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DERIVATIVES IN N-DIMENSIONAL VECTOR SPACES

A

Introduction

The approach of our textbook (as developed in the previous two units)
in emphasizing the geometrical aspects of partial derivatives,
directional derivatives, and the gradient is, in many ways, an
excellent approach. We get a picture of what appears to be happening,
and, especially for the beginning student, this is much more
meaningful than a more precise and general discussion that would
apply to all vector spaces, regardless of dimension. In fact, if we
want to use the latter approach, it is wise to use the former first.
This is in accord with many such decisions which have already been
made in our previous treatment of mathematics. As an example, within
the framework of our present course, notice how carefully we ex-
ploited the geometric aspects of vectors as arrows before we even
mentioned n-dimensional vector spaces. And, in this respect, recall
how sophisticated many of our "arrow" results were in their own right.
That is, granted that arrows were simpler than n-tuples, when all we
had were arrows, there were still some rather difficult ideas for us

to assimilate.

In any event, our aim in this chapter is to continue within the
spirit of the game of mathematics which, thus far, has served us so
well. Namely, we have introduced n-dimensional vector spaces so that
we could utilize the similarity in form between the previously
studied functions of the form f(x) and our new functions of the form
f(x). For example, when it came time to define continuity and limits
for functions of several real variables, we rewrote f(xl,...,xn} as
f(x) and then mimicked the f(x) situation by copying definitions

verbatim, subject only to making the appropriate "vectorizations."

Rather than review this procedure, let us instead move to the next
plateau. Using the approach developed in Chapter 4 of these
supplementary notes, once we had defined what limits and continuity
meant for any function, f:En+E, our next logical step would have been
to mimic our definition of f'(a), and thus "induce" a meaning of f'(g)

where gsEn.




Our aim in this chapter is to see where such an attempt would have
led us and, once this is done, to see how our "new" concept of
differentiation is related to the more traditional concept of
differentiation as it was presented in the previous two units.

B

A New Type of Quotient

From the definition

i _lim f(a+tAx)-f (a)

it seems natural that if now f:E"»E and ggEn, we should define f'(a)
by

. _lim f (a+Ax)-f (a)
f'(a) = Ax>0 [ = Ex = ] y (2)

where (2) is obtained from (1) by the appropriate "vectorizations."

In arriving at (2), the most subtle point is to observe that we must
replace Ax by Ax, since, among other things, a+Ax has no meaning
(i.e., we have no rule for adding a vector [a] to a real number
[Ax]). Once Ax is replace by Ax, it is clear that 0 must be replaced
by 0.

If we next look at the bracketed expression in (2), we get a rather
elegant insight as to how new mathematical concepts are often born.
For, while at first glance, the derivation of (2) from (1) may seem
harmless, a second glance shows us that we have "invented" an
operation which we have never encountered before in our study of
vectors (either as arrows or as n-tuples). More specifically, in

the bracketed expression, our numerator is a real number (i.e.,

while a is a vector [n-tuple], recall that our notation f(a) indicates
that our "output" is a number), and our denominator is a vec;or!

Thus, whether we like it or not, if we decide to accept (2) as a

starting point, we are obliged to investigate the meaning of %
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where c denotes an arbitrary but fixed real number and v an arbitrary
but fixed vector. Notice, of course, that we could elect to abandon
(2) , but, in the usual spirit of things, it hardly seems wise to
abandon an approach that has been fruitful simply because one
potential problem arrises. Rather, it seems wiser for us to try,

at least, to find a practical definition of what it means to divide

a number by a vector.

Once we have agreed on this course of action, we again fall back

on our previous experience and recall how we defined division in the
case of two numbers. We defined g to be that number which when
multiplied by b yielded a. 1In terms of a more computational form,

g was defined by

b "times" = a (3)

2
b
With this in mind, it seems that a very natural way to mimic (3) is

to define by

I<la

v "times" = C (4)

I<la

This immediately suggests that unless we want to invent new forms of

multiplication, (and nothing precludes this possibility, except that

we already have enough problems) the "times" in (4) must denote the
dot product, for according to (4) we must multiply a vector (v) by
"something" to obtain a number, and of the types of multiplication we
have discussed, only the dot product allows us to multiply a vector
by "something" (in fact, by another vector) to obtain a number.

