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APPLICATIONS OF LINEAR ALGEBRA TO NON-LINEAR FUNCTIONS 


From many p o i n t s  of  view t h i s  chap te r  should be  t h e  l a s t  few 

s e c t i o n s  of  Chapter 6 .  You may r e c a l l  w e  motivated t h a t  chapter  

by looking a t  t h e  system of equat ions :  

and s tudying t h e  s p e c i a l  c a s e  i n  which f l ,  ..., and f m  were l i n e a r  

f u n c t i o n s  of t h e  n v a r i a b l e s  xl, ..., and xn. 

The reason f o r  emphasizing l i n e a r i t y  was based on t h e  fundamental 

r e s u l t  t h a t  i f  fl , . . . ,  and f  w e r e  n o t  l i n e a r  b u t  w e r e  a t  l e a s t  m 
cont inuopsly  d i f f e r e n t i a b l e  f u n c t i o n s  of  x l r . . . ,  and xn, then 

increments Ax1, ..., and Axn would produce increments Ayl, ..., 
and Aym which could be  approximated by t h e  d i f f e r e n t i a l s  dy l l . . . ,  
and dym, where 

Reca l l  t h a t  xl,  ..., and x r e f e r  t o  increments measured from n 

a given p o i n t ;  say ,  xl - a l l . . . ,  xn - a n t  s o  t h a t  each of  t h e  

c o e f f i c i e n t s ,  ayi/ a x j l  i n  (2)  is  a cons tan t ,  namely 

* A c t u a l l y ,  had we b e e n  c o n s i s t e n t  w i t h  our n o t a t i o n  i n  (1)  we would 

h a v e  w r i t t e n  f i x  ( a l ,  ...,an)  r a t h e r  than ( 2 ' ) .  The c o n f u s i o n  a r i s i n g  

from t h e  u s e  o f  j m u l t i p l e  s u b s c r i p t s  encouraged us  t o  adopt  t h e  


s h n r t ~ rn o f a t i o n  u s e d  i n  ( 2 )  and ( 2 ' ) .  
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[where -x = (xl,. . . ,xn) and -a = ( a l f . .  ., an ) 1 

In any event,  the  main po in t  i s  t h a t  while sy s t em (1) is not  necessar i ly  

l i n e a r ,  system (2) is. That is ,  system (2) expresses dyl,. . . , and 

dym a s  , l i nea r  combinations of dxl, ..., and dxn. 

Thus, t he  study of l i n e a r  algebra,  introduced i n  chapter 6 t o  help  

us study system (1) i n  t h e  case t h a t  t h e  funct ions  were l i n e a r ,  can 

now be appl ied t o  system (2) provided only t h a t  t he  functions a r e  

continuously d i f f e r e n t i a b l e  ( a  f a r  weaker [i .e. ,  more general]  

condit ion than being l i n e a r ) .  I n  summary, while yl, ..., and ym need 

no t  be  l i n e a r  combinations of xl, ..., and xn; dylf..., and dym a r e  

l i n e a r  combinations of dxl, ..., and dxn; s o  t h a t  we may view Ayl, ..., 
and Aym a s  l i n e a r  combinations of Ax1, ..., Axn i n  s u f f i c i e n t l y  small 

neighborhoods of a po in t  (al...,a,). 

Our main reason f o r  beginning a new chapter  a t  t h i s  time i s  s o  

t h a t  w e  may b e t t e r  emphasize the impl icat ions  of system ( 2 ) .  

The Jacobian Matrix 

In  terms of s t r u c t u r e ,  system (1)may be viewed a s  an example of 

-f (z) .  That is ,  system (1)may be i d e n t i f i e d  with t h e  vector  
function 

defined by 

where 

yl, ..., and ym a r e  a s  i n  (1). 

