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Intreduction

The easiest case in which to visualize the role of the Jacobian

determinant is when we have a linear mapping. That is, when we

are given a mapping of the xy-plane into the uv-plane defined by

u = ax + by (1)

<
I

cx + dy

We know that each rectangular region in the uv-plane is the
image of a parallelogram in the xy-plane.* (In particular,
the line u = k is the image of the line ax + by = k while the

]

image of v = k is the line cx + dy = k.) In other words, in

this special case, the back-map of a rectangular region is exactly

a parallelogram, rather than approximately a parallelogram.

Given the mapping E:E2+ E2 defined by f(x,y) = (u,v) where
= 3x - 2y (2)
=x + vy
We see that
u u 3 -2
3fu,v) _ | x ¥l = 3 =(=2) = 5.
9(x,y) Vg VY 1 1

[Note that the linear system defined by (1) always has

3 (u,v)

T,y as its determinant of coefficient.]
r

At any rate, since

3 (x,y) _ (2(u,v),-1
B(H;V) 3(X:Y)

*We are assuming, of course, that the mapping is 1-1; for
otherwise the image is either a line or a point, in which
case there is no back-map of the rectangular region.
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5.3.1(L) continued
the fact that

d (u,v) _
3 (x,y)

implies that

3 (x,y) _ % (3)

3 (u,v) -

The technique of computing 3 (u,v)/3 (x,y) and inverting it to find

9(x,y)/3 (u,v) is often our only recourse since it is not always

possible, in a more general system

u(x,y)
vix,y) .

=
I

\'
to solve for x and y explicitly in terms of u and v.

of course, in the present example, it is rather easy to invert
the system (2) to obtain

1 2
x—§u+§v

(4)
Y 2-% u + % v

and, from the system (4), we obtain directly

3 (x,y) - %5 + _% e % ,
9 (u,v)

w= W=
ulw VN

which agrees with our result in equation (3).

b. Let S be the unit square in the uv-plane with vertices at
0'(0,0), A*(1,0), B'(1,1), and C'(0,1). Using the system (4)
with (1 u=0,v=0, () u=1,v=0, 3) u=1,v=1, and
(4) u = 0, v = 1, we locate the points 0(o,0), A(%, -%),

B(%, %), and C(g, %J in the xy-plane whose images with respect
to £ are 0', A', B', and C', respectively.
5.5.3.2
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5.3.1(L) continued

Pictorially,
Y
A ¥
)b.
(0,1
c2d . s
575
3 2 v g .
82,2 1
R
> X - = u
0 0'(0,0) A'(1,0)
1 1
A('g‘r_g)
(Figure 1)

The back-map of S is the parallelogram R* with vertices 0, A,
B, and C.

The area of R is given by |OA x O6C| , or

1 1 2 3
AR=|(§I-§§)X(§‘:{+§-§)|
= I%§(I X 5) - %5{§ X I}
_ |2 = 2 > _ 1
'-' |75‘ k - ‘2‘5“[_]{)[ - g . (5)

*While we could check this in more computational detail, note

that the linearity of our mapping guarantees that £-1(s)[=R] has

straight line boundaries with vertices at O,A,B, and C. Then,
since £‘1 is 1-1, the interior of S maps into the interior of
R under f£. Finally, R is a parallelogram since

3 3 2

1 1 2 L D AN o ifE

-+ -
0A + 0OC =

5.5,3.3
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5.3.1(L) continued

; L
That is, 5 1is the necessary "scaling factor" to convert the area
of S into the area of R.

Note:

If f maps E2 onto E2 in a 1-1 manner, and if S. and 52 are two

congruent but different regions in the uv-plané, it is quite
possible that R, = gfl(Sl) and R, = Efltsz) are not congruent.
That is, the properties of f are local and as a result it is not
enough merely to know the shape of a region under investigation.
In the case of a linear change of variables, i.e., in a system
of equations such as in equation (1), if we let S denote any

rectangle whose boundaries are the parallel lines u = k, and

1
u = k2, 17
then the back-map of S is congruent to the back-map of any

region congruent to S. In other words, had we wished to be more
precise in part (b), we should have let S denote the rectangle

with vertices at O'Iuo,vo), A'(uo + Au, vo), B'(u0 + Au, vy + Av),

. -1
L] ey
(3 (uo, L + avo). Then, with R = £

in this more general case

(S) we could have shown that

.
Ap ™ 5 Rgr

but the special case treated in part (b) is sufficient for our

purpose.

The main aim of this part of the exercise is to help you get a
feeling for the meaning of a negative "scaling factor". 1In

the same way that we may visualize a negative number as a

length with a different orientation (sense), we may interpret

a negative scaling-factor as meaning that the mapping f reverses
the orientation of an element of area. Rather than go on in too
abstract a vein here, let us illustrate our remarks by solving

the given problem.

