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AN INTRODUCTION TO VECTOR ARITHMETIC 

Introduct ion 

2In  t h e  formula V = a r  h ,  w e  observe t h a t  , t o  f i nd  V we must know the  

values of both r and h. In  t e r m s  of a function machine, we may think 

of t h e  i npu t  a s  being t h e  ordered p a i r  of numbers r and h,  wr i t t en ,  

say,  a s  ( r , h ) .  The output  i s  obtained by multiplying the  square of 

t h e  f i r s t  member by t h e  second member and then multiplying t h e  r e s u l t -  

ing  product by n. W e  say ordered p a i r  s i nce  it c e r t a i n l y  makes a d i f -

ference i n  general  whether it is  r o r  h t h a t  is  being squared. For 

example, 	 t he  input  (3,4) y i e l d s  n324 = 36 a a s  an output,  whereas ( 4 , 3 )  
2y i e l d s  a4 3 = 48n a s  an output.  

While w e  s h a l l  d e a l  with t h i s  idea  i n  g rea t e r  d e t a i l  a s  our course 

unfolds,  l e t  us say f o r  now t h a t  an ordered p a i r  of numbers w i l l  be 

c a l l e d  a 2-tuple and t h a t ,  q u i t e  i n  general ,  an n-tuple w i l l  r e f e r  

t o  an ordered sequence of n numbers. 

In  t h i s  .context, t h e  study of functions of s eve ra l  r e a l  var iab les  
\ 

involves  a study of n-tuples. For example, given the  equation 

w e  s e e  t h a t  t o  determine y it is required what w e  know t h e  values of 

xl, x2, x3, and x4. In  t h i s  context ,  t h e  y-machine, which y i e ld s  y 

a s  an output ,has  t he  4-tuple (xl, x2, x3, x4) a s  t he  input.  A s  a I 
s p e c i f i c  i l l u s t r a t i o n ,  i f  (4,2,1,6) is t h e  input ,  t he  output is  

42 + 2(213 + 4 ( 1 )  + 5(6)  = 66. 

Thus, a s  we hope t o  make more c l e a r  a s  we go along, t he  study of 

n-tuple a r i thmet ic  i s  a r a t h e r  important aspect  of functions of sev-

e r a l  var iab les .  

What i s  a l s o  i n t e r e s t i n g  is  t h a t ,  i n  t h e  case  of 2-tuples and 3-tuples, 

t he re  i s  a r a t h e r  i n t e r e s t i n g  s t r u c t u r a l  connection with t h e  usual 

2- and 3-dimensional vec tors  of physics and engineering. While we wish 

t o  go beyond the  t r a d i t i o n a l  2- and 3-dimensional case  i s  favor of t h e  

general  n-tuple case,  t he  f a c t  i s  t h a t  ordinary vectors  a r e  i n t e r e s t i n g  

and important i n  t h e i r  own r i g h t ,  and, a t  t he  same time, by ge t t i ng  

f ami l i a r  with t h e  t ang ib l e  2- and 3-dimensional cases,  we bu i ld  our 

experience s o  t h a t  we may b e t t e r  handle t h e  more abs t r ac t  n-tuple a r i t h -

metic when n i s  g rea t e r  than 3. 



With t h i s  i n  mind, w e  devote t h i s  chapter f i r s t  t o  reviewing t h e  

t r a d i t i o n a l  idea of vec tors  and second t o  showing how vector  arithme-

t i c  is  s t r u c t u r a l l y  r e l a t e d  t o  numerical a r i thmet ic  a s  s tudied i n  t h e  

previous chapter.  

In  t h e  next  chapter w e  s h a l l  extend our ideas  t o  t h a t  of t h e  ca lcu lus  

of vectors ,  a f t e r  which w e  branch ou t  t o  t h e  more general  ca lcu lus  of 

n-dimensional space ( t h e  name usual ly  given t o  t h e  a r i thmet ic  of 

n-tuples) . 
A t  any r a t e ,  with t h e  overview i n  mind, we now tu rn  t o  a  discussion of 

' t r ad i t iona lmvec tors .  

