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AN INTRODUCTION TO VECTOR ARITHMETIC

A

Introduction

In the formula V = nrzh, we observe that to find V we must know the
values of both r and h. In terms of a function machine, we may think
of the input as being the ordered pair of numbers r and h, written,
say, as (r,h). The output is obtained by multiplying the square of
the first member by the second member and then multiplying the result-
ing product by n. We say ordered pair since it certainly makes a dif-
ference in general whether it is r or h that is being squared. For
example, the input (3,4) yields n324 = 367 as an output, whereas (4,3)

yields ﬂ423 = 48m as an output.

While we shall deal with this idea in greater detail as our course

unfolds, let us say for now that an ordered pair of numbers will be
called a 2-tuple and that, quite in general, an n-tuple will refer

to an ordered sequence of n numbers.

In this context, the study of functions of several real variables
involves a study of n-tuples. For example, given the eqguation

Yy = xlz + 2x23 + 4x3 + 5x4

we see that to determine y it is required what we know the values of
X1 Xyr Xgu and Xy In this context, the y-machine, which yields y
as an output,has the 4-tuple {xl, Xor X34 x4) as the input. As a
specific illustration, if (4,2,1,6) is the input, the output is

42 4+ 2(2)% + 4(1) + 5(6) = 66.

Thus, as we hope to make more clear as we go along, the study of
n-tuple arithmetic is a rather important aspect of functions of sev-

eral variables.

What is also interesting is that, in the case of 2-tuples and 3-tuples,
there is a rather interesting structural connection with the usual

2- and 3-dimensional vectors of physics and engineering. While we wish
to go beyond the traditional 2- and 3-dimensional case is favor of the
general n-tuple case, the fact is that ordinary vectors are interesting
and important in their own right, and, at the same time, by getting
familiar with the tangible 2~ and 3-dimensional cases, we build our
experience so that we may better handle the more abstract n-tuple arith-

metic when n is greater than 3.
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With this in mind, we devote this chapter first to reviewing the
traditional idea of vectors and second to showing how vector arithme-
tic is structurally related to numerical arithmetic as studied in the

previous chapter.

In the next chapter we shall extend our ideas to that of the calculus
of vectors, after which we branch out to the more general calculus of
n-dimensional space (the name usually given to the arithmetic of
n-tuples).

At any rate, with the overview in mind, we now turn to a discussion of

"traditional" vectors.

B

Vectors Revisited

Certain quantities depend on direction as well as magnitude. For
example, if the distance from town A to town B is 400 miles and we
leave A and travel at 50 miles per hour we will arrive at B in 8 hours

provided we travel in the direction from A to B. A guantity which

depends on direction as well as magnitude is called a vector (as op-
posed to a guantity which depends only on magnitude, which is called
a scalar). A rather natural gquestion is: how shall we represent a
vector gquantity pictorially? Recall that for scalar quantities we
have already agreed to use the number line and identify numbers with
lengths. That is, we think of the number 3 as a length of 3 units.

We generalize this idea to represent vector quantities. Namely, we
agree that rather than use only the length of a line (as we do with
scalars) we will use the notion of directed length as well. That is,

given the vector which we wish to represent, we draw a line in the di-
rection of the vector, whereupon we then choose the length of the line
to represent the magnitude of the vector. For example, if we wish to

indicate a force of 2 pounds acting in the direction of the line y = x,

we would represent it as the arrow F.

YeE
-
F
3 >
1 ¥———this also represents a force whose magnitude
is 2 pounds, but, while ¥ and Fl have equal
magnitudes, they are different forces since

they act in different directions.

