since (0,0)€E2. Since aeS » o = 0,

it is easily verified that each of our axioms (1) through (9)
is obeyed.

In terms of the "short-cut" we have

l. o, BeS =+ o + BeS

2. ceR, waeS —+ coaeS

Namely,

S.3.1.20
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3.1.7(L) continued

o,BeS + o =B =0 >0+ B = 0es
and

aeS + ca = c0 + co = 0OeS.

Note:
Part (a) generalizes as follows. If V is any vector space, then
s = {0} is a subspace of V. Namely 0 + 0 = 0 and c0 = 0 for

each ceR.

Since the space which consists of only the 0-vector is rather
trivial, one frequently stipulates that the subspace have more
than just the 0 vector.

Notice that once a subspace S contains a non zero vector o, it
must contain infinitely many vectors, namely all scalar multiples
of . That is oeS implies caeS for all ceR if S is a subspace of
V. Notice that if cyu = cya then Cp = ¢y = 0 or (cl - cz)a = 0.
Hence, either cy ~ c, = 0 or « = 0. Therefore, ifo # 0, then

c, = ¢, = 0 or ¢ = Cy- In other words, if a # 0 and cl and c,

1
are different (unequal) scalars, then c 2 Cy - In other
words, if o # 0, there are infinitely many different scalar

multiples of a.
b. 8§ = {(xl,xZJ: Xy = 0 or X, = 0}

Now, S contains not only (0,0) but, among others, (0,1) and
(1,0). But every vector in V (not just in S) is a linear com-
bination of (0,1) and (1,0). Hence S is not closed with respect
to addition. For example, (2,3)¢S (since neither 2 nor 3
equals 0); yet (2,3) = (2,0) + (0,3) where both (2,0) and (0,3)
belong to S.

In this example, all that S lacks for being a subspace of V = Ez

is closure with respect to addition. All the other axioms for

a vector space are possessed by S.
¢. 8 = [(xl,xz): X, = X, + 1}

One quick way of concluding that S is not a subspace of V is
that 0¢S. Namely, 0 = (0,0) in which case x, # x; + 1 (i.e.,
0 # 0 + 1). Another way is to observe that if (xl,xz)es and
(y,:¥,) €S, then
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3.1.7(L) continued

X, = xl + 1
Yz =y1+ 1'
Hence, x. + Yy = %X + Yy + 2 # Xy + Yy + 1. Therefore,

2

(xl,xz} and {yl,yz)es, but (xl,xz) ;- {Yl‘Yz’ = (xl + ¥y X, F Y2}¢.

d. S = {(xl,xz): Xy = 3x1}
In this case, suppose (xl,xzj and (yl,yz) both belong to S.
Then,
Xy = 3x1
Y, = 3y1.
Hence, x, + y, = 3(x1 + yl). Therefore, (xl t oy Xy Y,) €S.
In other words, {xl, xz)es, (yl,yz)ss 2 (xl,xz) + (yl,yz)as.
Similarly, c{xl,xzj = (cxl,cxz) and since Xy = 3x1+ cx, = 3cxy i
(cxl,cxz)ss.
Hence, S is closed with respect to addition and scalar multipli-
cation, so S is a subspace of V.
Geometric Interpretation of Parts (c) and (d).
If we assume that each vector {xl,le = xlI + xzf in the
X,X,-plane originates at (0,0), then it terminates at the point
{xl,xz}.
Thus, {(xl,xz}: Xy = %) ¥ 1} represents the set of all vectors
which originate at (0,0) and terminate on the line X, = X + Ly
That is

v !
S:3.1.22
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3.1.7(L) continued

1. o and B belong to S; i.e., o and B terminate on X, = %, *+ 1.

2. o + B doesn't terminate on Xy = Xy + 1.

The main idea is that unless the line passes through the origin,
the set of vectors which originate at (0,0) and terminate on the
given line will not be closed with respect to either addition or
scalar multiplication. If the line passes through the origin,
then all our vectors have the same direction, namely, that of
the line itself. This is why in linear algebra we require that

all "lines" pass through 0 (the "origin").

