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APPLICATIONS OF LINEAR ALGEBRA TO NON-LINEAR FUNCTIONS

A

Introduction

From many points of view this chapter should be the last few
sections of Chapter 6. You may recall we motivated that chapter

by looking at the system of equations:

¥y = fl(xl:...,xn)

- - (l)
Yo & fm(xl,...,xn)

and studying the special case in which £ire+., and £ were linear
functions of the n variables Kireees and Xpoe

The reason for emphasizing linearity was based on the fundamental
result that if fl,..., and fm were not linear but were at least
continuously differentiable functions of Xireans and X then
increments &xl,..., and ﬂxn would produce increments ayl,...,
and Ay which could be approximated by the differentials Ayqreees

and dym, where

dy, = ;zi dx, + + ~;zl dx
) l xl l - s " = an n
: ] 3 (2)
dy = EZE dx, + + aym dx

m aXy L e e IX, n
lIEI'

oy oy
1 1

%yl P axl s AL = T T Axn
Ay mgz— Ax. + + aym Ax

m %axl i e 3 » n

Recall that Xireses and X refer to increments measured from
a given point; say, Xy = @yseeer X, = 2., SO that each of the
coefficients, ayi/ axj, in (2) is a constant, namely

*
= @
9% y X = a .

* Actually, had we been consistent with our notation in (1) we would
have written fj (al,...,a ) rather than (2'). The confusion arising
from the use of ] multiple subscripts encouraged us to adopt the

shortrer potation used in (2) and (2').
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[where x = (xl,...,xn) and a = (al,...,an)]

In any event, the main point is that while system (1) is not necessarily
linear, system (2) is, That is, system (2) expresses dyl,..., and
dy, as linear combinations of dx;,..., and dx,.

Thus, the study of linear algebra, introduced in Chapter 6 to help
us study system (1) in the case that the functions were linear, can
now be applied to system (2) provided only that the functions are
continuously differentiable (a far weaker [i.e., more general]
condition than being linear). In summary, while Yyreeos and ¥ need
not be linear combinations of Xirenes and X i dyl,..., and dym are
linear combinations of dxl,..., and dxn; so that we may view &yl,...,
and Ay, as linear combinations of &xl,..., Ax in sufficiently small

neighborhoods of a point (al...,anJ.

Our main reason for beginning a new chapter at this time is so

that we may better emphasize the implications of system (2).

B

The Jacobian Matrix

In terms of structure, system (1) may be viewed as an example of
f(x). That is, system (1) may be identified with the vector

function

£:E" + E" Y
defined by

E(xXgreeerx)) = (Yyreeesyy) _ (4)
where

Yyreees and Yy, are as in, 1)

[Equation (4) is abbreviated as usual by y = f(x) where y =

(er---er) and X = (xl:---:xn)]

In Chapter 6 we introduced such questions as whether f was onto
and/or 1l-1. We could extend our inquiry still further by asking

what it would mean to talk about, say,
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For example, in line with our previous strategies, it would make

sense to say that

lim £(x) = L (where x ¢ E¥ but L e E" since f(x)e E")

xve

means

Given £ > 0 there exists § > 0 such that

o< ||l x-a [|<6~+]] £x) - L[] <€ .

We also might have noticed that f may itself be viewed as an

m-triple. Namely, if we substitute the values of Yyreoer and
Y as given by (1) into (4) we obtain

E(XgpeenrX)) = [E7(XppeeerX ) peeerfp(Xyrennix))]
or
E(x) = [£7(X),eee, £ (X)] (5)

Since each component of the m=-triple in equation (5) is a scalar
function of x we already know how to compute limits involving these
components. [By way of review lim f(x)= L means given ¢ > 0 we
can find 6§ >0 such that 0 < || 55:25 || < 6+ | £(x) - L| < €]

It would then seem natural to use (5) to define lim £(x); i.e.,
X+a
lim £(x) = [lim fl{g),..., lim fm(ﬁll (6)

x>a x+a x+a

(Definition (6) can be shown to be eqguivalent to the ¢,8 - definition,

but this is not too important in the present context.)
Returning to (5), notice that we may now write

£= (£ oninky) (7)

1

with the understanding that (fy,...,f) means [f,(X),...,£ (x)].