[Equation ( 4 )  is  abbreviated a s  usual by y = f ( f f )  where y = 

( y , , . . . , ~  m and x = ( X ~ , - - . , X ~ ) I  

In Chapter 6 w e  introduced such questions a s  whether f was onto 

and/or 1-1. W e  could extend our inquiry  s t i l l  fu r the r  by asking 
-k 

what it would mean to t a l k  about, say,  
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l i r n  -f (5) 

-x+a 

For example, i n  l i n e  w i t h  o u r  previous  s t r a t e g i e s ,  it would make 

sense  t o  say  t h a t  

l i m  f(?I) = -L (where 2 E E~ b u t  -L E E" s i n c e  f(5)E E ~ )  

-x+a 

means 

Given E > 0 t h e r e  e x i s t s  6 > 0 such t h a t  

t '  
W e  a l s o  might have n o t i c e d  t h a t  may i t s e l f  be  viewed a s  an 

m-t r ip le .  Namely, i f  w e  s u b s t i t u t e  t h e  va lues  o f  yl,  ..., ahd 
Ym a s  given by (1) i n t o  ( 4 )  w e  o b t a i n  

Since  each component of t h e  m- t r ip le  i n  equat ion  (5)  is a s c a l a r  

func t ion  of  x w e  a l r e a d y  know how t o  compute l i m i t s  involving t h e s e  

components. [By way o f  review l i r n  f (f)= L means given E > 0 w e  
x-+a 

can f i n d  6 > O  such t h a t  o < 1 1  -x---z 1 1  < 6 -+ ( f ( x )  - L I  < < E J  .. x&, 

It  would then s e e m  n a t u r a l  t o  use  (5)  - to  d e f i n e  l i r n  f(2);i . e . ,  
-x+g 

l i m  f ( x )  = [ l im f l (x )  ,..., l i r n  f m ( x ) l  

( D e f i n i t i o n  ( 6 )  can be shown t o  be  equ iva len t  t o  t h e  ~ , 6- d e f i n i t i o n b  . . 
I 1 

b u t  t h i s  i s  n o t  t o o  impor tant  i n  t h e  p r e s e n t  context . )  
L ! 

Returning t o  ( 5 ) ,  n o t i c e  t h a t  we may now w r i t e  

-f = ( f  l l . . . l fm)  (71' 

wi th  t h e  understanding t h a t  ( f l ,  ...,fm)  means [ f l ( x )  , . . . , f m ( ~ ) l .  
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I f  we w e r e  now t o  become in t e r e s t ed  i n  t he  calculus  of f it would 
seem n a t u r a l  t o  extend t h e  notat ion i n  (7 )  by def in inp  

and 

-dx = (dx l , . . . , d ~  

To def ine  f '  (5) w e  might then t r y  t o  copy the  s t r u c t u r e  

used i n  t h e  calculus  of a s i n g l e  var iab le .  

That i s ,  w e  s h a l l  t r y  t o  r e l a t e  9 and g,a s  defined by ( 8 ) ,  i n  

t he  form 

and then t o  capture  t h e  s t r u c t u r e  i n  (9), def ine  M t o  be f'( 5 ) .  

Observe. t h a t  equation (10) is  a  "s t range animaltt,  Neither & nor 

-dx i s  a  number. I n  f a c t ,  each i s  a  vector  and they need not  have 
t h e  same dimension. That is ,  9 is  an m-triple,  dx i s  an n - t r i p l e  

and m need not equal n. With t h i s  i n  mind, equation (10) should 

suggest  matrix a r i thmet ic .  (For example, viewing d~ and $b~a s  

column matr ices ,  we see t h a t  is m by 1while dx is n by 1. 

Hence, by t h e  usual  p roper t ies  of matrix mul t ip l ica t ion  M [ i n  

equation (10) 1 must be an m by n  matrix. ) 

I f  w e  re-examine system (2)  i n  an equivalent matrix form, we see  

t h a t  
r 

Equation (11) now tel ls  us how t o  def ine  f'(5). Namely w e  def ine  

f ' (x) t o  be t h e  m by n  matrix [ayi/ak. ] whereupon (11)becomes
3 



3 = gu(~)dx. 
The matrix is s o  important t h a t  it i s  given a spec i a l  name, [z]
independently o$ whether we e l e c t  t o  i n t e r p r e t  it a s  I'(?I). Namely 

i f  yl. . . . ,  and ym a r e  continuously d i f f e r e n t i a b l e  funct ions  of n 

independent va r i ab l e s  x ~ , . . . ,  and xn, we def ine  t h e  Jacobian Matrix 

of yl, . . . ,y m with r e spec t  t o  xl t . . . ,xn t o  be t he  m by n matrix 

This matrix i s  o f t en  denoted by 

The remaining sec t i ons  of t h i s  chapter descr ibe  appl ica t ions  of the  

Jacobian. 