Thus, the "times" in (4) must denote a dot product. And, it therefore
appears that % must, itself, be a vector, since, as we have just

said, the dot product combines two vectors to produce a number.

There is, however, a little complication that presents itself here.
The problem actually existed when we talked about the quotient of

two numbers, but, except in the rather special case in which the
denominator was zero, the problem never occurred. The point we are
driving at is that when we say "% is the number which when multiplied
by b yields a," what gives us the right to say "the?" Why can't
there be more than one such number, or for that matter, why not no
such number?




The language of sets provides us with a nice explanation. Suppose
we define g-to be the set of all numbers, c, such that bxc = a. That

is,

= {c:bxc = a} (5)

*

Then, unless b = 07, the set % consists of the single number a<b

(e.g., % = {c:3c=6} = {633} = {2}), and hence there is no harm in
confusing the set % with the number %, where in the latter context,
% is used as the fraction which denotes a+hb.

Mimicking (5) we may also define to be a set; namely

1<l

= {x:x*v = c} (6)

I<la

The problem is that, unless v = 0 and ¢ # 0 (in which case % = @), the
set % has infinitely many elements! .

Before we document this last remark, let us make sure that it is
clear to you that the set described in (6) is a well-defined set
regardless of the dimension of the vector space. In other words,

recall that in the last chapter of these supplementary notes, we
generalized the definition of a dot product so that it existed in
any dimensional space. By way of a brief review, if x = (xl,...,xn)
and y = (yl,...,yn} then x+y = Xy +...+X ¥ .

Thus, by way of an example, suppose ¢ = 5 and v = (1,2,3,4)2E4.
Then by (6),

Ty = (xeE®:(1,2,3,4) % = 5) @

*
If b=0, we have seen that if a#0 then 2.0 since no number times
0 can yield a non-zero number, and if b=0 and a=0, we have seen that

% (LJes; %) is the set of all numbers, since any number times zero

is zero.
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Notice that while it may be difficult to think of Ti—iéj—zT pictorially,
r r r

(7) shows us that it is a "very real" set, at least in the sense that

it is the solution set of the "very real" linear equation in four

unknowns

x, + 2x2 + 3x3 + 4x4 & 5 (8)

In fact, it might seem more natural to you if we restated this last
remark in sort of a "reverse" way. Suppose in a traditional math
course we were asked to find all solutions of the equation given by
(8). Among other things, we may pick values for Xyr Xq4 and Xy

completely at random, and once these random choices are made, xl

can then be uniquely determined from (8) simply by letting

X, =5 - 2x, = 3x5 - 4x,. In modern language, this means that the

solution set of (8) has infinitely many elements, and, by (7),

another name for this infinite solution set is 5 .
(1,2,3,9)

In still other words, while we may not be used to thinking of the
solutions of an equation like (8) as being points in a 4-dimensional
vector space, the fact is that, conceptually, the idea is sound. We
admit, however, that in the spirit of the text, there is probably
more satisfaction if we think of the special cases in which we may
view our vectors (n-tuples) as arrows and see what the geometric
implications are. For the sake of a bit of simplicity (and we shall
show in a moment that this restriction in no way loses any generality),
let us assume that in (6), v denotes a unit vector (because if v

is a unit vector, x-v is simply the projection of x in the direction
of v while if v is not a unit vector, we must merely come to grips
with the more computational fact that x*v is a scalar multiple of

the projection of x in the direction of v).

So, under the assumption that v is a unit vector and that our vectors
are now arrows (in the diagrams which follow, we view our vectors

as planar arrows), we may view

= {x:x-v = c}

|<ln

as the set of all vectors whose projection in the direction of v is c.
Clearly, there are infinitely many such vectors and this is amplified
in Figure 1.




> &

2. Thus PRl, PRz etc. all have
-

the property that goPRn = c,

when R, is any point on L.

