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.
5.2.1 (L) 


\ 

a. 	 In Block 3, we showed that if g(x) was defined by 


and if a(x) and B(x) were differentiable functions of x, then g 


was also differentiable, and in fact, 


The main point of equation (I), for our immediate purpose, is that 


since g is differentiable, it is automatically continuous. Hence, 


does exist [and is equal to G (b) - G (a) where G' (x) = g (x) 1 . 
In other words, 


where G' = g. 

Thus, the idea of viewing the anti-derivative in the form of the 


"definite indefinite integral'' as we did in Part 1 of our course 


is also valid in the present situation. 


b. 	 Consider the cylinder whose base is the given region R in the xy- 

plane and whose top is the surface z = f(x,y). In the previous 

unit, we showed that the limit of the double infinite sum, denoted 

by fff (X ,y) dA, was the volume of the given solid. 
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5.2.1 (L) continued 

On the other hand, in our treatment of differentiation of integrals 

in Block 3, we showed that 

was the cross-sectional area of the intersection of the solid with 

the plane x = x 
0 

Thus, 

is the cross-sectional area of the solid. Since the volume of the 
b 

solid is A (x)dx, we have that 

Note 

One often uses (2) as an identity. That is, we acquire the habit 
B (XI 

of denoting //.(xty)a by /," I,,,f(x,y)dydx. In this sense, 
R 

it becomes confusing as to whether f(x,y)dydx represents 

a double limit or an iterated integral. To avoid this possible 

confusion, many authors use f(x,y)dydx when they mean 

the double limit and they introduce the notation 
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5 .2 .1  (L)  continued 


t o  mean t h e  i t e r a t e d  i n t e g r a l  


The p o i n t  i s  t h a t  when equat ion  (2)  ho lds ,  t h e  numerical va lue  of 

i s  t h e  same f o r  e i t h e r  i n t e r p r e t a t i o n .  

c. W e  simply observe t h a t  

i s  t h e  c ross - sec t ion  o f  our  s o l i d  when it i s  c u t  by t h e  p lane  

y = yo. Hence, t h e  volume of our  s o l i d  i s  given by 

Combining t h i s  wi th  t h e  r e s u l t  of equat ion  (21,  w e  have 

s i n c e  both  r e p r e s e n t  t h e  volume of t h e  s o l i d ,  i . e . ,  
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5.2.1 (L) continued 


Note 


Part (c) supplies us with a geometric argument, at least in the 


case that f(x,y) b 0, of the Fundamental Theorem, which we elect 


to state as follows: 


Fundamental Theorem 


Suppose that the region R can be described in the two ways: 


and 


Pictorially (for example) , 

Then if ci (x), B (x), y (y), 6 (y) are differentiable and f is continu- 
ous on R, it follows that 

[and both denote the value of 

R 


In concluding this exercise, it is only fair to point out that the 


fundamental theorem is true for far less stringent conditions on 


the shape of the region R (i.e., as we have stated it, the 
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fundamental theorem gives sufficient but not necessary restric- 


tions on R). While a precise refinement of the theorem to in- 


clude the most general shape of R is very difficult (but the re- 


finement is described in most texts on advanced calculus), the 


fact remains that the theorem is valid for virtually any region R 


which one might expect to encounter in the "real world." 


Thus, without belaboring the point, we shall assume that we are 


dealing only with those regions R for which the theorem is true. 


Among other things, if R is a simple closed (bounded) region, even 


if the boundary is not "smooth," the theorem is valid. 


It is also true that f need not even be continuous on R provided 


that it is not "too discontinuous" on R. [This statement will be 


refined as a note on Exercise 5.2.5(L).] In summary, however, we 


should note that the existence of the limit denoted by 


depends on both the region R and the function f. 


5.2.2 


a. The iterated integral 


is equal to 
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5.2.2 continued 


b. From our discussion in the previous exercise 


where 


Hence, viewed as a region in the xy-plane, R is given by 


Hence, a second description of R is given by 


That is, for (x,y) to be in R, for a fixed of y, x varies continu- 

3ously from the curve x = [i.e., y = x ] to the curve x = 3; 

and y can be chosen anywhere from 0 to 27. Again pictorially, 
Y 
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c. 	 I n  t h e  n o t a t i o n  of t h e  previous  e x e r c i s e ;  a = 0 ,  b = 3 ,  c = 0 ,  

d = 27, 

3 2 a ( x )  = 01 = x I Y(y) = F ,  6 ( y )  = 3 ,  and f ( x , y )  = x y.  

I n  any e v e n t ,  w e  have 

A s  a check 

which agrees  wi th  o u r  answer t o  ( a ) .  

S.5.2.7 



Solutions 

Block 5: Multiple Integration 

Unit 2: The Double Sum as an Iterated Integral 


5.2.2 continued 


d. 	Again by the Fundamental Theorem, the iterated integral may be 


viewed as the volume of the solid which is the cylinder whose base 


is the region R in the xy-plane and whose top is the surface 

2 z = 	x y. 