The Inverse  Function Theorem 

In t h e  previous u n i t ,  we discussed informally**how t o  i nve r t  system 
(1) i n  t h e  case  m = n. Namely, given t h e  system 

* In many tex ...,x n) is reserved to name the 
determinant o Notice that determinants 
apply only to square matrices, hence, we prefer our notation and 
we will write 1 a(yl,. ..yn) /a(xl,. ..,x n ) I when we mean the determinant. 

**That is, we used loose expressions such as "dy* A y" and 

"sufficiently small" without attempting to show what these 

meant in rigorous, computational terms. 




w e  formed 

from which w e  concluded (from our s tud i e s  of l i n e a r  a lgebra)  t h a t  

dxl, ..., and dxn could be expressed uniquely a s  l i n e a r  combinations 

of dyl, ... and dyn provided t h a t  [ayilak.]  was non-singular
3 

(i.e.,  [ ayi/axj I-' e x i s t ed ,  o r  i n  t he  language of determinants, 

d e t  [ayi/ax. 1 + 01 .
J 

Restated i n  the  language of vector  ca lcu lus ,  from system (1) we 

obtained system (2).  which is  equivalent  t o  

9 = f '  (x)dx,  
ayi- - - where f'(5) = [-XI, 

3 

and we concluded t h a t  we could so lve  f o r  dx i n  terms of 3 provided 

t h a t  If'(5)1 * # 0. In f a c t ,  i f  If' - 1 # 0 then- (x) 

This r e s u l t  can be proven r igorously  and once proven it goes 


under t h e  name of t h e  Inversion Theorem o r  t he  Inverse Function 


Theorem. 


The theorem corroborates  what we al ready suspected from our 


informed treatment. More spec i f i ca l l y :  


The Inverse  Function Theorem 


Suppose g:E n +E" i s  continuously d i f fe ren t iab le**a t  5 = 5 EE". 

1 I 

* Keep in mind that fl(x) is, in the present context, an n by n 
matrix so it makes sense to talk about the determinant of fl(x). 
**In terms of f = (f ,...,fn), w e  define f to be continuously 

differentiable ++ eacA of its scaler-function components fl,. . . , 

and f is continuously differentiable. 


n 
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-.--..a- - - --.  

I 
Then if -f' (2)# 0 there is a (sufficiently small) neighborhood . r 8  

I h that, when restricted to R, f is 1-1 and onto 
-;.': (i.e., f1 exists). In other words if S = f(R) then f:R-+S isl R  Of = a - -

invertible, i.e., f'l: s + R exists. Moreover 3 = -f'l is then a 

I 'continuously differentiable function of yl,...,yn in S and 
I 1 

I 119'(b)1 = where b- = -f(a). 
I 

1 ~ '(a)1 
-- -- -

The theorem is given a computational application in Exercise

I 4.6.1. Pictorially, the theorem says: 

I' 

f-
X --
-2 - - - - - S = f(R)- -

I -% 

I 
I 

E" En 

I 
I 
I 
I 
I 
I 
I 
I 
I 

Summary 

1. -f is 1-1 on R, but 
2. If -f(xl)= y E S where xlE R it is possible that there is -
another vector 5 2 ~ ~ 1 1such that -f(zl)= -f(z2).However z2 cannot 
be in R (since -f is 1-1 on R). 
3. This is why the inverse function theorem is said to involve 

a local property. That is, all "bets" about f being 1-1 are 

"off' once R gets too large. 

A New Look at the Chain Rule 

Suppose 



.. . . . -- r 

and 

Then c l e a r l y ,  systems (12) and (13) 'allow us t o  conclude t h a t  

zl, ...,zm a r e  funct ions  of xl, ...,x . n 

Notice t h a t  i f  w e  e l e c t  t o  w r i t e  (12) and (13) i n  such a way 

a s  t o  emphasize t he  i dea  of vector funct ions ,  we have 

where:= ( f l  ,...,f k ) ,  P =  (gl ,-...,gm); and f l  ,...,f k ,  gl,--,g, 

a r e  a s  i n  (12) and (13) .  

