Solutions
Block 5: Multiple Integration

Unit 4: Volumes and Masses of More General Solids
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5.4.1(L)

Let us first observe that if S were homogeneous (i.e., of constant
density), we would not think in terms of triple integrals.
Namely, we would find the volume of S simply by computing

1 Al
f f (x +y + 1)dy dx (1)
0o Yo

and we would then find the mass by multiplying this result by the
density.

Now, while it would be quite artificial, we could certainly
observe that x + y + 1 is equivalent to

X+y+1
f dz. (2)
0

The result of substituting (2) into (1) is that we obtain the vol-

ume of S as the triple integral

1] 1 x+y+1 1 A1 pxty+l
f f f dz|dy dx = f f f dz dy dx. (3)
0 0 0 0 '*Q *0

This discussion is simply meant to reinforce the notion that one

does not need triple integrals to compute volumes. Rather, the
use of triple integrals enters the picture when we must limit our
changes in x, v, and z to be small. In particular, in the present
exercise, we want the mass of S, and since the density of the
solid depends on x, y, and z, the approximation that the density
may be viewed as being constant requires that S be viewed as being
partitioned into small parallelepipeds.

The volume of one such parallelepiped, &Sijk' is &xi&yj&zk - ﬁvijk'
and the approximate density is p(ai,bj,ck) = aibjck where
[ai,bj,ck) is any point in &Sijk' Then the approximate mass of S

. - ]
would be obtained by summing the p(ai,bj,ck)ﬂvijk S.
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5.4.1(L) continued

In fact, if we assume that 2% is the minimum density in Asijk
and that Eijk then the mass M of

the solid S is bounded by

is the maximum density in ﬂsijk’

If we let the size of the partitions approach 0 and if p(x,y,z) is

continuous, we see that

P m n
M= axllm E E ijkﬂvijk . etc. (4)
i k=1 j=1 i=1
Ay. =0
£y
Az

Notice that our discussion here is equivalent to our discussion in
Unit 1, except that we are now involved with triple sums rather

than double sums.

If the limit in (4) exists, we write it as

ff/" (x,y,2)dVg (5)

s

and this, in turn, may be viewed as an iterated integral. In

terms of the present exercise, (5) becomes

1 ,fl pxt+y+l
f ff xyz dz dy dx. (6)
0 =0 *0

[Notice that we obtain the limits of integration just as we did in
double integration. Namely, for a fixed (x,y), z varies from the
xy-plane (z = 0) to the plane z = x + y + 1, etc.]

The key point is that while the triple integral in (3) is arti-
ficial, the triple integral in (6) is essential since the inte-

grand is affected by a change in z.

5.5.4.2
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5.4.1(L) continued

At any rate, the actual mechanics work exactly as they did with

double integrals and we obtain

1 1 Ax+y+l
f f f xyz dz dy dx
0. =0 ¥
1 .1 x+y+1
f f f xyz dz |[dy dx
0 “0 0

=
I

11[
1 2
= Xyz
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5.4.2 (L)

The key point here is that we use the axiom that the whole equals
the sum of its parts. Specifically, we first compute

ff(xz b2 & 3)da, (1)
R

which denotes the volume of the portion of the cylinder between

the xy-plane and z = x2 + y2 S

Then we compute

d[]:x +y + l)dAR (2)

R

which denotes the volume of the portion of the cylinder between
the xy-plane and z = x + y + 1.

Consequently,

fﬁxz i Yz — 3)d}\R - /ﬁx + ¥ + l]dAR (3)

R R

must represent the required volume since the required volume is of

the solid consisting of the portion of the cylinder between the

xy—-plane and z = xz + yz + 3, with the portion between the xy-

plane and z = x + y + 1 deleted.

At any rate, since R is given by

S5.5.4.4
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5.4.2(L) continued

we have,

ff{x2 + y?' + 3)dAR —_[/'(x + y + ]_JdAR =
R R

f_f[fxz + y2 + 3) - (x +y + l)]dAR =
R

40N 2 2

.I._/' (x“ + y° = x -y + 2)dx dy.* (4)
0 *0

Thus, the required volume is

4l oy 5,
jp ‘[. (" + y~ = x =9+ 2)dx|dy =
0 0

4 Yy
f [%x:,' + xy2 = %xz - Xy & 2% dy =
0 x=0
" 3 5 3 X
1 .2 2 1 2 2
_I(;(gy T =y o+ ey s

of 8 . 3 L
2 _2 1 2
f y-§y2—5y+2y dy
0

*Recall, once again, that our limits of integration are determined
by R not by the integrand. We elected to write the integral in

the order dx dy rather than dy dx to simplify the limits of inte-
gration. That is, (4) gives us 0 as the lower limit on each inte-
gral. Had we used the order dy dx, (4) would have been replaced by

2 P4 2 2
ffZ(x +y - x -3y 4+ 2)dy dx.
Q *x

Obviously, the correct answer should be obtained from either
integral.