If we were now to become interested in the calculus of f it would
seem natural to extend the notation in (7) by defining

N
gx = (dyl:---:dym)
and . (8)
dx = (dX;,...,dx )

<

To define f'(x) we might then try to copy the structure
dy = f£'(x)dx (9)
used in the calculus of a single variable.

That is, we shall try to relate dy and dx, as defined by (8), in
the form

and then to capture the structure in (9), define M to be f'(x).

Observe that equation (10) is a "strange animal"”, Neither dy nor
dx is a number. In fact, each is a vector and they need not have
the same dimension. That is, dy is an m-triple, dx is an n-triple
and m need not equal n. With this in mind, equation (10) should
suggest matrix arithmetic. (For example, viewing dy and dx as

column matrices, we see that dy is m by 1 while dx is n by 1.
Hence, by the usual properties of matrix multiplication M [in
equation (10)] must be an m by n matrix.)

If we re-examine system (2) in an equivalent matrix form, we see

that

dyl ayl wnie ayl rdxl

i X oKX L

22 .n

éy J " y [.éx

§n Wy ... Wy ¢ B

dy 5% n | ax (11)
Equation (11) now tells us how to define E'(E}' Namely we define

£'(x) to be the m by n matrix [ayi/ale whereupon (11) becomes

7.4
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is so important that it is given a special name,

: i
The matrix e
Namely

independently o% whether we elect to interpret it as f'(x).
xf Yyreeos and Y, are continuously differentiable functions of n

independent variables Xireses and X We define the Jacobian Matrix
to be the m by n matrix

of Yyreeer¥py with respect to'xl,...,xn

’ayl 3y,

3y;| | 3%, 9%4
ax_ .' = - -

J AYa Y

5xl axn

This matrix is often denoted by

Yyres¥pq
Bl
Lo oo X

or

*
a( y1!'°'fym)

a( xlr-t-rxn}

The remaining sections of this chapter describe applications of the

Jacobian.

c

The Inverse Function Theorem

In the previous unit, we discussed informally**how to invert system
(1) in the case m = n. Namely, given the system

*# In many texts 9(y ,...yn)fa(xl,...,xn) is reserved to name the
determinant of the 3acobian matrix. Notice that determinants

apply only to square matrices, hence, we prefer our notation and
we will writela(yl,...yn)fa(xl,...,xn)l when we mean the determinant.

*#*That is, we used loose expressions such as "dyy Ay" and
"sufficiently small" without attempting to show what these
meant in rigorous, computational terms.
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fn(xl,...,xnj

we formed

dy, = ;;l dx) +..t ;;i ax
- l n n
. 0y Ay

_ %dp n
dyn = EEI dxl +u0at 3;; dxn

from which we concluded (from our studies of linear algebra) that
dXy,..., and dx  could be expressed uniquely as linear combinations
of dyl,... and dy provided that [3y, /Bk ] was non-singular

(e 5 [ay: /ale'l existed, or in the language of determinants,

det [ayi/ale # 0).

Restated in the language of vector calculus, from system (1) we
obtained system (2) which is equivalent to

9y .
dy = f£'(x)dx, where £'(x) = [ axl]’

and we concluded that we could solve for dx in terms of dy provided
that [£'(x)| * # 0. 1In fact, if [£'(x)| # 0 then

ax = [£' (x) 17t ay .

This result can be proven rigorously and once proven it goes

under the name of the Inversion Theorem or the Inverse Function

Theorem.

The theorem corroborates what we already suspected from our

informed treatment. More specifically,

|The Inverse Function Theorem
|Suppose E:En -E" is continuously differentiable**at x = a eER

* Keep in mind that f'(x) is, in the present context, an n by n
matrix so it makes sense to talk about the determinant of f'(x).

**In terms of f = (f.,,...,f ), we define f to be continuously
differentiable ++ each of its scaler-function components fl’ vy
and f is continuously differentiable.