Vectors Revisi ted 

Certa in  q u a n t i t i e s  depend on d i r ec t i on  a s  w e l l  a s  magnitude. For 
example, i f  t h e  d i s t ance  from town A t o  town B is 400 m i l e s  and w e  

leave A and t r a v e l  a t  50 miles per  hour w e  w i l l  a r r i v e  a t  B i n  8 hours 

provided we t r a v e l  i n  t h e  d i r ec t i on  from A t o  B. A quant i ty  which 

depends on d i r e c t i o n  a s  wel l  as magnitude is  c a l l e d  a vector  -(as  op-

posed t o  a quant i ty  which depends only bn magnitude, which is ca l l ed  

a s c a l a r ) .  A r a t h e r  n a t u r a l  question is: how s h a l l  w e  represen t  a 

vector  quant i ty  p i c t o r i a l l y ?  Recall  t h a t  f o r  s c a l a r  q u a n t i t i e s  we 

have a l ready agreed t o  use t h e  number l i n e  and i d e n t i f y  numbers with 

lengths.  That is ,  w e  th ink  of t he  number 3 a s  a  length of 3 un i t s .  

W e  genera l ize  t h i s  idea  t o  represen t  vector  quan t i t i e s .  Namely, we 

agree t h a t  r a t h e r  than use only t h e  length of a l i n e  (as  w e  do with 

s c a l a r s )  w e  w i l l  use  th'e notion of d i r ec t ed  length as w e l l .  That is, 

given the  vector  which we wish t o  represen t ,  w e  draw a l i n e  i n  t h e  g-: 
r ec t i on  of t h e  vector ,  whereupon we then choose t h e  length of the l i n e  

t o  represent  t h e  magnitude of t h e  vector .  For example, i f  we wish to 

i nd i ca t e  a fo rce  of 2 pounds ac t ing  i n  t h e  d i r e c t i o n  of t h e  l i n e  y = x, 
w e  would represen t  it a s  t he  arrow 3. 

F1L t h i s  a l s o  represen ts  a fo rce  whose magnitude 

is  2 pounds, bu t ,  while $ and P1 have equal 

magnitudes, they a r e  d i f f e r e n t  fo rces  s i n c e  
they a c t  i n  d i f f e r e n t  d i r ec t i ons .  



Notice from our diagram t h a t  t he re  i s  s t i l l  one ingred ien t  t h a t  must 

be defined i f  we wish t o  represen t  our vector  without ambiguity. We 

must i n d i c a t e  t he  sense of t he  vector .  That is ,  i n  our present  example, 

do w e  mean 

o r  do w e  mean both vectors  have magnitude equal t o  2 and 

' both a c t  i n  t h e  d i r ec t i on  of y = x. 


a 


We only t a l k  about sense once t he  d i r ec t i on  i s  known. In  o the r  words, 

we do no t  ask whether two vec tors  have t h e  same sense u n t i l  we know 

whether they a c t  i n  t h e  same d i r ec t i on .  To ind i ca t e  the  sense we use 

an "arrowhead." Thus, we may say t h a t  t he  geometric i n t e rp re t a t i on  

o f ' a  vector  i s  a s  an arrow. It i s  important t o  note  ( i n  much the  

same vein a s  our discussion i n  P a r t  1 of Calculus of the  d i f fe rence  

between a funct ion and i t s  graph) t h a t  t h e  arrow is the  geometric re-

presen ta t ion  of t h e  vector  n S , t h e  vector  i t s e l f .  For example, fo rce  

and ve loc i ty  a r e  no t  arrows bu t  merely representable  a s  arrows. Of 

course,  once w e  have made t h i s  d i s t i n c t i o n ,  we may use arrows and vec- 

t o r s  more o r  less interchangeably i n  the'same way we use graphs and 

funct ions .  

In  any event,  we a r e  now ready t o  begin our "game" of vector (or  arrow) 

a r i thmet ic .  So f a r ,  a l l  we have i s  a -s e t  of obj.ects ca l l ed  vectors .  

We do no t ,  a s  y e t ,  have a s t ruc tu re .  A mathematical s t r u c t u r e  i s  more 

than a s e t . I t  i s  a s e t  together  with various r u l e s  and operations.  For 

a s t a r t ,  we would most l i k e l y  p re f e r  t o  def ine  some equivalence re la -  

t i o n  so  t h a t  we can determine when two vectors  can be ca l l ed  equivalent 

(equa l ) .  Since t h e  only important ingrediants  of a vector a r e  i t s  mag-

n i tude ,  sense,  and d i r ec t i on ,  we agree t o  c a l l  two vectors (arrows)-

"equal" i f  and only i f  they have t he  same magnitude, sense and d i r ec t i on .  