3.1.8

Vv ={f: dom £ = [0,1]}

S {fev: f(x) = £(1 - x)}

To test whether S is a subspace of V, it is necessary and
sufficient to show that feS and geS -+ f + geS and ceR, feS cfeS.
To this end, suppose h = £ + g where £, geS. Then, for x [0,1]

h (x) = £(x) + g(x)
= £(1 - x) + g(1 - x)

Since h(x) = h(l - x), heS.

Next, if k(x) = cf(x) where feS, we have
k(x) = cf(x)
= cf(l - x)
= k(1 - x)
Hence, k( = cf)eS. Therefore, S is a subspace of V.

Geometric Note:
The set of all curves y = f(x) defined for 0 < x < 1 such that

f(x) = £f(1 - x) is precisely that set of curves which are
symmetric with respect to the line x = 1/2. Pictorially,
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3.1.8 continued

Y
M |
|
[
(x,£(x)) I (1 - x,f(1L - x)
|
I
1 | 1
f"f x-’l"'z— > 4
I x—
L ;x
% % 1
i
1
= 1 -x —7
| 1

Thus, what we are saying in this exercise is that the sum
of two curves symmetric with respect to the line x = 1/2 is also
symmetric with respect to the line x = 1/2; and any scalar
multiple of such a curve is symmetric to the line x = 1/2.

As a check that the truth of feS and geS + f + geS and ceR,

feS + cfeS really do imply Axioms (1) through (9), we essentially
need only check that 0eS and that -feS if feS. All the other
axioms are obeyed by all functions defined on [0,1]. Well,
clearly if £(x)= 0 for all x [0,1], then f(x) = £(1 - x) for all
xe[0,1] since both expressions equal 0. Moreover, since y =
-f(x) is simply the reflection of y = f(x) about the x-axis,

then the fact that y = f(x) is symmetric to the line x = 1/2
guarantees that y = -f(x) is also symmetric with respect to

x = 1/2. For example

5.3.1:24
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3.1.8 continued

Y
N y = f£(x)
1
i
]
|
- 1
e | i ~
rd | i ~
G ~
- | | ~
# : i ~
pe + T -+ s » X
e (0,0) 1(:0) {(1,0) -
\\ | | //
i | : o .
So i 2
|
i
1
|
y = —£(x)

b. S = {fev: £(0) = 2}
In this case, if feS and geS, then £(0)= g(0) = 2. Therefore,
£(0) + g(0) 2+ 2 =4, That is, letting h = £ + g, h(0) =
£(0) + g(0) = 4. Hence h¢S.

Il

Therefore, S is not a subspace of V.

Geometrical Interpretation
S is the set of all curves defined on [0,1] which pass through

(0,2). Not only is the sum of two such curves not a member of

S, but S8 fails to admit the O-function or inverses. For example,
if f(x)= 0, then y = f(x) passes through (0,0) not (0,2); and

if feS and f(x) + g(x)= 0, then g(0) = -2, not 2, since £(0) +
g(0) =0 + 2 + g(0) = 0. Hence g¢s.

As far as scalar multiplication is concerned, if £(0) = 2, then
cf£(0) = 2 «»c = 1. Hence, if feS and c # 1, then cf¢s.
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3.1.9(L)

a. By definition
W= S{al,az) = {xlal + X,0,1 xl,xzaR} . (1)

b. Hence,

WEW«+ w = xlal + X0,
+> W = xl(1,2,3) + x2(3,5,5)
> W o= (xl,2xl,3xl) + (3x2 + 5x2 + 5x2)
+~r W = (xl B 3x2, 2x1 + 5x2, 3x1 + 5x2}. (2)

c. According to (2) we see that for (2,3,2) to belong to W, there
must exist real numbers Xq and Xy such that

T 3x2 = 2

i 5
2x1 + 5x2

Il

(3)
3x1 + 5x2 = 2

Clearly (3) is a special case of the more general result that
(a,b,c)ew +=

Xq + 3x2 = a
2xl + 5x2 = b (3")
3xl + 5x2 =

The point is that (3') is a system which has more equations
(three) than unknowns (two). Consequently, either (3') will be

an inconsistent system or else at least one of the equations must
be contained in the others. 1In fact, using our row-reduced matrix
technique, we see that (3') becomes

e S T
1 0
4"
3 1
-1 -2 ~
-4 -3
§.3.1.26
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3.1.9(L) continued

1 0 -5 3

0 =1 =2 n

o 0o 5 -4

= N

I-0 -5~ 3

0 =k 2 -1 0 (4)
0 -4

From (4) we now have the following interesting information:

X, = -5a + 3b

X, = 2a - b (5)
and

0 =5a - 4b + ¢c; or ¢ = 4b - 5a. (6)

Therefore, we see from (6) that unless c = 4b - 5a, (a,b,c)¢W.

