
3 

AN INTRODUCTION TO VECTOR CALCULUS 

-A 
In t roduc t ion  

I n  t h e  same way t h a t  w e  s t u d i e d  numerical  c a l c u l u s  a f t e r  we learned 

numerical  a r i t h m e t i c ,  w e  can now s tudy  v e c t o r  c a l c u l u s  s i n c e  we have 

a l r e a d y  s t u d i e d  v e c t o r  a r i t h m e t i c .  Q u i t e  simply (and t h i s  w i l l  be 

explored  i n  t h e  remaining s e c t i o n s  of t h i s  c h a p t e r ) ,  w e  might have a 

v e c t o r  q u a n t i t y  t h a t  v a r i e s  wi th  r e s p e c t  t o  ano the r  v a r i a b l e ,  e i t h e r  a  

s c a l a r  o r  a  v e c t o r .  I n  t h i s  chap te r  w e  s h a l l  be  most i n t e r e s t e d  i n  

t h e  case  where w e  have a v e c t o r  which v a r i e s  wi th  r e s p e c t  t o  a  s c a l a r .  

A r a t h e r  s imple p h y s i c a l  s i t u a t i o n  of t h i s  case  would be t h e  problem 

where w e  measure t h e  f o r c e  on an o b j e c t  a t  d i f f e r e n t  times. That i s ,  

f o r c e  ( a  v e c t o r )  i s  then  a f u n c t i o n  of t i m e  ( a  s c a l a r )  . In  t h i s  con-

t e x t  w e  can ask  whether our  f o r c e  is  a continuous func t ion  of t i m e ,  a 

d i f f e r e n t i a b l e  f u n c t i o n  of  t i m e ,  and s o  f o r t h ,  

A t  t h e  same t i m e ,  t h i s  type  of e x p l o r a t i o n  opens up new avenues of 

i n v e s t i g a t i o n  and s u p p l i e s  us  wi th  e x c e l l e n t  p r a c t i c a l  reasons  f o r  ex- 

p lo r ing  t h e  r a t h e r  a b s t r a c t  n o t i o n  of h igher  dimensional spaces.  More 

s p e c i f i c a l l y ,  l e t  u s  keep i n  mind t h a t  it i s  a r a t h e r  overly-simple 

s i t u a t i o n  i n  r e a l  l i f e  when t h e  q u a n t i t y  under c o n s i d e r a t i o n  depends 

on only  one o t h e r  v a r i a b l e .  For example, wi th  r e s p e c t  t o  our above 

i l l u s t r a t i o n  of f o r c e  depending upon t i m e ,  l e t  u s  note  t h a t  i n  a  r e a l -

l i f e  s i t u a t i o n  t h e  o b j e c t  w e  a r e  s tudying has  non-negligible s i z e  and 

f o r  t h i s  r eason  a f o r c e  a p p l i e d  a t  one p o i n t  on t h e  o b j e c t  has d i f f e r -  

e n t  e f f e c t s  a t  o t h e r - p o i n t s .  ~ h u s ,w e  might f i n d  t h a t  our  vec to r  

f o r c e  depends on t h e  f o u r  v a r i a b l e s  x ,  y, z ,  and t .  That is ,  t h e  

f o r c e  may be a f u n c t i o n  of both  p o s i t i o n  ( t h r e e  dimensions) and t i m e .  

I n  terms of a f u n c t i o n ,  our i n p u t  i s  a 4-tuple ( t h a t  i s ,  an ordered 

a r r a y  [sequence] of f o u r  r e a l  numbers x,  y ,  z ,  and t ) .  P i c t o r i a l l y ,  

Now w e  have a l r e a d y  used 2- tuples  t o  a b b r e v i a t e  v e c t o r s  i n  t h e  p lane  

and w e  have used 3- tuples  t o  a b b r e v i a t e  v e c t o r s  i n  space.  That  i s ,  w e  

have l e t  ( a , b )  denote  <i + gj and ( a , b , c )  denote c?i + g j  + gk. I n  
t h i s  c o n t e x t ,  w e  may t h i n k  of a  4-tuple a s  denot ing  a 4-dimensional 



"vector ,"  even though we may no t  be ab l e  t o  v i sua l i ze  it i n  t he  usual  

sense. We have e a r l i e r  come t o  g r i p s  with t h i s  problem i n  t he  form of 

exponents. Namely, if we look a t  b l ,  b2. and b 3 w e  can i n t e r p r e t  each 
of these  p i c t o r i a l l y  very n ice ly .  That i s ,  b1 is  a length of b u n i t s ,  

b2 i s  t he  a rea  of a square whose s i d e  has length b ,  and b 3 i s  t h e  

volume of a cube whose s ide  has length b .  But while b4 does not  have 

such a simple geometric i n t e r p r e t a t i o n ,  it is  j u s t  a s  meaningful t o  
multiply four  (o r  more) f a c t o r s  of b a s  it i s  t o  mult iply  one, two, 

o r  th ree .  In o ther  words, we a r e  back t o  a fundamental t op i c  of P a r t  1 