S ou =m e

Bl & N NS S e e

Nl s

Bl S T . e



B S h D S Eh e eE o,

S fm 6N B O e S o,

r

r—M

e — e

Notice from our diagram that there is still one ingredient that must
be defined if we wish to represent our vector without ambiguity. We
must indicate the sense of the vector. That is, in our present example,

do we mean

b4
¥y =X
= '
F
b
both vectors have magnitude equal to 2 and
oF: dc! Wel mean "  both act in the direction of y = x.
Y
¥ &%
-+
F 4
X

We only talk about sense once the direction is known. In other words,
we do not ask whether two vectors have the same sense until we know
whether they act in the same direction. To indicate the sense we use
an "arrowhead." Thus, we may say that the geometric interpretation
of a vector is as an arrow. It is important to note (in much the
same vein as our discussion in Part 1 of Calculus of the difference
between a function and its graph) that the arrow is the geometric re-
presentation of the vector not,the vector itself. For example, force
and velocity are not arrows but merely representable as arrows. Of
course, once we have made this distinction, we may use arrows and vec-
tors more or less interchangeably in the same way we use graphs and

functions.

In any event, we are now ready to begin our "game" of vector (or arrow)
arithmetic. So far, all we have is a set of objects called vectors.
We do not, as yet, have a structure. A mathematical structure is more

than a set. It is a set together with various rules and operations. For

a start, we would most likely prefer to define
tion so that we can determine when two vectors
(equal). Since the only important ingrediants

nitude, sense, and direction, we agree to call

some equivalence rela-
can be called equivalent
of a vector are its mag-

two vectors (arrows)

"equal" if and only if they have the same magnitude, sense and direction.

In particular, this definition of equality means that if we have two




distinct parallel line segments of the same length and we orient them

with the same sense then these two arrows are equal. Pictorially,

o

A and B are called equal and we write A = B.
Notice that as lines they would be parallel
but different.

If this usage of equality strikes you as being rather odd, notice that
we have used this idea as early, for example, as when we make such
remarks as % = %. Clearly, these two symbols do not look alike. What
we mean is that if % is defined to mean that number which when multi-
plied by b yields a, then % = % since the number which must be multi-
plied by 2 to yield 1 is the same as the number which must be multiplied
by 4 to yield 2. On the other hand, if we agree to use % as an exponent
wherein the numerator tells us what power to raise to and the denomina-

tor tells us the root to abstract, then % and % are no longer equal

since 11/2 o {1, -1}, while 1274 o {1, -1, i, -i}. 1In other words,
equality is always with respect to a particularly defined relation.

In any event, notice that this definition of the equality of two
vectors is an equivalence relation. That is, (1) any vector is equal
to itself, (2) if the first vector equals the second then the second
equals the first, and (3) if the first vector equals the second and
the second eqguals the third, then the first equals the third. Hence,
if we go back to rules E-1 through E-5 in Section D of Chapter 1, we
see that these rules remain "true" if we everywhere replace the word
"number" by the word "vector." (For convenience in referring, we shall

use a and b rather than ; and E when referring to our 16 rules.)

The next problem in developing our structure is to impose a binary
operation on the set of vectors. This can, of course, be done in

many different ways. In other words, there are an endless number of
ways in which we can make up rules whereby we can combine vectors to
form vectors. Rather than proceed randomly (and here is a natural
connection between pure and applied mathematics) we choose as our rule
one that we believe to be true in the real world. In particular, the
physical notion of the resultant vector motivates us to choose our
binary operation. Stated in terms of arrows, we define the sum of the

vectors a and b (written a + b)* as follows:

2.4
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We shift b parallel to itself without changing its magnitude and sense,
(notice that by our definition of equality the "new" vector which
results from this shift is equal to b) until its "tail" coincides with
the "head" of a. Then a+b is merely the arrow that starts at the tail
of a and terminates at the head of b. Pictorially,

b
—————

b
W
a+ b’

Leaving out the a and b notation we can say: to add two vectors, we
place the tail of the second at the head of the first, and the sum is
then the arrow which goes from the tail of the first to the head of

the second.

Again, it is important to note that we were forced to pick this
definition, but by making this choice we are sure that our definition

has at least one real interpretation, namely the usual idea of a resul-

tant.