3. Therefore, according to (6),

any vector of the form ﬁhn 18
an acceptable value of

1<1a

T =
s 1.€,, g-PRn = C.

1. Let |PQ| = c. Then if R is
any point on the line L through
Q perpendicular to v, ﬁ%-g = c,
since v is a unit vector.

(Figure 1)

To see Figure 1 in terms of a more specific example, consider the
set defined by

= {v: v-1 = 2}

But G-I is the projection of v in the direction of the x-axis. Thus,

> =+ >
For any such v, v-i1 = 2; hence,
any such v qualifies as a
2
i memherof-;.
v i
» X
0 1 2
(Figure 2)

il i I EE e

i a

—

B S N S e




rN

B BN S EE PE e

.

ra

|l En

Our results are not seriously affected if v is not a unit vector. The

1

key lies in the fact that if v # 0, is a unit vector in the

direction of v. 1In this event we have

<

v

(9)

={§:,’_€.-E=C}= x=_’5‘

= T el Iwl

|<|a

Thus, from (9) we see that in general, for v # 0, is the set of all

I<ia

vectors whose projection in the direction of v is £, and in the

v I

special case that v is a unit vector, |v|kl, and -5~ is simply c.
v

In the event v = 0, |f|/=0and accordingly ﬂsﬁ = %, which is the
v
"forbidden" quotient of two numbers. As a small aside, observe that

ifv=20, %—behaves as its numeral counterpart. Namely,

c = - - — - —— 1 - =
0" {x: x+0 = c}. But x:0 =0 [i.e., (X;,...x ) (0,...,0) = x,0+...+x 0
= 0+...+0 = 0]; hence, if c # 0, g = ¢, while if ¢ = 0, g is the

entire vector space.

Now, we feel that our derivation of % which culminated in (9) is
very satisfying, especially since it shows that we have made necessary

headway for defining

3

i . -

B

*Again, while our present illustration is in terms of arrows, notice
that |h||has been defined for all vector spaces. In keeping with
the spirit of the metric used in the "arrow" cases, we do agree to
use the Euclidean metric rather than the Minkowski metric when we

v
talk about — Moreover, as we saw in Unit 1 of this Block, if

Wil

we want to use the general result that §°x£|kjl|uﬂ we must use the
Euclidean metric since the result is not true for the Minkowski metric.

B

.




15 f(atax)-£f(a)
8x>0 ax )

Yet there is something about (9) which tends to make the mathematician

cautious. Specifically, we would most likely want to be able to
think of % as a single vector rather than as an infinite set of
vectors (in much the same way that we need not distinguish between
the number % and the set % when b # 0, except that then the choice

was easy since the set % has only a single element).

But how shall we go about the process of selecting a single, well-
defined member of the set described by (9)? Well, the one thing that
each member of the set shares in common is that its projection in the
direction of v is & *. If this is the only property that is of

interest to us, why not choose that member of % which already has the

* %k
direction of v? After all, in the expression %, v is the only

vector which is specifically named.

*
While, admittedly, it is easier to think in terms of arrows than to
think abstractly, keep in mind from our discussion in Chapter 4 of

these notes that "direction" is defined for all spaces. Namely,
"x has the same direction as v" simply means that x is a scalar
multiple of v, or, in n-tuple notation, given v = (vl,...,vn). then

the set of all vectors which have the same direction as v is defined
to be {tv:t a real number}, i.e., f(tvl,...,tvn):t any real numberl.

*
While % has infinitely many members (if v # 0) the membership is

still rather selective, Namely, if we insist on a particular direction

and sense there is one and only one x € % such that x*v = c¢. Pictorially,

this is easy to see, for although infinitely many vectors have the
same projection in a given direction, no two vectors whose directions
(and sense) are equal but whose magnitudes are unequal can have the
same projection. More analytically, in terms of a specific example

78 B
W = {(xl,xz,x3,x4,x5).331+x2+2x3+3x&+bx5—78}

is an infinite set. If we now select all members of the set which
have the same direction as (3,1,2,3,4) we mean that our members have
the form (3t,t,2t,3t,4t), and hence

3(3t)+(t)+2(2t)+3(3t)+4(4t) = 78; or t = 2

78
(3,1,2,3,4)
the same direction (and sense) as (3,1,2,3,4).

