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MATRIX ALGEBRA IN THE STUDY OF FUNCTIONS OF SEVERAL VARIABLES

A

Introduction

In Block 3, we emphasized the form f(x). Notice that if we elect

to view the real number system as a l-dimensional vector space
(i.e., as the set of l-tuples), then f(x) may be viewed as a special
case of f(x). 1In other words, we may identify

£:E" + R

Quite apart from this rather trivial identification, there are
many important reasons for introducing the study of mapping vector
spaces into vector spaces. The reason,we shall exploit in the
development of Block 4,is that the concept of systems of eguations
in several unknowns (variables) lends itself very nicely to the
format of studying functions from one vector space into another.

For example, rather than a single equation of the form y = g{xl,...,xn},
suppose we had a system of m such equations, say

¥y = gl{xl,...,xn)

. (1)

Y

Il

gm(xl,...,xn)

The point that we wish to exploit in this chapter is that the .
system of equations defined by (1) can be viewed as a single vector

function which maps E” into E®. To be more specific, we may view
equations (1) as the mapping which sends (Xy,+..,%x,) into
(yl,...,ym}, where yl,...,ym are as given by equations (l1). That is,
we may define g:En + E® by

g(xl,...,xn) = [gltxl,...,xnj,...,gm(xl,...,xn)]

In terms of a more concrete example, suppose we have that




¥y = x12 + 3x2 + 4x3 + 2x43
4 5 (2)
Yy = %Xj - 4x,7 + 5x37 + 6%,

then we are saying that equations (2) induce a function g:E4 - Ez,

where g is defined by

G(X) X0 Xq,%,) = {xl2 + 3x, + 4x, + 2x43,x1 = 4x22 + 5x32 + 6x,).

(3)

For example, equation (3) yields

g(1,0,0,0) = (1,1) (4)
where (4) was obtained from (3) by letting X) = 1 and Xy = X4 =
X, = 0.

Pictorially, we may view equations (2) as

b
Yl

. 3
2
(xl +3x2+4x3+2x4 ’
x1-4x22+5x32+6x
N

(xl,xz,xs,xq}

1)

Notice that such concepts as 1-1, onto, and inverse functions were
defined for mappings of any set into another. In particular, then,
we may ask whether g is 1-1 and/or onto, but such inquiries lead

to extensive computational manipulations. For example,with respect
to equation (3), asking whether g is onto is equivalent to the
algebraic problem:

Given any pair of real numbers Yy and Yo do there exist values
for xl, Xor X3 and X4 such that

2
1

3
4

Y1 X + 3x2 + 4x3 + 2x

= - 2 2 ?
Y Xy 4x2 + 5x3 + 6x4 ;

Notice that this is again (2), with a different emphasis.
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In this context, equation (4) says that one solution of (2) if
Yy =¥ = 1l is i - 1 and X, = X5 = X, = 0. There may, of course,

be other solutions, in which case g would not be 1-1.

Notice also that (2) is a fairly simple illustration of equations
(1). In general, equations (1) may be so "messy" that the algebra
becomes very difficult if not completely hopeless.

There is, of course, one particularly simple choice of gyrerer9y
in equations (1) that is easy to handle algebraically, and that

is the case in which the g's are linear combinations of XyreossXpe

By a linear combination of Xireeos and x,, we mean any expression

of the form

+lll +
i L} ah*n

where Ayreenys and a, are constants.

In fact, the first equations we learned to handle in our elementary
algebra courses were of this type. All too soon we were taught that
these were overly-simple, whereupon we moved on to "harder" equations
such as gquadratics, cubics, logarithms, etc. Yet the astounding
point is that, in the midst of some very serious complex arithmetic
which surrounds the calculus of several variables, we find that

the "simple" linear combinations are the backbone of our investi-
gations. More specifically, we have seen that if f is a differenti-
able function of x = (X;,...,x ) at x = a (that is, if f_ reeerfy

. " 1 n
all exist and are continuous at x = g) then

Af = f(al + AXy,e..,a + &xn)— f(al,...,an) = [fx {al,...,an)éxl+ R

n 1

fxn{al,...,an} ﬂxn} + [k, Xp + aee ¥ ko 4x ] (5)

where kl""’kn + 0 as ﬂxl,..., ﬂxn =+ 0.

Since the bracketed expression in (5) is a higher order infinitesi-
mal, we see that for values of x "sufficiently near" a that Af is
"approximately equal" to the portion of equation (5) that appears

in braces, and this portion in braces is a linear combination of

Kyreany and &xn.




If this seems a bit "highbrow", let us observe that we had already
used such results in Part 1 of this course when we studied functions
of a single (independent) real variable. In that case, the geo-
metric interpretation was that if a curve was smooth at a point,

we could replace the curve by its tangent line at that point,
provided that we remained "sufficiently close" to the point in
question. In other words, the linear approximation given by (5) is
a local property (as opposed to a global property), meaning that

once we get far enough away from a, the linear portion on the right
hand side of (5) no longer is a reliable estimate of Af.

In essence, then, if we study the local properties of functions of
several variables, we may view the functions as being appropriate
linear combinations of the variables, provided only that our
functions are differentiable (so that equation (5) applies).

It is for this reason that the subject known as linear algebra (and

in many respects this is a synonym for matrix algebra) finds its way
into the modern treatment of functions of several variables. While
we must keep in mind that there are other, independent reasons for
studying matrix algebra, the fact that it has a "natural" application
to functions of several real variables (which, after all, is the
subject of this entire course) is enough reason to introduce the
subject at this time.

It should be noted, however, that in any "game" of mathematics we
never have to justify our reasons for making up definitions and
rules. Consequently, while the present course material serves

as motivation, the fact remains that our introduction to matrix
algebra in this chapter can be understood without reference to

functions of several real variables.

At any rate, our aim in this chapter is to introduce matrix

algebra in its own right without reference (except for motivation)

to the calculus of several variables. Then, once this is accomplished,
we will, in the next chapter, revisit functions of several real

variables from the new vantage point of matrix algebra,
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An Introduction to Linear Combinations

Consider the two systems of equations (6) and (7) given below

2) =y * 2y, - 4y,
(6)

z, = 2y1 - 3y, + 5y3

¥y =%, & 3x2 = 2x3 + 4x4

(7)

v

Y, = 3x1 - 2x, + 3x3 = 5x4

' 5xl + sz - 4x3 + 2x,

-

In this case, it is easy (although, possibly tedious) to express

and 22 explicitly in terms of x;, X,, X3 and x,. Namely, we
simply replace Yir Yoo and Y3 in (6) by their values given in (7),

and we obtain

= (x, + 3x2 - 2x3 + 4x4) + 2{3xl - 2x2 + 3x3 - 5x4) -

1 1

4(5xl 4 sz - 4x3 + 2x4)

zZ, = 2(xl + 3x2 - 2x3 + 4x4) - 3(3xl - 2x2 + 3x3 = 5x4J <

5(5xl + 8x2 - 4x3 + 2x4)

or
z, = -13xl - 33x2 - 20x3 = l4x4

(8)
z, = 18xl + 52x2 - 33x3 + 33x4

While obtaining (8) from (6) and (7) was not difficult, the fact

is that by using specific coefficients, we may not have noticed

a rather interesting relationship between how the coefficients in

(6) and (7) were combined in order to obtain the coefficients in (8).
To understand better what went on, we will restate equations (6)

and (7) in a manner that better emphasizes the coefficients. This

6.5




leads to the idea of double subscripts. For example, in equations (6),

let us pick a single letter, say a, to represent a coefficient, and
we shall then use a pair of subscripts, the first to tell us the
row in which the coefficient appears and the other, the column.

For example, by a,; we would mean the coefficient in the first

row, third column on the right hand side of (6). Translated into
the language of the z's and y's, this would mean the coefficient of
Y3 in the expression for z;. In terms of the actual coefficients
given in equations (6), we have:

= -4

a =1, a = 2,

12 i

2, as,

as; = =3, as3 = 5 .«

In a similar way, we may generalize the coefficients in (7) by
using the letter b with double subscripts. Again, in terms of
our specific choice of coefficients in (7), we would have:

Byy = 1 Byg = 3iby3 2 72, by = 4
byy = 3, byy = =2, by3 = 3, byy = -5
Byy ™ B By = B, digy ™ =¥, By, &2

If we now rewrite equations (6) and (7) in this more general form,

we obtain

Zy = @Y1 * a35¥; t a5y,
(9)

Zy = a1¥; + ax¥y + a33¥;3

Yy = by¥X) + byoXy + by Xy + by ux,
¥ = blel + bzzx2 + h23x3 + b24x4 (10)
Y3 = DP3y¥) + byyX, + bygxy + by,x,

Substituting the values for y as given in (10) into equations (9),
we obtain

e o

Ed €3 9% £

-l S on e e
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2y = 83y (bygXy ¥ BpgXy ¥ BygXy + byl ¥ ay,(by Xy Hbyoxs + b,y +
Pog¥y) * Byuibge¥y * Bagke ¥ Dagity ¥ Doy
2y = a5y By %y ¥ Brp¥p + BygXy +byXy) +as,(bgy% +bygXy + Doy 4
bag®e) * 853(037%) + Bao¥y + bagky + bayxy)
or
2y = lagyPyy *+ 819Pp; + gbgp)Ey ¥ (B3P ¥ aggbay Foaygby)x, +
(RyyPyg * Agobsg + By Pys) Ry b (8718 + Bgaboyg *
3)3P34) %y
2y = (a3)by) + ap3by; + ap3b3y)x; + (ayby; + ayzby; + ay3b3y)x%, +

(8y1P33 ¥ Bagbag + Byybogd®y ¥ (85:P; 4 F Bygloy * Aygbay) Xy
(11)
We may emphasize equations (11) further by introducing the notation

X, + .