In p a r t i c u l a r ,  t h i s  d e f i n i t i o n  of equa l i t y  means t h a t  i f  we have two 



d i s t i n c t  p a r a l l e l  l i n e  segments of t h e  same length and w e  o r i e n t  them 

with t h e  same sense then these  two arrows a r e  equal. P i c t o r i a l l y ,  

+ + + 
A and B a r e  c a l l e d  equal and w e  w r i t e  A = B. 
Notice t h a t  a s  l i n e s  they would be p a r a l l e l  
but  . d i f f e r e n t .  

I f  t h i s  usage of equa l i t y  s t r i k e s  you a s  being r a t h e r  odd, no t i ce  t h a t  
w e  have used t h i s  idea  a s  ea r ly ,  f o r  example, a s  when we make such 

remarks a s  7 
1 

= 
2 Clear ly ,  these  two syinbols do no t  look a l i k e .  What 

we mean i s  t h a t  i f  g is defined t o  mean t h a t  number which when multi- 

p l i ed  by b y i e ld s  a ,  then 1 = 2 s ince  t he  number which must be multi- -
p l i ed  by 2 t o  y i e l d  1 is  the  same a s  t h e  number which must be mul t ip l ied  -
by 4 t o  y i e ld  2 .  On t h e  o ther  hand, i f  we agree t o  use JS 

a as an exponent 

wherein t h e  numerator tel ls  us what power t o  r a i s e  t o  and t h e  denomina- 

t o r  t e l l s  us t h e  r o o t  t o  a b s t r a c t ,  then 1 and -2 a r e  no longer equal 
4 

s ince  1 = E l ;  -11, while l2I4= { I ,  -1, i, - i ) .  In  o the r  words, 

equa l i ty  i s  always with respec t  t o  a p a r t i c u l a r l y  defined r e l a t i on .  

In  any event,  no t i ce  t h a t  t h i s  d e f i n i t i o n  of t h e  equa l i t y  of two 

vectors  i s  an equivalence r e l a t i on .  That is ,  (1) any vector  is  equal 

t o  i t s e l f ,  (2) i f  t he  f i r s t  vector  equals t he  second then the  second 

equals t h e  f i r s t ,  and (3) i f  t he  f i r s t  vector  equals t he  second and 

the  second equals t he  t h i r d ,  then t h e  f i r s t  equals t h e  t h i rd .  Hence, 

i f  we go back to  rules  E-1 through E-5 i n  Section D of Chapter 1, we 

see  t h a t  these  r u l e s  remain " t rue"  i f  we everywhere rep lace  t he  word 

"numberw by t h e  word "vector." (For convenience i n  r e f e r r i ng ,  we s h a l l  
+ + 

use a and b r a t h e r  than a and b when r e f e r r i n g  t o  our 16  ru les . )  

The next  problem i n  developing our s t r u c t u r e  i s  t o  impose a binarx 

operat ion on the  set of vectors .  This can, of course, be done i n  

many d i f f e r e n t  ways. I n  o the r  words, t he re  a r e  an endless number of 

ways i n  which w e  can make up r u l e s  whereby we can combine vectors  t o  

form vectors .  Rather than proceed randomly (and here  is  a na tura l  

connection between pure and appl ied mathematics) w e  choose a s  our r u l e  

one t h a t  w e  be l i eve  t o  be t r u e  i n  t he  r e a l  world. In  p a r t i c u l a r ,  t he  

physical  not ion of t h e  r e s u l t a n t  vector  motivates us t o  choose our 

binary operat ion.  S ta ted  i n  t e r m s  of arrows, we def ine  t he  -sum of t h e  

vec tors  a and b (wr i t t en  a + b ) *  a s  follows: 



We s h i f t  b p a r a l l e l  t o  i t s e l f  without changing i t s  magnitude and sense, 

(no t ice  t h a t  by our d e f i n i t i o n  of equa l i t y  t h e  "new" vector  which 

r e s u l t s  from t h i s  s h i f t  i s  equal t o  b) u n t i l  i t s  " t a i l "  coincides with . 
t he  "head" of -a.  Then a + b i s  merely t he  arrow t h a t  s t a r t s  a t  the  t a i l  

of -a and terminates  a t  t h e  head o£ b. P i c t o r i a l l y ,  

Leaving ou t  t h e  a and b no ta t ion  w e  can say: t o  add two vectors ,  we 

p lace  t he  t a i l  of t he  second a t  t h e  head of t h e  f i r s t ,  and the  sum i s  

then the  arrow which goes from the  t a i l  of t he  f i r s t  t o  t he  head of 

t h e  second. 