In part (b) we say that the parallelogram R with vertices at

1 1 3.2 2 3 G
0(0,0), A(gr‘g)' B[grg}r and Ctg,g} was mapped onto the unit

square S.

and v = k3 and v = k4, where k kz,k3 and k4 are constants,

5.5.3.4
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5.3.1(L) continued

What happens to R under the mapping g defined by g(x,y) = (u,v)

where

X +y
v=3x -2y ?

Well, g(0) = g(0,0) = (O
g =g@, - = G+
a®) =g, & = @+3
g =g H=¢E+3

In other words f and g map R onto S (or, conversely gfl

,0) = 0"
1 3

"§]r g""[‘
9 _ 4y _
55 °
6 6

5-35 =

2.y = = o
(1,1) =B
(1,0) = A'.

map S onto R) but with opposite orientation.

and gfl

Pictorially (Figure 1) we saw in part (b) that as P traced the
boundary of R in the counter-clockwise direction, i.e. so that

the region R appeared on our left as we traversed its boundary,

f(P) traversed the boundary of S with the same sense (orientation),

i.e., counter-clockwise.

Now, look what happens to P under g.

As P varies continuously

from 0 to A, g(P) varies continuously from 0' to C', etc. so

that the graph of the mapping is given by,

Y v
A A
c'=g(a), P B'= g(B)
C
N s \
B
R P
0 X - U
0'= g(0) A'= g(C)
A (Figure 2)
S:5,.3.3
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5.3.1(L) continued

From Figure 2 we see that the point P traverses the boundary of
R with a sense opposite to that with which f(P) traverses the
boundary of S.

This reversal of sense accounts for why the scaling-factor (i.e.,

the Jacobian determinant) is negative.

An interesting way to avoid the negative sign, if you so desire,
is to observe that when one interchanges two rows of a square
matrix, the determinant changes sign. Rather than prove this

in general, let us observe in the 2 by 2 case that

b S d

d a b
since
ad - bc = - (bc - ad).

Thus when the change of variables

f(x,y)
gl(x,y)

< e
o

produces a negative Jacobian determinant, the change of variables

u g{XpY]

£(x,y)

v

(i.e., interchanging the roles of u and v) will produce a

positive Jacobian determinant.

5.3.2

a. since f(3,4) = (1,0) and £(5,6) = (0,1) we have by linearity
that

I

(u,0) (1)
(0,v)

£(3u, 4u)
£(5v, 6v)

8.5.3.6
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5.3.2 continued

(i.e., uf(a) = f£(ua) if £ is linear]
From (1)
£(3u, 4u) + £(5v, 6v) = (u,0) + (0,v) = (u,v). (2)

Again, by linearity [i.e., f£( a) + £(B) = f(o+B)],
£(3u, 4u) + £(5v, 6v) = £(3u + 5v, 4u + 6v), (3)
so substituting (3) into (2) yields

(u,v). (4)

£(3u + 5v, 4u + 6v)

Il

Hence, since f(x,y) (u,v), it follows from (4) that

3u + 5v (5)
4u + 6v).

From (5), we see that if S is the square with vertices 0'(0,0),
A'(1,0), B'(1,1), and C'(0,1) in the uv-plane, then ;flfs) = R
is the parallelogram in the xy-plane with vertices at 0(0,0),
A(3,4), B(8,10), and C(5,6).

The area of R is given by

Ag

0A x 0C
|

[ (3T + 43) x (51 + 63) |

I

|18k - 20K]|

while A, = 1. Hence, A_ = 2As, the fact that

S R
alx,y)  _|[3 O = 18 = 20 = =2
9 (u,v) 4 6

implies that the point P traverses the boundary of R in the
opposite sense from which f(P) traverses the boundary of S.
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5.3.2 continued

d. 1In this case, we desire that

£(5,6) = (1,0)
and
£(3,4) = (0,1)
so that
£(5u, 6u) = (u,0)
and
£(3v, 4v) = (0,v).
Hence,
f(5u + 3v, 6u + 4v) = (u,v)
so that
X = 5u + 3v (6)
y = 6u + 4v
(obviously,the systems (4) and (6) may be inverted so that u
and v are expressed in terms of x and y, but this is not
necessary for the results we are interested in obtaining).
5.3.3 (L)
A preliminary aim of this exercise is to give us a bit of insight
into the case in which the integrand of our double integral can
be put into the special form f(u)g(v). 1In this case, we say
that the variables are separable. In other words, when the
variables are separable we mean that the integrand consists of
the product of two functions, one of which is a function of
one of the variables alone and the other a function of only
the other variable.