Iq t e r m s  of (14 )  , w e  s e e  t h a t  i f  5 = q f then h : En -t Em;- -
i.e. , 2 = h(x), where h (x) = g(: (5)) , and t h i s  i n  tu rn  seems t o- -
suggest  t he  chain r o l e .  In  f a c t  i f  w e  assume t h a t  g and 3 a r e  
continuously d i f f e r e n t i a b l e ,  systems (12) and (13) lead t o  

and 

Since (15) and (16) a r e  l i n e a r  systems, we may apply our knowledge 

of matrix a lgebra  t o  conclude t h a t  
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and s ince  matrix mu l t i p l i ca t i on  i s  assoc ia t ive  t h i s  says t h a t  

I f  w e  now introduce t h e  Jacobian notat ion a s  wel l  a s  the  notat ions  

dx and dz i n t o  (17) i n t o  (17) we ob ta in  

With t h i s  notat ion,  no t i ce  a l s o  t h a t  (15) and (16) take t he  forms p -

---dz 

-- dx 

To i d e n t i f y  t h i s  discussion with t he  der iva t ives  of vector functions 
\ 

no t i ce  t h a t  equation (19) says 

while equation (19) says 

' s i n c e  = h(x) , it a l s o  follows t h a t  



Comparing (21) and (22) w e  see  t h a t  t he  chain r u l e  a s  it e x i s t s  

i n  t h e  study of t he  ca lcu lus  of a s i n g l e  r e a l  va r i ab l e  extends t o  C 

t h e  calculus  of vector  functions.  

By way of review, r e c a l l  t h a t  t h e  "old chain r u l e  sa id :  

I1f f : E l  + E l ,  g : E' -+El a r e  d i f f e r e n t i a b l e  and h = gof, then h 

is a l s o  d i f f e r en t i ab l e .  Moreover i f  xo E don f ,  h1(xo) = g'  (yo) 
) where yo = f  (xo).  

Now what w e  have is: 

En +Ek and q : E~ + E ~a r e  continuously d i f f e r e n t i a b l e  and 

= gof then h : En + Em is  a l s o  continuously d i f f e r en t i ab l e .-
oreover, i f  x+ E dom f and yo = f , then h1  (s)= [q l  (yJ I [go(&) I- -

In f a c t  i f  we i d e n t i f y  1 by 1 matr ices  with numbers, it is e a s i l y  

seen t h a t  t h e  "old" chain r u l e  i s  a spec i a l  case of the new 

chain ru le .  In  addi t ion  no t ice  t h a t  t he  Jacobian matrix notat ion 
a(yl ,  . . . ,yk)/  a(xl ,  ...,x ) is  an extension of the  idea of wr i t ingn 
f ' (x) a s  dy/dx. Namely, i f  we look a t  (18) and (23) w e  see  t h a t  

, a(zl ,  ...,zm)
dz =- dx and 3 = - s o  t h a t  

a ( X l , . .  . ,xn) 

Equation (23) i nd i ca t e s  t h a t  w e  may t r e a t  (yl,. ..,yk) a s  a number 

and cancel it from both numerator and denominator on t he  r i g h t  

hand s i d e  of (231, s o  t h a t  the  f rac t ion- l ike  notat ion f o r  t he  

Jacobian is j u s t i f i e d .  

Again, a s  reinforcement, no t ice  i n  t h e  spec i a l  case  t h a t  r = k = m = 1, 

equation (23) becomes the f ami l i a r  

-1 -1 
A s  another s p e c i a l  case  i f  r = k = m and = f (assuming f-
e x i s t s )  , equation (23) becomes 



and s ince  

a(xlI". ,xn) 
= I (see  Exercise 4.6.8) 

a(xl ,  . . . ,x nI 

equation (24) reaf f i rms  the  f a c t  t h a t  

Other computations a r e  l e f t  t o  Exercise 4.6.4, and t h i s  concludes 

our in t roductory remarks concerning the  Jacobian a s  an extension 

of t he  chain ru l e .  

, , - -

Functional Dependence . .. . ,. 

In  our study of l i n e a r  systems of equations,  we saw t h a t  a c r u c i a l  

po in t  was whether any of t h e  equations was a l i n e a r  combination of 

t he  o thers .  For example, we saw t h a t  t h e  system 

was not  i n v e r t i b l e ,  even though it was t h r ee  equations i n  t h r ee  

unknowns, because t h e  t h i r d  equation was twice t he  second minus 

t h e  f i r s t .  That is ,  y3 + 2y2 - yl; o r  equivalent ly ,  yl = 2y2 -
y3, e t c . ,  bu t  t h e  important po in t  i s  t h a t  a t  l e a s t  one of t he  

equations can be w r i t t e n  a s  a l i n e a r  combination of t he  others .  