. s s | jokg + €

j3%g F Cp %

N
Il

4

Za = 021xl + x22x2 + c23x3 + c24x4

=

Cy3 = a33Py3* @1Pyy + aj3b3y | ©31= aybyg + axyby; + ay3bsg
Cia = 311Pyo% 315Pp5 + @33b35 | ©p5= a51b15 + anyby, + 35405,
b (12)
Cy3 = @33yt a3pby3 + 83355 | ©p3= aj b5 + apyby3 + 353055
Cigq = @pgPygt 31505 + a533b3, | €= @y by + ay,by, + ay3bgy,

-

If we examine the subscripts in (12) we find the following relationship.
Each c consists of a sum of three terms, each of the form ab. The

first subscript of a matches the first subscript of ¢, the second

subscript of b matches the second subscript of ¢, and the second




subscript of a matches the first subscript of b taking on all values
1,2,3. That is, using I-notation, equations (12) become

3 3
€13 = % a;,by €1 = I a3,bg
r=1 r=1
3 3
€12 = I aj. b, Cxp = T ayb.,
r=1 r=1 (13)
3 3
€13 = I a;,b,4 Ca3= I a;b4
r=1 r=1
3 3
Ci14 = L a;,b., Caq = T ayb,
r=1 r=1

Equations (13) can be further abbreviated by letting cij denote

the coefficient of X5 in the expression for z;. That

is , we may abbreviate (13) as

3

cij = I airbrj where i = 1,2 and j = 1,2,3.

r=1 »

With this discussion in mind, we can generalize equations (6) and
(7) as follows.

Let

2] ™ Byq¥y Feest Ay ¥y

. (14)
Zp = 8n3¥y et A ¥y

and let

¥1 = bllxl I blmxm )
’ 15
yk = bklxl E L bkmxm

then

Z3 = 1% Yoot C0%m

Zn = cnxl b A Cnm -

6.8
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where

k
Cij =& airbrj
r=1

A= ieseentand J = Lyee oolie

Notice that k,m, and n can be any positive integers [in equations
(6) and (7), we had n = 2, k = 3, and m = 4] subject only to the
conditions that the value of k in (14) must equal the value of k in
(15). That is, Zyrenns and z, are linear combinations of YyreeerYyr
and each of the variables yl,...,yk is a linear combination of

xl,oo-;xno

This discussion is adequate to motivate the invention of matrix
notation and the subsequent study of matrix algebra. We shall
pursue this development in the next two sections.

¢

An Introduction to Matrices

Matrix Algebra may be viewed as a game in the same way that many other

mathematical systems have been introduced into our course as

games. To say, however, that a matrix is a "rectangular array of
numbers" (which is the common introductory definition) hardly
describes (or justifies) the seriousness of the topic, nor the
reasons that such great effort was expended to develop the subject.

For our purposes, there is no need to trace the chronological develop-
ment of matrix algebra. Rather, it is sufficient to supply one
meaningful motivation for the invention of matrix algebra in terms

of the content of our present course.

Recall that we had considered systems of linear equations of the

type,

AT BNy T Een ot A
: . (16)
z, = a,,¥, + ess F an Yy
and
¥1 = bllxl + ae * blmxm
¢ . (17)
- .
Yk = bklxl + . + bkmxm
6.9




We then saw that we could express Zireens and z, as linear combina-
tions of Xjreons and X where the coefficients of the new linear
system were completely determined by the coefficients of the
equations (16) and (17).

In particular,

zl = cllxl T aeie: P cijxj + a e F O

X
1m™m
. ) L]

L] . .

. . . »
zZ. = s 4 X + sae ¥ s ¢ G F .
€i1%1 cljxj Cim*m
n .

where
cij = ailbij + aiszj +: e oF aikbkj; 1= 1lyeee,n; J=1lseee,m
k (18)
= F as: P (if we use I-notation)

ir rj
r=1

Certainly, nothing in our development of equations (18) requires

that we know anything about vector algebra, but it is interesting

to note that whenever we are given an expression such as X¥g +oeeed
X Y where the x's and the y's are real numbers, we may view the
sum as the dot product of two n-tuples. Namely,

XYyt ..+ Xy 0= (xl,...,xn)-(yl,...,ynj

[Recall that we used this technique in the textbook's approach to
the gradient vector as a special directional derivative.]

In any event, if we elect to view (18) in terms of a dot product,
we obtain

cij = (ailraizl “a ’aikJ . {blj :sz rees 'bkjj . (18a)
Our first vector on the right hand side of (18a), in terms of
equations (16), represents the coefficients of Yyreees and Yy

in the expression for . The second vector represents the
different coefficients of the variable X4 in equations (17).

6.10
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In other words, if we look at the arrays of coefficients in equations
(16) and (17), the first factor on the right hand side of (18) seems
to be a "row" vector, while the second vector seems to be a "column"
vector. More suggestively, perhaps we should have written (18) as
bij
C.. = (ail,...,aik). sz

1]
bkj .

(18)

Again, keep in mind that our discussion is in the form of foresight
toward the invention of matrix algebra and that there is no great
need to become ecstatic over equations (18a) and (18b). What is
important is that we can now invent a convenient "shorthand" to
summarize our results. Namely, we list the coefficients of
equations (1) and (2) "in the order of their appearance". That is,

gy, Sag e Jageer Nk R G kR
. N L . ’ s .
L . L8 . ‘o L ] .
821 %22 o Fppvvt %k 253, Prz"'?rj"'?rm (19)
. [} » ] [} [] ']
. . ’ . ] ’ " L4
?.‘.Ll ?12 P flir... ?1!: bkl bkz...bkj-..bkm
. ; 2 :
\ anl anz aas anr. “w ank

Each of the parenthesized expressions in (19) is then called
a matrix. This, hopefully, supplies at least a partial motivation
as to why a matrix is defined as a rectangular array of numbers.

To indicate more precisely the "size" of the rectangular array, we
include the number of rows and columns which make up the matrix.
(This is sometimes called the dimension of the matrix.) For
example, if a matrix has 3 rows and 5 columns we refer to it as a
3 x5 (or, 3 by 5) matrix, where it is conventional to list the
number of rows first, followed by the number of columns. More
generally, if p and g denote any positive whole numbers, by a

p X g matrix we mean any rectangular array of numbers consisting

of p rows and g columns.

It is also conventional to enclose the matrix in parentheses, just

as we have done in (19). By way of a few examples,

(1 3 -2)
8 7 6




is called a 2 by 3 matrix since it has two rows and three columns.

T v 2 =7 e 2
8 Vv3I 0 % 7
2 4 yv7I 8 0

is a 3 by 5 matrix since it has three rows and five columns. Notice

from this example that the matrix is made up of real numbers, not
necessarily integers.

Now it should be clear from our previous discussions in this course
that newly-defined concepts without structure are of little, if any,
benefit to us. In this sense, the expression given by (19) hardly
helps us - until we compare it with equations (18), (18a), or (18b).
Once we make this comparison it is not difficult to imagine a new
matrix, which can be formed by suitably combining the two matrices
in (19), which tells us how the coefficients look when Zysenns and
zn are expressed in terms of Kyreoes and xm.

In particular, the matrix we seek should be the one whose entry in
the ith row, ith column is obtained by dotting the ith row of the
first matrix in (19) [notice that each row of this matrix may be
viewed as a k-tuple] with the ith column of the second matrix in
(19) [again notice that each column of this matrix may be viewed

as a k-tuple]. We are not saying that this procedure is "natural"
what we are saying is that if we look at equation (18b) and the two
matrices in (19), there is a special way of combining the two
matrices in (19) to form a matrix which conveys the information
required by equations (18).

We use this as motivation for defining the product of two matrices.

Definition i

ayqeeedy bll"'blm €11***1nm

(20)

a 1t a4k bkl"'bkm Ch1***Snm i

where
k Y = Lyveie gB
Cij = Z_ airbrj' where |j = 1,...,m )
r=1
6.12
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or in n-tuple, dot product notation,

ij

cij = (ail,...,aik]‘

ge--U

k3
where we have used the notion of a column vector (k-tuple) to
emphasize what the ith row of the first matrix in (5) is being
dotted with the jth column of the second matrix in (20).

Note:

1. All that is required in (20) to form the product of two matrices
is that the number of columns in the first matrix equal the number

of rows in the second matrix.

2. More specifically, definition (20) tells us that an n by k
matrix multiplied by a k by m matrix is an n by m matrix (that is,
the product gets its number of rows from the first matrix, and its
number of columns from the second matrix).

3. An "easy" way to remember this alignment is in terms of
equations (16) and (17). Namely, in equations (16) the number

of columns (on the right hand side of the equations) is determined
by Yyreess and Yii while in equations (17) the number of rows is

determined by Yyreons and Y+

Examgle:

(21)

]

Equation (21) follows from definition (20). For example to find
the entry in the 2nd row, 3rd column of the matrix on the right
hand side of (21), we dot the 2nd row of the first matrix on
the left hand side of (21) with the 3rd column of the second matrix
on the left hand side of (21). That is:
(3, =1, =2, 6)° = (3, =1, -2, 6)-(2, 3, 1, =1) =
(3) (2) + (=1)(3) + (=2)(1) + (6)(-1) =
=5

HEWwN




(Notice that commas are used when we write the row or column as
a traditional n-tuple, but the commas are not used to separate

entries of the matrix, or the components of a column vector.)