of our course - a p i c t u r e  is  worth a thousand words i f  you can draw 

it.-
In  any event ,  what w e  a r e  saying i s  t h a t  when we study funct ions  of n 

va r i ab l e s  we a r e  i n  e f f e c t  looking a t  an n-dimensional space. In  f a c t  

t h i s  o f f e r s  us a r a t h e r  straight-forward,  non-mystic i n t e r p r e t a t i o n  a s  

t o  why t i m e  is  o f t en  r e f e r r ed  t o  a s  the  fou r th  dimension. Namely, i n  

most physical  s i t u a t i o n s  t he  va r i ab l e  we a r e  measuring ( a s  we discussed 

e a r l i e r )  depends on pos i t i on  and time. Pos i t ion  i n  genera l  involves 

th ree  dimensions and time is  then the  four th  dimension (va r i ab l e ) .  

Notice t h a t  i n  t h i s  respec t  we can have a s c a l a r  (as w e l l  a s  a vector)  

funct ion of n-dimensional vec tors  (meaning t h e  input  cons i s t s  of n 

va r i ab l e s  while t he  output  i s  a number). For example, we might be 

studying temperature (a  s c a l a r )  a s  a funct ion of pos i t ion  and t ime, i n  

t he  sense t h a t  temperature i n  genera l  does vary from point  t o  point  

and a t  the  same point  it usua l ly  v a r i e s  from t i m e  t o  time. 

In  order not  t o  introduce too many new ideas  a t  once, w e  s h a l l  devote 

the  remainder of t h i s  chapter  only t o  t he  ca lcu lus  of 2 and 3-

dimensional vectors .  Once we gain  some f a m i l i a r i t y  with t h i s  ba s i c  

concept, we s h a l l  extend our f r o n t i e r s  t o  include t he  more general  
study of n-dimensional vec tors ,  This t op i c  w i l l  be discussed i n  a 

l a t e r  chapter of supplementary notes  which w i l l  be covered during our 

study of Block 3 .  
b 

Functions Revis i ted 

When we f i r s t  introduced the  concept of funct ions ,  we mentioned t h a t  a 

funct ion was a r u l e  which assigned t o  members of one s e t  members of 

another s e t .  W e  pointed ou t  t h a t  t h e  two s e t s  involved could be 

a r b i t r a r y  bu t  t h a t  i n  the  study of r e a l  var iab les  our a t t e n t i o n ,  b y  

d e f i n i t i o n ,  i s  confined t o  the  case i n  which both s e t s  a r e  subse t s  of 

the  r e a l  numbers. 



W e  a l s o  developed t h e  v i s u a l  a i d  of t h e  f u n c t i o n  machine, wherein i f  

f :A+B, w e  had 

f  -machine 

(elements (elements 


The p o i n t  of t h i s  c h a p t e r  i s  t h a t ,  i n  t h e  r e a l  world,  w e  a r e  o f t e n  

confronted  wi th  s i t u a t i o n s  i n  which w e  a r e  d e a l i n g  wi th  v e c t o r s  r a t h e r  

than  s c a l a r s ,  whereupon w e  have t h e  s i t u a t i o n  t h a t  e i t h e r  t h e  i n p u t  o r  

t h e  o u t p u t  of our f-machine could be v e c t o r s .  

I n  our  e a r l i e r  example, w e  spoke of f o r c e  ( a  v e c t o r )  a s  a  func t ion  of 

t i m e  ( a  s c a l a r ) .  I n  t h i s  case  our  f-machine looks l i k e  

i n p u t  f  -machine 
t ( s c a l a r )  

+ 
More c o n c r e t e l y ,  w e  might have a f o r c e  F def ined  i n  t h e  xy-plane by 

From (1)it is  c l e a r  t h a t  d i f f e r e n t  va lues  of t h e  s c a l a r  t y i e l d  d i f -  
+

f e r e n t  v a l u e s  of t h e  v e c t o r  F. For i n s t a n c e ,  i f  t = 3 t hen  

8 = 31  + $j . Moreover, it should seem f a i r l y  obvious t h a t  w e  might 
l i k e  t o  a b b r e v i a t e  t h e  above in fo rmat ion  i n  the form 

Notice how t h e  language i n  (2)  c l o s e l y  p a r a l l e l s  t h e  n o t a t i o n  t h a t  w e  

have a l r e a d y  used f o r  " r e g u l a r "  f u n c t i o n s .  The only d i f f e r e n c e  i s  

t h a t  b e f o r e  w e  were t a l k i n g  about  s c a l a r  f u n c t i o n s  ( i .e.  t h e  "outputs"  

were s c a l a r s )  of s c a l a r  v a r i a b l e s  ( i . e .  t h e  " inpu t s"  were a l s o  

s c a l a r s ) ,  whi le  i n  t h i s  case  we a r e  d e a l i n g  wi th  v e c t o r  f u n c t i o n s  

( i .e .  t h e  o u t p u t s  a r e  v e c t o r s )  of s c a l a r  v a r i a b l e s .  