Again, it i s  important t o  note  t h a t  we were forced t o  pick t h i s  

d e f i n i t i o n ,  bu t  by making t h i s  choice we a r e  s u r e  t h a t  our d e f i n i t i o n  

has a t  l e a s t  one r e a l  i n t e r p r e t a t i o n ,  namely t h e  usual idea of a resu l -

t a n t .  

A t  t h i s  s t age  of t h e  development, we a r e  a t  l e a s t  su re  t h a t  our concept 

of "sum" i s  a binary operat ion s ince  it tel ls  us how t o  determine an 

arrow from two given arrows. W e  now check t o  s ee  what p roper t ies  our 
W ~ ~ has.I I Our f i r s t  content ion i s  t h a t  f o r  any p a i r  of vectors a and 

b, a + b = b + a.  To check t h a t  t h i s  property holds,  we need only com- 

pare a + b and b + a and observe what happens. To t h i s  end: 

a + b and b + a a r e  opposite s i de s  
of a parallelogram and have the  same 
sense. Therefore, a + b = b + a. 

31t i s  customary t o  r e f e r  t o  "sum" and t o  use t he  symbol + t o  denote 
a binary operat ion.  We must be broadminded enough, mathematically 
speaking, no t  t o  th ink  of "sum" a s  being r e s t r i c t e d  t o  t he  ordinary 
sum of two numbers. Actually,  however, i f  we wished t o  be completely 
r igorous and unambiguous, we should have invented a new symbol, f o r  
example, a*b r a t h e r  than a + b t o  denote the  binary operation whereby 
we combine two vec tors  t o  form a vector .  



W e  now check t o  see whether f o r  t h r ee  vec tors  a ,  b,  and c, 
a + (b  + c )  = (a  + b)  + c.  We observe: 

a + (b + c )  
and both name t h i s  vector  

(a  + b) + ct 

Notice, there fore ,  t h a t  a + b + c is unambiguous, 
and it is  t h e  vector  t h a t  goes from the  t a i l  of 5 
t o  t h e  head of c when a ,  b ,  and c a r e  properly 
a l igned head t o  t a i l .  

a 

What t h i s  means i s  t h a t  w e  do no t  have t o  worry about "voice i n f l ec t i on"  

when w e  "add" vec tors ,  o r ,  i n  o the r  words, i f  a ,  b, c ,  d ,  and e denote 

vectors ,  t h e  expression a + b + c + d + e unambiguously names a vector .  

P i c t o r i a l l y ,  t h i s  becomes the  "polygon ru l e , "  a genera l iza t ion  c f  t h e  

parallelogram r u l e  i l l u s t r a t e d  e a r l i e r .  

Notice t h a t ,  so  f a r ,  i f  w e  continue t o  rep lace  t h e  word "number" by 

'Vector," r u l e s  A-1, A-2, and A-3 s t i l l  apply t o  our game of vectors.  

Our next  s t e p  is  t o  s ee  whether t he re  i s  a vector  which plays a r o l e  

of add i t i ve  i den t i t y .  That is ,  given any vector  b ,  is the re  a vector ,  

denoted by 0, such t h a t  b + 0 = b. In  terms of our arrow in t e rp re t a -  

t i o n ,  it is c l e a r  t h a t  i f  t he  vector  0 were t o  have a non-zero length 

then b and b + 0 could no t  possibly  have t he  same length.  Again, 

p i c t o r i a l l y ,  

terminates on t h i s  c i r c l e  


I f  0 had magnitude r # 0 then b + 0 would have t o  

terminate  somewhere on t h e  c i r c l e .  And no po in t  on 


b+0 t h e  c i r c l e  can be t h e  cen te r  of t he  c i r c l e .  