In (21) we saw that a 2 by 4 matrix multiplied by a 4 by 3 matrix
yielded a 2 by 3 matrix, as should be the case.

To identify (21) with our motivation for "inventing" definition
(20) , notice that if

z, = 2yl + 3y2 + 4y3 + 5y4

z, = 3yl - ¥5 = 2y3 + 3y4

N
I

1 3xl + 5x2 + 12x3

z, -le + 3x2 - 5x3 .

As a final note for this section, let us keep in mind the fact
that the definition of matrix multiplication may not seem natural,
but by this time it is hoped that we understand the "game"
sufficiently well so that we realize we make up rules and defini-
tions in accordance with the problems we are trying to solve. 1In
this respect, the idea of making a chain rule substitution into
systems of linear equations is enough motivation for defining

matrix multiplication as we did.
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Matrix Algebra

Having defined matrices in the previous section, we now wish to define

a structure (i.e., an algebra) on them. To this end, we first decide

upon an equivalence relation by which we shall decide when two matrices

may be said to be equal (equivalent). While our definition need not
be based upon "reality", the fact is that our entire discussion has
been motivated in terms of systems of linear equations. Thus, it
seems reasonable that our definition of equivalent matrices should
reflect this discussion.

Since we probably agree that two systems of equations must, among
other things, have the same number of variables (dependent and
independent), it seems realistic to require that two matrices have
the same dimension (i.e., the number of rows in one must egqual the
number of rows in the other as must the number of columns) before we
even consider them to be equivalent. In other words, if the number
of rows are the same, then both sets of equations have the same
number of dependent variables, while if the number of columns is

the same, both sets have the same number of independent variables.

If we then agree that each equation is written in "lowest terms"

(that is, the left hand side of each equation has a coefficient of 1),
we see that the systems of equations are the same if and only if

the two systems have the same coefficients, term by term.

With this as motivation, we begin our arithmetic of matrices by
specifying a particular dimension and limiting our study (at any
given time) to this particular dimension. Thus, we might begin
with the set S of all m x n matrices, where m and n are fixed
positive whole numbers (which may be equal, but don't have to be).

If a matrix belongs to our set S, we will denote it by a capital
(upper case) letter (this is not at all crucial, but it fixes our
notation). It is customary to use the corresponding lower case
letter to denote the various entries of a matrix. Thus, a common
notation might be that if Ae S we will write A as (aij), where it
is clear since i names the row and A has m rows, that i must equal
either 1,2,..., or m. Similarly, since A has n columns and j

denotes the column, j must equal one of the numbers 1,2,..., or n.




Sometimes we deal with more than one set of matrices at a time (that
is, different dimensional matrices may be studied in the same investi=-
gation). For this reason, the set S is often written as S(m,n) to
remind the "user" that we are considering m x n matrices specifically.
When this notation is used, if we write (aijlsstm,n), it is tacitly
understood that i = 1,...,m and that j = 1,...,n. To make sure that
this notation is clear to you, simply observe that in S(2,3), for

example, (aij] is an abbreviation for the 2 x 3 matrix

81 M2 %3

a a a

21 22 23 5

At any rate, let us now assume that we are dealing with the set of
m X n matrices, S(m,n). We say that the two matrices A = (aij) and
B = (bij), both of which are elements of S(m,n), are equal

(equivalent), written A = B, if and only if

a.. =>b

i ' for each i = 1,...,m and each j = 1,...,n. (23)

Notice that, while definition (22) was motivated by referring to our
matrix "coding system" for handling equations (16) and (17), the
definition stands on its own. Indeed, the verification that the
definition of matrix equality as given by (22) is an equivalence
relation is so elementary that we are even too embarassed to assign
it as an exercise.

The next step in forming our abstract structure, with or without
practical motivation, would be to define the "sum" of two matrices

of S(m,n). Notice here, that "sum" means a binary operation on

elements of S(m,n), that is, a rule which tells us how to combine

two elements of S(m,n) to form another element of S(m,n). According -
to this "loose" interpretation of "sum", it seems that the definition
given by (20) for matrix multiplication could gualify as being called
a "sum" since it combines matrices to form matrices. The problem is
that definition (20) need not apply to elements of S(m,n) [that is,

to m by n matrices]. For, among other things, we have seen that we
can only multiply two matrices (according to "multiplication" as
defined by (20) if the number of columns in the first matrix equals
the number of rows in the second. In particular, then to multiply

an m by n matrix by an m by n matrix, we must have that n = m

(since the number of columns in the first matrix is n and the

6.16
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number of rows in the second is m). The point is, however, that we
have agreed to pick m and n at random, so that it need not be

true that m = n. (In fact, it seems to the contrary that if m = n,
our choice was hardly random.)

To be sure, we could now make the restriction that m = n (in which
case an element of S(m,n) is called a square matrix to indicate a
rectangular array in which the number of rows is equal to the number
of columns). For the time being, however, we would like to find a
binary operation on S(m,n) that does not require that m = n. One
way of doing this is to agree to add two matrices term by term.

That is, if (aij) and (bij] belong to S(m,n), we will define the sum

(aij) + (bij} to be the matrix (cij), where

To illustrate definition (23), we have as an example:

2 3 1 4 3 =2 3 = (2 3) (3-2) 1+ 3) 4= 1)

+
[

-5 3 2 =B 7 -4 3 5 (=5+ 7) (3 - 4) (2 + 3) (-6+ 5)

In this example, we have added two 2 by 4 matrices to obtain another
2 by 4 matrix.

An interesting facet of definition (23) is that it preserves our
usual vector addition. Surprising as it may seem, we may view an

m by n matrix as an mn-tuple. If this sounds like a tongue-twister,
we are saying, for example, that a 2 by 3 matrix may be viewed as a
6-dimensional vector (6-tuple). For example, while it might be
more convenient to write

(24)
421 %22 %23
than
(A7 Aygr 3330 B37 S5a0 83309 (23}
6.17




the fact is that our definition of matrix equality as given by
equation (22) is the same as our definition of equality for vectors.
With respect to the notations given by (24) and (25), to say that

) ( bj; Py Dby3 )
b b b

( 211 212 %3
21 P22 A3 21 22 23

a

says that aij = bij for each i = 1,2 and each j = 1,2,3; and this is

the same as saying that

@17+ @3pr @33+ @370 330 333) = (b3, by, by, byys byys by3)e

Of course once this analogy is made, it becomes rather natural to
introduce the counterpart of scalar multiplication, and to this end,
we have:

If (aij)e S(m,n) and ¢ is any real number, we define

c(aij) = (caijJ. (26)
That is, definition (26) tells us that to multiply a matrix by a
given scalar we multiply each entry of the matrix by the given
scalar. This is analogous to scalar multiplication in vectors
where to multiply a vector by a given scalar we multiplied each

component of the vector by the given scalar.

At any rate, as we have said so often, we do not need to justify our
definitions as given by (22), (23), and (26). We may simply accept
them as rules of the game, or definitions. (We shall try to avoid
the semantics of whether we are dealing with rules or with defini-
tions. What is important is that they give us a mathematical
structure on the set of matrices S(m,n) regardless of how we

interpret them.)

Once (22), (23), and (26) have been accepted, we can, of course,
prove various theorems about matrix addition and "scalar"
multiplication. (Again, the proofs are trivial but possibly boring,
so we shall not supply too many proofs here.)

For example,
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(i) A+b=B+A.

For letting A

Il
W

and B = (b..) we have
1]

A+ B

I
w
+
T
Il
=
v
+
o

197 = gy 1y Bagh = By b sggltE Byl * g

(ii) (A+B) +C=A+ (B+C) .

For, [(aij} + (bij)l + (cij)

|
]
+
o
.
—
+
]
-
(N

= (aij) + {bij + c,.)

(aij) #* [lbj_j + cij)]

(iii) There exists 0 €S(m,n) such that A + 0 = A for each Ae S(m,n).

For we need only define 0 = (aij} by aij = 0 for each i and j. For
example in S(2,3)
aj; @, a3 0 o0 o a;; +0 a5, +0 a;45+0
+ =
A1 P2 223 9 8 @ 8yy ¥0 a,, +0 a,,+0
831 ®i2 %13
81 B2 93

(iiii) Given A€ S(m,n), there exists -Ae S(m,n) such that A +(-A)=0.

For if A = (aij), we need only let -A = (—aij). By way of illustration

* This is the crucial step, We know that a, and b are numbers
and for numbers, we already have the commutaiive ruia for addition,

i.e., aij i bij = bij + aij'
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Other results are

(v) c(A + B) = cA + cB where ¢ is a scalar, A and BeS(m,n).
(vi) cl(czh) =(cch}A where c; and c, are scalars, and AeS(m,n).
(vii) (cl + cz)A = clA + czA; €S, scalars, AeS(m,n).

Notice that properties (i) through (vii) hold regardless of whether
we are allowed to use the binary operation defined by definition
(20) , which we called the product of two matrices. If, however, we
wish to be able to use this definition of a product, then, as we
mentioned earlier, we may look at the special case m = n for which
the product as defined by (20) makes sense.

Thus, we now switch to the special case of S(n,n) wherein we mean
the square matrices of dimension n by n, for some fixed positive
integer, n. Since properties (i) through (vii) hold for S(m,n)
regardless of the values of m and n, they hold, in particular, if n
m. In other words, our arithmetic on S(n,n) inherits at the outset
properties (i) through (vii) but in addition we may now talk about
multiplication as defined by (20). We would now like to investigate

to see what properties of matrix multiplication apply to our matrix
algebra.

