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AN INTRODUCTION TO VECTOR CALCULUS

A

Introduction

In the same way that we studied numerical calculus after we learned
numerical arithmetic, we can now study vector calculus since we have
already studied vector arithmetic. Quite siwply (and this will be
explored in the remaining sections of this chapter), we might have a
vector quantity that varies with respect to another variable, either a
scalar or a vector. In this chapter we shall be most interested in
the case where we have a vector which varies with respect to a scalar.

A rather simple physical situation of this case would be the problem
where we measure the force on an object at different times. That is,
force (a vector) is then a function of time (a scalar). In this con-
text we can ask whether our force is a continuous function of time, a
differentiable function of time, and so forth.

At the same time, this type of exploration opens up new avenues of
investigation and supplies us with excellent practical reasons for ex-
ploring the rather abstract notion of higher dimensional spaces. More
specifically, let us keep in mind that it is a rather overly-simple
situation in real life when the quantity under consideration depends
on only cone other variable. For example, with respect to our above
illustration of force depending upon time, let us note that in a real-
life situation the object we are studying has non-negligible size and
for this reason a force applied at one point on the object has differ-
ent effects at other points. Thus, we might find that our vector
force depends on the four variables x, y, z, and t. That is, the
force may be a function of both position (three dimensions) and time.

In terms of a function, our input is a 4-tuple (that is, an ordered

array [sequence] of four real numbers x, y, z, and t). Pictorially,
Anput F-machine outisit
(x,;¥,2,t) F

Now we have already used 2-tuples to abbreviate vectors in the plane
and we have used 3-tuples to abbreviate vectors in space. That is, we
have let (a,b) denote ai + 53 and (a,b,c) denote ai + 83 + ck. 1In

this context, we may think of a 4-tuple as denoting a 4-dimensional




"vector," even though we may not be able to visualize it in the usual
sense. We have earlier come to grips with this problem in the form of
exponents. Namely, if we look at bl, h2, and b3 we can interpret each
of these pictorially very nicely. That is, bl is a length of b units,
b2 is the area of a square whose side has length b, and b3 is the
volume of a cube whose side has length b. But while b4 does not have
such a simple geometric interpretation, it is just as meaningful to
multiply four (or more) factors of b as it is to multiply one, two,

or three. 1In other words, we are back to a fundamental topic of Part 1
of our course - a picture is worth a thousand words if you can draw
i,

In any event, what we are saying is that when we study functions of n
variables we are in effect looking at an n-dimensional space. In fact
this offers us a rather straight-forward, non-mystic interpretation as
to why time is often referred to as the fourth dimension. Namely, in
most physical situations the variable we are measuring (as we discussed
earlier) depends on position and time. Position in general involves
three dimensions and time is then the fourth dimension (variable).

Notice that in this respect we can have a scalar (as well as a vector)
function of n-dimensional vectors (meaning the input consists of n
variables while the output is a number). For example, we might be
studying temperature (a scalar) as a function of position and time, in
the sense that temperature in general does vary from point to point
and at the same point it usually varies from time to time.

In order not to introduce too many new ideas at once, we shall devote
the remainder of this chapter only to the calculus of 2 and 3-
dimensional vectors. Once we gain some familiarity with this basic
concept, we shall extend our frontiers to include the more general
study of n-dimensional vectors. This topic will be discussed in a

later chapter of supplementary notes which will be covered during our
study of Block 3.

B

Functions Revisited

When we first introduced the concept of functions, we mentioned that a
function was a rule which assigned to members of one set members of
another set. We pointed out that the two sets involved could be
arbitrary but that in the study of real variables our attention, by
definition, is confined to the case in which both sets are subsets of
the real numbers,
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We also developed the visual aid of the function machine, wherein if
f:A+B, we had

input f-machine output -

(elements (elements
of A) of B)

The point of this chapter is that, in the real world, we are often
confronted with situations in which we are dealing with vectors rather
than scalars, whereupon we have the situation that either the input or
the output of our f-machine could be vectors.