+ 
Thus, for the vector 0 to have the desired property, we must define it 


to be a vector whose magnitude is zero (i.e., the number O), indepen- 


dently of any mention of direction or sense. 


To be able to refer to the zero vector, (as we refer to the number 

zero), we must agree that we do not distinguish between two vectors of 


zero magnitude, even if they have different directions. This agrees 


with our geometric intuition, since a point has no direction. Thus, 


the definition of equality is waived for the zero vector, and we simply 


agree to call any two vectors of zero magnitude equal. 


Finally, we want to investigate the notion of whether, given any vector 


-a, we can find another vector b such that a + b = 0 (where 0 here 

denotes the vector O*). Since the zero vector has no length and since 

we add vectors "head to tail" it follows that if a + b is to equal 0 
then the tail of a and the head of b must coincide. This in turn means 

that we have the same magnitude and direction as -a but the opposite 
sense. Pictorially,
 .;:,".,;:. . > .  -

If b originates at P it must terminate at Q if 
a + b = 0. Therefore, if we think of a as lib then 
b = 	m. 

In other words, if we wish vector addition to have the same structure 


as that of the numerical addition (and the choice is ours to make) we 


must define the inverse of 5, i.e. (-a), to be the vector which has 
-
the same magnitude and direction as a but the opposite sense. 


If we again agree, as in the case of numerical addition, that a + (-b) 
will be abbreviated by a - b, then to form the vector a - b we proceed 

as follows: 

(1) 	a - b means a + (-b) 

(2) 	To obtain (-b) from b simply reverse the sense of b. 


( 3 )  	 We now add a and (-b) in the "usual" way; the sum being a + (-b), 
or, therefore, a - b. Pictorially, 

"Because there is a possibliity of confusing scalars and vectors in 
many cases, it is conventional to use different symbolisms for vectors 
and scalars. In some texts, one uses greek letters for vectors and 
"regular" letters for scalars; or one uses boldface type for vectors, 
or one writes arrows over the vector (such as 6 ) .  Later we will do 
this but for now we prefer to have our symbolism look as much like 
that in rules E-1 through A-5 as possible. 



I 

- .  

(ii) 


(iii) 


or 

a - b  


While (we hopei) that our explanation of subtraction is adequate and 

that it certainly shows the resemblance between the relationship, struc- 

turally, of vector subtraction and numerical subtraction, there is yet 

another way to view subtraction of vectors - a way that might be more 

easily remembered from a computational point of view. 

Suppose we are given the vectors a and b and we now place them 


tail-to-tail. (If we desire a rationalization, if we add head-to-tail, 


why not subtract tail-to-tail?) Let us now look at the vector that 


extends from the head of b to the head of a, and just as in numerical 
-
arithmetic, let us label this "unknown" x. Thus, 


- 7 

In the above arrangement of vectors, only x and b are properly aligned' 


(head-to-tail) for addition. That is, our diagram yields the "equationn; 


Had we not been told that (1) was a vector equation, and instead we 


treated equation (1) w l y  numbers were involved, we would have 


obtained ., ".:.' 



In  numerical a r i thmet ic ,  - t he  process of ge t t i ng  from (1) t o  ( 2 )  is  

ca l l ed  t ransposing,  and i t s  v a l i d i t y  is  'es tabl ished roughly along the  

l i n e s  of equals  subtracted from equals a r e  equal. I t  tu rns  out  t h a t  

t h i s  property of transposing which got  .us from (1) t o  (2).  i s  a property 

of our f i v e  r u l e s  f o r  equa l i t y  and"our f i v e  r u l e s  f o r  addi t ion.  [The 

proof i s  l e f t  t o  t h e  i n t e r e s t e d  reader ,  and involves wr i t ing  x + b = a 

a s  (x + b) + (-b) = a + (-b). I 

Since these  same t en  r u l e s  apply t o  vectors  a s  w e l l  a s  numbers, our 

game-idea t e l l s  us t h a t  t he  process of g'etting from (1) t o  ( 2 )  is  

equal ly  va l i d  when w e  a r e  dea l ing  with vectors. 