Again, rather than be too abstract at this stage of the development,
let us omit formal proofs from here on, and instead demonstrate our
results for the case n = 2, indicating,when feasible, how these
results generalize., To begin with, if we use AB,as defined in (20),
to denote the product of A and B, it turns out that we cannot
conclude that AB = BA.

1 2 1 1
As an example, let A = and B = .
3 4 1 2
Then
!
1 2 1 1 3 5
AB = = (27)
4 1 2 73
6.20
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while

BA = = (28)

W
wn
e
fo))

*

~
=
=
~J

10
a comparison of (27) and (28) shows that AB # BA.
The fact that AB need not equal BA does not mean that we cannot

find elements of S(n,n), A and B, such that AB = BA. For example,
suppose now that we let

9 2 1 -2
A = and B =
4 i i -4 9 .
Then
9 2 1 -2 1 0
AB= =
4 1/'-4 9 0 1 (29)
While
1 -2 9 2 1 0
BA = =
-4 9/ 4 1 0 1 (30)

Comparing (29) with (30) we see that in this case AB = BA.

Granted that we do not need an "intuitive" reason as to why AB
need not equal BA, the fact remains that it might be helpful if

we could get a "feeling" about what is happening. To this end, it
may prove helpful if we return to our interpretation in terms of
systems of equations. For example, with A and B as in equations

* Recall our definition, that equality requires the matrices to

be equal term by term., Thus, as soon as the term in the lst row,
lst column of AB was unequal to the term in the lst row, lst column
of BA, we could conclude that AB # BA.




(27) and (28), we see that AB denotes the systems of equations

zl = Yl + 2y2 ¥y = xl + X,

and ) (31)
z, = 3y1 + 4y2 Yy, = ¥ + 2x2
while BA denotes the systems
zl =¥, + y2 yl =Xy + sz

and (32)
32 = yl + 2y2 Yy, = 3x1 + 4x2

Hopefully, it is clear that both systems (31) and (32) allow us
to express zy and z, in terms of Xy and Xy but that it need not
happen that both systems yield the same relationships between the

z's and the x's.

What happened in equations (29) and (30) was a rather interesting
special case. Without worrying here about how we picked this
special example, look at the systems of equations defined by AB in
(29). We have

N
]

L= %) + 2y,

bt
=
|

= xl - 2x2
and (33)
4y, + ¥, Y)

z, ~4x1 + 9x2 "

Solving for z, and z, in terms of X, and x, in (33) yields

I

z 9(x, - 2x,) + 2(-4%, + 9%,) = x
1 1 2 1 2 1 (34)

+ 9x

N
i

4(xl - 2x2) + {-4x1 2) = X, 5

From (34) we see that xq and X, in (33), may be replaced by zy
and Zyy and this, in turn, says that equations (33) may be written

as

(35a)
-4z, + 9z

b
o

I
-
()
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Yy = 21 = 2z
(36b)

]

Yy -4zl + 922 .
Then, what we have shown in (34) is that the systems (35a) and
(35b) are inverses of one another. That is, equations (35b) follow

from (35a) merely by solving (35a) for yland Y, in terms of zy and

ZZ'

Conversely, equations (35a) may be obtained from equations (35b)
by solving (35b) for z, and z, in terms of Yy and Yy In summary,
in this example,

1 0
AB = BA =

because if we substitute (35a) into (35b), or (35b) into (35a), we
obtain either

1 Y, =Y
or (36)
2 ¥s = ¥a- ",

™
]
N

1 0
A glance at (36) may provide a hint as to why ( ) is called the

identity matrix (and is usually denoted by I*}.0 % That is,
z, = lzl + 022
2, = Dzl + 122 ;s etes

Another reason that In is called the identity matrix follows from the

*In this special case, n = 2, In general one uses I_ to denote the

element of S(n,n) each of whose diagonal entries is ! and all

other entries are 0, (By the diagonal entries of (ai ) we mean

@.., @,55:++:5a__,) In other words, the identity matrix of S(n,n)
1 n

i& dengged by Tn and is the matrix

6.23




fact that for each A S(n,n), ’
Al = IA = A, (37)

[where, of course, the multiplication indicated in (37) is as
given by (20).]

Again, in the special case n = 2, it is easy to see that

a 1 0 a

12 a s T I

11

]

321 %2 0 1 a1 a3

and
1 0\ (311 212 a1 2
0 it Yagy i ) 221 Ros ™ @

Moreover, the structure behind why this happens is relatively easy
to see for each choice of n. For example, the term in the ith row,
jth column of {aij}In comes from dotting the ith row of (aij] with
the jth column of In' But the jth column of In has zeros everywhere

except in the jth row (by how : is defined). Thus, the required term
is

ailo + aizo F e * aij(l} # wam F aino = aij .

While we have just seen that for two matrices A and B, it need not
be true that AB = BA, there are properties of matrix multipli-
cation that resemble properties of "regular" multiplication. We
shall leave all proofs for the exercises, but it is not hard to
show that if A,B, and C belong to S(n,n), then:

(AB)C = A(BC) (38)
and
A(B + C) = AB + AC. (39)

We have also seen that the matrix (aij] for which aij =0 if 1 # j
and aij =1 if i = j is the identity matrix, In' and has the

6.24
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property that for all A in S(n,n),
AT = T A=A , (40)
n n

Equations (38), (39), and (40), especially if we identify the
matrix I with the number 1, are structurally equivalent to rules

of regular arithmetic.

There is, however, one very major difference between matrix multi-

plication and numerical multiplication which we shall mention here,
but the discussion of which will be postponed to the next section.

Namely, in numerical arithmetic if a# 0, then there is a number

denoted by a“l, such that a(a !) = 1. In matrix algebra, it need

not be true that for a non-zero matrix A (recall that non-zero means
that at least one entry of the matrix is different from 0, since the
zero matrix has 0's for each entry there exists a matrix denoted by

A"l such that

At = . (41)

Notice that if our last assertion is true, it means that various
theorems concerning numbers whose proofs depend on the fact that
multiplicative inverses exist need not be true about matrices. In
particular, there may be pairs of matrices, neither of which is the
zero matrix, whose product is the zero matrix, or there may be
matrices A,B, and C such that AB = AC but A is not the zero matrix

and B does not equal C.

As illustrations, consider the facts that

1 2 6 4 0 0
= (42)
0 0 =3 =2 0 0
although neither factor is the zero matrix, and
1 0 3 < 1 0 3 4 3 4
= = (43)
0 0 7 2 0 0 1 5 0 0
1 0 0 0 3 4 3 4
even though # and #
0 0 0 0 7 2 1 5
Bie 25




While from one point of view, it is with dismay that we do not have
the luxury of the cancellation rule in matrix algebra, it turns out
that all is not lost. Namely, in many of the most practical appli-
cations of matrix algebra, we are concerned only with matrices A for
which A-l exists. In fact such matrices are of such importance that
they are given a speéial name - non-singular matrices. That is, A

is called non-singular if A-l exists, and it is called singular if
A-l does not exist.

The point is that for non-singular matrices, the cancellation law
does apply. To see this, assume that A T exists and that AB = AC.
We can then multiply both sides of the equality by A_l, use the
fact that multiplication is associative, and then conclude that

B =C. In more detail,

AB = AC -+
al@am) = a~t(ac)»
ala)s = (a"ta)c ~»
IB = IC +

B =g

Similarly, if A is non-singular and AB = 0 then B = 0. Namely

AB = 0 ~»

ata) = a7t »
(a™la)B = 0 »
IB=0 =

B = 0.

If we restrict certain statements to non-singular matrices, then,
with the exception of the fact that multiplication is not commuta-
tive, the structure of "ordinary" algebra applies to matrix algebra.

In summary, let Sn denote the set of all n x n matrices. Then with

equality, addition, and multiplication as defined previously; and

6.26
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with 0 and I also as defined before, we have:

l1. A+ B=B+ A

2, A+ (B+C)=(A+B) +C

3. A+ 0=a2A

4. If AeS then there exists -A €S such that A + (-&) = 0
5. A(BC) = (AB)C

6., AI = IA = A, for each A.ESR

7. A(B + C) = AB + AC

The rules which do not carry over from ordinary arithmetic are the
commutative rule for multiplication and the rule of multiplicative
inverses. In many pure mathematics studies we often single out
matrices which commute with respect to multiplication (one such
matrix, by definition is I), but in most practical cases it is

crucial to assume that multiplication of matrices is a non-commutative

operation.

Oon the other hand, the blow that multiplicative inverses need not
exist is softened by the fact that we often deal with non-singular

matrices so that the following two theorems are in effect:

(a) If A is non-singular and AB 0, then B = 0.
(b) If A is non-singular and AB = AC, then B = C.

These two theorems need not be true if A is singular. (Certainly,

*Since it need not be true that AB = BA, it is not enough to say

Al = A, for then since IA need not equal AI we could not conclude
that IA also was equal to A, For that reason we state the rule as
we did. In rule (3) we did not have to do this because by rule (1)
we know that A + 0 = 0 + A, Therefore once A + 0 = A it is

a theorem that 0 + A = A since 0 + A = A + 0.

6.27




it is possible that theorems (a) and (b) hold for certain matrices
even if A is singular. For instance assume that A is any singular
matrix and that both B and C are the zero matrix. Trivially, in
this case, the results stated in the two theorems are true. What

we mean in general is that if all we know is that A is singular

and that B and C are arbitrary matrices, then we cannot conclude,
without additional information, that if AB = 0, B = 0, or if AB = AC,
that B = C.)