Therefore, (6,2,4,6,8) is the only member of which has

5.8
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Since —— is the unit vector in the direction of v, we have that

1]

the vector % would be written as

—<— v (10)

el el e

With this as motivation, we now define by

I<la

(11)

I<ia

Tl TEl P

and our previous discussion insures that by (11), v-= = c.

<l

As a computational review, we may compute g-% using the fact that

o WP 5 a0 that v = <8 g w s TR
e |&|F that v RETF v EETF

&

The Directional Derivative in n-Dimensions

Lest we lose sight of the forest because of the trees, let us summarize
the main computational points of the previous section. In an attempt
to define f'(a) by mimicking the definition of f'(a) we are forced to

*
Here we see a strong reason why we are using the Euclidean metric.

Namely, if 1=(v1,...,vn) then v-v = v12+...+vn2. Now |E“ B

e
Jvlz-i-...-l-vnz only if we are using the Euclidean metric. Hence for
the Euclidean metric v*v = |E”2. (For the Minkowski metric, v-*v
would still be v12+...+vu since the dot product is defined without
reference to any metric. However, now, "3” would be max{lvll...|vn|}
hence |k“2 = max{vlz,...,vnz}. Certainly, there is no reason to expect
that

2 2 2 2
max{vl ,...,vn } = vl +...+vn
In other words, v*'v = “!“2 need not be true for the Minkowski metric.)

5.9




"invent" a definition of what it meant to divide a number by a vector.
After much experimentation in terms of the logical consequences, we

accepted as the main definition:

is that
c *

e

If we now return to the definition of f'(a) as given by (2), we find
that we have solved one problem but have created another. That is,

we became so worried about what it meant to divide a number by a
vector that we went no further with (2) but rather began an immediate
investigation into how this guotient should be defined. Having solved
this problem, we are now ready to discover that a new major problem

If ¢ is any real number and v is any non-zero vector then

Hi<g|0

vector which is in the direction of v and whose magnitude is

looms before us. Namely, we have previously agreed (and for good
reasons) that when we wrote iiTO the meaning was that not only should
the limit exist but its value must not depend on the direction by
which Ax approached 0. On the other hand, one consequence of our
definition of the guotient of a number divided by a vector is that
the vector which is denoted by the quotient changes as Ax changes

direction! That is, the quotient was defined as a vector in the

direction of Ax, so that, if Ax is not rigidly specified, the quotient

is, in a sense, undefined since we have no way of determining the
direction of the quotient.

Thus, it appears that another refinement is required before we can
work with (2), and it is this refinement that motivates the meaning

of a directional derivative. More specifically, it will happen quite
in general that the limit in (2) will depend on the direction by which

Ax approaches 0, for not only does changing the direction of Ax

affect the denominator of our quotient, it affects the numerator as
well since f(a + Ax) will, in general, depend on the direction of Ax.
Thus, it would appear that if we held to (2) without some modification,
f'(a) would never exist since the limit which defines f'(a) will not

* . c
Actually, it is possible that c is negative in which case —

v I

cannot be a magnitude (since magnitudes are non-negative). What we

should say is that the magnitude is and that if c is negative

has the opposite sense of v.

|1<|n

5.10
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exist (since for the limit to exist its value must not depend upon
how Ax+0). We shall try to clarify this point in a few moments by
means of a specific example (with other examples being supplied in
the Exercises), but first we prefer to remove the new pitfall.

We now agree to remove any ambiguity from (2) by specifying a
particular direction. (It is often conventional to specify a direction
in n-dimensional space in terms of a unit vector. Quite often, in
fact, a unit vector is called a direction. For example, in terms of

a planar example, % i+ | f is a unit vector in the direction of

371 +4 5. In the moderz vernacular, we would say % 1+ % 3 is a
direction, and any scalar multiple of this vector would be said to have
the same direction.) In any event, if we let u denote a specific
direction, we may think of Ax as always being in the direction of u,
and that in this context Ax+0 means that the direction of Ax stays

fixed but its magnitude approaches 0.

