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Pretest
1. Compute the sum
3 4
E E (1 + 5).
j=1 i=1
2. Evaluate
3 x3 2
f f X'y dy dx.
0 0
3. By changing the order of integration, evaluate
m m
f f Sin ¥ dy dx.
0 X Y
4. Use polar coordinates to compute
a /az - %2 -(x2 & 2)
f f ) y dy dx.
0 0
5. Find the mass of the solid S if S is given by the equation
X% + y2 + 22 < 1 and the density of S at each point is
numerically equal to the distance of that point from the origin.
6. Find the surface area of the region S where S is that portion
of z =1 - x% - y2 for which z > 0.
7. Find the volume of the region which is bounded between the two
elliptic paraboloids z = x2 + 9y2 and z = 18 - x2 - y2.
8. Let c be the square defined by the equation |x| + |y| = 1.
Compute
¢'ydx - xdy.
5.11
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Unit 1 : Double Sums

L.

Overview

In the same way that certain types of infinite sums (i.e., definite
integrals) can be identified with inverse differentiation (The
First Fundamental Theorem of Integral Calculus), certain types of
"multiple infinite sums" can be identified with inverse partial
differentiation. 1In this unit, the lecture is primarily concerned
with introducing the notion of a double infinite sum (the generali-
zation to multiple infinite sums being rather straight-forward).

The lecture introduces the double sum in terms of finding the mass
of a "thin plate" which has a density that varies from point to
point on the plate. The exercises serve two purposes. On the one
hand, the first few exercises are used to help you become more
familiar with the notion of a double sum, and to help you get an
idea of the computational properties of such sums. Exercise
5.1.4(L) is used to show the subleties that occur when we make the
transition from double finite sums to double infinite sums. The
problems are similar (but in some ways a bit more sophisticated)
to what happened in the study of calculus of a single real variable
when we went from adding arbitrarily large (but finite) numbers of
terms to adding infinitely many terms; and we investigated how
certain "trivial" properties for finite sums became "luxuries"

for infinite sums. The remainder of the exercises "refine" and
amplify the computational techniques which are introduced in the
lecture.
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2. Lecture 5.010
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3. Exercises:

5.1.1(L)

The expression

is an abbreviation for

m n
2 | 2ot
j=1 i=1
Show that

n m m n
Z Eaij and Z gaij
i=

I—I
I
'—I
u
Il
'—I
-
Il
’—J

are equal, and discuss the nature of the terms that make up both
sums.

5.1.2

Apply the results of Exercise 5.1.1(L) to compute each of the
following double sums.

a. 22: Z3;Laij and
:]=

aij .

3
= 1

2

i=1 ) j=1 R

(continued on next page)
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5.1.2 continued

3 4
ij  and Z Zij.

4
= 1 j=1 i=1

3

1

.

—
J

5.1.3(L)

Verify each of the following.
n m m

% Y, X%y ~olY, YAy
i=1l j=1 i=1 §=)

where c is a constant, independent of i and j.

n m : n ’ m
b. E Zaibj = (Eai) ( bj).
i=l j=1 i=1 j=1

c. Use part (b) of this exercise to check the result stated in part

(b) of the previous exercise.

d. i (ai+bj) =m2ai+nzbj.
o — 4

o

I
H
[
=
)

Il
fur

e. Use the result of part (d) to check part (c) of the previous

exercise.

The symbol E: E:a”., by definition, denotes E:[
i=1 j=1 =3

m
lim Eaij] =
=1

m+00 .
=] =]
lim E lim Zaij . Similarly, E Eaij denotes
i=1 j=1 j=1 i=1

(continued on next page)

5.1.4

G 0 .S NS O B2 Em e
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5.1.4 (L) continued

. We now define a,., for all positive inte-

m n
lim lim i
. ;E;‘n+“ e *

gral values of i and j, by

1; 3 i =
aij =4=-1, ifi=3 -1 (jJ=2,3,...)
0, otherwise.

[==] o =] o0
Compute Z Zaij and E Zaij and show, in particular, that
i=1 j=1 jol  i=1

aij'
1

oo oo

.

J

oo oo
in this example Z Zaij -
i=1  §=1 1 i

5.1.5(L)

Consider the thin plate in the shape of a unit square with vertices
at (0,0), (0,1), (1,0), and (1,1). Suppose that at each point
(x,y) in the plate the density of the plate is given by

plx,y) = x2 + yz.

Mimic our procedure in the lecture to find upper and lower bounds
for the mass of the plate as functions of m and n where m denotes
the number of equal parts into which we partition the segment (0,0)
to (0,1) and n, the number of parts into which (0,0) to (1,0) is
partitioned.

6

Use the result of (a) with n = m = 10 to show that to five signi-

ficant figures the mass of the plate is 0.66667.

Let m and n each approach infinity in part (a) and thus deduce the
exact mass of the plate.

The solid S is the parallelepiped whose base is the unit square

with vertices (0,0), (0,1), (1,0), and (1,1) and whose top is the

surface z = x2 + y2. Find the volume of S.
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5.1.6

Suppose R is the same thin-plate as in the previous exercise, but
the density of the plate at the point (x,y) is now given by
p(x,y) = xy. Find the mass of R.
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