It is also the mass of the thin plate whose shape is the region R 

2
and whose density at (x,y) E R is x y. 

dydx - is the special case of f (x,y)dydx 


where f (x,y) 1. 

Hence, if we let R denote the region 


dydx is the volume of the cylinder whose base is the 
Ja (XI 

region R in the xy-plane and whose top is the plane (parallel to 

the xy-plane) z = 1. 

We know, however, that the volume of such a cylinder is also given 


by the product of the area of its base and its altitude; in this 


case, AR x 1, or AR. In other words, the volume of the cylinder 


numerically* equals the area of R. 


(x -	y)dya. 	 Treating x as a constant (parameter), we observe that 


is well defined [and, in fact, is equal to F(x,l) - F(x,O) where 
x - y  

F (x,y) = provided we can be sure that the integrand 3]  Y (x + Y) 

*We say "numerically" because conceptually a volume is not the 

same as an area. 
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- i s  continuous.  Since t h e  in tegrand i s  t h e  q u o t i e n t  of 
(x + y )  

two polynomials ,  it i s  continuous u n l e s s  t h e  denominator i s  zero. 
3 I n  p a r t i c u l a r ,  (x + y ) = 0 * x + y = 0 * x = -y. 

Now, s i n c e  

4' 
t h e  l i m i t s  of i n t e g r a t i o n  t e l l  us t h a t  0  < < 1, we 

see t h a t  I X  - y)dy i s  well-defined provided x / [-1.01. That 
(x  + y I 3  

i s ,  i f  g is def ined  by 

1 

ix g  (x)  = - y1.y 


(X + y I 3  


then 

dom g = (--,-I) U ( O , - )  

( o r ,  	R - [-1,OI where R = set of r e a l  numbers). 

b. 	 Assuming t h a t  x & [ - I ,  0  I , w e  compute g  (x)  by us ing i n t e g r a t i o n  by 

p a r t s .  I n  o t h e r  words, wi th  

we l e t  u = x - y and dv dy = ( r e c a l l i n g  t h a t  x i s  being 
(x  + y) 

t r e a t e d  a s  a c o n s t a n t ) ,  whereupon 

du = -dy and v = -1 
' 2


2 ( x  	+ y )  

Therefore ,  from (1), w e  o b t a i n  
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5.2.4 (L)  continued 

From (2), it follows that 


at 

g' 
x 

[[' = glg(x)dx that g (XI is not defined 
X + -] except 

Y)

= 0. In other words, the validity of equation (3) required 

that x + [-I,01 , while g (x)dx indicates that 0 d x d 1 I so that 
10 

g(x)dx is an improper integral, undefined at x = 0. Accord-

ingly, as is the usual case when we talk about improper integrals, 

I' g(x)dxmeans lim g(x)dx.

bjO 6' 
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5.2.4(L) continued 

T ~ U S ,from ( 3  , w e  have 

I'g (x )dx  = l i m  
b+O 

Therefore ,  

1' 1 
( X  - y)dxd.  TO e v a l u a t e  [i (x - Y ) ?  dy,  we l e t  h ( y )  = 

(x + y )  

where 0  $ y ,< 1 [ i . e . ,  we mimic 
I

our  procedure of t h e  previous 

p a r t s  on ly  us ing h ( y )  r a t h e r  than g ( x ) ;  and w e  r e s t r i c t  t h e  domain 

of 

I'
h t o  0  $ y \< 1 r a t h e r  than t o  (-m ,-1)U (0 ,==I s i n c e  

h ( y ) d y  impl ies  t h a t  w e  a r e  i n t e r e s t e d  only i n  those  va lues  of 

y  such t h a t  0  < y < 1 1 .  
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Again, i n t e g r a t i n g  by p a r t s ,  b u t  t r e a t i n g  y a s  a  c o n s t a n t ,  we 

o b t a i n  

hence, 


du = dx and 


Therefore ,  

Therefore ,  
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e. Comparing ( 4 )  and (5), we see that 

This does not contradict the fundamental theorem since the funda- 

mental theorem requires that f(x,y) be continuous on 

R = ((x,y) : 0 < x < 1, 0 6 y < 1) if we are to conclude that 

x - y  In this example f (x,y) = and this is not continuous at 
(x + Y)-

O - O 0 (0,O) E R. That is, f(0,O) = = - and this is undefined'; 
(0 + 0 0l3 

so that (0,O) & dom f, while (0,O) E R. 

In any event, this example should prove the point that, even in 


apparently-simple cases, we cannot arbitrarily replace dydx by 


dxdy without changing our answer. 
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5.2.5 (L) 


From a computationally-mechanidalpoint of view, this problem is 


not too difficult to solve. We have 


Again, we obtained our new limits of integration pictorially. 


That is, the region R described by the limits of integration in 


the integral on the left side of equation (1) is the set 


This in turn says that for a fixed x E [O,A], y varies continu- 

ously from y = x to y = A. Hence, 

tends fro-

t o y = r  


v I r ' xs 


x is in here 


From this diagram, we see that R may also be obtained by picking 

y E [O,T] and then letting x vary from x = 0 to x = y. That is, 
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5.2.5 (L) continued 


For a fixed y E [O,IT] 
x varies from x = 0 (the y-axis) 

\to the line x = y (i.e., y = x). 

and this accounts for equation (1). 