At this stage of the development, we are at least sure that our concept
of "sum" is a binary operation since it tells us how tO determine an
arrow from two given arrows. We now check to see what properties our
"sum" has. Our first contention is that for any pair of vectors a and
b, a+ b=Db + a. To check that this property holds, we need only com-
pare a + b and b + a and observe what happens. To this end:

a
a+b
a + b and b + a are opposite sides
b+ a of a parallelogram and have the same
a sense, Therefore, a + b = b + a.

*Tt is customary to refer to "sum" and to use the symbol + to denote
a binary operation. We must be broadminded enough, mathematically
speaking, not to think of "sum" as being restricted to the ordinary
sum of two numbers. Actually, however, if we wished to be completely
rigorous and unambiquous, we should have invented a new symbol, for
example, a*b rather than a + b to denote the binary operation whereby
we combine two vectors to form a vector.




We now check to see whether for three vectors a, b, and c,
a+ (b+c) = (a+Db)+ c. We observe:

a+ (b + ¢)

and both name this vector
{a + b) + ¢

1 .
e Notige, therefore, that a + b + ¢ is unambiguous,
and it is the vector that goes from the tail of a
to the head of c when a, b, and c are properly
aligned head to tail.
b
a

What this means is that we do not have to worry about "voice inflection"

when we "add" vectors, or, in other words, if a, b, c, d, and e denote
vectors, the expression a + b + ¢ + d + e unambiguously names a vector.
Pictorially, this becomes the "polygon rule," a generalization cf the
parallelogram rule illustrated earlier.

C
a+b+c+d+e
b
a

Notice that, so far, if we continue to replace the word "number" by

"rector," rules A-1l, A-2, and A-3 still apply to our game of vectors.

Our next step is to see whether there is a vector which plays a role
of additive identity. That is, given any vector b, is there a vector,
denoted by 0, such that b + 0 = b. In terms of our arrow interpreta-
tion, it is clear that if the vector 0 were to have a non-zero length
then b and b + 0 could not possibly have the same length. Again,
pictorially,

terminates on this circle

If 0 had magnitude r # 0 then b + 0 would have to
terminate somewhere on the circle. And no point on
the circle can be the center of the circle.
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Thus, for the vector 0 to have the desired property, we must define it
to be a vector whose magnitude is zero (i.e., the number 0), indepen-
dently of any mention of direction or sense.

To be able to refer to the zero vector, (as we refer to the number
zero), we must agree that we do not distinguish between two vectors of

zero magnitude, even if they have different directions. This agrees

with our geometric intuition, since a point has no direction. Thus,
the definition of equality is waived for the zero vector, and we simply

agree to call any two vectors of zero magnitude equal.

Finally, we want to investigate the notion of whether, given any vector
a, we can find another vector b such that a + b = 0 (where 0 here
denotes the vector 0*). Since the zero vector has no length and since
we add vectors "head to tail" it follows that if a + b is to equal 0
then the tail of a and the head of b must coincide. This in turn means
that we have the same magnitude and direction as a but the opposite

sense. Pictorially,

If b originates at P it must terminate at Q if
S a+b=0. Therefore, if we think of a as QP then
b

0 .

I+

In other words, if we wish vector addition to have the same structure
as that of the numerical addition (and the choice is ours to make) we
must define the inverse of a, i.e. (-a), to be the vector which has

the same magnitude and direction as a but the opposite sense.

If we again agree, as in the case of numerical addition, that a + (=b)
will be abbreviated by a - b, then to form the vector a - b we proceed

as follows:
(L) a - b means a + (-b)
(2) To obtain (-b) from b simply reverse the sense of b.

(3) We now add a and (-b) in the "usual" way; the sum being a + (-b),

or, therefore, a - b. Pictorially,

*Because there is a possibliity of confusing scalars and vectors in
many cases, it is conventional to use different symbolisms for vectors
and scalars. In some texts, one uses greek letters for vectors and
"regular" letters for scalars; or one uses boldface type for vectors,
or one writes arrows over the vector (such as ). Later we will do
this but for now we prefer to have our symbolism look as much like
that in rules E-1 through A-5 as possible.
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a
? (i)
a
(iii)
a + (-b)

a->»b

While (we hope!) that our explanation of subtraction is adequate and
that it certainly shows the resemblance between the relationship, struc-
turally, of vector subtraction and numerical subtraction, there is yet
another way to view subtraction of vectors - a way that might be more
easily remembered from a computational point of view.