S5.5.3.8
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5.3.3(L) continued

The point is that when the variables are separable and the limits
of integration are all constants, we may view the double integral
as the product of two single definite integrals. In other words,
while it is not generally true that a double integral is the
product of two single integrals, the fact remains that:

drb d b
ff f (u)g (v)dvdu* =f f(u)du [ g (v)dv|. (1)
(o}

c a

One way of verifying equation (1) is to observe that since f(u)
is a constant when we integrate with respect to v, we have

d b b
f f f(u)g(v)dv| du = ﬁ f(u) fg(v}dv du (2)
c a ) C a

b
and we next observe that~é-g(v)dv, being a constant, can be
taken outside the integral involving du that is,

d b b d
f £ (u) fg(v)dv du = fg{v)dv ff(u)du . (3)
[e. d a c

Combining the results of (2) and (3) yields equation (1).

With this in mind, we see that the change of variables

W % F 3y -

or ) (4)
= LESF v 2wty
= 5 5

converts the given integral into one in which the variables
are separable. That is, if we define f by f(x,y) = (u,v) where

u and v are as given in (4) we have

* Recall that this means

b
fd [f f(u)g(v)dv] du
C a

5.5.3.9
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5.3.3(L) continued

x+3y

ffe 2 «:os2 (EE%Y_) dAR = ffeucoszv giz'v} dAS (5)
S

| R

where S = f(R).

Notice from (5) that we cannot be sure that the variables are
separable in the right hand integral for arbitrary changes of
variables*, but since 3(x,y)/d(u,v) is constant for a linear
change of variables, everything is fine! 1In fact, from (4)

we have

*For example, given

2 2
e* 7Y cos 2xydAp

R

the change of variables

2 2
lu =x" -y

v = 2xy
leads to

f ecos deA

9(u,v) s?

but now
—?—-a(uv)_ zx_zy :4(x+y)=4 u2+v2,
a(x,y) 2y 2%

so that

a(x,y) _ 1

9 (u,v)

’ 4 u2+ v2

Thus, the transformed integral is

Jf oo (e
2 2
u + v

5

and the variables are not "separated".

§.5.3.10
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5.3.3(L) continued

-
3 (u,v) 5 51_ 1 6 _ 1
=S ST BEITES R ¥
3 %) 2 1 25 = 25 5
5 5
so that
3 (x,¥) _ 5.
3 (u,v)

Substituting (6) into (5) we have

_ X3y
/fe 3 c:c>52{2i;y-)c1}.!xR = =5 fj;ucos2v dAS.
S

R

(6)

(7)

The minus sign in (7) merely means that as a point P traverses

the boundary of S with the opposite sense (orientation). 1In
other words, using (4) we have
f£(0) = £(0,0) = (0,0) = 0
£a) = £3,1) = [ 2F 30 20) = L (g,1) = ar
£(B) = £(5,5) = [ -5 ; 3(5), 2(5)5— 5]= (2,1) = B
£() = £(2,0) = [ 2F30, 2@ =4 2,0 = ¢,
or, pictorially,
Y. v
4 A
c(2,4) B(5,5)
A'(0,1) T B'(2,1)
A 3 ) ¢
A(3,1)
> —< >4
0(0,0) 0'(0,0) c'(2,0)
(Figure 1)
S5:5,:3%11
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5.3.3(L) continued

x+3y
5

Indeed, since e cosz(gzgzdand eucoszv are non-negative for
all values of x,y,u, and v, it should be clear that the minus
sign in (7) refers only to the change of sense indicated in

Figure 1, and is not to be interpreted algebraically.*

What is even more significant about Figure 1, however, is the
"coincidence" that the change of variables given by (4) also
transforms our integral into one with constant limits of
integration. Had this not happened the transformed integral
would have still been a bit awkward to handle, even though the
variables were separated, the limits would introduce the other
variable again. 1In other words, in working with multiple
integrals our change of variables must not only simplify the
integrand but the limits of integration as well. This is one
important reason why changing variables in a multiple integral
is such a difficult procedure compared with the procedure used
in a single integral. That is, when we transform

gL (o)

b . dx
f(x)dx into flg(u))zg du
a u=g-1(a)

by the 1-1 mapping x = g(u), all we have to do is concentrate

on the integrand since the image of the interval [a,b] is the
interval [g-l(a), g_l{b)] (or {g_l(b}, g ~(a)] if g is
decreasing). The luxury of integration in the case of a single
variable is that our domain is l-dimensional and consequently the

"shape” is very limited (i.e., it must be an interval).

At any rate, returning to the given problem we have from (7)

and Figure 1,

x+3

ﬂe 5 c052 {H_Ey}dAR =5 f]z eucoszv dudv

00
R

*See note at end of exercise.