I n  t h i s  same v e i n ,  we might w r i t e  



t o  i nd i ca t e  t h a t  we have a s c a l a r  funct ion ( i . e .  t h e  output  of f i s  a 

s c a l a r )  of a vector  va r i ab l e  ( i . e .  the  input  of the  £-machine i s  a 

v e c t o r ) .  A s  an example i n  " r e a l  i i f e "  ~f equation ( 3 ) ,  consider a 

s i t u a t i o n  i n  which a l l  we were i n t e r e s t e d  i n  was the  magnitude of 
-+

various  forces  being considered. In  t h i s  case ,  given a force  F we 
+

would compute i t s  magnitude I F ( .  I n  t h i s  way our procedure is  t o  take  
a vector  ( fo rce)  and convert  it t o  a s c a l a r  (magnitude of the  f o r c e ) .  

P i c t o r i a l l y ,  

input  1 8 ( -machine .output .
8 (vector)  191 ( s c a l a r )  

The f i n a l  p o s s i b i l i t y  i s  t h a t  we have 

Equation ( 4 )  denotes a vector  funct ion of a vector  var iab le .  An 

example of t h i s  s i t u a t i o n  might be t h a t  a t  any given i n s t a n t  we know 

the  force  (a  vec tor )  being exer ted on a p a r t i c l e  from which we want t o  

determine t h e  acce le ra t ion  of t he  p a r t i c l e  (acce le ra t ion  i s  a l s o  a 

vector  - i n  f a c t  i n  Newtonian physics t he  d i r ec t i on  of the acce le ra t ion  

i s  t h e  same a s  t h a t  of t he  fo rce ,  which means t h a t  t he  "lawH f = ma 
remains co r r ec t  i n  t h e  vector  form f 

+ 
= m g )  . Again p i c t o r i a l l y ,  

input  ";-machine " output  
+ /

3 (vec tor )  a (vector)  

In  summary then,  i f  w e  allow vec tors  a s  wel l  a s  s c a l a r s  t o  be our 

va r i ab l e s ,  then t he  study of funct ions  of a s i n g l e  var iab le  reduces t o  

one of four  types  



I n  t h i s  block we  s h a l l ,  when d e a l i n g  wi th  v e c t o r  f u n c t i o n s ,  assume 

t h a t  w e  have a v e c t o r  f u n c t i o n  of a s c a l a r  v a r i a b l e .  That  is ,  w e  

s h a l l  d e a l  wi th  f u n c t i o n s  of t h e  form 

P i c t o r i a l l y ,  

-t 
x f -machine (x, 
( s c a l a r1 (vec to r )  * 

The key obse rva t ion  t o  b e  made from t h e  p i c t u r e  above i s  t h a t  i f  t h e  

arrows a r e  omit ted  our  diagram i s  i d e n t i c a l  wi th  our  previous diagram 

of a f u n c t i o n  machine i n  t h e  s tudy  of r e a l  v a r i a b l e s .  Namely, 

This  obse rva t ion  is  t h e  backbone of t h e  nex t  s e c t i o n .  

C 

The "Game" Applied t o  Vector  Calculus  

I n  d e f i n i n g  l i m  f ( x )  = L,  w e  used our  i n t u i t i o n  t o  make s u r e  t h a t  w e  
x+a 

knew what w e  wanted t h e  express ion  t o  mean, and we then proceeded t o  

make t h e  d e f i n i t i o n  more r igorous  us ing E ' S  and 6 ' s .  The r igorous  way 

seemed q u i t e  f r i g h t e n i n g  a t  f i r s t ,  b u t ,  a f t e r  a whi le ,  w e  began t o  

n o t i c e  t h a t  it only s a i d  i n  p r e c i s e  mathematical  terms what we a l r e a d y  

be l i eved  t o  be  t r u e  i n t u i t i v e l y .  

What may have gone unnoticed was t h a t  once we had the  r igorous  d e f i n i -  

t i o n ,  every  proof we gave concerning l i m i t s  cons i s t ed  of applying t h e  

r u l e s  of mathematics t o  t h e  mathematical d e f i n i t i o n  of a l i m i t .  I n  

terms of our game i d e a ,  we de f ined  what a l i m i t  was, used t h e  accepted 

r u l e s  of numerical  a r i t h m e t i c ,  and then  proved theorems about  l i m i t s .  



The key point  here i s  t h a t  i f  it should happen t h a t  our d e f i n i t i o n  of 

l i m i t  i n  our discussion of vector  funct ions  of a s c a l a r  va r i ab l e  has 

t he  same s t r u c t u r e  a s  our d e f i n i t i o n  of l i m i t  when w e  were deal ing 

with s c a l a r  funct ions  of s c a l a r  va r i ab l e s ,  and i f  it happens t h a t  
every accepted r u l e  of numerical a r i thmet ic  t h a t  was used i n  t he  

e a r l i e r  proofs of our l i m i t  theorems a l s o  happens t o  be an  accepted 

r u l e  f o r  vector  a r i thmet ic , . then ,  i n  terms of the  philosophy of our-
game concept, every theorem about l i m i t s  t h a t  was v a l i d  i n  t h e  study 

of "numerical l i m i t s n  w i l l  remain v a l i d  i n  t h e  study of "vec tor ia l  
l i m i t s . "  The purpose of t h i s  s ec t i on  i s  t o  explore  t h i s  idea i n  more 

computational d e t a i l .  

