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Solutions

Block 5: Multiple Integration

Unit 5: More on Polar Coordinates

5.5.1(L)

Knowing that p= 6 we may conclude that the point P(p,¢,8)

the sphere centered at {(p,

P = 6} is the locus of

from the origin. This

spherical coordinates;

the origin with radius 6 (i.e.,

is on

¢r,9]:

all points in 3-space which are 6 units

is why (r,¢,8)

are referred to as

namely the sphere of radius 6 centered at

the origin has the simple equation p= 6 in spherical coordinates.)

Knowing that ¢ = T

T

* tells us that P(p,¢,08) must be the cone

whose axis of symmetry is the z-axis and whose central angle is

m ¥
T radians.

Thus, since p= 6 and ¢ = %, P(p,$,0) must be on both (i.e., the
intersection) of the sphere and the cone; and this intersection

is a circle parallel to the xy-plane.

Pictorially,

Intersection of the cone and

z

the sphere.

OB =

AB =

——> Y

Therefore, curve of intersection
is the circle x2 + y

=3 V2

6 cos 45°
6 sin 45°

]

3 /2
3 /2

I

2 = 18

Finally, given that 6 = %7 the point is uniquely located on the

above circle of intersection.

In other words 8 = %‘is a (half-)

m

* Since by definition ¢ is an angle (not a number),¢ = %

means ¢ =

4

radians.
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5.5.1(L) continued

plane which intersects the above circle in exactly one point.

Pictorially, looking "down" along the z-axis we have,

¥
? The circle x2+ Y2 = 18,
—— = 3 V2,
Q
|
Top view of the half-
3 V2 | plane 0 = 3
I
60° :
|
/10 R > X
Fa
‘ Q is th 1; int
This not part of /’ 1s ; e only poin
the plane 8 = 7/3 2 a§ which the half-
rather the dotted Ve plane meets the
line represents circle.
the half-plane
e = 240°,

-+

[Since OQ = 3 ¥2, OR = 3 V2 cos 60° = 3/7 and R = 3 /2 sin 60° =
% /6. Hence in Cartesian coordinates Q is the point (% V2, % V6,
3 ¥Z2) I

The main point is that p=po,¢ =¢0 and & = 90 uniquely represents
the point, given in Cartesian coordinates by (posin¢0cos¢o,

p051n¢051n¢0, pocos¢o}.

Moreover, if we want no two different 3-triples (p,¢,8) to denote

the same point, we may require that

p> 0

5.5.5:2
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Block 5: Multiple Integration
Unit 5: More on Polar Coordinates

F£FA2 2 &% M
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5.5.1(L) continued
which is the convention adopted in the text.

Notice that in this context we have a deviation from our con-
vention concerning 2-dimensional polar coordinates where r

could be positive or negative and 8 could be changed by multiples
of 360°. What we are really saying is that if all we want is a
coordinate system for locating points in space without worrying
about equations of motion then we can restrict our coordinates

in the way we have done. For example, in 2-space, if we simply
wnat to locate a point without worrying about the equation of

the curve satisfied by the point, we can obviously restrict r to

being non-negative and we can restrict 6 to the range
0 <@<2n

in which case each point in the plane has a unique representation

in the form (r, 9).

5.5.2

r = a means either the circle of radius a centered at (0,0) or
the circular cylinder with that circle as cross-section depending
on whether our domain (universe of discourse) is 2-space or

3-space. That is
{(r,8): r = a}

is a circle, while

{(x,8,2z):xr = a} i‘
: : [
id & Eylinder. | Every point on this

cylinder proaects onto the
Pictorially c1fcle X %y y4= a2, i.e.,

r = a.

7 ¥
T2+ y2 = a2

8.:5.5.3
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5.5.2 continued

This is why (r,6,z) is referred to as cylindrical coordinates.

Namely, the equation of the above cylinder is simply r = a.