On the other hand, if ¢ = 4b - 5a, then not only is (a,b,c)eW but
[from (5)] (a,b,c) = x1(1,2,3) + x2(3,5,5), where X, = -5a + 3b
and X, = 2a - b. In still other words,

(a,b,0)e {x,(1,2,3) + x,(3,5,5) }+> ¢ = 4b - 5a

and in this case

(a;b,c) = (-5a + 3b)(1,2,3) + (2a - b)(3,5,5). (7)
Applying this discussion to (2,3,2), we have that a = 2, b = 3,

and ¢ = 2. Hence, 4b - 5a = 12 - 10 c so that by (6), (a,b,c)ew.

Moreover, from (5) X, = -5(2) + 3(3) -1 and X, = 2(2) -3 =1
so that

Il

(2:3:2) = x1{1,2,3) + X2{3:5r5}
-(1,2,3) + (3,5,5)
(2,3,2).

S+3.1.27




Solutions
Block 3: Selected Topics in Linear Algebra
Unit 1: The Case Against n-Tuples

3.1.9(L) continued

d. Since 4(4) - 5(3)

I

1 # 3, we have from (6) that (3,4,3)¢W.

Il

e. Since 4(4) - 5(3) 1, (3,4,c)eW «»c = 1. Hence, (3,4,1)cW.

Moreover, from (5) we have that X, = =5(3) + 3(4) = -3 and
X, = 2(3) - 4 =2. Hence, (3,4,1) = -3(1,2,3) + 2(3,5,5).
Check:
-3(1,2,3) +.2(3,5,5) = (-3,-6,-9) + (6,10,10) = (3,4,1).
f. W is the plane spanned by o = T <4 23 + 3k and o, = 31 + 55
+

+ 5k. The vector v = ai + b} + ck lies in the plane w «»c = 4b

5a and in this case

v = (-5a + 3b)a, + (2a - b)a,.

In the next Unit we shall discuss the idea behind this problem
in more detail. 1In particular, we shall discuss how we find
a pair of more "informative" vectors with which we may describe
the space W. For now our hope is that it is clear what we mean
when we talk about the subspace spanned by a set of vectors of
V. While we have chosen an exercise in which we could relate
the answer to a simple geometric interpretation, notice that
the general idea does not depend on our having to talk about a
2-dimensional subspace (namely a plane) of 3-dimensional space.

The point is that with this exercise as an introductory example,
we may use it as reinforcement in our more general treatment of
the next Unit.

3.1.10 (optional)

a. If we let w = S(al,az), then by definition of w we have that if

wlew and wzew, then
= 1
Wy ajo; + aya, (1)
where a, ,a.,b,,b, eR.
= AE IS
W, = blal + bzaz (2)

Hence, by the usual vector arithmetic structure,

S.3.1.28
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€1

3.1.10 continued

Wy + W, = (al + bljal - (az + bz}a2 : (3)
—— [
ER ER

Since wy tow, is a linear combination of oy and Uy it follows by

the definition of w that:
1. wlsw, wzew > oWy + wzew. (4)

Moreover, for an ceR and leW, we have from (1) that

oWy c{alal + azuz)

calal + ca2a2

(cal)al + (caz)aza
e
eR ER

so that cwy is a linear combination of oy and Oy

Hence,

2. ceR, wjeW = cw,eW. (5)

From (4) and (5) we see that W = S(al,az) is a subspace of V.

Note #1:

The proof given here generalizes very nicely to the case of
OprecerOp. Namely, the sum of two linear combinations of
Qqreees and %115 also a linear combination of Upreees and o -

For example, if

B = blal ke qaa F bnun
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3.1.10 continued
B+ vy = (bl = cl)al ¥ oewe 2F (bn + cn)an.