Suppose we are given the vectors a and b and we now place them
tail-to-tail. (If we desire a rationalization, if we add head-to-tail,
why not subtract tail-to-tail?) Let us now look at the vector that
extends from the head of b to the head of a, and just as in numerical
arithmetic, let us label this "unknown" x. Thus,

In the above arrangement of vectors, only x and b are properly aligned

(head-to-tail) for addition. That is, our diagram yields the "equation";

b+ x = a. (1)
Had we not been told that (1) was a vector eguation, and instead we
treated equation (1) as if only numbers were involved, we would have

obtained

X = a - b. (2)

-
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In numerical arithmetic, -the process of getting from (1) to (2) is
called transposing, and its validity is established roughly along the
lines of equals subtracted from equals are equal. It turns out that
this property of transposing which got us from (1) to (2) is a property
of our five rules for equality and our five rules for addition. [The
proof is left to the interested reader, and involves writing x + b = a
as (x + b) + (-b) = a + (-b).]

Since these same ten rules apply to vectors as well as numbers, our
game-idea tells us that the process of getting from (1) to (2) is
equally valid when we are dealing with vectors.

Summed up, then pictorially, to find the difference of two vectors, we
place the two vectors tail-to-tail, and then draw a vector from the
head of one to the head of the other. Notice that this can be done
with two different senses, but the rule of transposing tells us which

is which. That is:

therefore x = a - b

43///"\\\{\. a+y
a [ 4

Summed up more formally, if a and b areany two vectors and we wish to

b
b - a.

find a - b, we place the two vectors tail-to-tail and a - b is then
the vector which goes from the head of b to the head of a.

Again we must stress the importance of structure. The mere fact that
we have a binary operation denoted by "+" and a statement that

a + b =c, we must not jump to the conclusion that a = ¢ - b. Trans-
posing is a theorem in a structure that obeys some particular rules.

As an example, let us again take "+" to mean union. Then if a + b = ¢,

it is not necessarily true that a = ¢ - b. Pictorially,

A B

¥

C = AUB
(A + B)

C - B = {x: xeC, x¢gB}

2.9




therefore, C - B =

A B

which is unequal to A unless the special case
ANB = @ prevails.

Again, since the structure of sets with respect to union is different
from the structure of numbers with respect to addition, this example
is not any kind of contradiction. Rather it should caution us that
while it is nice to transpose just because it seems "natural," we must
not belittle the fact that it is only because of a particular struc-
ture that we can enjoy this privilege.

With these remarks behind us, we are now in a position to see how the
structure of arithmetic really works. Notice that in the playing of
our "game" it is the rules which tell us how the terms are related
that are so important - not the terms themselves. For example, we
have just seen that rules E-1 through A-5 which applied to "ordinary"
arithmetic are also correct for vector arithmetic provided that every-
where the word "number" appears we substitute the word "vector."
Consequently, any conclusion that follows inescapably from these ten

rules in numerical arithmetic will be a valid conclusion in vector
arithmetic as well.

One way to illustrate this idea is to take a proof which we have
given in numerical arithmetic and reproduce it verbatim, but
replace "number" by "vector," and observe that the given proof is
still valid in the new situation. More specifically,

Theorem 1

If a, b, and ¢ are vectors such that a + b = a + ¢ then b = c.