In our earlier example, we spoke of force (a vector) as a function of
time (a scalar). In this case our f-machine looks like

input output

f-machine
t (scalar) ? (vector;

>
More concretely, we might have a force F defined in the xy-plane by

F=ti+t (1)

From (1) it is clear that different values of the scalar t yield dif-
ferent values of the vector F. For instance, if t = 3 then

F =31+ 53. Moreover, it should seem fairly obvious that we might
like to abbreviate the above information in the form

F(3) = 31 + 93 (2)
Notice how the language in (2) closely parallels the notation that we
have already used for "regular" functions. The only difference is
that before we were talking about scalar functions (i.e. the "outputs"
were scalars) of scalar variables (i.e. the "inputs" were also
scalars), while in this case we are dealing with vector functions

(i.e. the outputs are vectors) of scalar variables.

In this same vein, we might write




£ (%) (3)

to indicate that we have a scalar function (i.e. the output of f is a
scalar) of a vector variable (i.e. the input of the f-machine is a
vector). As an example in "real life" of equation (3), consider a
situation in which all we were interested in was the magnitude of
various forces being considered. In this case, given a force E we
would compute its magnitude |F|. In this way our procedure is to take
a vector (force) and convert it to a scalar (magnitude of the force).
Pictorially,

1

input "|§|-machine“ output
o =3
F (vector) |F| (scalar)

The final possibility is that we have
£ (%) (4)

Equation (4) denotes a vector function of a vector variable. An
example of this situation might be that at any given instant we know
the force (a vector) being exerted on a particle from which we want to
determine the acceleration of the particle (acceleration is also a
vector - in fact in Newtonian physics the direction of the acceleration
is the same as that of the force, which means that the "law" f = ma

r - . " v
remains correct in the vector form f = ma). Again pictorially,
smpat "a-machine" EUtPUt >
F (vector) a (vector)

In summary then, if we allow vectors as well as scalars to be our
variables, then the study of functions of a single variable reduces to
one of four types

£(x), £(x), £(X), or £(X)
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In this block we shall, when dealing with vector functions, assume
that we have a vector function of a scalar variable. That is, we
shall deal with functions of the form

£ (x)

Pictorially,

X E—machine f(x}
(scalar) (vector)

The key observation to be made from the picture above is that if the
arrows are omitted our diagram is identical with our previous diagram
of a function machine in the study of real variables. Namely,

f-machine £ (x)

This observation is the backbone of the next section.

C

The "Game" Applied to Vector Calculus

In defining lim f(x) = L, we used our intuition to make sure that we
X-+a
knew what we wanted the expression to mean, and we then proceeded to

make the definition more rigorous using e's and 6's. The rigorous way
seemed quite frightening at first, but, after a while, we began to
notice that it only said in precise mathematical terms what we already
believed to be true intuitively.

What may have gone unnoticed was that once we had the rigorous defini-
tion, every proof we gave concerning limits consisted of applying the
rules of mathematics to the mathematical definition of a limit. 1In

terms of our game idea, we defined what a limit was, used the accepted

rules of numerical arithmetic, and then proved theorems about limits.

3.5




The key point here is that if it should happen that our definition of
limit in our discussion of vector functions of a scalar variable has
the same structure as our definition of limit when we were dealing
with scalar functions of scalar variables, and if it happens that
every accepted rule of numerical arithmetic that was used in the
earlier proofs of our limit theorems also happens to be an accepted
rule for vector arithmetic, then, in terms of the philosophy of our
game concept, every theorem about limits that was valid in the study
of "numerical limits" will remain valid in the study of "vectorial
limits." The purpose of this section is to explore this idea in more
computational detail.

How can we test whether the vector situation parallels the numerical
case? There is a very elegant yet simple technique that we shall
employ here. We shall begin by writing the definition of limit in the
scalar case. We shall then go through the definition and insert arrows
cver those symbols that will now denote vectors rather than scalars
(and, admittedly, we must take care in determining what is still a
scalar and what has become a vector). 1In this way, we are sure that
the basic structure cannot be different since the only changes we made
were in the names of the variables. We then check to see if the
resulting definition obtained from the scalar definition by this
"arrowizing" technique is still meaningful. For example, if we tried
to vectorize the numerical statement that a/b = ¢, we would obtain
a/B = ¢ which makes no sense, since vector division is undefined. (Of
course, had we vectorized all but b, the resulting statement would
make sense but this is not the point we are trying to make here.)