85312
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5.3.3(L) continued

Sfc052v(feudu)dv
0

: 2 2 u
=5-[£cosvdv][fe dul].
0
Since
]; 1 1
f coszvdv= f 1 + cos 2v dv=£v+i—sin 2v
2 2
0 0
1 I
—~2-+a-s:|.n2
and
2u u ? 2 0 2
‘O/edu=e =e“ -e’ =e° -1,
v=0

we see from (8) that

x+3
ffe 5 coszfz%y-) dAR= S{%+%sin 2)(62— 1)

u=0

(8)

(9)

Notice in (9) that the expression sin 2 refers to the number 2,

so that if we want an angular interpretation it means sin
(2 radians)® sin 114°% 0.91. Hence (% + %sin 2)" 0.5 + 0.23 =

0.73. Then since e2% 7.39, e~ 1 6.39, so that
1.1 . 7 i %
5(3 + ¥ sin 2) (e2-1)% 5(0.73) (6.39)%23.

In summary, then

_ Xx+3y
[j:a > coszii‘%‘i)dAsza.

R

S.5.3.13
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5.3.3(L) continued

Note:

As we mentioned at the end of Exercise 5.3.1, we could avoid the
negative sign in equation (6) by interchanging the roles of u and
v in equation (4).

For example, with

3Ly

e
I
Uil

(10)
S 3
v = 5 X + 5 v

we see from (10) that A(3,1)is mapped onto A"(1,0); B(5,5) onto
B"(1,2); and C(2,4) onto C"(0,2). So that (10) maps R onto S1

where,

v
A
CII {0'2) 4 " (1'2)
Y s
> —> u
o" A“{I,O)
(Figure 2)

Comparing Figure 2 with Figure 1, we see that §; has the
opposite sense of S (hence, the same sense as R).

In any event, had we elected to use (10) rather than (4),

we would have obtained

3 (u,v)

r

whereupon

_ X+3y ff
ffe : cosztgigi)dzxr = eVcos u(5)dag
R Sl i

S.5.3.14
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5.3.3(L) continued

evcoszu dvdu

CLS—_
O S5

2 1
= 5 fevdv fcoszudu
0 0

X

- Ste?e 1) f 1+ cos 2u g
0

= 5(e?- 1) (3 + ¥ sin 2),

which agrees with equation (9).

5.3.4

Letting

I

u=x-y

X +y

v

we obtain

3 (u,v) _

3 (x,y)

Hence

a(x,x) _ A
- f.
3 (u,v)

Therefore,
6 _x+ty _ 6 v 1
J[/Lc- y) e dAR-J{yﬁ e’ 5 dAg
R S

where S = £(R).

(1)

(2)

Sedind el
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5.3.4 continued

Since f(x,y) = (u,v) = (x - y, x + y), we have
f(p) = £(1,0) = (1L -0, 1 +0) = (1,1) = A"
£(B) = £(2,1) = (2 -1, 2+ 1) = (1,3) = B'
f(c) = £(1,2) = (1 -2, 1 +2) = (-1, 3) =c¢C°
f(D) = £(0,1) = (0 -1, 0+ 1) = (-1, 1) =D
so that pictorially,
Yy v
C{1:2) ' (-1,3) B'(1,3)
A4 S
D'(-1,1) AvV{(1,1)
X
A(l,0)
(Figure 1)

Using Figure 1, equation

(2) becomes

3,1
ff(x - y)sexﬂ'd}aR = % ff w%eV au av
R

]
H—

=1
3 16
eVdv u du
=1
1
1.7
- e] [5u
o u=-1

S.5.3.16
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5.3.4 continued

-1 nid

e{ez- 1)
7

oc

25

5.3.5(L)

The region R defined by the limits of integration is the disc

x2+ y2 < az, in the first quadrant. That is. for a fixed x

where 0 < X < a, y varies fromy = 0 to y =/; - xz. Recall that
2 2 . 2. _ .2 2 2 =

y =/a“-x“ implies y“ = a“- x” or x"+ y” = a”, and we use only

the upper half of this circle because y =L a2~ x? means

y = + Jaz— x2 . Pictorially
b’
{

R . 2 2
This is disregarded =+ vYa - x
since 0 < x < a.

(-a,0) 0 (0,0)

(Figure 1)

Applying polar coordinates to R, we have that for a fixed 6,
where 0 < 6 < g-, r varies from 0 to a, and since the element

of area in polar coordinates is r drdé, we obtain

T
3]

2 2
e~ (X7t ¥7) guax = e T r arde (1)

55317
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5.3.5(L) continued

From (1) we see the key reason for trying polar coordinates.
2 2
X and e Y do not have elementary anti-
2
derivatives, re ¥ does have one. Thus, the "extra" factor of r

Namely, while e

obtained by switching to polar coordinates simplifies our

integrand.