Summed up, then p i c t o r i a l l y ,  t o  f i nd  t he  d i f fe rence  of two vectors ,  w e  

p lace t h e  two vec tors  t a i l - t o - t a i l ,  and then draw a vector  from the  

head of one t o  t he  head of t he  other .  Notice t h a t  t h i s  can be done 

with two d i f f e r e n t  senses ,  bu t  t he  r u l e  of transposing t e l l s  us which 

is which. That is: 

the re fo re  x = a - b 

Summed up more formally,  i f  a and b areany two vec tors  and we wish t o  

f i n d  a - b, we p lace  t h e  two vec tors  t a i l - t o - t a i l  and a - b is  then 

the  vector  which goes from the  head of b , t o  t h e  head of 5. 

Again we must stress t h e  importance of s t ruc tu re .  The mere f a c t  t h a t  

we have a binary operat ion denoted by "+" and a statement t h a t  

a + b = c ,  we must no t  jump t o  the  conclusion t h a t  a = c - b. Trans-

posing i s  a theorem i n  a s t r u c t u r e  t h a t  obeys some p a r t i c u l a r  ru l e s .  

A s  an example, l e t  us aga in  take  "+" t o  mean union. Then i f  a + b = c ,  

it i s  no t  necessar i ly  t r u e  t h a t  a = c - b. P i c t o r i a l l y ,  

C = AUB 

(A + B)  




there fore ,  C - B = 

Again, s i n c e  t h e  s t r u c t u r e  of sets with r e spec t  t o  union i s  d i f f e r e n t  

from t h e  s t r u c t u r e  of numbers with respec t  t o  addi t ion ,  t h i s  example 

is  no t  any kind of contradict ion.  Rather it should caution us t h a t  

while it i s  n i ce  t o t r a n s p o s e  j u s t  because it seems "natural ,"  w e  must 

no t  b e l i t t l e  t h e  f a c t  t h a t  it is  only because of a p a r t i c u l a r  s t ruc-

t u r e  t h a t  w e  can enjoy t h i s  p r iv i lege .  

With these  remarks behind us, w e  a r e  now i n  a pos i t ion  t o  see how t h e  

s t r u c t u r e  of a r i thmet ic  r e a l l y  works. Notice t h a t  i n  t h e  playing of 

our "game" it is  the  r u l e s  which t e l l  us how t h e  terms a r e  r e l a t e d  -
t h a t  a r e  s o  important - not  t h e  terms themselves. For example, w e  

have j u s t  seen t h a t  r u l e s  E-1 through A-5 which appl ied t o  nordinary" 

a r i thmet ic  a r e  a l s o  c o r r e c t  f o r  vector  a r i thmet ic  provided t h a t  every- 

where t he  word "number" appears w e  s u b s t i t u t e  t h e  word "vector." 

Consequently, any conclusion t h a t  follows inescapably from these  t en  

r u l e s  i n  numerical a r i thmet ic  w i l l  be a v a l i d  conclusion i n  vector  

a r i thmet ic  a s  w e l l .  

one way t o  i l l u s t r a t e  t h i s  idea  i s  t o  take  a proof which w e  have 

given i n  numerical a r i thmet ic  and reproduce it verbatim, bu t  

rep lace  "nurnbePLby "vector,"  and observe t h a t  t he  given proof i s  

st i l l  v a l i d  i n  t h e  new s i t ua t i on .  More spec i f - ica l ly ,  

Theorem 1 

I f  a,  b ,  and c a r e  vec tors  such t h a t  a + b = a + c then b = c. 

-Proof 

Statement 	 Reason 

(1) 	There e x i s t s  a vector  -a (1) A-5 

(2) 	 -a + ( a  + b) = -a + ( a  + C) (2)  E-4 ( replacing a + b by a + c )  

(3) 	 -a + ( a  + b) = (-a + a )  + b (3) A-3 

-a + ( a  + C)  = (-a + a )  + c 


( 4 )  	 Subs t i t u t i ng  (E-4) (3) i n t o  (2) 
( 4 )  	 (-a + a )  + b = (-a + a )  + c 

(5) A-2 
(5) 	 -a + a = a + (-a) 

(6 )  A-5 
(6)  	 a + (-a) = 0 



Proof cont'd 

Statement Reason 

,(7) Substituting (E-4) (5) into (6) 

( 8 )  	 Substituting (E-4) (7 )  into (4) 

(9) 	b + 0 = (9) A-2 

c + o = o + c 
+ , I  	

(10) A-4 

(10) b +  0 = "1c + O = c  	 (11) Substituting (E-4) (9) into 


(10)

(11) O + b = b  
 - >  / 

O + c = c  	 (12) Substituting (E-4) (11) into 

(8)


(12) b = c 
q.e.d. 