7.6
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Then if £'(g) # 0 there is a (sufficiently small) neighborhood

Rof x=a such that, when restricted to R, f is 1-1 and onto
(i.e., £ 1 exists). 1In other words if § = £(R) then f:R+S is
invertible, i.e., g‘l:s-+R exists. Moreover g = £‘1 is then a

continuously differentiable function of Yyreeer¥y in § and

|
Ilg' (R)|
|

= 1
|£' (a) |

The theorem is given a computational application in Exercise

4.6.1. Pictorially, the theorem says:

i+

=2 e s = £(R)

Summarx

1. f is 1-1 on R, but

2. If £(x,) = yeS where x;€ R it is possible that there is
another vector EzEEn such that Etfl} = Etfz)' However X, cannot
be in R (since f is 1l-1 on R).

3. This is why the inverse function theorem is said to involve
a local property. That is, all "bets" about f being 1-1 are

"off" once R gets too large.

D

A New Look at the Chain Rule

Suppose
21 = 91y ey
: o (12)
2z, = 9 (Yyreeeyy)
T




and
Y, = fl(xl""’xn}l
3 . (13)
Y = fk(xl,...,xn}
Then clearly, systems (12) and (13) allow us to conclude that
Zysese,2, are functions of Xyreoe X o
Notice that if we elect to write (12) and (13) in such a way
as to emphasize the idea of vector functions, we have
£:EMEF, g EX > E®
er-'-r
0
where £ = {fl,...,fk), g = {gl,...,gm): and fl""’fk' Gyrewer9y
are as in (12) and (13).
In terms of (14), we see that if h = g - f then h : E® » Em;
i.e., z = h(x), where h(x) = g(f(x)), and this in turn seems to
suggest the chain role. 1In fact if we assume that f and g are
continuously differentiable, systems (12) and (13) lead to
F4 9z

- 1 i

?zl = 3y, dyl + e T dyk
1 1k
i azm 3zm (13)
dZm='§'§-]':dyl+...+a—y-l:dYk
and
%Y, ay

Wy =5 Pt oeee R P
- - (16)
. ayk ayk
dyk—ﬁ(—idxl‘f Bl +‘den

Since (15) and (16) are linear systems, we may apply our knowledge
of matrix algebra to conclude that
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and since matrix multiplication

If we now introduce

[=E]
N
l_._l

|
o
~

|

Q)

Yy

E2
3
al
[ ]
¥y
axl

o
-
o
.

-

@
i
+= |3

sz |ffoy, N
3.k a%l Ay

is associative this says that

.

)

afn

ayk

—_—

aﬂq)

(17)

the Jacobian notation as well as the notations

dx and dz into (17) into (17) we obtain

d

N

3(21,...,zm
B{yl,...,yﬁ

I

3(Yyreneryy)
3(x1,...,x57

dx

(18)

With this notation, notice also that (15) and (16) take the forms

az

&

a(zl,...,zmj

atyla---ryk) gx

B el

a{xl,...,xn)

ax

:

Ld

o

(19)

To identify this discussion with the derivatives of vector functions

A ]
notice that equation (19) says

dz = g'(Wa&
(20)

ay = £'(x)dx

while equation (19) says

dz = [g'(y)][£'(x)] dx (21)

‘Since z = h(x) , it also follows that

dz = h' (x)dx (22)

7.9




Comparing (21) and (22) we see that the chain rule as it exists
in the study of the calculus of a single real variable extends to
the calculus of vector functions,

By way of review, recall that the "old chain rule said:

Tf£ £ : BEX 9ET, g ¢ E- +E- are differentiable and h = gof, then h

is also differentiable. Moreover if Xy e dom £, h'(xo] = g'(yo)
) —
53 {xo} where Yoy ™ f(xo).

Now what we have is:

TE £ 2 " +Ek and g : Ek +E™ are continuously differentiable and

= gof then h : EM + EM is also continuously differentiable.

oreover, if x edom f and y = f(x ), then h'(x)) = [g'(y )]1I[£'(x))]

In fact if we identify 1 by 1 matrices with numbers, it is easily
seen that the "old" chain rule is a special case of the new

chain rule. In addition notice that the Jacobian matrix notation
B(Yl,...,yk)/a{xl,...,xn) is an extension of the idea of writing

f'(x) as dy/dx. Namely, if we look at (18) and (22) we see that

IE e L PR 3(Y :---,Yk)
dz = 1  Z) dx and dz ={ 1 E z so that
a(}(l'.n.,xn} 3(Y1:---1Yk} a(xl!"'!xn]
a(zl,...,zm) a(zl,....zm) atyl,...,yk)
T(Xyrereoxy) |3(¥yreeesy)) | [P0k reeerxy) |- : (23)

Equation (23) indicates that we may treat (yl,...,yk} as a number
and cancel it from both numerator and denominator on the right
hand side of (23), so that the fraction-like notation for the

Jacobian is justified.