In any event, carrying out our instructions so far, first we write the
ocriginal definition of limit in the scalar case, namely

lim £(x) = L
X-+a

means given any >0, we can find §>0 such that whenever
0 <|x-a|] < &6

then

|£(x) - L| < €.

Next, we rewrite this definition putting in arrows wherever appropri-
ate. Recall that we are dealing with vector functions of scalar

3.6
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variables. Hence, x is a scalar. But f and L should be represented
as vectors since we have already agreed that we are dealing with vec-
tor functions and this implies that our output, in this case f(x) and
L, are also vectors. Notice, however, that even though we have now
introduced vectors, € and é are still scalars. The reason for this

is that € and 6 denote absolute values (magnitudes) of quantities, and
the magnitude of both scalars and vectors are non-negative real
numbers. In any event, if we now rewrite our old definition with the
appropriate "arrowization" we obtain

lim £(x) = L
X+a

means given any €>0 we can find §>0 such that whenever
0 < |x - al| <6

then

-

|[£(x) - L| < e.

Our first observation of this definition should show that it is mean-

ingful. That is, every part of the expression is defined (unlike 3/3}.

Our next task is to see whether the definition captures what we would

> B
like 1lim f(x) = L to mean. After all, what good is it if our defini-
X—+a

tion is meaningful but it doesn't capture the meaning we have in mind?
To this end, it is probably fair to assume that we would like
-

-+ -
lim £(x) = L to mean that if x is "sufficiently close to" a then £ (x)
x+a

is "sufficiently close to" E. Notice that for two vectors to be
"nearly" equal their difference must be small. In other words, for
any pair of vectors A and B, if we assume that they originate at a
common point then their difference in magnitude is the length of the
vector that goes from the head of one to the head of the other.
Clearly, the smaller this vector is in magnitude the more "together"
are the heads of the two vectors. In terms of our above definition,

- -+
notice that f(x) - L means pictorially that




A e The smaller the difference between
o -+ > -
£(x) & f(x) and L the closer is the head of f
-+ -+
f(x) 3 to the head of L which means that f
L

is more nearly equal to L

In other words, then, in terms of what the analytic expressions mean
geometrically, we should be convinced that the formal definition agrees
with our intuition. Again, in terms of a picture

C) If x is in here

{ rL,Lll_r;’:’,} 3 X—axis

(Circle of radius €

;?/// centered at the head

of L.)

(i

-

C) then f(x) terminates in here (provided it originates at the tail
-+

of L).

So far, so good, but if we want to be able to capitalize on our game
idea, the crucial test now lies ahead. Recall that all our formulas
for derivatives stemmed from certain basic properties of limits (such
as the limit of a sum is the sum of the limits, and so on). These
properties of limits followed mathematically from certain properties of
real numbers. The key now is to show that the proofs apply verbatim
when we replace the scalars by appropriate vectors.

For example, what were some of the properties we used about absolute
values in dealing with our proofs about limits? Well, for one thing,
we used the property that for any numbers a and b

la + b| < |a] + |b] (1)

The important thing is that if we now vectorize (1) to obtain
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|a + B| ¢ |3] + |B] (2)

we see that (2) is also true. Pictorially,

The length of one side of a triangle

g
+
oY

cannot exceed the sum of the lengths
of the other other two sides.

o4

my

We also used such facts as
la] > 0 and |a| = 0 (3)

if and only if a = 0. If we now vectorize (3) appropriately, we

obtain
|a] » 0 and [3] =0 (4)

if and only if 2 = 0. Recalling that |3| means the magnitude of 3, it
is trivial to see that (4) is also a true statement.