At the same time, however, it should be pointed out that for
most regions other than R, the change to polar coordinates might
not have been too helpful. For example if R1 is the region
bounded by the three lines y = x, y = 0, and x = 1, then iy
polar coordinates Ry is described by saying that for ©

such that 0 < 8 < w4 r,varies from 0 to sec 8.

Again, pictorially,

v
E

(Figure 2)

For a given 6, r varies from 0 to P. P is on the line x = 1,
but in polar coordinates this line has the equation r cos e=1

or r = sec 0.

In this case,

1 r,x 2, 2 T fsec B _p2
f fe“‘x*”y ) dyax = fzrf e T rdr de (2)
0o 0

0 o0

§.5.3.18

a & O B B O v & ee

G ) & 5 U o o e

Ca £2




M

Solutions
Block 5: Multiple Integration

Unit 3: Change of Variables in Multiple Integrals

5.3.5(L) continued

and even though

2 2
fe_r rdr = - = e ¥

we see that

B =

sec & 2 2
-r == L oo-meet@ L@ Mo
‘/» = rdr = 5 e [ 5 e ] = 2{1

0

Therefore,

1.x 2 2
fj e—{x + vy )dydx = %_ f Gl =
0 0

0

FNE

2
e—sec Q}dG

(3)

and the integral on the right side of (3) is hardly an improvement
over the original double integral (as far as direct integration

is concerned),

Thus, we see once again how any change of variables depends both

on the region and the integrand for its success.

In any event, returning to

I

B at e o
ff o (R4 }dydx
0 0

Il

(1) we have

S:5:3.19
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5.3.5(L) continued

and since (1 - e 2 ) is a constant, we conclude that

a Jaz—xa(x2+ 2, 1 .2 L
ff e y dydx=f{l-ea)f2d9
0 0 0
2
=7 (1-e?). (4)
b. If we let a»*x» on the right side of (4), we obtain
T -a2 i
lim T (1 - e ) = i - (5)
a-—+w
On the other hand as a + =, our region R becomes the entire
first quadrant of the xy-plane (i.e., it is the circular disc
whose radium increases without bound).
In other words,
f2_ 2 2,2 o L0 2.2
Tim y‘afa X o= (") guax) =ff e~ (X7HYT) guax. (6)
a* «® Jg Yy 0 Jo
Hence, by taking the limit in (4) as a»> «, and using the result of
(5) and (6), we have
o gee 2, 2
ffe_(x +Y }dydx='4j- {7}
0“0
Mechanically, one may obtain (7) directly using polar coordinates
by observing that in polar coordinates the first quadrant is
characterized by saying that for any @ such that 0 < 6 < % P T
varies from a to »so that
- L 8 =
’ 2. 3 = 2 2 2
f o= 4y )dydx= ffe_r rdrd® =f -—%-er ase
0+0 040 0 r=0
7
. | _m
= 7fde;—z.
0
§.5.3.20
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5.3.5(L) continued

our technique in deriving (7) merely formalizes this idea. Namely,
saying that r varies from 0 to »really means r varies from 0 to a,
and we then let a + =

2 2

2 2
Ul O R , the variables are separable, so that

Since e

® @ 2 2 o 2 © 2
ffe‘(x * ¥ )gyax = [fe“x dx] [fe”Y dy] (8)
070 0 0

(where the usual caution is taken to make sure that each of these

improper integrals is convergent).

We next notice that since x and y are merely variables of integra-
tion ( and hence do not appear once the definite integral is

evaluated) ,

i @ 2
e dx = eY dy.

0 0

Therefore since
ffe‘(x ty )dydx =
0“0

[by equation (7)], and

o 2 oo 2 o 2
( fe“x dx] [ f e ¥ ay] = [ fe_x dx]z,
0 0

L

0
we obtain from (8) that
w 2
[fe‘xdx}2=-41’
0 r
so that
o -x2 1.
fe dx = 5 /7 (9)
0
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5.3.5(L) continued

The derivation of (9) shows how multiple integrals with a change

of variables may be used to evaluate rather difficult (improper)
single integrals. It should also be noted that while for teaching
reasons we gave the parts of this exercise in the given order,

in real-life the procedure is usually the opposite order. That is,
we most likely would be given the integral

fm—xzdx,
e
0

after which we would have had to have the ingenuity to observe
that

N_xz m_xz o 2 1/2
fe dx = [ fe dx fe b dy]
0 0 0

o ;5. 2 1/2
-t i e~ (X7+Y7) guax]
0’0

coftw 2 1/2
[fferrdrdel
0”0

Il

etc.