In the next section we shall focus our attention on non-singular
matrices. In particular, we shall be interested in the analog of

the algebraic equation

ax = b

which we solve in arithmetic as x = a ‘b provided a # 0.*

Il

The matrix analog will be that AX

X = A" 1B,

B and A is non-singular, then

The other computational problem that we shall investigate is that of
trying to construct A_l explicitly once A is a given non-singular
matrix. In other words, while it is nice, for a given A, to know
that A"L exists, it is important that we be able to exhibit it if

we hope to compute such expressions as a~1s.

E

Matrix Egquations

If A is an n x n matrix, we define A-l to be that matrix such that

Al o= A_lA = I,, where I is then x n identity matrix.
Note that A-l need not exist for a given matrix, A. The point is

that if A_l does exist, we may use the properties of matrix algebra

* If we want a further unifying thread between matrix algebra and
numerical algebra, let us define a number to be non-singular if it

has a mu}fiplicative inverse, Then the "numerical' rule that if

a# 0, a exists, is equivalent to saying that 0 is the only
singular number. In other words, the theorems that (i) a # 0 and

ab = 0 imply that b = 0 and (ii) a # 0 and ab = ac imply that b = c,
may be restated as: (i') If a is non-singular then ab = 0 implies

b = 0.(ii') If a is non-singular then ab = ac implies b = c.

6.28
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discussed in the previous section to solve the matrix equation*
AX = B. (44)

In (44), we assume that A is a square matrix of dimension n x n,
but that X can be any matrix of dimension n x m. That is, the
product AX is defined as soon as the number of columns comes from
the number of columns in the second factor.)

£ A”1 exists, we solve (44) as follows

AX = B implies that

A-l(AX} = A-lB, (45)

but, since matrix multiplication is associative,
a t@ax) = " la)x.

Putting this into (45), shows that

(A‘lAJx =a1p ., (46)

But by definition of A-l, we have that A 1A = I, so that (46)

becomes

I_X = A 1B, (47)
n

Finally, since In is the identity matrix, Inx = X,** and,
accordingly, (47) becomes

X =3B (48}

* We do not talk about A-l unless A is a square matrix., Among other
reasons, we have the structural property that for both AA-1l and A-1a
to be defined, it must happen that A is a square matrix. For if A is
n x m, AA-l = I_ implies that A-l is m x n, But if A"l is m x n,
A=lA cannot equal I, unless m = n, since the number of rows in A-1la
equals the number of rows in A-1,

** The rule I,X = X as stated in the previous section required that
X be an n x n matrix. Notice that as long as X is n by m (even if
m # n) InX = X.




If we now compare (44) and (48) we see that a quick, but mechanical,

way to solve AX = B for X is to multiply both sides of the equation
on the left* by A-l. This mechanical approach is similar in
structure to our approach in ordinary arithmetic where we solve

ax = b by dividing both sides of the equation by a (i.e., multi-
plying by a"l} provided that a # 0.

Our major aim in this section is to show how we may determine
A-l, if it exists, once A is given. For once we can do this, the
problem of solving matrix equations such as (44) becomes very easy.
Before doing this, however, let us illustrate how the method of
solving matrix equations works once we know Afl. Recall that in

equations (29) and (30) we saw that

/
By definition of A-l, this information tells us that if
9 2 i
A= then A =
4 1 -4 9 =

Suppose now that X is the 2 x 3 matrix

X X X

1l 12 13

X X

21 22 *23

Then B must also be a 2 x 3 matrix. For illustrative purposes let

* In numerical arithmetic, we do not have to worry about the order
factors since ab = ba. In matrix algebra, multiplication need not
be commutative, In particular, A-1B need not equal BA“l, so order
is important. In terms of (45), had we written

AX = B implies (AX)A-l - AT

this would be permissible, but we could not "cancel” 4 and e
in (AX)A-l since this would require that (AX)A~1 = A-1(AX), which
need not be true.
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Under these conditions, equation (44) takes on the form

9 2

X171 X1 %33 1 2 3 |
(49)

< 1 Xo1 X5p X513 4 5 6

By the way, notice that if we multiply the two matrices on the left

side of (49) we obtain

9xll + 2x21 9x12 + 2x22 9x13 + 2x23 1 2 3

+ x 4x + 4 5 6 ’

4x 22 13 Y %53

410 + % 12

and, by definition of matrix equality, this yields the system of

equations
~
9xll + szl =1
9x12 + 2x22 = 2
9x13 + 2x23 = 3 9
4%, + %, = 4 (50)
Uiy # Fgy =5
R GJ

From a different point of view, then, equation (49) is a convenient
shorthand notation for expressing equations (50).

At any rate, returning to (49) and mimicking our procedure in
obtaining (48) from (44), we have

ifa B A S Bm B e

-1 -1
9 2 9 2 X1q X919 %93 9 2 1 2 3
4 1 4 1 X1 Xyp X53 4 2l 4 5 6
Therefore,
- =
9 2 9 2 X171 X915 X913 9 2 1 2 3
k4 1 4 X51 X5y %54 4 1 4
T~
1,




Therefore,

L8 il %y x13) P
0 1 Xy1 X559 X53 ) (4

Therefore,

%oy Kow K 9 27t i
11 12 1.3

Xy1 Xpp X3 ) 4 1 4

vt 2 3

1 4 5 6
2 3
5 6l .

In this particular example, we happen to know that

(9 vl g1 -2 )
a1 -4 ol

Hence, (51) becomes

P R P

22 %23

1-8 2-10

-4+36 -8+45

-7 -8

32 37

3
6
3=-12
-12+54
-9
42 .

Equation (52) yields X explicitly.

Notice that by the definition of matrix equality, equation (52)

also tells us that

(51)

(52)

X1 = =7
X1p = -8
Xy = 72
X5, = 32 g
Xyp = 37
Xyq = 42

2
6.32
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and that this, in turn, is the solution of the system of equations (50).

Hopefully, this illustration starts to show us a connecticn between
solutions of systems of linear equations and solutions of matrix
equations, and, in particular, why matrix algebra has a natural

application to systems of linear equations.

As a particular example, suppose we consider the system of m equations

in n unknowns given by

x + - s = +a x =

a
11

1
(53)

gres

ais By H e ALEX
mn

ml™1l

Clearly, one does not need a knowledge of matrices to understand

the system of linear equations given by (53). With the use of

matrix notation, however, the system (53) has a very conveneient repre-
sentation. Namely, we let A denote the m by n matrix (aij), we

let X denote the n by 1 matrix (i.e., the column vector) whose

entries are KyreoorXpi and we let B denote the m by 1 matrix whose

entries are bl,...,bm. In other words, we rewrite (53) as
AX = B,
that is,
11 1n o] °1
. . . = e (54)
X b 5

- & & a
aml mn n m

[As a check, multiplying the two matrices on the left side of (54)

yields
a;i¥; + i * Byn¥h By
L]
. = A
1 ]
aX; toee. Foanx bm (55)

and, recalling our definition of matrix equality, equation (55)

is equivalent to the system (53)]

The key point is that to solve (53) it is sufficient to compute A-l

For, in this event, equation (54) yields




1) dy1 == N5 Pl)
¥ . 5
b

aml ans @

whereupon we may equate X;,...,X, in terms of the a's and b's.
Again, by way of illustration, given the system of linear equations

+ 2x, = 5

9x 2

1
4x1 + %, = 1 (56)
we write

9 2 X 5

4 i X L I

Hence,

9 2 5

but, since
9 2y 7% 1 =32

4 1 -4 9 /', this means

-20 + 9 %

Therefore,

xl 3
x2 -11 H
6,34
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Hence, x; = 3, X, = =11l.

[Check: 9(3) + 2(-11) =5, 4(3) + (-11) = 1; so that X, = 3, X, = -11
is the solution of (56).]

We are not implying that matrix algebra should be used to solve two
linear equations in two unknowns, but we are hoping that our simple
examples are helping you feel more at home with inverse matrices and
matrix equations. We also hope that you understand that arithmetical
procedures for solving n linear equations in n unknowns become at
best cumbersome for larger values of n. Consequently, a convenient
device for finding A-l may prove helpful in solving systems of linear

equations.

& for

At any rate, let us now introduce a technique for finding A
a given A. There are many recipes for doing this, but we prefer to
give a particularly simple interpretation (an interpretation that can
be learned meaningfully even by the junior high school student). The
interpretation we have in mind can, in fact, be presented independently

of any knowledge of matrices.

By way of illustration, consider the system of equations

X + 2y + 3z 7
2x + 5y + 8z = 11
3x + 4y + 7z = 14 . (57)

We invoke the following facts without formal proof (hopefully they
will seem "self-evident").

(i) If both sides of an equation are multiplied by a non-zero constant,
the new equation has the same solution set as the old one. (For
example, while x + 2y + 3z = 7 and 2x + 4y + 6z = 14 are different
equations, they are equivalent in the sense that a specific 3-tuple
(XU’YO'ZO} is a solution of one equation if and only if it is also

a solution of the other equation.)

(ii) If we replace any equation in a system by itself plus any other
equation in the system, we again do not change the solution set of the
original system. This result is often referred to "as equals added

to equals are equal". (Again, by way of illustration, suppose we
replace the first equation in (57) by the sum of the first and the

third. This would give us a new system of equations
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4x + 6y + 10z = 21
2x + 5y + 8z = 11
3x + 4y + Tz = 14 |. (58)

The point is that (57) and (58), while being systems of different
equations, still have the same solution set.)

Finally,

(iii) If we change the order in which the equations appear in a
system, we again do not change the solution set of the system.