Again, as reinforcement, notice in the special case that r = k = m = 1,

equation (23) becomes the familiar

3z _ dz, d
% = Eg .

As another special case if r = k = m and g = ;ﬁl (assuming

|

exists), equation (23) becomes

7.10
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B(xl,...,xm ) B(Kl,...,xn) B{yl,...,yn}] 6
3{xl:«¢0fxn) B(Yl;---ayn) a(xlf-'-:xn)J

and since

thl,...,xn)

I (see Exercise 4.6.8)
a(xl,...,xn)

equation (24) reaffirms the fact that

=1
a(xl,...,xn) ) IB{yl,...,yn)
a(yl,...,yn) a(xl,...,xn)

Other computations are left to Exercise 4.6.4, and this concludes
our introductory remarks concerning the Jacobian as an extension

of the chain rule.

E

Functional Dependence

In our study of linear systems of equations, we saw that a crucial
point was whether any of the equations was a linear combination of

the others. For example, we saw that the system
Yy =%y * 2x2 + 3x3

4xl + 5x2 - 6x3 (25)

LS
N
Il

Yy = 7xl + 8x2 + 9x3

was not invertible, even though it was three equations in three
unknowns, because the third equation was twice the second minus
the first. That is, yy + 2y2 - ¥yi or egquivalently, y, = 2y2 -
y3, etc., but the important point is that at least one of the
equations can be written as a linear combination of the others.
For this reason we say that the system of equations (25) is linearly
dependent. The concept of linear dependence will occur again in
our course in Block 7 when we discuss differential equations and
in Block 8 when we talk more about linear algebra. For now,
however, all we want to point out is that the question of inverti-
bility of a system of n eguations in n unknowns was resolved in

terms of whether the system of equations was linearly dependent.

7 o




This idea could be extended to the case in which the number of
equations and the number of unknowns were unequal. For example,

if we were given four linear equations in seven unknowns, we would,
in general, expect to be able to choose three of the unknowns at
random and this would have the effect of reducing our system to

four equations in four unknowns, from which we could then determine
the value of the other four unknowns. The success of this procedure,
of course, required that the resulting system of four equations in
four unknowns was not linearly dependent.

Now, if we leave out any reference to the equations being linear,
the same type of questions is still suggested. For example,
suppose we are given the non-linear system of three equations

in three unknowns,

u = x2 + yz + z2
S (26)
v = 2x2y2
4 . 4 4

WS KT 4 ARUES 4 FY 4 2y222 +y

then we might be tempted to ask whether the system can be inverted.
That is, does (26) define x,y, and z (at least, implicitly) as
functions of u,v, and w? Without trying to establish any analysis
of how we might obtain the result, the fact is that from (26) we
can show that

w=u -v. (27)

That is, w is dependent on u and v, even though now the dependence

is no longer linear. What this means, by use of (27), is that any

function f(u,v,w) is actually a function only of the two independent
variables u and v (and notice that we have not proven that u and v
are independent, but a glance at (26) should convince you that they

are¥*) .
In particular

f(u,v,w) = f(u,v,uz-v) = g(u,v)

*But in the event you are not convinced a more indepth statement
will be made later,
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In any event, when a condition such as (27) holds, we say that the
functions (variables) u,v, and w are functionally dependent. This is

a generalization of linear dependence. Namely, every case in

which we have linear dependence we also have functional dependence,
but we may have functional dependence without having linear
dependence. Indeed, (27) shows us that we have functional dependence,
but the fact that uz appears on the right side of (27) tells us

that the dependence is nonlinear.

There is a very concise mathematical way of stating what we mean
by functions being functionally dependent. For the sake of con-
creteness we will illustrate the definition in terms of three
equations in three unknowns, and then state the more general

definition.