T ]

Our region R is

cx 8, 0

| A
@
| A
=
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5.3.6 continued

For a given 8, 0 ¢ 8 <y, r varies continuously from r = 0 to

r = 8, hence:

T 0
f./:}X2+ y2 dAR = f ‘[r(rdrdej
R 0

& 4 g
4
= L (¥ 8.3).
12

(See next exercise for a further discussion of how we handle the

integrand if R has a different shape.)

n 54347 (L)
a. An "obvious" change of variables which maps R into a rectangle
whose sides are parallel to the u and v axes is
C o
I: v = 2xy 3
Clearly, we see from (1) that if f is defined by %(x,y} = (u,v)
. " . 2
n then x2 - y2 = a is mapped into the line u = a, x* -y = Db is
mapped into the line u = b, 2xy = c is mapped into the line
v = ¢, and 2xXy = d is mapped into the line v = d. In other woxds,
c £(R) = 8, where
845:3.23
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5.3.7(L) continued

o
<
\“
*L\:i:ih
\\> ~] 0
<
[}
o]}

v
o

(a,0) \\\\\ (b, 0)
x - y =B u a u b

Notice that while f is not 1-1 (recall that the Jacobian of f

]
I

vanished at the origin, and, in particular, f(x,y) = f£(-x,-y)),
f is 1-1 when its domain is restricted to R*.

Thus, we may talk about the back-map of S (that is, there are
two regions, R and R', in the xy-plane that are mapped into S
by f; R' is the region in the third quadrant which is

congruent to R) since the domain of f is restricted to R and f
is 1-1 on R. The main point, however, is that the geometry for
finding the area of R is not as straight-forward as that for
finding the area of circular regions. In other words, polar
coordinates are a rather special case in the sense that we know
the geometry of circles sufficiently well that we prefer to divide
circular regions directly into polar elements of area rather
than to view the problem as a mapping of the xy-plane into the
re-plane.

In the present exercise, if we divide R into the elements of

area induced as a back-map from the corresponding rectangular

*Again, recall that a function is changed when its domain is
changed. What we really mean is that the '"new" function f
(called the restriction of f to R) whose domain is R and such
that f_(x,y) = f(x,y), for all (x,y)eR is 1-1. This follows
from tﬁe fact that f is 1-1 on the boundary of R and

3 (u,v)
3 (x,y)

S.5.3.24
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5.3.7(L) continued

elements of area of S, we wind up with hyperbolic elements of
area, for which the geometry is not familiar to us. Pictorially,

Y
A F
D
D C
A C This region is ) _
the backmap of //gglﬁageglgn
AS. : rea
T A B&uﬂv.
: =% > u
How do we compute
the area of such a
region?

In summary, when we view the region R under a change of variables

given by
u = ulx,y)
= V(X:Y}

there are two equivalent, but conceptually different, ways of
looking at it. On the one hand, we may imagine that R is left
unchanged but the elements of area of R are computed in terms of
the new variables u and v (which is how we usually think of polar
coordinates).* On the other hand, we may view the change of
variables as mapping R into a region S in the uv-plane

and we then find the area of R. Which of the two methods we
use depends on the change of variables as well as on the region
R. The dependence on R stems from the fact that S is the image
of R and certainly the shape of S will depend on the shape of
R. If the shape of S is not to our advantage, then clearly

there is no advantage of mapping R into S.

In any event, if we now use the mapping defined by equation (1),

our general theory yields

*See also the optional exercise 5.3.10.
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5.3.7(L) continued

b ~d
f.[;(xry}dAR = ff g(x(u,v), yu,v) 3(X,¥) gyqu. (2)
R = 2 3 (u,v)

Now g(x(u,v), y(u,v)) is a function of u and v, say h(u,v), and

from (1)
su,v) _ Uk Yyl _|PX TE| 42+ 92 .
3(x,y) Ve Yy 2y 2x
Therefore,
a(x,y) _ [a(u,v} ]-l _ 1
2 2
3 (u,v) 3(x,y) 4(x7+ y)

[which is unequal to 0 since x2+ y2 = 0++ x =y = 0, and

(0,0) # R]

Putting these results into (2) we obtain
d
fjc;(x,y) aa h{V) gvdu. (3)
R R X 2, y

Our final simplification of the integral on the right side of
equation (3) involves using equation (1) to express X '+ y in
terms of u and v. As a quick review, recall that

2 _ 8 _ 22,2 4 4

=
I

= 4x2y

and therefore,

uz & v2 = (xz & y2)2

so that

x2 " y2 _ u2+ o~
5.5.3.26
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5.3.7(L) continued

(and we must use the positive root here since x2+ y2 can't be

negative).