SeDw3

a. The fact that p= 3, locates us on the sphere centered at the
origin with radius 3, while @ = 7/4 radians locates us on a
(half-) plane (in particular the plane passing through the first
quadrant portion of the line y = x, perpendicular to the xy-plane).
Hence, if p= 3 and 8 = n/4 radians, we are on the intersection
of the sphere and the plane which is the semicircle of radius
3 centered at (0,0,0), having the z-axis between (0,0,-3) and
(0,0,3) as its diameter, and lying in the plane formed by the

z-axis and half-line (ray) y = x, x > 0.

/4 implies that we are in the half-plane y = x, x > 0.
m/4 implies we are on the cone described in Exercise 5.5.1.

b. @

¢
Thus, with 8 = /4 and ¢= 7/4 we are on the intersection of the

plane and the cone, which is a particular straight line through

the origin.

[More specifically @ = 7/4 > sin 8 = cos 6 = % Y2 and ¢= w/4

sin ¢ = cos ¢ = % Y2. Now

psin¢ cos 8

psin¢ sin ©

z = pcoso .
Hence
-
X—Ep
I
Y=350#P
z = % vZ p

Therefore, 2x = 2y = 22/ V2 (=p ) or x =y = z/ /2. Therefore
the line passes through (0,0,0) and is parallel to the vector
1+3+ /2Kl
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Block 5: Multiple Integration
Unit 5: More on Polar Coordinates

5.5.4(L)

In spherical coordinates the sphere S is given by
= {(p,9,8): 0 < p< 1, 0 <6< m 0 <9< 2.

In Cartesian coordinates the required mass is given by

fff/ x2+ y2+ 2% avg (1)
S

: 5 ; ;
Since Vx“+ v 2y 22 = p we may find it helpful to convert (1) to

spherical coordinates. This yields

3(x,y,2)
f¢ 0 j; Pl3(o,6,0) 190 d¢ de. (2)

From the relations

sing¢ cos 8

Il
e}

sin¢ sin 6

N MOX
[}
=]

cosd

Il
©

we obtain that

{ sin ¢ cos © sin ¢ sin 6 cos ¢
d(x
ETEL%L%% =| pcos¢$ cos 8 pcos ¢ sin 6 - psin ¢
-psing sin @ psin ¢ cos ¢ 0
sin ¢ sin © cos ¢

-psind sin 6

pcos ¢ sin 8 =-psin ¢

sin ¢ cos @ cos ¢
-psin¢g cos @

pcos ¢ cos 8 -psin ¢

2 >
= -psing sin 8 (-p sin2¢ sin @ -p cos ¢ sin 8) +

-psing cos 8 (-p sin2¢ cos 8 -p cosz¢ cos 8)

§.5.5.5
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5.5.4(L) continued
= stin ¢ sin29 (sin2¢ + 00$2¢}
+ pzsin ¢ 00529 (sin2¢ + c052¢}

- pzsin b sin29 + pzsin ¢ coszs

= pzsin () (sinze - cosze)
= pzsin ()

so that (2) becomes

1

2T .
_! J o3sin ¢ dp d¢ de. (3)
=0 =0 ¢=0

[Notice that we could have obtained (2) by the geometric argument
given in Section 16.8, but our method shows the more general use

of the Jacobian]

At any rate, direct ingegration now yields

27
f f 935111 ¢ dp d¢ de
0 0 0

a dae
0

l

_ (2Tl 4,
—f‘T EDSJ.D¢

0 0

27 Ty
f T sin ¢ d¢ 4e
0 0

2wy 1 2m
=f E[-l—l]dg = ¥ f de =1
0 0

5.5.5.6
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55
Pictorially our region R is given by
z 1. For fixed r and ©
h z varies from 0 to 5.
z =5
2.x2+y2=4‘>r=2;
therefore,
x2+y2i4+ﬂiri
A e B » ¥
//
g/// x4+ = 4
X
Therefore,
fj:[xzdzdydx
R
(7
_ d(x,v,2)
Lo P (r cos 8)z ETET%TET dz dr de
Te2p05
LN
= r'cos 8 z dz dr de
0 0 0
5 2 m
= fzdz rzdr fzcosede
0 0 0
s
5 2 2
L .2 T 3 :
== 2z > r sin 6
2 0o 3 0 0
25, ,B 100
(7}(-§}(1)"T
5:5:5.:7
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S5:5.6

In spherical coordinates R is defined by
R= {(p,¢, 8): a <p <b, 0<p<m, 0< 8< 2m}.