How can we t e s t  whether the  vector  s i t u a t i o n  p a r a l l e l s  t he  numerical 

case? There i s  a very e legant  y e t  simple technique t h a t  we s h a l l  

employ here.  W e  s h a l l  begin by wr i t i ng  the  d e f i n i t i o n  of l i m i t  i n  t h e  

s c a l a r  case.  We s h a l l  then go through the  d e f i n i t i o n  and i n s e r t  arrows 

over those symbols t h a t  w i l l  now denote vec tors  r a t h e r  than s c a l a r s  

(and, admittedly,  w e  must take care  i n  determining what i s  s t i l l  a 

s ca l a r  and what has become a v e c t o r ) .  In  t h i s  way, we a r e  sure t h a t  

the  bas i c  s t r u c t u r e  cannot be d i f f e r e n t  s ince  the  only changes we made 

were i n  the  names of t h e  var iab les .  We then check t o  see  i f  the  

r e su l t i ng  d e f i n i t i o n  obtained from the  s c a l a r  d e f i n i t i o n  by t h i s  

"arrowizing" technique i s  s t i l l  meaningful. For example, i f  we t r i e d  
t o  vec tor ize  the  numerical statement t h a t  a/b = c ,  we would ob ta in  
- + +  -b
a / b  = c which makes no sense,  s ince  vector  d iv i s ion  is  undefined. (Of 
course,  had we vector ized a l l  b u t  b ,  t he  r e s u l t i n g  statement would 

make sense b u t  t h i s  i s  no t  the  po in t  w e  a r e  t ry ing  t o  make here.)  

In  any event,  carrying ou t  our i n s t r u c t i o n s  s o  f a r ,  f i r s t  w e  w r i t e  t he  
o r i g i n a l  d e f i n i t i o n  of l i m i t  i n  t h e  s c a l a r  case ,  namely 

l i m  f  (x) = L 
x+a 

means given any E > O ,  w e  can f i nd  6>0 such t h a t  whenever 

then 

Next, we r ewr i t e  t h i s  d e f i n i t i o n  pu t t ing  i n  arrows wherever appropri-  

a t e .  Recal l  t h a t  we a r e  deal ing with vector  funct ions  of s c a l a r  



var iab les .  Hence, x i s  a s c a l a r .  But f and L should be represented 

a s  vec tors  s ince  w e  have a l ready agreed t h a t  we a r e  deal ing with vec- 

t o r  funct ions  and t h i s  implies t h a t  our output ,  i n  t h i s  case f ( x )  and 

L, a r e  a l s o  vectors .  Notice, however, t h a t  even though we have now 

introduced vec tors ,  E and 6 are s t i l l  s ca l a r s .  The reason f o r  t h i s  

i s  t h a t  E and 6 denote absolute  values (magnitudes) of q u a n t i t i e s ,  and 

the  magnitude of both s c a l a r s  and vec tors  a r e  non-negative r e a l  

numbers. In  any event ,  i f  w e  now rewr i t e  our o ld  d e f i n i t i o n  with the  

appropria te  "arrowi za t ionn  w e  ob ta in  

means given any E > O  we can f i nd  6>0 such t h a t  whenever 

then 

Our f i r s t  observation of t h i s  d e f i n i t i o n  should show t h a t  it is mean--
+ +i ng fu l .  That i s ,  every p a r t  of the  expression i s  defined (unlike a / b ) .  

Ou,r next t ask  i s  t o  see whether t h e  d e f i n i t i o n  captures  what we would 
-+ + 

l i k e  l i m  f ( x )  = L t o  mean. After  a l l ,  what good i s  it i f  our de f in i -  
x+a 

t i o n  i s  meaningful bu t  it doesn ' t  capture  t he  meaning we have i n  mind? 

To t h i s  end, it i s  probably f a i r  t o  assume t h a t  we would l i k e  
+ + -+ 

l i m  f (x) = L t o  mean t h a t  i f  x i s  " s u f f i c i e n t l y  c lose  t o "  a then f (x) -
x+a -+ 

is  " s u f f i c i e n t l y  c lo se  t o "  L. Notice t h a t  f o r  two vectors  t o  be 


"nearly" equal  t h e i r  d i f f e r ence  must be small.  In  other  words, f o r  

any p a i r  of vec tors  A and B ,  i f  we assume t h a t  they o r ig ina t e  a t  a 


common poin t  then t h e i r  d i f fe rence  i n  magnitude i s  the  length of the 


vector  t h a t  goes from the head of one t o  t h e  head of the  other .  


