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Study Guide
Block 3: Selected Topics in Linear Algebra

Unit 6: Eigenvectors (Characteristic Vectors)

Overview

Armed with the computational know-how of the previous unit, we now
return to the discussion begun in Unit 4 and investigate the
existence of vectors v such that for a given linear transformation
f, £(v) is a (non-zero) scalar multiple of v. Geometrically, this
means that we seek vectors whose direction is preserved by the
given linear transformation. Such a vector is called a character-
istic vector (in German, an eigenvector), and the scalar c for
which f(v) = cv is called an eigenvalue or a characteristic value.
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2. Lecture 3.060
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3.

Exercises:

3.6.1(L)

Use the method shown in the lecture to find the eigenvectors of £
if £:v»V, where V = [ul,uzL is the linear transformation defined

by

Il

f(ul} -3ul + 2u2

f(uz)

I
L=
o

=

|
=l

8]

Find a basis for V such that relative to this basis the matrix of

f is diagonal.

Interpret the results of (a) and (b) geometrically in terms of £

mapping the xy-plane onto the uv-plane.

3:6.2

Let V = [ul,u2] and let the linear transformation f:V+V be defined
by

f(ul} = Bul - 15u2

f{uz) = 2u1 - 3u2

Find the characteristic values of f and determine a basis for V
which consists of eigenvectors. What is the matrix of f relative
to this basis?

3.6.3(L)

If A is an n by n matrix and P is a non-singular n by n matrix,
show that

|a - cI| = lpap~1 - c1].

3.6.4(L)

Let V = [ul,u2] and let f£:V»V be the linear transformation defined
by

(continued on next page)

3.6.3
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3.6.4(L) continued

f(u

l} (cos u)ul + (sin u}uz

f{uz} (- sin a)ul + (cos a)uz

Show that f has no eigenvectors unless o is an integral multiple

of .

3.6.5

Let V = [ul,uz,u3,u4] and let £:V+V be the linear transformation
defined by

f(ul} = Bu, + 4u3

1
f(u2) - 9u1 + 2u2 + 6u3
f(u3) = —9u1 - 4u3

f(u4) = 2u, + 3u4

a. Find the characteristic values of f.

b. Find a set of linear independent eigenvectors of f. 1In particu-
lar, describe the subspace Vz of V where
v, = {vev:f(v) = cv}.
3.6.6(L)

a. Let f:V»V be a linear transformation. Suppose vy and v, are non-
zero vectors in V, and that f{vl) = cyvy and f(vz) = c,v, where
cq # Cy- Prove that {vl,vz} is a linearly independent set.

b. Proceed inductively from (a) to show that if Vs # 0 and if Cy is
unequal to 0, cys or c, and if f(v3) = C3V, then {vl,vz,v3} is a
linearly independent set.

3.6.4
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3.6.7(L)

Let V = [ul,uz,u3] and let f:V+V be the linear transformation

defined by

f(ul} = 2u1 + uy

f(uz) = -y + 2u2 + 3u3
f(u3) = uy + 2u3

a. Let A denote the transpose of the matrix of coefficients of £
given above, and use A to find the characteristic values of f.

b. Find a basis for V which consists solely of eigenvectors of f.
c. What is the matrix of f relative to the basis found in part (b)?

d. Use the basis found in (b) to find a vector £eV such that f(&) =
v_, where Vs is a given vector in V.

o
e. Using the technique described in (d), find a vector veV such that
f(v) = ap + 4a2+ 12u3 where {ul,uz,aa} denotes the basis found in

(b) .

1

f. With A as in part (a), find a matrix P such that P ~AP = D, where

D is the diagonal matrix

0 0
0 2 0] .
0

3.6.8 (Optional)

a. Let A be the same matrix as that given in part (a) of the previous

exercise. Show that A satisfies the matrix equation

x> - 6x% + 11X - 61 = 0,
that is,
ad - 6a% + 11a - 61 = 0.




Study Guide
Block 3: Selected Topics in Linear Algebra
Unit 6: Eigenvectors (Characteristic Vectors)

3.6.8 continued

How is this fact connected to the characteristic values of f where
f is as given in the previous exercise?

In particular, use (a) to compute A7 as a linear combination of I,
A, and Az.
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