§.5.4.5
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5.4.2(L) continued

Therefore,

4 Y 2 2
.I- df (x7 +3y° —x -y + 2)dx|dy =
0 0

7 5 & [#
%yz_%yz_%y2+%y2 e
27 - 1£(2° - 36 + 123
35% 8{% 4 + 10% =]
34i%%.

Notice again that there was no need to use triple integrals even
though (4) could have been written as

4 /_;[- x2+y2—x-y+2
f f f dz|dx dy.
0 0

0

As a final note, we need only check that z = x2 + y2 + 3 always
lies above z = x + y + 1. Algebraically, this means that for each

(x,¥) (x° +y2 4:3) > (% g s L)

Z

?
x2 + y2 + 3

N
]

N
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5.4.2 (L) continued

Now

x2 + y2 e F 2 X kP L EF

x2 + y2 i A 2

But

xz + yz - % -y 2

{xz = 3 = %) + (y2 -y + %) ¥ 2

F)
2 2
1 2y 3
('5) +( '5) rg

\ " J
Y

>0 >0

(ST

> 0.

Hence, the surface z = x2 + y2 + 3 always lies above the surface

z=x+y + 1.

5.4.3

For a fixed (x,y), 2z ranges from 0 to x2 + y2 + 3. Hence, the
mass of S is given by

4~y x2+y2+3
f f f Xyz dz dx dy =
0 *0 0

4 rVy 1 2 x2+y2+3
f f '2" Xyz
0 *0

dx dy =
4| oy
f f -%’-xy(xz + y2 + 3)2dx dy =
0 0

z=0

4l vy
f f -z:l'-:r:y[x4 + y4 + 9 + 2x2y2 + 6x2 + 6y2}dx dy =
0 0

S.5.4.7
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5.4.3 continued

Therefore,

4 0y x2+y2+3
f f f Xyz dz dx dy =
0 0 0

4| Yy
f f (%xsy + -21—xy5 + %XY + X3Y3 + 3x%y + 3X.Y2)dx dy =
0 0

4116 125 .92 .143 .34 322/1;
j. XYt F¥Y +3x'y + gxy” 4+ XY * X7y dy
0 x=0

Y014 16 92 15 . 323 3
,/0.(1_23’*4‘;‘3’*33’ L s 4 +EY)dY=

4

1 5. 17 33 .16 3.4 34]

+ + + + + =
60" 287 7Y 247 Te¥ "8 |y=0
1 s 1,07 w3403 . 1,,.6 ., 9,,.4
60(4) + 28{4) - 4(4) + 24(4) + 16{4)
3 6
4 4 P P 3
sttt 3(4)" + 3(4) + 9(4)° =

16 . 256 32 B 1 4 2 B 92
16(75 + 5% + 3 + 35 + 9) = 16 (155 + 365 + 3 + 105 + 9) = 964p%.
5.4.4(L)

| The main twist to this exercise is that we are not explicitly

i given the cylinder which is sliced by the two surfaces. 1In
problems like this, the technique is to eliminate z from the two
equations of the surfaces. Quite in general, if z = ft{x,y) de-
notes the top surface and z = fb(x,y) denotes the bottom surface,
then we may equate the two expressions for z to obtain

£ (x,y) = £ (x,y). (1)

S.5.4.8

Il N B ) IS U DA BN A G PE DS BE B BE EE s

£ 3 L2




Solutions
Block 5: Multiple Integration
Unit 4: Volumes and Masses of More General Solids

m

5.4.4(L) continued

At first glance, it might appear that equation (1) gives the curve
of intersection between the two surfaces. A second glance at
equation (1), however, should soon convince us that this, in
general, is not the case. In particular, notice that equation (1)
can be put into the form

g(x,y) =0 (2)

where g = ft - fb’ and the equation g(x,y) = 0 is the equation of

a curve in the xy-plane (or at least in a plane parallel to the

xy-plane), while in general the curve of intersection of two sur-
faces will not lie in this plane.

In fact, if we recall that the equation of a cylinder looks like
the equation of a curve in the xy-plane,* we soon suspect that
equation (2) yields the cylinder which contains the intersection
of the surfaces z = ft{x,y) and z = fb(x,y}.