The next question is that of finding a way to change the notation in
(2) to reflect this idea. To this end, we observe that once the
direction u is fixed, all other vectors in this direction are of the
form tu where t is a real number. Thus, rather than write Ax, which
carries the connotation of a varying direction, we write tu. With
this in mind, the left side of (2) becomes ambiguous since it does
not indicate the direction u. For this reason, we agree to rewrite
£'(a) as £ '(a) and we call this the derivative of f at a in the
direction u.

At the same time, replacing Ax by tu converts the right side of

(2) into

tE+g tE

and since u is a unit vector, tu»0 if and only if t+0. Moreover,
since tu and u are to have the same sense, t>0; hence, t+0 may be
replaced by t>0", Thus, (12) may be rewritten as

: f(at+tu) - f(a)
11m+ [ = ;ﬁ — ] (13)
t+0 =

s b 8




The bracketed expression in (13) denotes the vector in the direction
of (u) whose magnitude is

f(attu) - f(a)

It ]

and this in turn is

[ f(attu) - f£(a) ]
u

l[eull

Then since |tul| = [t| [u|l (and since t>0, |t| = t) and |u|| = 1 by
virtue of being a unit vector, we have

f(attu) - £(a) f(a+tu) - f(a)
llewll

The bracketed expression on the right side of (14) represents the
average rate of change of f(x) in the direction u with respect to
[x|| as x varies from x = a to x = attu. Thus

lim  f(a+tu) - f(a)

£>0" tu

represents the instantaneous rate of change of f(x) with respect to

]| in the direction u at x = a.

If we make these changes (2) becomes

u (15)

f‘E(g) -

1im [ﬂg&y —f@}}
‘t+0+ t

Equation (15) summarizes rather nicely the idea that f‘u(g) is a
vector in the direction (of) u whose magnitude is the derivative of
f(x) with respect to [x| at x = a in the direction u.

5.12
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Thus, it is natural to view f'utg) as a directional derivative, that
is, a derivative in the direction u. Notice that if we use the

generalized definition of direction that applies to all dimensional
vector spaces, then (15) is valid for any dimensional space, and, in

particular, if we restrict our attention to the special case of
planar arrows, it should be easy to see that (15) is equivalent to
the definition of a directional derivative as given in the text and

studied as part of the previous unit.

Perhaps a specific example in which we compute a directional derivative
in the plane using each of the two methods and then show that the
answers are the same, might be of more benefit than an attempt to
make an abstract, formal proof. To this end, let us consider the
problem of finding the directional derivative of the surface w = xzy
at the point (2,3,12) in the direciton of the vector 37 + 43. Using
the traditional approach, we have that f(x) = f(x,y) = xzy, whence
fx(x,y) 2xy and f (x,y) = xz. Therefore, f (2,3) = 12 and

fy(2 +3) 4. Accordlngly, the gradient of f3:t (2,3) is 121 + 43,
and a unit vector in the given direction is sl + —3 Since the
desired directional derivative is the dot product of the gradient and
the given unit vector, we obtain as the directional derivative

(121 + 43) - (-g-I + g;,), or

If we now use the method of this section, we have

f(x) = £(x,y) = x%y

a= (2,3)
u= G
tu = G, 35
Therefore,




a+ tu= (2+ 3t/5, 3 + 4t/5) = (10;3t , 15;4t,
and
fla + tu) = {101-31: 2 ,15+4t

=54 =225

1500 + 1300t + 375 t2 + 36 t3
125

2

=12 + 52t/5 + 3 t2 + 36 t3/125.

Then, since f(a)

£(2,3) = 12 we have

f£(a + tu) - £(a) = 52t/5 + 3t% + 36t3/125, and
fla + tz’ = f(a) _ 53/5 + 3t + 36t2/125.