Together with these three "axioms", let us introduce the notation
that when we say two systems of equations are equivalent, we mean
that they have the same solution set. For example the systems (57)
and (58) would be called equivalent; and let us agree to write,

for example,

x+ 2y + 3z = 7 4x + 6y + 10z = 21
2x + 5y + 8z = 11 v 2x + 5y + 8z = 11
3x + 4y + 7z = 14 3x + 4y + 7z = 14

to indicate that two systems are equivalent.*

The point is that there is now an excellent system for solving
equations such as (57), a system which we shall refer to as the

diagonalization process.

Essentially, what we do is obtain an equivalent syétem of equations
which has the first variable (unknown) appear nowhere below the

first equation, the second unknown nowhere below the second equation,
the third unknown nowhere below the third equation, etc. A modified .
version of this is to have the first unknown appear only in the

first equation, the second unknown only in the second equation, etc.

*#*The interested reader should notice thatV as defined above is indeed
an equivalence relation. That is (1) any system has the same solution
set as itself, (2) if the first system has the same solution set as
the second, then the second has the same solution set as the first,
and (3) if the first and second systems have the same solution set

and also the second and third systems, then the first system has the
same solution set as the third.
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If we use (57) as an example, we observe that if the second equation

is replaced by itself minus twice the first equation, then the
resulting equation has no x term in it. [In terms of our axioms
(i), (ii), and (iii), we first replace the first equation by the
equation we obtain when we multipiy both sides by -2. In the new
system, we then replace the second by the second plus the first.
That is:

x + 2y + 3z = 7 -2x - 4y - 6z = -14 -2x - 4y - 6z = -14
2x + 5y + Bz = 11 v 2x + 5y + 8z = 11 v y + 2z = -3
3x + 4y + 7z = 14 3x + 4y + 7z = 14 3x + 4y + 7z = 14
Replacing -2x - 4y - 6z = -14 by x + 2y + 3z = 7 yields

X + 2y + 3z = 7 X+ 2y + 3z = 7
2x + 5y + 8z = 11 v y + 2z = =3
3x + 4y + 7z = 14 Ix + 4y + Tz = 14
In the last system of equations,we next replace the third equation
by the third minus three times the first. In more detail,

X+ 2y + 3z = 7 -3x - 6y - 9z = =21 -3x = by = 9z = =21

y + 2z = =3 ~ y + 2z = -3 "\ Y +-2z == 3
3x + 4y + 7z = 14 3x + 4y + 7z = 14 -2y - 2z = -7
Therefore, if we replace -3x - 6y - 9z = -21 by x + 2y + 3z = 7 and
-2y - 2z = =7 by 2y + 2z = 7, it follows that (57) is equivalent to
X + 2y + 3z = 7
y + 2z = -3
2y + 2z = 7 . (59)

That is, the systems of equations given by (57) and (59) have the
same solution set. The advantage of (59) lies in the fact that

while it is "officially" a system of three equations in three

unknowns, it is effectively a simpler system of two equations in two

unknowns, since the last two equations in (59) involve only y and z;

and once y and z are determined from these two equations, we find
X immediately from the first equation. [Note: 1In practice we
obtain (59) very quickly from (58), omitting several intermediate
steps. For example, we usually say, given (59), "replace the 2nd
equation by the 2nd minus twice the lst, and replace the 3rd
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equation by the 3rd minus three times the 1lst, whereupon (59) is
obtained in one step.]

Our next step in the diagonalization process is to eliminate y

(the 2nd variable) everywhere below the 2nd equation (in this case,
in the 3rd equation). We do this by replacing the 3rd equation in
(59) by the 3rd, minus twice the second. That is, (59) is equivalent
to

I

X + 2y + 3z 7
y + 2z = -3
- 22 13 [i.eas; 7-2(=3)] (60)

We refer to the system (60) as being in diagonalized form. While

(57) and (60) are equivalent, the beauty of equations (60) is that

we never have to solve more than one equation in one unknown. For
example, from the third equation in (60) we can immediately "pick off"
the value for z (i.e., z = -13/2) then, with this value of z, we may
go to the second equation in (60) to find the value of y, and then
knowing both y and z, we can go to the first equation and determine

X.

Another way of doing the same thing is to eliminate y from every
equation except the 2nd in (60). To do this, we need only replace
the first equation in (60) by the first minus twice the second.
This would yield

x + (=-z) = 13
y + 2z = =3
- 2z =13 . (61)

Again, while (61) is equivalent to (57), the advantage of (61)
is that once we know z, we can find both x and y directly
(independently of one another).

The final simplification of (61) occurs if we decide to eliminate z
from both the first and second equations. There are several ways for
doing this, but one rather straight-forward way is to replace the
first equation in (61) by -2 times the first equation. This yields

-2X + 2z = =26
y + 2z == 3
- 2z = 13 (62)
6.38
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The coefficients in (62) are now "adjusted" so that we now need only
to replace the first equation in (61) by the first plus the third,
and the second equation by the second plus the third to obtain

-2X = =13
Yy = 10
-2z = 13 (62')
or
= 13/2
y = 10
z ==13/2 . (63)

Again, while (57) and (63) are equivalent, notice that the solution
set for (63) is particularly easy to write down by inspection!*

As a check, if we let x = 13/2, y = 10, and z = -13/2 in (57) we

obtain

12 . 200) + 3(21—231)

> 20 - 13 =7

13 + 50 = 52 = 11

]

23+ 510 + 8(L3

40 + (32221, - 40 - 26 = 14.

33+ q0 + (2D -

The technique in obtaining (63) from (57) did not depend on the
specific values of the constants on the right hand side of the
equations in (57). More generally, equations (57) could have been

given in the form

x + 2y + 3z = bl
2x + 5y + 8z = b2

3x + 4y + Tz = b3 5 (64)
N i sl S
*Technically speaking the system
x = 13/2
y = 10
z ==13/2
is three equations in three unknowns. It is that the solution set
{(13/2, 10, -13/2)} of this system is "highly suggested'" by
the system itself,
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Of course, it becomes complicated to keep track of the various computa-
tions when bl' bz' and b3 are used in place of specific numbers. One
device for handling (64) is the use of matrices as a coding or place
holder system. That is, we may think of a 3 x 6 matrix in which the

six columns are labeled x,y,z,bl,bz, and b3, respectively.* In this
way, for example, the row

would be an abbreviation for

2x + 4y + 3z = 8b, + 5b, + 6b

1 3°

Thus, the matrix code for (64) would be

w N =X
=LY L+
~N o WwN

. (65)

We then perform the same operations on the matrix as we did upon
the equations. That is, we replace the second row of (65) by the
second row minus twice the first and the third row by the third row
minus three times the first. This yields

X _V _z _ bl _ b2 _ b3 o

1 2 3 1 0 0

0 1 2 =2 11 0

0-2-2 -3 1| o0 . (66)

For practice in understanding our matrix code, notice that (66) tells
us that the system of equations

x+ 2y + 3z =0b

1
y + 2z = —2b1 + b2
- 2y - 2z = -3b; + by (67)
e g ST T s e T e T e G e e AR VT

* More generally, had we been given n equations in n unknowns,

our coding matrix would have been n by 2n with the columns

"holding the place of" XiyeeesX sboyeai,b o

**Analogous to our discussion about systems of equations, we call

two matrices (row)equivalent (note, not equal) if one is obtained
from the other by the three operations previously assumed for systems
of equations.
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is equivalent to the system (64).

Moreover, (67) actually tells us how it "evolved" from (64).
Namely, observe that bl’ bz, and p3 identify each of the three egquations
in (64). That is b,refers to the first equation, b2 to the second,

1
and b, to the third. Thus, for example, —Zbl + b2 tells us to

3
subtract twice the first equation from the second. 1In other words,

the equation

y + 2z = ~2bl + b2
is obtained from (64) by substracting twice the first equation in
(64) from the second equation in (64) (Thus, our matrix code always

tells us how to check whether a new equation is correct.)

We next "reduce" (66) by making the entire second column (except
for the 1 in the second row) consist of zeros. That is, we replace
the first row of (66) by the first minus twice the second, and the
third by the third plus twice the second. This yields

1 g =1 5 =2 0
0 1 2 =2 1
0 0 2 =7 2 1 . (68)

Again, (68) "translates" into

% - z=5b, - 2b2
Yy + . 2Z =—2bl + b2

2z =-7b, + 2b2 + B

1 (69)

3
and (69) is equivalent to (64). Moreover, (69) tells us at a glance
what might not have appeared at all obvious in (64). For example,
2z = -7bl + 2b2 + b3 tells us that if we add the third equation in
(64) to twice the second and then subtract seven times the first,
the x and y terms vanish. [As a check, 2(2x + 5y + 8z) + (3x + 4y +
7z) =7(x + 2y + 3z) = 2z.]

Then, to complete the "diagonalization" of (68), we may replace the

first row by its double to obtain

2 - 10 -4 0
0 -2 1]
Q 0 20 =7 2 1 (70)




We then replace the first row in (70) by the sum of the first and
third, and we replace the second row by the second minus the
third, to obtain

0 0 3 =2 1
0 1 0 5 =1 =1

0 2 7 2 1 . (71)

Again, (71) tells us that (64) is equivalent to

2x = 3bl = 2b2 + b3
2z =-7bl # 2b2 + b3 = (72)
By way of further review, y = Sbl - hz - b3 tells us that to solve

for y in (64) we subtract the sum of the second and third equations
from five times the first equation. As a check, 5(x + 2y + 3z) -
(2x + 5y + 82z) - (3x + 4y + 7z) = y, again a fact which might not
seem so obvious when all we look at is the system (64).