Note #2:

If W is any subspace of V which contains the vectors o ., and

i
o, then W must contain S(al,...,an]. Namely, by virtie of W
being a subspace, any linear combination of vectors in W must
be a member of W. 1In other words, if al,...,aneW where W is

a subspace of V and OgrewerOy linearly independent; then
S(al,...,an) is a subspace of W. Thus, S{al,...,an) is the

smallest subspace of V which contains Ogreeny and o

b. If S and T are subspaces of V and aeSNT and ReSNT; then by
definition of intersection
aeS and oeT
BeS and PBeT .

Since S is a subspace, o, BeS »a+ BeS. Similarly, since T
is a subspace «,BeT - o + RBeT. Therefore, o + BeS and

a + BeT. That is, a+ BeSNT. Moreover, oeS + caef)S; aeT
coe T. Hence cae SNT.

Consequently, SNT is also a subspace of V since it is closed
with respect to both addition and scalar multiplication.
Note:

Part (b), together with a little math induction, tells us that
the intersection of any number of subspaces of V is again a
subspace of V. Combining this with part (a), we have that
the intersection of all subspaces of V which contain Oqrenns
and o, is S(ul,...,an).

c. We define S + T to be the set of all elements of V which can
be written as the sum of an element in S and an element in T.
That is,
S+ T=1{s + t: seS, TeT }.
Now, suppose S and T happen to be subspaces of V (rather
than merely subsets of V).

S 3130
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Fa

3.1.10 continued
Then, if 0q and a, belong to S + T, we have

oy = 8: 4+ £

X i B
Uy = 8y * %y
where sl,szes and tl,tzaT.
Hence,
ay oo, = (sl + 52} + (t1 + tZ). (6)

The key now is that since S and T are subspaces s; + s,eS and

tl + tzzT. Thus, from (6) we conclude that 0q + azes + T. We

also have that for ceR and oo = s + teS + T,

co =c¢cs +ct € S+ T
—_—
€S eT
Note:

If S and T are subspaces of V, then the subspace S + T is called
the linear sum of S and T. Since s = s + 0 and t = 0 + t; and
since 0 is a member of each subspace of V, we have, as might be
expected that ScS + T and TcS + T. We shall talk more about S

+ T In TNt 3.

3.1.11 (optional)

The main aim of this exercise is to explore some of the subtle-

ties that are involved in making up an axiomatic system. At
least in the more pragmatic cases, the axiomatic system is

usually obtained by abstracting certain properties of a known
physical model. For example, in the present Unit we have de-
fined a vector space axiomatically,based on how we know that

"arrows" behave.

Thus, the fact that our axiomatic system is derived from a

real model means that we are spared one difficult problem that
besets the pure mathematician. Namely, we do not have to worry
about whether our axioms are consistent. What is, if our

axioms were contradictory then there could be no real model which

obeyed each of the axioms.

Bl T B B o pE BN am e

S.3.1.31




Solutions
Block 3: Selected Topics in Linear Algebra
Unit 1: The Case Against n-Tuples

3.1.11 continued

There are, however, other problems that occur. For example, even
though our axioms are consistent we often would like to know if
they are independent. 1In other words, are some of the axioms
derivable from the others? That is, are some of the axioms
deducible as theorems from the other axioms? If this is the case,
then these axioms may be deleted from the list of axioms and added
to the list of theorems. Of course, even if an axiom is a
theorem, it may be simpler to state it as an axiom anyway; and
this can cause no harm since anything which follows inescapably

from our axioms is as valid as the axioms themselves.

In addition to this, there is the related case in which one
axiom seems to be so simple that it appears unnecessary to have
to state it separately. There are many examples in elementary
geometry in which these situations occur (in fact part of the
"new" geometry is to emphasize these logical aspects of the
structure of geometry), but it is not our place to pursue this
here. Rather we shall be content to show how one may go about
the business of showing that one axiom, obeyed by a particular
physical model, is independent of the other axioms. The pro-
cedure, quite simply (at least in concept), is to construct
another model (even though the model may seem far-fetched from
a practical point of view - all that's required is that the
model be consistent) in which every axiom except the one in
guestion is obeyed. Then, since we now have two models, one

of which obeys every axiom and the other which obeys all but
the one in question, we may conclude that the axiom in question
is independent of the others. Namely, if it weren't, it would
have to be obeyed once the others were obeyed.