More specifically,

{(x,y): £ (xyy) = fb(x,y)}

denotes the set of points (x,y) which have the same z-value so
that this set may be viewed as the projection of the curve of
intersection onto the xy-plane. [Figure 16.13 and the subsequent
discussion in Thomas, Section 16.5, illustrates this point very

nicely.]

At any rate, with respect to the given surfaces in these exercises,
we obtain

%(x2 + y2 + 1) = x2 + yz

*For example, xz + y2 - 1 =20 is the circle centered at (0,0) with
2 2

radius 1 when we view the equation in the form {(x,y): x° + y° - 1
= 0}, but it is the right circular cylinder when viewed in the
form {(x,y,z): 2 W y2 = 1 = 0}

5.5.4.9
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5.4.4(L) continued

or

Hence, the curve of intersection projects onto the circle

x2 + y2 = 1 in the xy-plane.

In still other words, the given solid is the portion of the cy-

linder xz + y2 = 1 between z = x2 + y2 and z = %(x2 + y2 g M.

To find which is the top surface and which is the bottom, we pick
a point in the projected region of the xy-plane and see which
curve is the upper curve above that point. For example, (0,0) is
in the region x2 + yz = 1. Then the corresponding point on

z = x* + y® is (0,0,0), while on 3(x* + y? + 1) it is (0,0,3).
3 _ . 3%

Thus, at least above the point (0,0) z = %(x + vy~ + 1) is the

upper surface.

We then observe that wherever the curves interchange positions,
this will be reflected by the fact that the projection of the
curve of intersection will contain a curve corresponding to where
the surfaces crossed. In this example, the fact that the projec-
tion of the curve of intersection in the xy-plane is the circle
x2 o+ y2 = 1 insures that whichever surface was the top surface at
one point inside the circle is the top surface at all points in-
side the circle. The circle, itself, represents the x and y co-
ordinates of those points at which the two surfaces intersect
(i.e., at those points neither surface is higher than the other).

Finally, at those points outside the circle, the surface

2 = x2 + y2 lies above the surface z = %(xz + yz + 1). Again, as
a check, pick, for example, the point (1,1) which lies outside
the circle. The corresponding point on z = x2 + y2 is (1,1,2)

2 3

while the corresponding point of z = %{xz + yv© + 1) is (1,1,5).
The fact that the surfaces do not again interchange positions is

reflected by the fact that the projection of the curve of inter-

section includes nothing besides the circle x2 + y2 = 1.

Returning to the given problem, we seek the volume of that portion

of the cylinder x2 + y2 = 1 bounded below by z = X2 + y2 and above

by z = %(Xz T y2 + L)

5.5.4.10
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5.4.4(L) continued

Thus, the required volume is

fj;i(xz.p- Y2+ l}dAR = fﬁx2+ Yz)dAR

R R
1 1.2 1 2
=‘[{/;§_'2'x_2'y)dp‘n

where R is:

(1,0)

Therefore the volume is

1 ~1-x2
ff > - 3x°- zyPay ax. (1)
]

. 55 =
—/i-xz 2 2

To evaluate (1) we observe that it is in our best interests to
use polar coordinates, noting that R is simply {(r,8):

0<r<1l, 0<8<2m . Moreover, our integrand becomes
% - % %%+ yz) = % - % r2 and our element of area is %%%ng =
r
rdrde.
Thus
lf l-x2
1 1.2 1.2
./F o 5y~) dy dx
™| 2 2 2 2

S.5.4.,11
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5.4.4 (L) continued

27 .1

=f f (3 - 1 £Hr ar ae
o Yo

[
|

5.4.5

Eliminating z from x2+ y2+ z2 =4 and 2 z = x2+ yz we obtain

2 2
x2+ y2+ (x_i'_I )2 = 4,
V2

Hence,
2x%+ 292+ (x%+ y%) %= 8 1)

represents the projection of the curve of intersection into the

xy-plane.

Equation (1) may be simplified by a switch to polar coordinates

since we then obtain

2x2+ 2y2+ (x2+ y2)2= 8
or
2 (x%+ yz} + (x%4 y2)2 =8

or

S.5.4.12
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5.4.4 (L) continued

2r2+ r4 = 8

or

r4+ 2r2- 8 =0

or

(r%+ 4) (x?- 2) = 0. (2)

Since r2+ 4 # 0, equation (2) tells us that the cylinder which

contains the curve of intersection is r2— 2=00rr=+v2 .
In other words, the curve of intersection projects onto the circle
in the xy-plane centered at (0,0) with radius 2.