Hence,

ﬂ_l;zdz dy ax
R

2maT b 2 2
=‘f f (p cos ¢)° p“sin ¢ dp d¢ de
0 0 Ya

b m o
f o*ap f cos?¢ sin ¢ do f ae
a 0

I
—
U=

-

=t w-ardaen

=-%§(b5- aS).

5+.5.7 (L)

Technically speaking, this exercise could have been given in

Unit 3 of this Block, but we elect to do it here as a preliminary
to a 3-dimensional change of variable problem which makes up

the next exercise. Our main aim here is to show how we may

often use more than one change of variables in the same exercise.
In this exercise, the first "trick" is to "straighten out" the
ellipse R and shape it as a circle. This is readily accomplished

by the change of variables

u=2andv={ (1)
a b

S.5.5.:8
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Solutions
Block 5: Multiple Integration
Unit 5: More on Polar Coordinates

5.5.7(L) continued

That is, we map R onto f(R) = S, where
fix,y) = (u,v),

with u and v as in (1).

We also see from (1) that

i 0 -1
o (x,y) _ ;8(u,v), -1 _| a R e [
= [ ] = 1 = (gg) = ab
3 (u,v) 9(x,y) 0 5
so that

9 (x,y)
ff (au) 2 (bv) 2 23X,¥) dv au

f[xzyzdy dx
R

3 (u,v)
£ (R)
= ff{ab)3 uzvz dv du (2)
s
where
s = {(u,v): u’+ v Z &}
[That is,
x2 2 2 2
R={(x,¥): =5+ ﬁf < 1} = {(au, bv):u“+ v° < 1} ,

W

therefore,

2

£(R) {£{au,bv):u2+ v® <1} = {(%F,%gl:u2+ v2 <.1}

{(u,v):u2+ 2 <1} 1.

Il

Now, since S (in the uv-plane) is a unit disc centered at the
origin with radius 1, a switch to polar coordinates is

desirable.

Su9.5,.9
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5.5.7 (L) continued
That is, we now map the uv-plane into the r@-plane by the mapping

g(u,v) = (r,8)

where
u=r cos @

(3)
v = r sin 8

From (3) it follows that

3 (u,v) _
3(r,8)

which checks with the geometrical interpretation that dv du =
rdrde*,

At any rate, then,

{f{ab}3u2v2 dv du = (ab) e cos 8)%(r sin 8)% ¢ dr d0
s g(s)
5 A 3
= (ab)3 r sin“® cos @ dr de
8=0"r=0
1 21 5 2
= a k> frsdr f sin%@ cosZ6 49 (4)
0 0
1

27
= adpd L6 f 1 < in220 ae
r=0 4
0

*Do not be confused by our being in the uv-plane rather than the
xy-plane. After all, the uv-plane is a replica of the xy-plane
(i.e., the planes are the same but the mapping "scrambles"

the points). Thus, switching to polar coordinates in the uv-
plane is structurally the same as it was when we dealt with

the xy-plane.
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FE® £33 F9% £33 £y N O

5.5.7(L) continued

a3b3 f2“l+ cos 48

= ae
24 0 2
2m
3.3
=ab [g’f‘%Sin 48 8=0
48
]
24

[Note: Had the problem been .gfxy dy dx, in place of equation
(4) we would have had

2T
a?p? flr3dr f sin 6 cos @ de
0 0
(details are left to you). Notice that
20 27
in 8 ¢ 8 de = 1 ‘n29 = 0
si os =3 si g=0- 0-

In other words .fj;y dy dx = 0. The reason for this is that
the sign of xy ig positive in the first and third guadrants,
and negative in the second and fourth quadrants so that by
symmetry the integrals cancel. 1In still other words
Jéff{x,y) dAR is a "net volume" if f(x,y) is not always

positive.]
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5.5.7(L) continued