The final step is to reduce the "first half" of matrix (71) to the
identity matrix. This entails replacing the first row by one-half

of itself, and the same thing applies to the third row. This
yields

\
3 1
0 i 0 5 -1 -1
1 _7 1
0 0 1 72 i 5

- (73)

1
Ay = Sbl - b2 - b3
_ 7 1
z=-3b) +by +3b; , (74)

b

The key point now is to observe that (74) is the inverse of (64)

in the truest sense. That is, in (64) b b2’ and b3 are expressed

l'
as linear combinations of x, y, and z; while in (74) x, y, and z
are expressed as linear combinations of bl' bz, and b3. Our claim

now is that our approach is going from (64) to (74) tells us how to
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invert a matrix.

In particular, if we let A denote the matrix

2 3
5 8
4 7

we then "augment" A by the matrix I, to form the 3 x 6 matrix

1 V1 0

2 :o 1
| 0 0
|

We then reduce this matrix as illustrated above, so that I3
becomes the first half of the new matrix. That is

| 3 1
1 0 0 -, |
[ Z z
0 1 o Il's -1 -1
|
o o0 1 |~% L -
|

Then the second half of the new matrix is the inverse of A,

In other words,

1 2 3\t [3 a4
2 5 8 = 5 -1
3 4 7 —% 1
As a check,

3
1 2 3 5 -1
2 5 8 5 -1
3 4 7/ \-4+ 1
and
3 1 "
: -1 -2- ok
3 -1 =1 2 5
7 1
i 1 3 3 4

[

1 0 0
= 0 il 0

0 0 1

1 0

0 i |

0 0 1
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To see why this is so, the point is that if we let

w, = x + 2y + 3z ]
W, = 2x + S5y + 8z . [
W, = 3x + 4y + 7z (75)

L |
and |

S gy =W, oy

4y = Swl - wz ~ w3

% —%wl o, + §w3 (76)

-

then (75) and (76) are inverses of each other in the sense that ig,
for example, we substitute (76) into (75) we obtain

+ |

wy =W,
Vg = Mg
& |
w1.= lwl + sz + 0w3
w2 - Owl + lw2 + 0w3 |

- |
W le + 0w, + lw3 . (77)

The matrix which represents the substitution of (76) into (75) is

1 2 3 3 4 3
2 5 8 § = =j !
3 4 7 -% 1 %

while the matrix which represents (77) is

Thus, by what motivated our definition for matrix multiplication,
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Additional drill is left for the exercises. In the remainder of
this section, we want to show how our matrix coding system works in

the event that A L doesn't exist. To this end, let the matrix A be
given by

1 2 3

4 5 6

7 8 9 . (78)

If we now set out to find A™1 by the method described earlier in

this section, we form the 3 x 6 matrix

7 8 9 0 0 1 (79)

and if we try to get I3 as the first half of our equivalent matrix,
we find that

Fi 2 3 1 0 0]

0 -3 -6 -4 1 0 4y
0 -6 =12 <7 0 -j (80)
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0 0 0 1 -2

IH

(81)

where (81) is obtained from (80) by replacing the third row in (80)
by the third minus twice the second.

If we recall our coding system, (79) represents the system of
equations

7
X + 2y + 3z = bl
4x + 5y + 6z = b, i (82)
7x + 8y + 9z = b3

while the third row of (81) tells us that
0= 0x + Oy + 0z) = by - 2b, + by . (83)

Now, (83) reveals some very interesting things to us. In the first
place if bl'
b1 - 2b2 * b3 # 0, then the system of equations (82) has no solution.
This means that we can not "invert" (82) to solve for x, y, and z as

by, and b3 happen to be chosen in such a way that
linear combinations of bl’ bz, and h3 (for if we could, this, by defi-
nition, would mean that (82) has a solution).

For example, if we let bl =1, b2 = 3, and b3 = 7 (so that bl - 2b2 +
b3 # 0), equation (82) becomes

X + 2y + 3z

=1
4x + 5y + 6z = 3
7x + 8y + 9z = 7 (82')

whereupon if we subtract twice the second equation from the sum of
the first and third, we obtain

0 = 2[=bl - 2b2 + b3], which is an obvious contradiction, that is

if (82') had a solution, it would imply the absurd result that 0 = 2.

For this reason a system of equations like (82') is called an incompatible

sxstem.
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On the other hand if bl' b2, and b3 are chosen so that bl - 2b., + b, =

0, the system of equations (82) has solutions. In fact, it thzn hag
too many solutions, for in this case, the relationship between bl' bz,
and b3 tells us that our equations are not independent (in fact, (83)
tells us that the first equation minus twice the second plus the third
must be identically zero), and, as a result, we effectively have three
unknowns but only two (independent) equations. This means, for

example, that we can pick one of our variables (unknowns) at random and
then solve for the other two. That is, in this case, there is no unique
way of expressing x, y, and z as linear combinations of bl' bz, and b3.
Again, by way of illustration, suppose b, =1, b, =3, by =5 (so that
bl - 2b2 + b3 = 0). Then the equations

X+ 2y + 3z =1
4x + 5y + 6z = 3
7x + 8y + 9z = 5 (82")

are compatible, but the third equation is redundant since it is equal
to twice the second minus the first, In other words the system (82")

is in effect two équations in three unknowns. Namely

X + 2y + 3z = 1
4x + 5y + 6z = 3

and this system has infinitely many solutions, one for each specific

choice of z. In other words, with bl, b2' and b, as in this illustra-

3
tion, there are infinitely many ways to express x, y, and z as linear

combinations of bl, b, and bj;. We shall pursue this idea in more

computational detail in the exercises, but for now, we hope it is

1

sufficiently clear as to why A ~ does not exist in this case.

In summary, given the n x n matrix A = {aij), A-l exists if and only

if the system of linear equations

X b

a 1n*n 1

X, * e + a
1

1L

allows us to express Xpreew Xy in a unique way as linear combinations

of byssws b

e for all possible values of bl,...,bn.




Our matrix coding system tells us how to compute A-l if it exists,
and if it doesn't exist, our code tells us how the equations are
dependent on one another, so that the system of equations for
specific values of bl""’bn either has no solution or else it has
too many.

For those of us who have studied determinants (and this is mentioned

only as an aside here since determinants will be studied in a self-
contained manner as part of Block 7),we may recall that the existence
of a°1 is equivalent to the statement that the determinant of A
(written |A| or det A) is not zero.

Before applying our study of linear algebra to the calculus of
functions of several real variables we would like to "revisit" linear
algebra from a more geometric point of view, and this shall be the
discussion of the next section,

F

Linearity in Terms of Mappings

We have mentioned in our introduction to this chapter that any system

’ : . . n ,
of m equations in n unknowns may be viewed as a mapping from E into

E'. 1In particular, then, the linear system

yl = allxl + aawn ¥ alnxn

L '] L ]

. . [ .

L] L ]

v = s (84)
ym = amlxl + o aw F amnxn

may be viewed as that mapping of E" into E™ which maps X = {xl,...,xn)
into y = (yl,...,ym}, where Yyreers and Y, are as defined in (84).

Since the most interesting cases occur when n = m, we shall restrict
the remainder of this section to the case in which we have n linear
equations in n unknowns. The most familiar situation, one which

we have studied gquite exhaustively before, is when n = 1. In this
case, the mapping may be viewed pictorially as a line through the
origin in the xy-plane. That is, when n = 1, equations (84) reduce
to the single equation, Yy = ap %y, which, since there is but one
independent and one dependent variable, we write as y = ax; and this
graphs as a straight line of slope equal to a, passing through the

origin.
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The case n = 2 lends itself to a graphical interpretation, but it is
not nearly as convenient as the case n = 1. Nevertheless, since a

pictorial interpretation exists for n = 2, we shall discuss linearity
in detail for this case, and simply generalize our results to higher

dimensions where pictures fail us.

With n = 2, the system of equations (84) becomes
¥i = 80% T A% ]

x, + a (85)

Y2 = #1%) 22%2 .
Again, since there are only two independent variables and since we
usually think of 2-space in terms of the xy-plane, it is conventional

to rewrite (85) without subscripts, as

[ =
i

ax + by

cx + dy (86)

<
I

where a,b,c, and d are fixed numbers.

The geometric interpretation of (86) is that it defines a mapping

from the xy-plane into the uv-plane, defined by

(x,v) = (u,v) = (ax + by, cx + dy).

In order to keep our discussion as concrete as possible, let us, at
least for time being, replace the abstract, general form of (86) by

a particular example. Consider the mapping defined by

3x + 4y

=1
I

2x + 3y (87)

<
I}

That is, the system (87) defines the mapping of the xy-plane into
the uv-plane, defined by the fact that (x,y) in the xy-plane is
mapped into (3x + 4y, 2x + 3y) = (u,v) in the uv-plane.

That is, we may interpret (87), without reference to any picture

(hence its adaptability to higher dimensions), as the mapping of

£ E2 -+ E2 where for (x,y) dom f, f£(x,y) = (3x + 4y, 2x + 3y).




Pictorially, we have

i.e.,
£(3,-1) =
Yy i [3(3)+4(-1),

A A _ =
(3% + 4y, 2x + 3y) J23+3C=1]
> (5,3)

2 ”’,—y' (5,3)

Hhi

(x,y)

Y
-

(3,~1) (Figure 1)
What properties dces f have by virtue of its being linear that are not
typical of non=linear functions?
From an analytic point of view, we have that
(1) £ (a + b) = £(g) + £(b)
and
(2) If c is any scalar, f(ca) = cf(a).
These properties (which will be discussed in more detail analytically
later in the course) have a particularly simple geometric interpreta-

tion that emphasizes the meaning of linear.