Therefore, equation (3) takes the final form

ff;(x y)aag = & fb[ h(u,v ‘” dvdu. (4)

/u + v

Equation (4) now gives us a very strong hint as to what type of
integrands, g(x,y), will be converted into separation of variables

by the mapping defined in equation (l). Namely if
hiu,v) = /a2+ v2 k(u)m(v) (5)

then equation (4) becomes

1 brd
g(x;Y)dAR Ef fk(u}m(v)dvdu
R

a ¢

1 b
- 1 f xwanf nwiavl.
a c
Recalling that h(u,v) = g(x,y)* etc., we may convert equation

(5) into the language of x and y by writing

g(x,y) = (x%+ y2)k(x?- yP)m(2xy). (6)
Summed up, then, equation (6) tells us that the most general
integrand g(x,y), which is converted into variables separable
on the rectangle S defined by the mapping in equation (1) is

one of the form

(x2+ yz) x (any function of x2- yz) x (any function of 2xy).

*That is, h(u,v) = g(x(u,v), y(u,v)) = g(x,y). 1In other words
the "height" of the surface z = g(x,y) above the point (x,y)
is the same as the height of the surface w = h(u,v) above the
point (u,r) where (u,v) is the image of (x,y) with respect

to the given mapping.
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5.3.7(L) continued

b. Applying our results to the special case

k(u) = e"
m(v) = cosh v
we have
2 2 x2- y2 1 °re u
(x"+ yT)e cos h 2xy dAp = 7 e coshvdv du
R a ¢

|

fb edu fdcosh vdv
a

c

= %(eb— e?) (cosh @ - cosh c)
Note that while the mapping

2
u=x-y
2xy

[

always carries R into S, unless the integrand g(x,y) has the
form described above, the new integral may be as difficult to

evaluate as the original integral.

___5.3.8
; ; ; 5
Qur region R is given by ‘X x2_ y2 - a
D x2- g2 = b
A
1N
\\\\\\ii:: )
S.5.3.28
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5.3.8 continued

and the image of R under the mapping

u

]
+
<

X
v x2 2 (1)

Il
]
o

is the region S, where

B' c! .
7 V=
V5 o
AT v =a
= u
u=c u=d
From (1),
2x 2y
3 (u,v) _ S - B (2)

The negative sign in (2) indicates that ABCD has the opposite
sense of A'B'C'D', and we also conclude from (2) that

aflx,y) _ -1 (3)
3 (u,v) 8xy

(So that rather than (1), you might have preferred

2 2
us=x-y

x2+ yz}

v

The fact that x # 0 and v # 0 for every (x,y)eR guarantees
that a(x,y)/ au,v) exists at all points, and we conclude from
(3) that

fﬁ (x;y)dAR =ff f(x(u,v) ,y(u,v}) [§§-—] dvdu. (4)
c/a Y
R
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5.3.8 continued

In particular if we let f(x,y) = 8xy, equation (4) yields
1
8xydA_ = j:[ 8xy [5—]dvdu
R R ="a 8xy
d b
=l/-d%/r dv
C a
=(@-c-al. (5)

5.3.9 (optional)

Our region R is defined by

y
= x
A B/(ly

$1)

gq(0,0) A(1,0)

Notice that the mapping given by
(1)
oy
v X
is not defined at 0(0,0) since in this case v = %.
The mapping is defined, however, on R with (0,0) deleted.

To see what the image of R with (0,0) deleted [i.e., R - (0,0)]
is, let us observe that with y = x,

%zl(ifx;to)

855330
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5.3.9 continued

so that from (1), v = 0. In particular the line OB (with (0,0)
deleted) is mapped onto the line segment v = 1, with 0 < u < 1.

Also from (1), x = 1 is mapped onto u = 1, so that the image of BA
is u = 1 with v varying from 1 to 0 (i.e. u=1 x=1 Vv =y),

and on BA y varies from 1 to 0.

Finally, y = 0 maps onto v = 0 (provided x # 0)since v = % = %.
Therefore AO with 0 deleted corresponds to v = 0 as u varies from

1l to 0 (with 0 excluded).

Pictorially then:

y v
A
deletedu B'(1,1)
B ct
S
R' deleted
> X = U
R To A'(1,0)
(Figure 1)
That is, letting R' = R - (0,0) ,the image of R' is the unit
square S with 0'C' deleted. Notice that 0'C' is part of the line
u=20, and u = 0 is where 3(u,v)/3(x,y) = 0.

The key point is that the deleted points form sets of zero area.
Namely in the xy-plane the deleted set is the point (0,0)while
in the uv-plane the deleted set is the line segment 0'C'.

Since the double integral is essentially concerned only with
area, the fact that things go wrong with the Jacobian on a area

zero causes no change in the general result.