C lear ly ,  t he  smaller  t h i s  vector  i s  i n  magnitude the  more "together" 


a r e  t he  heads of t he  two vec tors .  In  terms of our above de f in i t i on ,  

-+ -+ 

not ice  t h a t  f ( x )  - L means p i c t o r i a l l y  t h a t  



The smal le r  t h e  d i f f e r e n c e  between 

f (x)  and 2 t h e  c l o s e r  i s  t h e  head of 
-+ 
f 

+ 
t o  t h e  head of L which means t h a t  

( i s  more n e a r l y  e q u a l  t o  t. 

. . 
In  o t h e r  words, then ,  i n  terms of what t h e  a n a l y t i c  express ions  mean 

geomet r i ca l ly ,  w e  should  be convinced t h a t  t h e  formal d e f i n i t i o n  agrees  

wi th  our i n t u i t i o n .  Again, i n  t e r m s  of  a p i c t u r e  

@ If x is  i n  he re  

/ 
> x-axis  

( C i r c l e  of r a d i u s  E 


censered  a t  t h e  head 
J of I.) 


-b 

@ t hen  f (x)  t e r m i n a t e s  i n  h e r e  (provided it o r i g i n a t e s  a t  t h e  t a i l  

of 2,. 

So f a r ,  s o  good, b u t  i f  w e  want t o  be a b l e  t o  c a p i t a l i z e  on our  game 
i d e a ,  t h e  c r u c i a l  test now lies ahead. Reca l l  t h a t  a l l  ou r  formulas 

f o r  d e r i v a t i v e s  stemmed from c e r t a i n  b a s i c  p r o p e r t i e s  of l i m i t s  (such 

a s  t h e  l i m i t  of a sum is  t h e  sum of t h e  l i m i t s ,  and s o  o n ) .  These 

p r o p e r t i e s  of l i m i t s  followed mathematical ly from c e r t a i n  p r o p e r t i e s  of 

r e a l  numbers. The key now i s  t o  show t h a t  t h e  p roofs  apply  verbat im 

when w e  r e p l a c e  t h e  s c a l a r s  by a p p r o p r i a t e  v e c t o r s .  

For example, what w e r e  some of t h e  p r o p e r t i e s  w e  used about  a b s o l u t e  

va lues  i n  d e a l i n g  w i t h  our  p roofs  about  l i m i t s ?  W e l l ,  f o r  one t h i n g ,  

w e  used t h e  p roper ty  t h a t  f o r  any numbers a and b 

The impor tant  t h i n g  i s  t h a t  i f  we now v e c t o r i z e  (1) t o  o b t a i n  



we s e e  t h a t  ( 2 )  is  a l s o  t r u e .  P i c t o r i a l l y ,  

The l e n g t h  of one s i d e  of a t r i a n g l e  

cannot  exceed t h e  sum of t h e  l e n g t h s  
of t h e  o t h e r  o t h e r  two s i d e s .  

a 

W e  a l s o  used such f a c t s  a s  

la1 3 0 and la1 = 0 

i f  and on ly  i f  a = 0.  I f  w e  now v e c t o r i z e  ( 3 )  a p p r o p r i a t e l y ,  w e  

o b t a i n  

+
la1 3 0 and 121 = 0 

i f  and on'ly i f  2 = 8 .  Reca l l ing  t h a t  1; 1 means t h e  magnitude of g, it 

i s  t r i v i a l  t o  see t h a t  ( 4 )  i s  a l s o  a t r u e  s ta tement .  

W e  must be  c a r e f u l  n o t  t o  become t o o  g l i b  i n  our  p r e s e n t  approach. 

That  i s ,  w e  must n o t  f e e l  t h a t  it i s  a t r u i s m  t h a t  we can j u s t  vec to r -

i z e  eve ry th ing  i n  s i g h t  and o b t a i n  t r u e  v e c t o r  s t a t ements  from t r u e  

s c a l a r  s t a t ements .  One p l a c e  where w e  must be very  c a r e f u l ,  f o r  

example, i s  when w e  v e c t o r i z e  any numerical  s t a t ement  t h a t  involves  

products .  Consider t h e  p roper ty  of a b s o l u t e  v a l u e s  t h a t  f o r  any 
numbers a  and b 

I f  we t r y  t o  v e c t o r i z e  (5)  by b r u t e  f o r c e  we f i n d  f o r  one t h i n g  t h a t  
t h e  r e s u l t i n g  equa t ion  may w e l l  be  meaningless. For i n s t a n c e ,  t h e  

s t a t ement  

i s  meaningless ( i .e . ,  undefined.) s i n c e  w e  have n o t  y e t  def ined an 

"o rd ina ryn  product  of two v e c t o r s  -)a$. That i s ,  t h e  l e f t  s i d e  of-: : 

Equation (6 )  i s  undefined.  I f  we i n t e r p r e t  t h e  m u l t i p l i c a t i o n  a s  
s c a l a r  m u l t i p l i c a t i o n  and v e c t o r i z e  Equation (5)  accordingly ,  we 

o b t a i n  



(where on t h e  r i g h t  s i d e  we mean t h e  usual  mul t ip l ica t ion  s ince  both 

1;Iand I g]  a r e  numbers) . 

