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Study Guide

Block 3: Selected Topics in Linear Algebra

Unit 3: Additional Comments on Dimension

1. Overview
In most respects this Unit could have been included as a subtopic
of the previous one, but we have elected to include it as a
separate unit in order to give you another chance for grasping
the "big picture".
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3. Exercises :
33 1.{L)
Let dim V = 4 and assume that [ul, Uy, Usgy u4] is the coordinate
system being used for denoting the elements of V as 4-tuples.
Let W be the subspace of V generated by ay = (L; 1; 3;4)%
0-2 = (2,3,7,9), GB = (3,-2,4,7), C"-4 = (4,-5,3,7), and 0L5 = (4,5,
14,9).

a. Find the dimension of W.

b. Express X, as a linear combination of X101 o, and % if At ds
known that (xl,xz,x3,x4)ew.

c. Find vectors Bl'BZ'BBEW such that (xl,xz,x3,x4)aw¥+ (xl,xz,x3,x4) |
= xlsl E xzsz + x383. Then express Gy rCyy and ag as linear com=- |
binations of 81,82, and 83. !
3.3.2
Let V = [ul,uz,u3] and define 0y r0ys0, by a, = Ly B 1 [ a, =
(-3,4,1), and a3(—l,—2,-3). Let W = S(al,uz,aB).

a. Show that dim W = 2.

b. Find a linear combination of g r0y 0y which is zero even though '
no coefficients are zero.

c.

Show that oy may be written in infinitely many different ways
as a linear combination of Qg sy and Oge

3.3.3(L)

Show that W = {f: f"(x) - 4f(x) = 0} is a subspace of the
space of continuous functions.

3.3.4(L)

Let V = [ul,uz,u3,u4] and let S be the subspace of V generated by

0y = (1,1,2,3), = (2,3,5,7) and o, = (2,1,3,5).

% 3

(continued on next page)
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b.

3.3.4(L) continued

EF (xl,xz,x3,x4)ss, how are x3 and X, related to xl and x2?

With V as above, let T be the subspace of V generated by

4 = (ll2!2f3)l' 35 = (2,5,4,7), and (16 = (3,7,7,8}.

If (xl,xz,xB,x4)eT, how is X, expressed in terms of Xyr %o and x3?

o

Describe the subspace S M T.

Describe the subspace S + T = {s + t: seS and teT}.

Verify that in this example, dim(S + T) = dim S + dim T - dim S N T.

335

Let V = [ul,uz,u3,u4,u5]. Let S be the subspace spanned by
(,1,2,3,3), (2,3,4,5,7), and (3,4,7,8,8), and let T be the sub-
space spanned by (1,1,1,3,5), (1,2,3,2,2), and (2,3,3,7,8).

Find the dimension of S.
Find the dimension of T.

Find the dimension of S M T, and, in particular, find a row reduced
basis for S N T.

Find the dimension of S + T and in particular show how Xq xz, x3,

Xy and x5 must be related if (xl,xz,x3,x4,x5)gs + T,

Again verify that dim(S + T) = dim S + dim T - dim S N T.

3.3.6 (optional)

Our main aim in this exercise is to show how one constructs a
basis for S + T by starting with a basis for SNT. 1In the course
of this construction, we manage to prove that if S and T are
subspaces of a finite dimensional space V, then dim(S + T) =

dim S + dim T - dim (SNT).

Use the result of the previous exercise to obtain a basis for
SMT and then show how this may be augmented by the given basis
vectors for S to form a new basis for S. Apply a similar

approach to find a new basis for T and then explain why

dim (S + T) = dim S + dim T - dim (SNT).
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