Pictorially, what we have done is:

2
J
b
f X I
2
2
N
-

0 ¥

s = £(R) :!
Aside:
We clearly can view the composite mapping shown in our diagram El
as a single mapping from the xy-plane into the r@-plane.
Analytically this corresponds to the fact that we may
substitute B
u =1xr cos 8 E:
v = r sin 8
into :
X = au :3
|y = bv
*Again notice that OC is not part of g(S) if g is 1-1. tz
However, the area of g(S) is not affected by the inclusion
(or exclusion) of 0C. In this same vein, one often
reformulates this entire exercise by saying that R is ﬁ
the interior of the ellipse
__2 + 7 = 13 ’
a b L‘
the point being that the boundary of the ellipse contributes
nothing to S/ x?y? dy dx.
: ]
5.5+5.12
]
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(B |

F3

5.5.7(L) continued

to obtain

I

b 4 ar cos 6

v br sin 8

(and this is a parametric equation for the ellipse

|>¢
NN

vl
- = 1)
b2

W

As a final note on this exercise, notice that we could have
evaluated the given integral without resorting to any change of
variables, but certainly the change of variables converted the
given double integral into a form that was much easier to evaluate
than was the given integral. As the number of variables
increases, it becomes even more important from a computational
point of view to make the type of change of variables discussed

in this exercise. We shall see this in more detail in the next

exercise.

5 w28
x2 2 22
R= {(x,y,2): —2+Y_2+~551; X,y,2z < 0}.
a b c
We first map R onto f(R) = S by mapping f(x,y,z) = (u,v,w) where
u:%‘,v:%,w:% (1)

[i.e., we make the change of variables given by (1)]

Therefore x = au, y = bv, z = cw and
a 0 0
37(&1"—2) =0 b 0| = abc
3 (u,v,w) -
0 0 (s
Hence,
fffxyz dz dy dx = fff{au) (bv) (cw) [g (ﬁ'v’:)] dw dv du
R E{R) r r

0] T .
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5.5.8 continued

= fff(abc)zuvw dw dv du (2)
S

where S = {(u,v,w): u2+ v2+ wz <1; u,v,w, > 0} .

Thus, in uvw-space S is the solid sphere of radius 1 centered
at the origin, and this suggests spherical coordinates. In
other words, in the language of mappings, we map S onto g(S)
by

g(UaV;W) = (p,9,6)

where

u=p sin ¢ cos ©

v = p sin ¢ sin B

W= p cos ¢

(and 0 < ¢< %, 6 €8< % since u,v, and w are all non-negative)
so that

9 (u,v,w) _ 2 _.

alo,e,0) P Sin ¢

This leads to

ffﬁabc)z uvw dw dv du
S

= .[ZY‘ (abc}z{p sin¢ cosB) (psing sine)(pcos¢)[pzsin¢]dp d¢ de
g(s)

m
> 1
&5 3 A
- f I (abc) “p°sin”¢ cos ¢ sin 8 cos O dp d¢ de

S

5.5.5.14
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5.5.8 continued

1 T r
2 5 2 sin¢ cos¢ ap [ 2
= (abc) p~dp
0 0 0
x LR
1 2 2
= (abe)? T 8 2 sin®y [ L sin?
0=0 o=0" 6=0
_ a’p?c?
48
Comparing (2) with (3) we see that
il
Xyz dz dy dx = 1 T
R
XZ 2 2
where R = {(x,y,z): o aa Xi + % < 1}
2 =
a b c
x2
[Notice that if R is the entire ellipsoid — +
a

then xyz is negative in four octants and

2
.
b

+

Z2

2
c

sin 8 cos 6 de

(3)

<1

positive in the other four octants. Consequently J!J;YZ dzdydx =

by symmetry. However, by the same symmetry, we can use equation

(3) to deduce that

f__ff]xyz|dz dy dx = Bf.l[ﬁxyz]dz dy dx = 8f_£j;yz d'z dy dx
R

o

5:5.5.15
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