The c r u c i a l  po in t  i s  t h a t  both forms of equation ( 8 )  a r e  meaningful 


but  they both happen t o  be -f a l s e .  Namely, 


-+
a - b

+ 
= (;I IS( cos 

Hence, 

s i nce  lcos<l< 1, (9 )  y i e l d s  the i n t e r e s t i n g ,  bu t  perhaps s h a t t e r i n g  

r e s u l t  t h a t  

In  a s imi l a r  way, 

b 

l a x b l  = If1 ( 1 Isin'\; I f  1;1 lgl ( s ince  I s i n  . 

In  o the r  words, any l i m i t  proof t h a t  involved t h e  r e s u l t  t h a t  the  

absolute  value of a product i s  t h e  product of t h e  absolute  values 

might w e l l  be f a l s e  i n  absolute  value o r  l i m i t  problems involving 

e i t h e r  t h e  do t  o r  t h e  c ross  product of vectors .  

Rather than belabor t h i s  po in t ,  l e t  us i l l u s t r a t e  our ideas  by means 
of a few examples; and t o  emphasize t h e i r  importance, l e t  us u t i l i z e  

a new sec t ion  t o  d i scuss  them. 



Some L i m i t  Theorems f o r  Vectors 

Theorem 1 .a 

+ + +
Suppose l i r n  f (x) = Ll and l i r n  g (x)  = L2 . 

x+a x+@ 

Then l i r n  (f (x) + G(x))  = Zl + t2 . 
x+a 

To prove t h i s  theorem, w e  w r i t e  down the  analogous proof i n  the  s c a l a r  

case. ( W e  w i l l  not  motivate t h i s  proof s ince  t h i s  was already done i n  

P a r t  1 of our course. However, it w i l l  be an i n t e r e s t i n g  check f o r  

you t o  s ee  how "na tura ln  t he  proof now seems t o  you.) 

W e  had : 

Suppose l i r n  f  (x) = L1 and l i r n  f  (x) = L2 . 
x+a x+a 

Then l i r n  [f  (x) + g ( x ) l  = L1 + L2 
x+a 

The proof went a s  follows 

(1) Let h (x)  = f (x) + g (x). W e  must show t h a t  l i m  h (x) = L1 + L~ . 
x+a 

(2) Let E > 0 be a r b i t r a r i l y  given. Then the re  e x i s t  numbers 61 and 
6 2  such t h a t  

and 

(3) Let 6 = min {61,62) . 
E E

Therefore,  0 < I x - a1 < 6 + I f ( x )  - L1l + Ig(x)  - L21 < E ( = T + 2 ). 
( 4 )  But I f ( x )  - L1l + Ig(x) - ~~1 > I [ f ( x )  - L1l + [(?(XI- 1 2 1 1  

(5) Therefore,  0 < Ix - a1 < 6 + I [ f ( x )  - L1l + [g(x) - L21I < E . 



17) Therefore, 0 < Ix - a1 < 6 + Ih(x) - (LL + L ~ ) I  < t 
-

Therefore, l i m  h (x) = L1 + L2 . 
x+a 

The key now is t o  observe t h a t  every s t e p  i n  our proof remains v a l i d  
when vec tors  a r e  introduced. Why? W e l l ,  f o r  example, t h e  v a l i d i t y  of 

s t e p  (1) requ i r e s  t h a t  t h e  sum of two numbers be a number; otherwise,  

h (x)  = f (x) + g(x )  would be meaningless. To convert  t h i s  i n t o  a vector  

statement we only r equ i r e  t h a t  t h e  sum of two vec tors  be a vec tor ,  and 

t h i s  w e  know is t rue .  The v a l i d i t y  of s t e p  (2) depends only on t h e  

d e f i n i t i o n  of l i m i t  and w e  have taken ca re  t o  m i m i c  t h e  s c a l a r  def in i -

t i o n  i n  forming t h e  vector  de f in i t i on .  Step (3) remains v a l i d  by 

"defhul tH s ince  only s c a l a r  p rope r t i e s  a r e  being used. That is, both 
+

I f ( x )  - LII and I$(x) - LII a r e  s c a l a r s .  The v a l i d i t y  of s t e p  ( 4 )  

hinges on t h e  " t r i a n g l e  i n  equa l i ty ; "  l a  + bl 6 la1 + lbl, bu t  t h i s ,  a s  

w e  have seen,  i s  a l s o  v a l i d  f o r  vectors .  Step (5)  is merely subs t i tu -
t i o n  of s c a l a r  quan t i t i e s .  A s  f o r  s t e p  ( 6 ) ,  t h i s  follows from the  com-

mutative and a s soc i a t i ve  proper t ies  of numerical add i t ion ,  and, a s  w e  

have seen,  t he se  p rope r t i e s  a r e  a l s o  obeyed i n  vector  addi t ion.  