So the required volume is given by

[l - deda,

V2

where R is the region x2+ y2 < 2; or
27 V2 2

ff (/4 - 2 - L) r ar de
V2

00

V2 — 3
- f te /a-2% - E )er de
0 0 2

27 3 ( 3
=f st - 2% - A 0o Lia o 0y fan
0 V2

5.5.4.13
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=§ [16 - 7 /Z]1.

5.4.6

The cylinder which contains the curve of intersection is obtained
from the equation
x% + 9y2 = 18 - x2 - 9y2

or

or

2
—+¥-=1

which is the ellipse whose semi-axes are 3 and 1. That is

y

A 2
2 1.2 _ 9 =x°
y—l-‘gx——g——:or

(0,1) 2

§.5.4.14
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5.4.6 continued

Looking at (0,0) we see that it corresponds to the point (0,0,0)

on the surface z = x2+ 9y2 and to the point (0,0,18) on the

surface z = 18 - x2~ 9y2. Hence, z = 18 - x2— 9y2 is the top
surface throughout R. Consequently, the required volume is given

by

ff[{lB - x2- oy?) - (x4 9y2)] da,

R

3 % /9—x2

S S

—— (18 - 2x*- 18y°)dy ax

1
=3 73 Vox
L
3
f 18y - 2x2y - 6y3 dx
-3 y = - Loo2
3 3

- zf (6 M = x> = %-xz /o - x2 - 2—7(9 - x2)?jax. (1)

The integral in (1) suggests trigonometric substitution. Namely,

3 sin 8 = X

3 & 3 cos & d8 = dx
JB - x2 = 3 cos &

§.5.4.15




Solutions
Block 5: Multiple Integration

Unit 4: Volumes and Masses of More General Solids
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Therefore,

%]

3
f [6/9-x2—§x2/9—x2—

[18 cos 6 - %(9 sin20)3 cos ©

-

N ol

o

L I R T

LA 2 2 2
=36[2 (3 cos“® - 3 sin“8 cos“@ - cos 8)de

o
2

[NTI™)

(9 - x7)° ] ax

- 2—7(3 cos 6)°13 cos 6 do

(18 cos © - 18 sine cos © - 6 cos>6) cos 0 a0

4

m™
- 72[ 2(3 cos2e (1 - sin20) - costelas
0

m
2 4 4
= 72 (3 cos 8 - cos 8)dse
0

(2)

S.5.4.16
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5.4.6 continued

T
= 36 f 2 (L + 2 cos 26 + 005229)619
0

1l + cos 46

7 1de

m
=36ff[l+2c0529+
0

m
= 18_/.2(3 + 4 cos 26 + cos 48)de
0

m

2
= 18[30 +2 sin 20+ 3sin 40 |g=q]

- 18 3.

=TT (3)
Note:

Given

ff(ls - 2x*- 18y%)aa,
R
2

where R was the region {(x,y): g + yzi 1}, it might have been
a bit simpler computationally to make the change of variables

3u
Y =N

or

oW

In this case

3 (x,y) =‘3 0’, 3,
3 (u,v)

and our transformed integral would be

S.5.4.17
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5.4.6 continued

ff (18 - 18 ~ I8v2)3 dv du

u2+ v2 = 1

iz

1 ! u2
=54f f 5 (1 - u® - v?) av au
-1 -v1l=-u

1 Jl~u2

=54fv-u2v—%v3
-1 V== Jl-u:
1 V‘l-u2
=108f v-uzv—%v‘? du
=k v=0

1
=216f V1 - u? (1-u2-§[1-u21) du
0

I

sin 6

1

u

u cos 8
cos 6de

1l=-u
du

S$.5.4.18
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5.4.6 continued

Hence,

1 pe=il
144f (1 - u?)?au
0

w

iis
144 fz[cos391cos 0do
0

m
144[ 2cost0ae
0

which agrees with equation (2).

While this may not have been a big improvement over our original
approach it does indicate how a change of variables can simplify
the arithmetic involved in computing a double integral.

5.4.7

We may view the solid as being the portion of the cylinder
x2+ y2= a2 bounded above by z = + va - X (i.e., the upper
portion of . 22 = az) and below by z = - Jaz— x2.

2

Hence, letting R = {(x,y):x"+ yz}i a2 we have that the given

volume is

ff{ /al- x* - (- /PP ang
R

_ 2 2
= ZuI]ra bid dAR
R

a va2—x2

= 2 f f /a2 x2 dy dx
2 -2
-a "-Y/a“-x

S.5.4.19
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5.4.7 continued
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