Notice that we copied that statement-reason proof word for word from 


the corresponding theorem in numerical arithmetic. However, if we were 


to show this proof to a person without telling him how we obtained it, 


the proof stands validly on its own without reference to the proof from 


which we copied it. 


This idea can be quite readily generalized as follows. Let S denote 

a set and suppose "=" denotes any equivalence relation defined on S 

while "+" denotes any binary operation on S which obeys A-2 through: .r ,-, 

A-5. (We omit A-1 since A-1 is automatically obeyed by virtue of the 

fact that "+" denotes a binary operation. That is, we defined a binary 

operation to be equivalent to the Rule of Closure.) Then, in this . . ' 

particular structure, if a, b, and c are any elements in S and if ,. 

a + b = a + c, then b = c.* This result is an inescapable conclusion 

based on the assumptions encompassed by the ten rules E-1 through A-5. 

(In fact, if we want to be even more precise, we can argue that the 


result follows from a subset of these ten rules, since not all ten rules 


were used in the proof.) 


*We cannot emphasize enough the idea that the structure must be the 
same. That is, our cancellation law depends on our ten rules. AS a 
counter-example, suppose we think of "+" as denoting the union of sets. 
Then, if a, b, and c are sets, we cannot conclude that if a + b = a + c 
then b = c. Indeed, in our exercises in part 1 of our course we 
showed by example that this need not be true. (As a quick review, sup- 
pose b and c are une ual subsets of a. Then a + b = a + c since both 
equal -a, but b f &is does not contradict what we are saying 
above. Rather, structurally, the union of sets is not the same as the 

addition of numbers. 




C 

Scalar Multiplication 


Up to now we have been emphasizing the resemblance between vector and 


scalar arithmetic. The fact that these two different structures resem- 


ble one another in part is no reason to suppose that they share all 


properties in common, and one rather elementary but interesting differ- 


ence involves the process known as scalar multiplication whereby one 


multiplies a number (scalar) by a vector. 


The basic definition is pretty much straightforward. If we multiply 

a vector by a number c the result is a vector whose direction is that 

of the original vector and whose sense is the same if c is positive 

but opposite if c is negative. The magnitude of the new vector is 

I c I  times the magnitude of the original vector. By way of illustra- 


tion, -2v is a vector whose magnitude is twice that of v and which has 


the same direction but opposite sense of v. 


Structurally, the arithmetic properties of scalar multiplication that 


are of the most interest to us are: 


SM-1 If r and s are numbers and v is a vector then r (sv) = (rs) v 

SM-2 If r and s are numbers ana v is a vector then (r + s)v = rv + sv. 

SM-3 If r is a number and v and w are vectors then r(v + w) = rv + rw. 

SM-4 If r is any vector then lr = r. 

In terms of our game of vectors (I), (2), ( 3 )  and (4) are the rules 

by which we play the game of scalar multiplication. That these rules 

are realistic follows from the fact that our model made of "arrowsp 


obeys them. For example (3) is the geometric equivalent of similar 


triangles. By way of illustration we demonstrate geometrically that 


2(v + W) = 2v + 2w 



Other d e t a i l s  a r e  l e f t  t o  t h e  textbook and the  exerc i ses .  The major 

po in t  t o  observe is  t h a t  our discussion of vec to r s , a t  l e a s t  so  f a r ,  is  

completely independent of any coordinate system. W e  should point  ou t  

t h a t  it i s  o f t e n  des i r ab l e  t o  study vectors  i n  Cartesian coordinates 

s ince  i n  t h i s  system the re  is  an i n t e r e s t i n g  and r a the r  simple form 

t h a t  t he  a r i thmet ic  of vec tors  takes  on. This i s  explained very w e l l  

i n  t h e  t e x t  and we e x p l o i t  these  proper t ies  i? our  exercises .  But it 

i s  important t o  understand t h a t  t he  concept of vec tors  transcends any 

coordinate system. 
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