~ n ' o t h e rwords, i f  we nvector ize"  t he  s c a l a r  proof,  t h e  r e su l t i ng  proof 

is a va l i d  vector  proof. When w e  do t h i s  ( j u s t  f o r  p r ac t i ce )  we obtain:  

(1) L e t  g (x )  = 3 (x) + 6 (x). W e  must show t h a t  l i m  h (x) = tl + t2 . 
, x+a 

(2) L e t  E > 0 be a r b i t r a r i l y  given. t he re  e x i s t  numbers 61 and 

6 2  such t h a t  

and 

( 3 )  Let 6 = min {61,62) . 
+ +

Therefore, 0 < I x - a /  < 6 + ~ f ( x )-L1 l  + I ; ( x )  - 1 2 1  < E 



+ 
( 4 )  B U ~I ~ ( x )  - ~~1 + I;(x) - i212 I [%(XI- i l l  + [;(XI - i 2 1  I . 

(5) Therefore, 0 < Ix - a1 < 6 + I [%(x)  - i l l  + [;(XI - t 2 1 ~ <E . 

(7) Therefore, 0 C I x - a 1  < 6 +  lg(x)  - (il+i2)l< E  
+ + 

Therefore, l i r n  B(x) = L1 + L2 . 
x+a 

It i s ,  of course,  important t o  no t i ce  t h a t  our vector  proof a s  it 

s tands i s  self-contained.  That is ,  it e x i s t s  i n  i t s  own r i g h t  even 

had w e  no t  obtained it from an e a r l i e r  s c a l a r  proof. I t ' s  j u s t  t h a t  

by observing the  s i m i l a r i t y  i n  s t r u c t u r e ,  we may deduce the  proper t ies  

of c e r t a i n  vector  funct ions  from the  corresponding proper t ies  of t he  

s c a l a r  funct ions ,  and i n  t h i s  way, we again b e n e f i t  from the  p a r a l l e l  

s t ruc tu re .  

Theorem 2 

+
I f  l i m  ? (x )  = L1 and i f  l i m  g ( x )  = t2,then i f  h ( x )  = f (x) a x )  I 

x+a x+a 

Before proceeding with t he  proof of Theorem 2 ,  we should note t h a t  

t he re  is  more than one way t o  form a product of two vectors .  We have 

a r b i t r a r i l y  e l ec t ed  t o  t a l k  about t he  do t  product. A s imi l a r  proof 

holds f o r  t he  c ross  product and w i l l  be l e f t  a s  an exercise .  It i s  

worth not ing t h a t  t h e  f a c t  t h a t  we can form a product of two vectors 

i n  more than one way w i l l  cause c e r t a i n  complications i n  vector calcu-

l u s  t h a t  d id  not  e x i s t  i n  s c a l a r  ca lcu lus ,  s ince  t he re ,  a product of 

two numbers could be i n t e rp re t ed  i n  only one way. 

Proof-
Had t h i s  been wr i t t en  i n  terms of s c a l a r s  r a t h e r  than vectors ,  our 

proof would have taken t h e  form 

f (x) = [ f  (x)  - L1] + L1 



therefore, If(x) g(x) - L1 L21 = IL2[f (x) - L1l + Ll[g(x) - L2] 

+ [f(x) - Lll [g(x) - L ~ I I  

Since 1 Ll 1 and1 L2 1 are bounded and both 1 f(x) - Ll 1 and1 g (x) - L21 can 

be made arbitrarily small by choosing x sufficiently near 5, the right 
side of (1) gets arbitrarily small as x + a. This guarantees that 

lim (f(x) g(x) - L1 L2) = 0 
x+a 

lim f(x) g(x) = L1 L2 . 
x+a 

If we now repeat this argument with the appropriate "vectorization," 

we have 

Therefore, ftx) 3 (XI = 113(XI - tl1+ '11 1 - t21 + 221 

iCElot.ice t h a t  w h i l e ,  ' f o r  -exampl'e, ILl [g(x) '  - L 2 ]  I .I' F. 1 1 g (x )  - L2  I o u r  

s t r i n g  o f  i n e q u a l i t i e s  r e q u i r e s  o n l y  t h e  w e a k e r  r e s u l t  t h a t  
ILl [ g ( x )  - L 2 ]  I 6 i~~1 l g ( x )  - L 2  I. T h i s ,  a s  we s h a l l  s o o n  s e e ,  i s  

+ 
v e r y  i m p o r t a n t  b e c a u s e  o f  t h e  v e c t o r  p r o p e r t i e s  t h a t  la bl d 1:1 I ~ I 
a nd 1; x 61 < 121161. 
**We p u t  t h i s  s t e p  i n  t o  e m p h a s i z e  t h e  f a c t  t h a t  t h e  r u l e s  o f  o r d i a a r y  
a l g e b r a  c a r r y  o v e r  v e r y  n i c e l y  h e r e  t o  d o t  p r o d u c t s .  