We must be careful not to become too glib in our present approach.
That is, we must not feel that it is a truism that we can just vector-
ize everything in sight and obtain true vector statements from true

scalar statements. One place where we must be very careful, for
example, is when we vectorize any numerical statement that involves
products. Consider the property of absolute values that for any

numbers a and b
lab| = [a| |b] (5)

If we try to vectorize (5) by brute force we find for one thing that
the resulting eguation may well be meaningless. For instance, the

statement
|ab] = |3| |b| (6)

is meaningless (i.e., undefined) since we have not yet defined an
"ordinary" product of two vectors ab. That is, the left side of
Equation (6) is undefined. If we interpret the multiplication as
scalar multiplication and vectorize Equation (5) accordingly, we

obtain

3.9




la x B| = |3] |B| (8)

(where on the right side we mean the usual multiplication since both
|a| and |b| are numbers).
The crucial point is that both forms of equation (8) are meaningful

but they both happen to be false. Namely,

-

3B = |3 IB] cosl, .
a
Hence,
b
|2-B| = |3a| |B] cos<+ | (9)
a

since [cos < 1, (9) yields the interesting, but perhaps shattering

B
-
~a

result that

|a-B| < |a] |B] .
In a similar way,

-+
b

7
-
a

%
b

sin’/
a

-+

< |al |B| (since |sin £ 1.

la x b| = |3] |B]

In other words, any limit proof that involved the result that the
absolute value of a product is the product of the absolute values
might well be false in absolute value or limit problems involving
either the dot or the cross product of vectors.

Rather than belabor this point, let us illustrate our ideas by means
of a few examples; and to emphasize their importance, let us utilize

a new section to discuss them.




D

Some Limit Theorems for Vectors

Theorem 1

[}

b =3 3 =
Suppose lim £ (x) L, and lim g(x)
xra x+a

Then lim (¥(x) + g(x)) = il + Iz .
X+a

To prove this theorem, we write down the analogous proof in the scalar
case. (We will not motivate this proof since this was already done in
Part 1 of our course. However, it will be an interesting check for

you to see how "natural" the proof now seems to you.)

We had:

Suppose lim f(x) = Ly and lim f(x)
xX+a X+a

Then lim [f(x) + g(x)] = Ll + L2 .
x-+a

The proof went as follows

]
=)

2 -

(1) Let h(x) = £(x) + g(x). We must show that lim h(x) = L, + Ly -

(2) Let € > 0 be arbitrarily given.

62 such that

0 < |x=-a|] <68; » |[£(x) -1y < %

and

€

X+a

0 < [%= al < 62 > |g(x) - Lgl < 5o

(3) Let § = min {51,52} -

Then there exist numbers 61 and

Therefore, 0 < |x -al <6 » ]f(x) = Lll + |g(x) - LZJ < e (= - + 2) .

(4) But |£(x) - L] + |g(x) - L,|

(5) Therefore, 0 < |x - al < 6§ »

> [IE(x) = Ly]1 + [a(x) - Ly]| .

| [£(x) = L;] + [g(x) - Ly]| <€ .

» 1L




(6) |[£(x) = L;] + [g(x) - L,]|

[[£(x) + g(x)] = [L; + L,]]|

|h(x) - (L, + L] .

(7) Therefore, 0 < |x - a| <& » |h(x) = (L; + L,)| <«

Therefore, lim h(x) = Ll + L2 .
x+a -

The key now is to observe that every step in our proof remains valid
when vectors are introduced. Why? Well, for example, the validity of
step (1) requires that the sum of two numbers be a number; otherwise,
h (x)
statement we only require that the sum of two vectors be a vector, and
this we know is true. The validity of step (2) depends only on the
definition of limit and we have taken care to mimic the scalar defini-
tion in forming the vector definition. Step (3) remains valid by

I

f(x) + g(x) would be meaningless. To convert this into a vector

"default" since only scalar properties are being used. That is, both

| £(x) - L1| and |f(x) - il’ are scalars. The validity of step (4)
hinges on the "triangle in equality," |a + b| ¢ |a| + |b|, but this, as
we have seen, is also valid for vectors. Step (5) is merely substitu-
tion of scalar quantities. As for step (6), this follows from the com-
mutative and associative properties of numerical addition, and, as we

have seen, these properties are also obeyed in vector addition.

In other words, if we "vectorize" the scalar proof, the resulting proof
is a valid vector proof. When we do this (just for practice) we obtain:

(1) Let RA(x) = f(x) + g(x). We must show that lim A(x) = il + iz .
X+a

(2) Let € > 0 be arbitrarily given. Then there exist numbers &, and

62 such that

1

0 <|x-al < 6 > |Ex) -1 < 5

and

-

- £
0 < |x=-a|] <8, [g(x) -L| < 5.