If we now let t+0", we obtain from (15)

£' (a) = (52/5)u (16)

which is a vector whose magnitude is 52/5 and whose direction is
u = %I & %?, and this, of course, has the same direction as 37 + 43.

We thus see that we obtain the same answer in both cases.

Let us also observe that the method of this chapter does not require
that we be aware of the concept of the gradient (that is, in deriving
(16) we never used anything but the expressions implied in (15), and
certainly no notion of the gradient is present there). Not only did
we not need the gradient, but we had no need to talk about partial
derivatives. This is as it should be, since the partial derivatives
are merely derivatives with respect to some highly selective directions.
In this respect we can compute f'utgj from (15) in any vector space,
without regard to either a gradient or partial derivatives. Such
additional examples are left for the exercises. Before ending this
section, however, we feel it might provide a new insight to calculus
of a single real variable if we apply the discussion of this section
to a l-dimensional vector space.

5.14
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To this end, observe that in l-dimensional space our vectors (l-tuples)
are simply real numbers. Thus, the vector a may be identified with
the number, a. Moreover, in l-dimensional space there are only the
two unit vectors, 1 ana -1. (Geometrically, the space is the x-axis
and along the x-axis any vector is a scalar multiple of 1.)

Now, recall that one way of saying that f'(a) existed was to say that
both :

lim f(at+Ax) - f(a) and lim f(at+Ax) - f(a)
ﬁx+0+ ax Ax+0" Ax

exist and are equal.

But

lim f(a+Ax) - f(a)
ﬁx*o+ Ax

is a directional derivative. It is the derivative in the direction
that Ax+0 through positive values, that is, from right-to-left, and
this, in turn, is the direction 1. In other words, using the

notation of this section,

& by
lim f(a+Ax) - £(a)

= f' (a)
ax»0* [ ax ]

and ; _ (17)

Ax+0" ox |

lim [f{aﬂ'ﬁlﬂ - f(a) l = f.-p(a‘)

Thus, from (17) our new language says that f'(a) exists in l-dimensional
space if and only if the two directional derivatives (where both
directions differ only in sense) exist and are equal.

2

The Derivative in n-Space

Our attempts to define the derivative of a function £:E"E by mimicking
the l-dimensional case has led to the "invention" of the directional

5.15



derivative. The trouble with the directional derivative is that it
may exist in some directions but not in others. This is easy to
picture in the case f:E2+E since then the graph of f is a surface,
and what we are then saying is that some cross sections of this

surface through a given point may be smooth while others aren't.

If we still think of the derivative as denoting "smoothness"
(without worrying about what this means in high dimensions), then
unless the directional derivative exists in every direction (i.e.,
every slice through the point is smooth) the surface will not be
smooth. Stated more positively, we define a surface to be smooth
at a point if the directional derivative exists in each direction
at the given point.

With this as motivation, it is an easy step to generalize the definition

(even if the geometric interpretation may no longer apply). Namely,
we say that f:E'»E is differentiable at x = a if and only if £' (a)

exists in every direction, u.

While the above discussion is an adequate intuitive motivation, we
can support the argument for our definition of differentiability on
more computational grounds as well. Namely, we would like the
definition of a derivative to be independent of any particular choice
of direction. Why is this so? Perhaps the following pictorial
demonstration in the case n=2 will shed some light on the answer.

Suppose f(x,y) is defined in some neighborhood N of (a,b) and we
choose (c,d) to be any other point in this neighborhood. To
emphasize that (a,b) is our focal point, we shall rewrite (c,d) as
(ath, b+k) where h and k are constants which depend on the choice of

the point (c,d). [To be more specific, h is what we would ordinarily
call Ax and k is Ay].

* (a+h,b+k)

(Figure 3)
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Somehow we expect that the derivative of £, no matter how we ultimately
define it, must involve Af [which denotes f (a+h, b+k) - f(a,b)]. Now,
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once h and k are specified, f(a+h, b+k) - f(a,b) is a well-defined

number which in no way depends on direction. Moreover, when we finally

take the appropriate limit, we want an answer which will not depend
on the path which joins (a+h, b+k) to (a,b); for if the answer does
depend on the path, the limit does not exist. To be sure, the usage
of fx(a,b} and fy(a,b) utilize paths such as in Figures 4a and 4b,
but our answer must hold for arbitrary (and not necessarily straight
line) paths as in Figure 4c.