Proof
Statement Reason
(1) There exists a vector -a (1) A-5

(2) =-a + (a + b)

-a + (a + ¢c) [(2) E-4 (replacing a + b by a + ¢)

(3) =-a + (a + b)
-a + (a + c)

(-a + a) + b ((3) A-3
(-a + a) + ¢

(4) Substituting (E-4) (3) into (2)
(4) (-a + a) + Db

(-ra + a) + ¢
(5) A-2
(5) =a+a=a+ (-a)
(6) A-5
(6) a + (-a)

]
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Proof cont'd

Statement Reason
(7) =-a+a=20 (7) Substituting (E-4) (5) into (6)
(8) 0+b=20+c¢c (8) Substituting (E-4) (7) into (4)
(9) b+ 0=0+0b ) (9) A-2
c+0=0+c
(10) a-4
(10) b+ 0=0>b
c+0=c (11) Substituting (E-4) (9) into
(10)
(11) 0+ b=0>b
0 +c=c (12) Substituting (E-4) (11) into
(8)
(12) b =c

g.e.d.

Notice that we copied that statement-reason proof word for word from

the corresponding theorem in numerical arithmetic. However, if we were
to show this proof to a person without telling him how we obtained it,
the proof stands validly on its own without reference to the proof from

which we copied it.

This idea can be quite readily generalized as follows. Let S denote

a set and suppose "=" denotes any equivalence relation defined on S
while "+" denotes any binary operation on S which obeys A-2 through
A-5. (We omit A-1 since A-1 is automatically obeyed by virtue of the
fact that "+" denotes a binary operation. That is, we defined a binary
operation to be equivalent to the Rule of Closure.) Then, in this
particular structure, if a, b, and c are any elements in S and if
a+b=a+c, then b = ¢c.* This result is an inescapable conclusion
based on the assumptions encompassed by the ten rules E-1 through A-5.
(In fact, if we want to be even more precise, we can argue that the
result follows from a subset of these ten rules, since not all ten rules

were used in the proof.)

*We cannot emphasize enough the idea that the structure must be the
same, That is, our cancellation law depends on our ten rules. As a
counter-example, suppose we think of "+" as denoting the union of sets.
Then, if a, b, and c are sets, we cannot conclude that if a + b = a + ¢
then b = ¢. Indeed, 1in our exercises in Part 1 of our course we
showed by example that this need not be true. (As a quick review, sup-
pose b and c are unequal subsets of a. Then a + b = a + ¢ since both
equal a, but b # c. This does not contradict what we are saying
above. Rather, structurally, the union of sets is not the same as the
addition of numbers.

2,11
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Scalar Multiplication

Up to now we have been emphasizing the resemblance between vector and
scalar arithmetic. The fact that these two different structures resem-
ble one another in part is no reason to suppose that they share all
properties in common, and one rather elementary but interesting differ-
ence involves the process known as scalar multiplication whereby one
multiplies a number (scalar) by a vector.

The basic definition is pretty much straightforward. If we multiply
a vector by a number ¢ the result is a vector whose direction is that
of the original vector and whose sense is the same if c is positive
but opposite if ¢ is negative. The magnitude of the new vector is

|c| times the magnitude of the original vector. By way of illustra-
tion, -2v is a vector whose magnitude is twice that of v and which has
the same direction but opposite sense of v.

Structurally, the arithmetic properties of scalar multiplication that
are of the most interest to us are:

SM-1 If r and s are numbersandv is a vector then r(sv) = (rs)v

SM-2 If r and s are numbersandv is a vector then (r + s)v = rv + sv.
SM-3 If r is a number and v and w are vectors then r(v + w) = rv + rw.
SM-4 1If r is any vector then lr = r.

In terms of our game of vectors (1), (2), (3) and (4) are the rules
by which we play the game of scalar multiplication. That these rules
are realistic follows from the fact that our model made of "arrows"”
obeys them. For example (3) is the geometric equivalent of similar
triangles. By way of illustration we demonstrate geometrically that
2(v + w) = 2v + 2w

2v+2w
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Other details are left to the textbook and the exercises. The major
point to observe is that our discussion of vectors, at least so far, is
completely independent of any coordinate system. We should point out
that it is often desirable to study vectors in Cartesian coordinates
since in this system there is an interesting and rather simple form
that the arithmetic of vectors takes on. This is explained very well
in the text and we exploit these properties in our exercises. But it
is important to understand that the concept of vectors transcends any
coordinate system.
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