(3) Let § = min {&,,8,} -
Therefore, 0 < |x - a| < & » |f(x) - fll + |g(x) - fz| < €

E2 EA
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(4) But |[Fx) - L] + |36 - L] > [F0 - L7 + [gx) - L0 .

(5) Therefore, 0 < |x - a| < & » |[[£(x) - L;] + [g(x) - L] < ¢

[Ex) + 31 - (B, + L)

6) [t - L1 + [9(x) - L] X

IBx) - (&, + L],
(7) Therefore, 0 < |x - a|l < & » |H(x} - (ﬁl + le| < E

P + -+ B
Therefore, lim h(x) =1L, + L, .
x+a

It is, of course, important to notice that our vector proof as it
stands is self-contained. That is, it exists in its own right even
had we not obtained it from an earlier scalar proof. It's just that
by observing the similarity in structure, we may deduce the properties
of certain vector functions from the corresponding properties of the
scalar functions, and in this way, we again benefit from the parallel

structure.
Theorem 2

If lim #(x) = L, and if lim g(x) = L,, then if h(x) = F(x) - g(x),
X+a X+a

-+ -+

lim h(x) = L, - L, .
1 2

x+a
Before proceeding with the proof of Theorem 2, we should note that
there is more than one way to form a product of two vectors. We have
arbitrarily elected to talk about the dot product. A similar proof
holds for the cross product and will be left as an exercise. It is
worth noting that the fact that we can form a product of two vectors
in more than one way will cause certain complications in vector calcu-
lus that did not exist in scalar calculus, since there, a product of

two numbers could be interpreted in only one way.

Proof

Had this been written in terms of scalars rather than vectors, our

proof would have taken the form

f(x)

[£(x) - L;] + L,

g(x) [g(x) - L2] + L,

3nl3




therefore, |f(x) g(x) - L; L,| = |L,[f(x) - L] + Lylg(x) - L,]

+ [£(x) - Lyllg(x) - L2]|

€ |Ly| | £(x) = Ly| + |Ly|]g(x) = L,|
+ |€£(x) = L] |g(x) = L, *

(1)

Since |L,|and|L,|are bounded and both |f(x) - Llland]g(x) - L,| can

5l
be made arbitrarily small by choosing x sufficiently near a, the right

side of (1) gets arbitrarily small as x + a. This guarantees that

lim (f(x) g(x) - L =0

L,)
X-+a 1 2

or

lim f(x) g(x) = L
X+a

L

3 i

If we now repeat this argument with the appropriate "vectorization,"

we have
Ex) = [B(x) - 17] + 1]
g(x) = [§(x) - L] + L) .

Therefore, £lx) * §(x) = {[F(x) - L1+ iy - {((3(x) - 1,1 + L}

= Fx -1 - @B - L)+ 1 . @0 - L)

+ R, 0 [Ex) = L] o+ Ly o T, e

*Notice that while, for example, If&[g(x) - LZ]I = [Ili[ng) - sz our

string of inequalities requires only the weaker result that
L [g(x) - L,J| < |L;|[g(x) - L,|. This, as we shall soon see, is

- - > >

very important because of the vector properties that |a . bl < Iallbl
-+ -+ > >

and |a x b| g |a||b].

*%*We put this step in to emphasize the fact that the rules of ordinary
algebra carry over very nicely here to dot products.
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therefore, |f(x) - g(x) - il . £2| = |f2 - [F(x) - il] - El - [g(x) - fz]

+Ex) - L)1 - (9x) - I,]]

s |2, 0 o - L]+ B 0 G0 - E50]

+[EG - 1)) 0 g0 - L0 .

(This last step is independent of any vector arithmetic since all dot
products are numbers not vectors.)

e

Now since |3 - B| < |2||P| (observe that we don't need |a - B|=|3||B]|),
our last inequality yields
-+ + > =+
1E(x) - g(x) - L, - L,| < |Ez||%(x3 =L+ B3 - L,| + |Ex) - 1
|g(x) = L,

1 1!

(Notice that there are no dot products here since |f2|, | E(x) - fll etc.
are numbers.)

Our last equation has the same properties as (1) and so the desired

result follows.