Had we wished to be more rigorous we could have defined R, by

5.5.3.31
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5.3.9 continued

ik

CE £

C

R,

a4
b

D(e,0) A(L,e)

and observed that R, was mapped by (1) onto
v

A

(od B'(1,1)

D' A'(1,0)
r u

u =g a =1

Considered as a mapping from R, onto S,, all is well since on

82, u is never 0.

We would then define

f(x,y)da_ = lim f(x,y)da
e s [feon,
R R,

€+ 0

and this would yield the proper result.

Notice that this problem occurs whenever we use polar coordinates
on a region R which contains the origin (as in Exercises 5.3.5 and

5.3.6). We just did not notice it then since we usually do not
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5.3.9 continued

view polar coordinates as mapping R onto S, but rather as another

way to partition R.

The fact is, however, that

3 (x,y) _ |cos & -r sin © _
3 (r,8) sin 6 r cos 8

so that r = 0 1is a "trouble spot". 1Indeed with r = 0, 6 may
assume any value since r = 0 denotes the origin regardless of
the value of 8.

This difficulty, which doesn't seem to present itself when we
view polar coordinates in the traditional manner, may be over-
loocked since the origin and its image (the line r = 0 in the
r8-plane) both are sets with zero area.

At any rate, if we now turn our attention to the original

problem, we may conclude that

1
ffx2+ y2 dAR f [u /1 + v2] u dvdu
0¥ 0

R

I

1 g
fuzdu fl’l + v2 dv
0 0

just as we would have, had we neglected to notice that u = 0

was a "trouble-spot"!

5.3.10 (optional)

We have already emphasized how polar coordinates lend themselves

to two interpretations of change of variables. It should also be
clear that linear mappings may also be viewed in the same manner.
That is, the substitutions u = ax + by and v = cx + dy are equi-
valent to partitioning our given region R into a grid of parallelo-
grams whose sides belong to the families of straight lines
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5.3.10 continued

ax + by = constant and cx + dy = constant. Since we know how to
compute areas of parallelograms, it is not necessary, from a geo-
metrical point of view, to map the xy-plane into the uv-plane in
order to evaluate the double integral (although we may be more
comfortable doing this).

With these remarks in mind, it is our feeling that the only re-
maining loose thread in terms of viewing double integrals in
terms of a change of variables is that we have not yet used

the change of variables idea to explain how one may view a change
in the order of integration as a mapping of the xy-plane into the

uv-plane. The aim of this exercise is to explain this.

Notice that interchanging the order of integration is equivalent
to interchanging the roles of the two variables in the integral.
Since the u-axis is viewed as the image of the x-axis and the v-
axis as the image of the y-axis, interchanging x and y is equi-
valent to the change of variables

(1)

Using (1), we see that

X+=1u

1+ vy

<
I

Ed
I

0O+«u =20

I

so that the mapping defined by (1) yields

v =
y:r B 1\ / i
y == & A' ':0_:1) ~— V=l
rd B'(1,1)
B{l;1)
S
N
A
R
> 3 X > u
0 A(1,0) 0"
X =1

Bl EE Bl S S s

B I D 8 S 8 s
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5.3.10 continued

From (1) we also have that

3(x,y) . *
ONKFY) = o
3 (u,v) T 0

(which agrees with our diagram since the mapping does give S
the opposite orientation of R). Consequently,

fff(x,y)dydx = fﬁ (v,u)dAS (2)

R S

and since we want our integral to be in the order dxdy (= dvdu)
we write dAS in the form dvdu, and obtain from (2) that

X 1 1
'/J.é‘ f(x,y)dydx =f f f (v,u)dvdu.
0 0 Ju

The key point is that in the derivation of equation (3) we used
a mapping of the xy-plane into the uv-plane. We did not, as in
our earlier encounters with this type of problem, actually

"slice up" R with horizontal strips rather than vertical strips.

If we now replace v by x and u by y in the right side of equation
(3), we obtain

1 -2 1,1
f [ f (x,y)dydx =f f f (x,y)dxdy
0 Jo 0 Jy

and this agrees with our earlier method; i.e.,

(0,1)
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5.3.10 continued

Thus, if we so desire, changing the order of integration can be
accomplished by mapping (i.e., change of variables) techniques.
Aside from the fact that such a result is nice from the point of
view of making our theory complete, it is important to point out
that in handling multiple integrals of higher dimension (in which
we can no longer rely on a geometric model) all our transforma-
tions must be handled analytically (i.e., in terms of a change

of variables).

S.5.3.36

——




MIT OpenCourseWare
http://ocw.mit.edu

Resource: Calculus Revisited: Multivariable Calculus
Prof. Herbert Gross

The following may not correspond to a particular course on MIT OpenCourseWare, but has been
provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu
http://ocw.mit.edu/terms