For t h i s  reason we say t h a t  t he  system of equations (25) i s  l i n e a r l y  

dependent. The concept of l i n e a r  dependence w i l l  occur again i n  

our course i n  Block 7 when w e  d iscuss  d i f f e r e n t i a l  equations and 

i n  Block 8 when we t a l k  more about l i n e a r  algebra.  For now, 

however, a l l  we want t o  po in t  ou t  is  t h a t  the  question of i nve r t i -

b i l i t y  of a system of n equations i n  n  unknowns was resolved i n  

terms of whether t h e  system of equations was l i n e a r l y  dependent. 



This idea could be extended t o  t he  case i n  which t he  number of 

equations and the  number of unknowns w e r e  unequal. For example, 

i f  we were given four l i n e a r  equations i n  seven unknowns, we would, 

i n  general ,  expect t o  be able  t o  choose t h r ee  of t he  unknowns a t  

random and t h i s  would have the  e f f e c t  of reducing our system t o  

four equations i n  four unknowns, from which we could then determine 

the  value of t he  o the r  four  unknowns. The success of t h i s  procedure, 

of course, required t h a t  the  r e s u l t i n g  system of four equations i n  

four unknowns was not l i n e a r l y  dependent. 

Now, i f  we leave out  any reference t o  t he  equations being l i n e a r ,  

t he  same type of quest ions  i s  s t i l l  suggested. For example, 

suppose w e  a r e  given t h e  l i n e a r  system of t h r ee  equations 

i n  t h r ee  unknowns, 

then we might be tempted t o  ask whether t he  system can be inver ted.  

That is ,  does (26) de f ine  x,y, and z ( a t  l e a s t ,  imp l i c i t l y )  a s  

functions of u,v, and w? Without t r y ing  t o  e s t a b l i s h  any ana lys i s  

of how we might ob ta in  t h e  r e s u l t ,  the  f a c t  i s  t h a t  from (26) w e  

can show t h a t  

That is ,  w is  dependent on u and v, even though now t h e  dependence 
is  no longer l i nea r .  What t h i s  means, by use of ( 2 7 ) ,  is t h a t  any 

function f(u,v,w) i s  ac tua l ly  a function only of the  two independent 

var iab les  u and v (and no t i ce  t h a t  we have not proven t h a t  u and v 

a r e  independent, b u t  a glance a t  (26)  should convince you t h a t  they 

are*) . 

In  p a r t i c u l a r  

*But i n  t h e  e v e n t  you  a r e  n o t  c o n v i n c e d  a  more i n d e p t h  s t a t e m e n t  
w i l l  be  made later. 



In  any event,  when a  condit ion such a s  (27) holds ,  we say t h a t  t he  

functions (var iab les )  u,v,  and w a r e  func t iona l ly  dependent. This is 

a  genera l iza t ion  of l i n e a r  dependence. Namely, every case i n  

which we have l i n e a r  dependence we a l s o  have funct ional  dependence, 

but  we may have func t iona l  dependence without having l i n e a r  

dependence. Indeed, (27) shows us t h a t  we have funct ional  dependence, 

bu t  t he  f a c t  t h a t  u2 appears on the r i g h t  s i d e  of (27) t e l l s  us 

t h a t  t he  dependence is nonlinear.  

There i s  a very concise mathematical way of s t a t i n g  what we mean 

by funct ions  being func t iona l ly  dependent. For t he  sake of con-

cre teness  w e  w i l l  i l l u s t r a t e  t he  d e f i n i t i o n  i n  terms of th ree  

equations i n  t h r ee  unknowns, and then s t a t e  t he  more general  

de f in i t i on .  

u, v, and w a r e  funct ions  of x, y ,  and z .  Then u, v,  and 

a r e  s a i d  t o  be func t iona l ly  dependent i f  and only i f  there  e x i s t s  

f  : E~ ;E ,  such t h a t  f  (u,i,w) = 0 bu t  f # 0 ,  ath~ry=$er ,-13 

A , \and w a r e  ca l l ed  funct ional ly  independent. ' 2 -7-

A complete understanding of t h i s  d e f i n i t i o n  again requi res  t h a t  we 

know t h e  d i f fe rence  between an i d e n t i t y  and an equation. 

For example, i f  f = 0 ,  then f(yl ,y2,y3) = 0 f o r  every 3 - t r i p l e  

(yl,y2,y3). What our d e f i n i t i o n  says t h a t  i f  f # 0 bu t  f(u,v,w) = 0 

then u, v, and w a r e  func t iona l ly  dependent. 