Suppose u, v, and w are functions of x, y, and z. Then u, v, and
are said to be functionally dependent if and only if there exists
a function f : E3 + E, such that f(u,v,w) = 0 but £ # 0, otherwise

, v, and w are called functionally independent.

A complete understanding of this definition again requires that we
know the difference between an identity and an equation.

For example, if £ = 0, then f(yl,yz,y3} = 0 for every 3-triple
(yl,yz,ys}. What our definition says that if £ # 0 but f(u,v,w) =0
then u, v, and w are functionally dependent.

To illustrate this in terms of the specific system (26), we see

from (27) that

ul - v-w=0 . (27')
Using (27') as motivation, consider the function £, defined by
2
f(YlJY2:Y3) = Yl = Mg = Yy (28)
Clearly f is not the zero function, since among other things,
if we let y; = y, = y; = 1 in (28) we obtain £(1,1,1) = AR TR |
= -1 # 0. On the other hand, (28) says that f(u,v,w) = Ul = v - W,
and this is identically zero from (27').
713




More intuitively, the mathematical definition of functional
dependence simply states that there is a non-trivial* relationship
between u, v, and w that makes these variables dependent.

Our aim in this section is to show how functional dependence is
related to a Jacobian matrix (or determinant). Again, omitting
proofs, the major result is:

If u = ulx,y,z), v =v(x,y,z), and w = w(x,y,2) where x, y, and z
are independent variables and u,v,w are continuously differentiable.
Then u, v, and w are functional dependent in some region R if and
only if |a(u,v,w)/a(x,y,zllz 0 in the region R (i.e., if and only
if 8 (u,v,w)/9(x,y,2) is singular for all (x,v,z)e R)

Again, from an intuitive point of view, this condition is the only
one that prevents us from solving for dx, dy, and dz in terms of
du, dv, and dw once we have that

_ ou Ju
du = X dx + 3; dy + 3z dz
_ v v v
dv = P dx + 3y dy + e dz
_ oW oW oW
W= O gy ¥ F g 9

With respect to (26), observe that

2x 2y 2z
d (u,v,w) _ axy? ax2y 0
9 (x,y,2) 4x3 + 4x22 4Y32 + 4Y3 4x22 + 4z3 + 4y2z
therefore,
3(u,v,w) 3

= 2x[4x%y (4x°z + 4z + 4y°2)]
0oy s2)| Loy raxy® (4x®z + 423 + 4y%2)]
+2z[4xy? (4yz? + 4y?) - 4xPy(4x> + 4xz?)]

= 32x5yz + 32x3y23 + 32x3y3z

—32x3y32 - 32xy323 o 32xysz

3.3 5

+32xy 2z~ + 32xy z - 32x5yz - 32x3

3
yz

*By "trivial" we mean that for any three variables u,v, and w;
ou + ov + ow =0. Non-trivial, therefore, is reflected in the
definition by the requirement that £ # 0,

7.14
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which tells us that u, v, and w are functionally dependent, even
though it may not reveal the specific relationship that exists

between u, v, and w.

This result carries over into the case in which we have more
unknowns than equations. For example suppose that fl,..., and
fn are continuously differentiable functions of the n + k variables

b Then the system of n-equations

1'-.-,xn + k-

|
o

fltxl,...,xn + k)
. (29)

fn{xl,...,xn = k)

implicitly defines any n of the unknowns as differentiable functions
of the other k unknowns in a neighborhood of a point satisfying

(29) if the Jacobian determinant of fl,...,fn with respect to the

n dependent variables is not zero at that point.

Again, further details are left for the exercises.

Summarx

The Jacobian is to the study of the calculus of vector functions
as the derivative is to the study of calculus of a single real
variable.

In order to appreciate the Jacobian, we first introduced linear
algebra and applied this study to systems of equations involving
total differentials.

In this chapter we have tried to give an inkling as to what role
the Jacobian, in particular, and matrix algebra, in general,
play in the development of the calculus of several real variables.

7.15




MIT OpenCourseWare
http://ocw.mit.edu

Resource: Calculus Revisited: Multivariable Calculus
Prof. Herbert Gross

The following may not correspond to a particular course on MIT OpenCourseWare, but has been
provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu
http://ocw.mit.edu/terms