At any rate, 


6 sin y dy 


so, again from equation (1) , 

Thus, what we have shown here (similar to a result obtained in the 


lecture) is that in this problem a certain integrand which is 


difficult 

4" 
to handle with the given order of integration (i.e., 


dy cannot be handled by "ordinary" techniques in terms 

Y 
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5.2.5 (L) continued 

of an anti-derivative), is easy to handle if the order of integra- 


tion is reversed. 


Both this exercise and the one used in the lecture are examples of 

the special case in which f(x,y) is a function of either only x or 

only y. In other words, even if we know of no function H(y) such 

that H'(y) = h(y), the fact remains that if y is treated as a 

parameter then h(y) dx = xh(y). Thus, if f(x,y) = h(y), we have 

and it may just happen (as in this exercise) that [B(y) - a(y)l is 

an "integrating factor." That is, we may be able to find a func- 

tion g (y) such that 

even though we could not find H (y) such that H' (y) = h (y) . 

Should this be the case, then (4) yields 


Be this as it may, we have an equally important, different reason 


for stressing this exercise, and this reason is the subject of the 


following note. 


5.5.2.16 
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Note: 

In our discussion of The Fundamental Theorem, we talked about the 


case in which f(x,y) was continuous on R. At that time, we did 


not want to cloud the basic issue with still other fine points, 


but at this time we wish to point out that just as in the case of 


functions of a single real variable, the condition that f be con- 


tinuous on R is too strong (that is, it is a sufficient but not 


necessary condition) if all we desire is that f be integrable on 


R. In fact, all that is required is that f be bounded on R (that 


is, we must be very wary of what happens if f "blows up" at one or 


more points of R) and that once this is insured, f must not have 


"too many" points of discontinuity on R. 


More precisely, one usually introduces the concept of a set of 


content (measure) zero (which can be generalized into a discussion 


of Lebesgue Measure); the vague term "too many" becomes replaced 


by the condition that the points at which the bounded function f 


is discontinuous on R is a set of content zero. From a semi- 


intuitive point of view, the easiest way to view a set of content 


zero is as a set which has zero area. For example, if f(x,y) is 


discontinuous on some line or curve in R, the volume of the region 


is not affected by the deletion of this curve since the curve has 


no thickness. In the calculus of a single variable, this is 


equivalent to studying the area under a curve which has finite 


discontinuities on a set of content zero. Namely, 


@ l b f  (xldr may still be 

viewed as an area even 
though f is discontinu- 
ous at x = c. 
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@We may "add" the set of 
points (line segment) 
{ (x,y): x = c, d < y < el 
without changing the 
area. 

At any rate, at least in the two-dimensional case, we may general- 

ize the fundamental theorem by including JJ f(x,y)dA where f is 
R 

bounded on R [i.e., f (x,y) is finite for all (x,y) E R] and f is 

continuous on R except at most on a set of points of content zero. 


Applying this to Exercise 5.2.4(L), notice that f(x,y) was not 

bounded on R. Namely, if f(x,y) = and-
(x + y) 

R = { (x,y): 0 < x < 1, 0 < y < 11 then f (0,O) is undefined, but. 
more importantly lim f (x,y) = so that f is unbounded in 

(x,y)+(O,O) 

any neighborhood of (0,O). More specifically, if we let (x,y)+(O,O) 

along the line L, y = mx, we obtain 

f(x,y) = f(x,mx) = 
(X + mx) 

Hence, on L 


-- a, [unless m = 1, in which case f (x,y) = 0 on L1. 
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Thus, the fundamental theorem did not apply in that case, even 


though f was 0 discontinuous only at the single point (0,O). 


In the present exercise, f(x,y) = 
sin y and this is discontinuous 
Y-

when y = 0 [i.e. , undefined since f (x, 0) = 
0 . However, f (X, y )  

is bounded for all points (x,y); the only non-obvious case being 

at (0.0) , but lim = 1, so all is well. Moreover, the set of 
Y
Y+O 


points -in R for which y = 0 consists of the single point (0,0), 

and this set clearly has content zero. 


Thus, the fundamental theorem applies in this exercise even though 


f is discontinuous at (0,O) while it didn't apply in the previous 


exercise when f was discontinuous at (0,O). 


(Keep in mind that x is being treated as a constant.) 


We then have 


Our region R is given by 
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5.2.6 continued 


(Technically speaking, R is bounded on the right by x = c, say, 

and we take the limit as c + ~ ;  i.e., 

f(x)dx = 	lim f(x)dx. 

cjm 


Therefore, 


= In b -	In a (since 0 < a < b) 

and we see from this example that a single integral is sometimes 


evaluated by converting it to an appropriate double integral. 
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5.2.6 continued 


Note 


-ax - -bx e dx also causes trouble when x = 0. Thus, if we 
X 


wished a precise formulization of this problem, we should view 


and proceed accordingly. 
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