(a+h,b+k)

(a+h ,b+k\

S

(a) (b) (c) -

(Figure 4)

The special role of the directional derivative in this context is

shown in Figure 5.

(at+h,b+k)

(a,b)

(Figure 5)
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That is, once (a+h,b+k) is chosen the directional derivative assumes
that the path is the straight line which joins (a+h,b+k) to (a,b).
In this sense, once the straight line is determined, the points
(x,y) for which we evaluate f(x,y) all lie on this line, so that in
computing a directional derivative we do have the analog of the
l-dimensional derivative. The only problem is that this derivative,
as we have seen, varies with direction.

We should also point out that while, as in Figure 4, our paths do not
have to be straight lines, we may assume (at least intuitively in the
case n=2) that they are straight lines. Namely, as we take limits,
we are only interested in what happens "near" the point (a,b). Thus,
if near (a,b) the path which joins (a+h,b+k) to (a,b) is not a
straight line, we may replace it by the straight line which is
tangent to the path at (a,b), assuming of course, that the path is
smooth. (See Figure 6)

In N, the path and the tangent
line are essentially the same.

Ywh ,bt+k)
N

(Figure 6)

Thus, this discussion, too, motivates why in formulating the definition
of the derivative of a function of several (n) real variables we first
insist that the directional derivative of f at a exist in every
direction.

Now that we have given a few motivations for defining f to be differen-
tiable if its directional derivative exists in each direction, the next
subtle point is the choice of how the derivative of f should be defined.
That is, there is a difference between saying that f is differentiable
and determining what the derivative actually is. For reasons that we
hope will be made clearer as we proceed, let us define the derivative
of £ at x = a to be the directional derivative of f at a which has the
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greatest magnitude. Notice that this introduces the additional subtlety

that there must be a derivative of maximum magnitude. This is not at
all self-evident (and indeed it need not be true, although we shall

not pursue this matter here) since there are infinitely many directional

derivatives of f at a, and for an infinite set there need not be a

(finite) upper bound.

While it may not be clear yet why we choose this definition, what
should be clear is that since the directional derivative varies from
direction to direction, we must somehow or other make a choice that
picks one of these values from all others (in much the same way as we
had to choose one vector from the set of vectors, %). How shall we
make this choice? As usual, we shall let the most important
application of the concept determine the definition. In this case,
we find that we shall usually be trying, in one form or another, to
make the expression |f(x) - f£(a)| "sufficiently small" regardless of
how x approaches a, but if we want |f(x) - £(a)| to be sufficiently
small, then we need only insure that it is sufficiently small in the

direction in which it is the greatest.

If we now let f'(a) denote the directional derivative of f at a
whose magnitude is maximum, this problem is taken care of. (A more
formal way of saying this is that the directional derivative behaves
like an ordinary l-dimensional derivative in the given direction.
That is, if f' (a) exists then

Af = f'u(g) « Ax + k *AXx,

where i;TO k = 0 and AX is in the direction, u. All we are then saying

is that Af is maximum when f'u(g) is maximum in magnitude.)

At any rate, this completes our supplementary discussion of the
derivative of a function of several variables. As a review, so that
we see where all the pieces fit into place, let us observe that in
Unit 3 we discussed the gradient and the directional derivative in
terms of fx and fy (using the 2-dimensional notation). While it was
not specifically mentioned in the text, the concept of differen-
tiability of £ at x = a required that fx and fy exist at a and be

continuous there as well.




While this was a very good approach, the point was that the use of

fx and fy as the basic buiiding block was a departure from our attempts
to show all results as extensions of the l-dimensional case. Thus, it
was not so much that we produced different results in this section

(in fact, we didn't) but that we were able to re-derive the results

of the text from the point of view of our emphasis on structure.
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