Namely, let us consider any straight line in the xy-plane which
passes through the origin.

Except for the y-axis, all such lines have the form

and in this case, if we replace y by mx in (87) we obtain

-~

u= 3x + 4mx = x(3 + 4m)

v =2x + 3mx = x(2 + 3m) (88)
so that

v_(2+3m)x _ 2+ 3m

u @3 +4dmx I F 4m
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(unless x = 0*) so that

v = (%ﬂz—%g) (88')

which in the uv-plane is the straight line through the origin, of

slope

2 + 3m**
3 + 4m

In other words under a linear mapping f: E;+ E2 straight lines
through the origin are mapped onto straight lines through the

rigin.

By way of illustration, we showed in Figure 1 that £(3,-1) = (5,3).

Now the line which connects (0,0) to (3,-1) has as its equation

y=0_ =1=0 oF § = % e
x -0 3 -0
This line is the special case of (88) with m = —% . From (88') we
see that this line is mapped into the line
2+ 3('%"] 3
v = T u, or Vv =g Uu.
3+ 4(—3)
Notice that (5,3) belongs to this line.
*x = 0 corresponds to the y-axis. In this case, (87) yields u = by,

v = 3y, so that v/u = 3/4 (unless y = 0, but if both x and y equal 0,
(87) simply says that £(0,0) = (0,0) ). That is, the mapping defined
by (87) maps the y-axis onto the line v = 3/4u. Otherwise the
mapping carires y = mx onto

**Tf m is chosen so that 3 + 4m = 0 (i.e., m = =3/4), equation (88')
is not well-defined because of division by 0. When m = -3/4, (88)
becomes u = 0, v = -1/4x. Since x may take on any values, (88) does
not define v but does specify that u = 0, 1In other words when

m = -3/4, we have the fact that f maps the line y = -3/4x onto the

v-axis (i.e., u = 0),

e e ——— —
—————— —— —— e ——— —_—



Thus Figure 1 is but a "piece" of the more general situation.

¥ i 3
A f maps Hx,y):y;-z-x } A v=gtu
onto {(u,v):v = EU iFe
In particular, (5,3)
1 (0,0) ~ (0,0); (3,-1)~+ (5,3)
= —ix *
'Y 'S A ’ y'l —,-u

(3,-1)
(Figure 2)

(Notice that f does not "preserve direction", that is, the image
of y = mx does not have to have slope m)

An interesting aspect of (88') is whether two different m values can
produce the same value of 2 + 3m/3 + 4m, for if this is possible,
then two different lines in the xy-plane can map into the same line

in the uv-plane.
Looking at

2 + 3m1 2 + 3m2

3 + 4m1 3 + 4m2

we have
6 + 8m2 + 9m1 + 12m1m2 =6 + 9m2+ Bml + 12m1m2 or m =m, .

In different perspective, then, if my # m,, y = mXx and y = m,X
are mapped into different lines in the uv-plane.

Let us, next, look at a different situation. Suppose we have

x + 3y
2x + 6y (89)

=]
]

<
I

System (89)defines the mapping g:E2+ E2 where g(x,y) = (x + 3y,
2x + 6y) = (u,v).
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For example, g(l,1) = (1 + 3, 2 + 6) = (4,8). Pictorially,

i ; (4,8)
5 e
(1,1)
> X = U

(Figure 3)

We can again show that g maps lines passing through the origin into
lines passing through the origin. In fact, if we let y = mx, we
see from equations (89) that

X + 3mx x(1 + 3m) |

2x(1 + 3m) | (90)

23 + emx

From (90) we see that if x # 0 and m # -3

Y=2

u

or

v = 2u (91)

Equation (91) reveals the remarkable fact that with the possible
exceptions of the y-axis (x = 0) and the line y =-1/3x (m = - 1/3),
g maps every line through the origin into the line v = 2u in the
uv-plane.

0 and m = -

]

In the exceptional cases, x
(89) that

, we see from equations

W

(1) For x = 0; u = 3y and v 6y, so v/u = 2 again. Therefore,

g maps the y-axis into the line v = 2u.

(2) For m = - 1/3, equation (90) tells us that u = v = 0, Therefore,
the line y = = 1/3x is mapped into (0,0) by g (and clearly (0,0)
is on v = 2u). Therefore image g = {(u,v): v = 2u}




Pictorially,
Y v
A A
g
< i e
= -1
= 3x
Every point on y = - % X is mapped into (0,0).
(Figure 4)

What makes the line y = h% x in the xy-plane and the point (0,0)

in the uv-plane so important? Here again we see another interesting
property of linearity. Let us look at any point on the line v = 2u,
say {uo, 2uo}, where (0,0) is merely the special case, u, = 0. Our
first claim is that there is one and only one point on the y-axis
that is mapped into {uo, 2uo) by g. Namely, if we return to
equations (89) and let u = ugr v = 2uo, and x = 0 (to indicate that

our point is on the y-axis), we see that

u, = 3y

and equivalently
2u, = 6y,

u_.

from which we conclude that y = -

wl+=

In summary, the only point on the y-axis that is mapped into

. h | : ; 1
{uo, Zuo} by g is (0, 3 uo). If we now shift the line y = -3 X to
pass through this point (in other words, we look at the line y =
-% x + % uo), we find that every point in this line maps into
(uo, 2u0) as well! This may be verified directly from (89) by

letting y = ~% x + % ug. Namely, we obtain

_ -1 1
u—x+3[3x+3uo]
v = 2x + 6[-% + % uO]

6.54




-l .

M

& M ) 8 e em e

3

—

rM

T M m

[

or
W o5 as required.
v = 2u

o

As a concrete example, let us find the points in the xy-plane which
are mapped onto the point (3,6) in the uv-plane. In the case,
u_ = 3, so the line which maps into (3,6) is y = -% x + 1 (since

i i
l.= T Yy in this case).

Pictorially
Yy v
Tn g fb v = 2u
y = —%x + 1 (3,6)

(0,1)

P

Y
IS

(3,0)

g(x,y) = (x + 3y, 2x + 6y)

(Figure 5)

From Figure 5 we can construct the point on any line y = mx that
maps onto (3,6) under g. Namely, we need only locate the point at
which y = -% x + 1 intersects y = mx. For example, in Figure 6
we show how to locate the point (x,y) on y = 4x such that

g(x,y) = (3,6).

{\_ ~
3,6
3 12 = e
\ P(ﬁ ! ﬁ) g
\ >= X - > U
y = ——%}( + 1
(Figure 6)




[Check: x = T% , Y = %% * Xt 3y

2x + 6y

In summary, the linear function f as

2 2

neither 1-1 nor onto.

]

-]%-f-%%.—.ﬁ:v]

defined by equation (87) maps
E” onto E” in a 1-1 manner, while the mapping g defined by (89) is

What is it that distinguishes f and g? Perhaps the best way to

answer this problem is to look at the general case [equation (86)].

(=
]

ax + by

cx + dy

2 2

Under this general situation we have that the mapping h:E” -+ E

defined by

h(x,y) = (ax + by, cx + dy)

maps the line y = mx into the line

u = ax + bmx
v = cx + dmx
or
_ (Cc + dm a
velgze v ™7 g

Let us see the conditions under which y = m

into the same line in the uv-plane.

have

c + dml _ c + dm2
a + bml a + bm2
or

ac + bcm2 - adm1 - bdmlm2 = ac + adm2 + bcm

or

(ad - bc) m, = (ad - bc) my, .

X and y = m,X can map

1 2
According to (92) we would

p + bdmm,

(92)

(93)
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From (93) we see at once that my nmust equal m, provided that ad - bc #0
(for if ad - bc = 0, (93) is automatically satisfied for all values

of my and mz}.

Referring to (86), ad - bc is precisely the determinant of coefficients.

Utilizing the language of matrices, notice that (86) has the form

u a b X

v c d b

and that this matrix equation has a unique solution for x and y

in terms of u and v is and only if

is non-singular. This is the same as saying that ad - bc #0.

In summary (and we generalize to n-dimensional space without

further discussion) then:

The linear mapping from E® to E" defined by the system of linear equa-

tions

Yp = apX; t ... +oag x,
- L]
. :
Yo = 8,9%; *oeee +oa X,

]

is 1-1 and onto if and only if the matrix of coefficients A = [ai

]
L exists (which means the

is non-singular, i.e., if and only if A~

determinant of A is unequal to 0).

Another way of saying this result in the case of our linear mappings
of E2 into E2 is that under a linear mapping (0,0) is mapped into
(0,0). That is, if u = ax + by and v = cx + dy, then clearly u and v
are zero when x and y are zero. However, there may be other points
in the (x,y) plane that map into (0,0). For linear mappings, it is
enough to know that only (0,0) is mapped into (0,0) in order to
conclude that the mapping is 1-1 and onto. In other words as soon

as there is a point in the (x,y) plane, other than (0,0), that maps
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into (0,0), then the line determined by these two points will map
into (0,0).

Thus, given the mapping u = ax + By, v = cx + dy we look at ad - bc,
and if this is not zero, we know that the mapping is 1-1 and onto.

If it is zero, then the entire xy-plane is mapped into a single line
(or in the most extreme case, the single point (0,0), that is,

if u = 0x + 0y and v = 0x + O0y). Namely, when ad - bc = 0, c + dm

is a constant multiple of a + bm (details are left as an exercise) and
we then have from (92) that v = ku. In this case the line

y = -g X maps into (0,0)and each line y = ~% x + u, maps into a

single point on the line v = ku.

At any rate, with all this as background, we end this chapter, and
use the following chapter to apply our results to the calculus of
functions of several real variables.
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