-+ -+ -+
therefore, If (x) g(x) - Ll L21 - it2 [f (x) - tl] + El [;(XI - 221 

(This last step is independent of any vector arithmetic since all dot 

products are numbers not vectors.) 
Now since 1; 61 ,< 121161(observe that we don't need 1; 9 )  = 1211611, 
our last inequality yields 

(Notice that there are no dot products here since 1 t21 , I 'E(x) - El1 etc. 
are numbers.) 

Our last equation has the same properties as (1) and so the desired 

result follows. 

Additional examples are left for the exercises. Our aim in this section 

was simply to illustrate that our limit theorems for scalars do indeed 

carry over, and in a rather natural way, to vectors. 

E 

Derivatives of Vector Functions of Scalar Variables 

In the study of ordinary calculus, we mentioned that the study of 

differentiation could be viewed as an application of the limit theorems. 

That is, when we defined f' by 

f(xl + Ax) - f(xl) 
f' (xl) = lim 

Ax+O A-x 1 
every property of f' was then computed by the use of the limit theorems 

applied to (1). 
The point is that we now do the same thing for vectors. We observe 

that the expression 

T(xl + Ax) - T(xl) 



is well-defined since it involves the quotient of a vector and a scalar 

and this may ve viewed as scalar multiplication. That is, 

scalar vector 

Without belaboring this point, this expression can indeed be thought 

of as representing an average rate of change, and, if we then proceed 

to the limit, we may think of this as an instantaneous rate of change. 

With this as motivation, all we are saying is that it is meaningful to 

define f '  by 
$(x1 + Ax) - f (xl)

f v(xl) = lim 
AX +O AX 1 

The key point now is that since the usual recipes for derivatives 

follow from the basic properties of limits and since the same limit 

theorems are true for vectors as for scalars, it follows that there 

will be recipes for vector derivatives similar to those for scalar 

derivatives. 

For example, it is provable that the derivative of a sum is the sum 

of the derivatives. The proof is again verbatim from the proof in the 

scalar case. 

Without bothering to copy the scalar proof, we write down the vector 

proof with the hope that you can recognize that it is the scalar proof 

with appropriate vectorization. We have 

Let S(x) = ?(XI + ;(XI . 
-b 

h(xl + Ax) - s(xl)
Then if' (xl) = lim [

Ax+O 
b x . .  . . ] 

+ Ax) + (xl + AX) - [f (xl) + (xl)I 
= lim 
Ax+O AX 1 

*(xl + Ax) - f(xl) g(xl + AX) - -tg(xl) 

Ax+O AX - 1 AX 

f (xl + AX) - x ] + lim [$  
(xl + Ax) - ~ ( I c ~ )  

= lim [
Ax+O AX Ax+O AX 

(since the limit of a sum is the sum of the limits, 
as shown in the previous section). 

3.16 



I 

I n  a  s imi l a r  way (and t h e  d e t a i l s  a r e  l e f t  a s  e x e r c i s e s ) ,  the  same 

product r u l e  appl ies  t o  vectors .  The only d i f fe rence  i s  t h a t  we now 

have s eve ra l  types of products. For example, w e  may have t h e  product 

of a s c a l a r  funct ion with  a  vector  funct ion,  o r  we may have t he  do t  
product of two vector  funct ions ,  o r  w e  may have t he  c ross  product of 

two vector  functions.  In  any case ,  we obtain  t h e  r e s u l t s  

( In  t h i s  l a s t  case  beware of changing the  r o l e s  of the  f ac to r s  
+ 
a  x  b  

+ 
= -6 x ; ) . I  

We even have a  form of t he  quot ien t  r u l e  pravided t h a t  our quot ien t  

i s  a  vec tor func t ion  divided by a  s c a l a r  . function ( f o r ,  otherwise, t he  
quot ien t  is  no t  def ined) .  The formula i s  

These formulas have a  n i ce  appl ica t ion  t o  Car tes ian coordinates.  Suppose 
-b 
F is  a  vector  funct ion of t he  s i n g l e  r e a l  va r i ab l e  t. For example, we 

-k 

may be considering force  a s  a funct ion of time. Suppose F has t he  form 

and we d e s i r e  t o  compute d$/dt. 

Since the  de r iva t i ve  of a sum is  the  sum of t he  de r iva t i ve s ,  we have 

2 ~ :  

: Then s ince  a  cons tan t  times a  va r i ab l e  has a s  i t s  der iva t ive  the  constant  
,,i times t h e  de r iva t i ve  of the  va r i ab l e ,  and s ince  t 1, J ,  and +

k a re  constants ,  
y,L' 

=:.,...-L* 

3.y- we obtain:  5,
-1. 

'.L, 
\ 
. . 
s 


ri-
g .  

US".*-
*.. '.;r 



While this was a specific example, it should be fairly easy to see 


that, in general, the derivat-ive is obtained by differentiating the 


components. Further details are left to the text and the exercises, 


but we want to emphasize again the fact that our definition of limit 


for vectors, being so closely modeled after the scalar situation, 


guarantees that the differentiation formulas with which we are already 


familiar in the scalar case are also valid in the vector case. 
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