We illustrate this idea in part (a) of this exercise. In part
(b) of this exercise we show how it is possible that an axiom
which seems to be independent of the others may in actuality

not be; but this need cause no harm.

a. Since vector addition is defined as before, axioms (1) through
(5) (as listed in the lecture) for a vector space must still
be obeyed.

§.3.1.32
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3.1.11 continued

Now, according to our new definition of scalar multiplication,
wherein co = 0* for each ceR and neV we see that axioms (6), (7),
and (8) are also obeyed. Namely:

(6) c( o + B)
co + cB

6 } Therefore, clo + B) co + B.

Il
(=23
+
(=
I

(1) (e + cy)a =
a + cza = 3

|

+ o

[}

} Therefore, (cl + czju = c,a + cya.
c

1

(8) cl(cza} = ‘c].-6 3]- Therefore, cl{cza} = (clcz)u.

(=" |

(clczja =0 =

Clearly, however, if V contains more than the 0-vector, then

lo = o for all aeV

must be false, since by definition
co =0 (1)

for all ceR, in particular then when c = 1. Therefore, if
a # 3, we see from (1) that la = ] # oo so that (9) is not
obeyed.

This proves that axiom (9) is independent of axioms (1) through
(8) since in both models, (1) through (8) are obeyed, but in one
case (9) is obeyed and in the other it isn't.

*Notice that we're not concerned here with the question of why
one would want to invoke such a "sterile" definition. To be
sure it might not have much (if any) practical application, but
the definition is meaningful, hence, '"legal'". Thus, if we can
show that our new structure (the vectors are the same but
scalar multiplication is different) obeys axioms (1) through (8)
but not (9), then we have succeeded in proving that (9) cannot
be derived as a theorem from (1) through (8).
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3.1.11 continued

b. Treating o + B as a single element, say Yy , we have from Axiom
(7) that

(1 +1)(ae +8) =(1+1)y
=1y + 1y,
so by Axiom (9):
(L+1(a+B)=y+y
= (a0 + B) + (a0 + B). (1)

On the other hand, treating |+| as a single number, we may
use Axiom (6) to conclude that

Al S O E A s EE e

(1L + 1) (¢ + B) (L + 1)a + (1 + 1)8

(o + a) + (B + B). (2)

[}

Equating the expressions for (1 + 1) (¢ + B) in equation (1)
and (2), we obtain

(¢ +a ) + (B + B) = (¢ + B) + (o + B),

or since vector addition is associative, we may omit parenthesis
and write:

o +o0+ B+ B =a+ B+ o+ B

Hence

-a+ (a+ o+ B+ B) ~-B==-0a+(a+ B+ o+ B) -8B,
or

(o + a) + (a + B) +(B = B) =(-a + a)+ (B + a) +(B - B).

Therefore,

0+ (a+B) +0=0+ (B+ a) +0;
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| - |

3.1.11 continued

or
o + B = B + a.

Thus, we have shown that Axiom (5) is actually redundant since
it may be derived as a theorem from the other axioms. In other
words, had Axiom (5) been omitted, it would still be valid.
Nevertheless, because Axiom (5) is so easy to accept, coupled
with the fact that it is consistent with the other eight

axioms, we prefer to include it as one of our axioms.

From a different perspective, what we are saying is that it is
impossible to find a real model that will obey all nine of our
axioms except for axiom (5). Once axioms (1), (2), (3), (4),
(6), (7), (8), and (9) are obeyed, (5) must also be obeyed.

Notice also that at least in our proof, the validity of Axiom
(5) as a consequence of the other axioms required that we
accept Axiom (9). That is, relative to part (a) of this
exercise, if Axiom (9) is omitted it is no longer clear that

Axiom (5) can be derived from the remaining seven axioms.

As a closing note, we should mention that much of pure
mathematics is concerned with finding the minimum number of
axioms that can be used to give an equivalent definition

of a structure defined by a greater number of axioms. This
search involves either trying to delete some of the given
axioms because they are logical derivations of the others
or else it involves finding an entire new set of axioms.
Again, further discussion of this point is far removed from

our present investigation of vector spaces.
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