To i l l u s t r a t e  t h i s  i n  terms of t he  s p e c i f i c  system (26) ,  w e  see 

from (27) t h a t  

Using (27')  a s  motivation,  consider the  function f J  defined by 

Clear ly  f  is  not  t he  zero funct ion,  s ince  among other  th ings ,  

i f  we l e t  yl = y2 = yg = 1 i n  (28) we obtain  f  ( 1 1 , )= l2- 1 - 1 

= -1 f 0. On t h e  o ther  hand, (28) says t h a t  f (u ,v ,w) = u2 - v - W ,  

and t h i s  is i d e n t i c a l l y  zero from ( 2 7 '  ) . 



More i n t u i t i v e l y ,  t he  mathematical d e f i n i t i o n  of func t iona l  

dependence simply s t a t e s  t h a t  t he re  i s  a non-t r ivia l*  r e l a t i onsh ip  
- .

between u, v, and w t h a t  makes these  var iab les  dependent. " 

Our aim i n  t h i s  s ec t i on  is t o  show how funct ional  dependence' is  

r e l a t ed  t o  a Jacobian matrix (or  determinant) .  Again, omit t ing 

proofs, t h e  major r e s u l t  is: . .. 

A. 
 -. 

u = u ( x , Y , z ) ,  v = v ( x , Y , z ) ,  and w = w(x,y,z) where x,  y, and z 

independent va r i ab l e s  and u,v,w a r e  continuously d i f f e r en t i ab l e .  

u, v, and w a r e  funct ional  dependent-in some region R i f  and 

1~ 0 i n  t he  region R (i.e., i f  and only 

is s ingula r  f o r  a l l  ( x , y , z ) ~R) 

Again, from an i n t u i t i v e  point  of view, t h i s  condit ion i s  the  only 

one t h a t  prevents us from solving f o r  dx, dy, and dz i n  terms of 

du, dv, and dw once we have t h a t  

With respec t  t o  (26) ,  observe t h a t  

there fore ,  

5 3 3 = 32x yz + 3 2 ~ z ~ ~ ~ ~+ 32x y 

3 3 5
-32x y z - 32xy3z3 - 32xy z 

5 3 3+32xy3z3 + 32xy5z - 32x yz - 32x yz 

*By " t r i v i a l "  we mean t h a t  f o r  any t h r e e  v a r i a b l e s  U , V ,  and w ;  
ou + ov + ow 30.  N o n - t r i v i a l ,  t h e r e f o r e ,  i s  r e f l e c t e d  i n  t h e  . 

d e f i n i t i o n  by t h e  requirement t h a t  f $ 0 .  



which t e l l s  us t h a t  u, v, and w a r e  func t iona l ly  dependent, even 

though it may not  revea l  t h e  s p e c i f i c  r e l a t i onsh ip  t h a t  e x i s t s  

between u, v, and w. 

This r e s u l t  c a r r i e s  over i n t o  t h e  case  i n  which we have more 

unknowns than equations. For example suppose t h a t  f l ,  ..., and 

f n  a r e  continuously d i f f e r e n t i a b l e  functions of t h e  n + k var iab les  

X 1 t - ~ t X n  + k - Then the  system of n-equations 

imp l i c i t l y  def ines  any n of t he  unknowns a s  d i f f e r e n t i a b l e  functions 

of t he  o ther  k unknowns i n  a neighborhood of a po in t  s a t i s fy ing  

( 2 9 )  i f  t he  Jacobian determinant of f l ,  ...,f n  with respect  t o  the  

n dependent var iab les  i s  not zero a t  t h a t  point .  

Again, f u r the r  d e t a i l s  a r e  l e f t  f o r  t he  exercises .  

The Jacobian i s  t o  t he  study of t he  ca lcu lus  of vector  functions 

a s  t h e  de r iva t i ve  is  t o  t he  study of ca lcu lus  of a s i ng l e  r e a l  

var iab le .  

In  order  t o  appreciate t h e  Jacobian, we f i r s t  introduced l i n e a r  

a lgebra  and appl ied t h i s  study t o  systems of equations involving 

t o t a l  d i f f e r e n t i a l s .  

In  t h i s  chapter  we have t r i e d  t o  give an ink l ing  a s  t o  what r o l e  

t he  Jacobian, i n  p a r t i c u l a r ,  and matrix a lgebra ,  i n  general ,  

play i n  t h e  development of t he  calculus  of severa l  r e a l  var iables .  
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