Additional examples are left for the exercises. Our aim in this section
was simply to illustrate that our limit theorems for scalars do indeed

carry over, and in a rather natural way, to vectors.

E

Derivatives of Vector Functions of Scalar Variables

In the study of ordinary calculus, we mentioned that the study of
differentiation could be viewed as an application of the limit theorems.

That is, when we defined f' by

fix, + Ax) - f(x,)
[ 4 1 ] (1)

Ax

every property of f' was then computed by the use of the limit theorems
applied to (1).

The point is that we now do the same thing for vectors. We observe

that the expression

f(xl + Ax) - E(xl)
Ax




is well-defined since it inveolves the quotient of a vector and a scalar

and this may ve viewed as scalar multiplication. That is,

f(xl + Ax) - f(xll

= ok o
X = [f(xl * A?’ - f("1)] C
{
scalar vector

Without belaboring this point, this expression can indeed be thought
of as representing an average rate of change, and, if we then proceed

to the limit, we may think of this as an instantaneous rate of change.

With this as motivation, all we are saying is that it is meaningful to
define £' by

f'{xl} = lim

Ax-+0 ax

[ftxl + Ax) - ftxl)]

The key point now is that since the usual recipes for derivatives
follow from the basic properties of limits and since the same limit
theorems are true for vectors as for scalars, it follows that there
will be recipes for vector derivatives similar to those for scalar
derivatives.

For example, it is provable that the derivative of a sum is the sum

of the derivatives. The proof is again verbatim from the proof in the
scalar case.

Without bothering to copy the scalar proof, we write down the vector
proof with the hope that you can recognize that it is the scalar proof
with appropriate vectorization. We have

Let K(x) = ?{x) + a(x).

h(xl + Ax) - h(xl)]

Then h'(x.,) = 1lim
1 Ax+0 - AX
(F(x, + 8x) + §(x) + ax) - [F(x)) + ﬁtxl)]]
= lim
Ax—+0 ax

]

lim
Ax—+0

AX

f{xl + Ax) - f{xlll .
metic

E(xl + AX) - E(xll by vec-
Ax
L -

: %(xl + AR} o~ ?(xl)] e 1im {a(xl + AX) - §{xl}]

lim
Ax-+0 L

BR Ax+0 bx

(since the limit of a sum is the sum of the limits,
as shown in the previous section).

tor arith-
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[

= $r(x,) + g (x;)

In a similar way (and the details are left as exercises), the same
product rule applies to vectors. The only difference is that we now
have several types of products. For example, we may have the product
of a scalar function with a vector function, or we may have the dot
product of two vector functions, or we may have the cross product of
two vector functions. In any case, we obtain the results

= [£(x) §(x)] = £(x) 3'(x) + £'(x) F(x)

= Ex - deo1 =Ex - 3 + Bx) - gx)

a% Z(x) x §(x)]

(In this last case beware of changing the roles of the factors

axb=-(0bxa.)

[£(x) x 3'(x)] + [F'(x) x ;(x)]

We even have a form of the quotient rule provided that our quotient
is a vector function divided by a scalar function (for, otherwise, the

quotient is not defined). The formula is
ﬁ[hm]=gm)Pm)—¢m)hm_
dx L g(x) (g (x) 12

These formulas have a nice application to Cartesian coordinates. Suppose
+ . 3 k] 3
F is a vector function of the single real variable t. For example, we
-+
may be considering force as a function of time. Suppose F has the form

F=tl+ (32 +1) 3 +etk

and we desire to compute df/dt.

Since the derivative of a sum is the sum of the derivatives, we have

aF _ case? + 11 ) L aet i)
aE = ~at dt I -

aF _ d(tl)

Then since a constant times a variable has as its derivative the constant
. . . - . >
times the derivative of the variable, and since I, 3, and k are constants,

we obtain:




W1+ 68)3 + (eHk

o

T * 6t§ + et K .

While this was a specific example, it should be fairly easy to see
that, in general, the derivative is obtained by differentiating the
components. Further details are left to the text and the exercises,
but we want to emphasize again the fact that our definition of limit
for vectors, being so closely modeled after the scalar situation,
guarantees that the differentiation formulas with which we are already

familiar in the scalar case are also valid in the vector case.
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