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L6345}

is the vector we seek.
]

need any "formal recipes.'

That is:

may be rewritten as

-+ > -+ > -+
+ 10k x i + 30k x j + 35k x

If we next observe that

. > + + > =
Now, since A = 31 + 4] + 5k and B

-+ + Y > > + +
V= (31 + 47 + 5k) x (21 + 6] + 7k)

We know that one such vector is, by definition, X x B.

In faect,

any other such vector must be a scalar multiple of A x B.

21 + 6? + 7%, we have that

(1)

s . .
The point is that to compute V in Cartesian coordinates we do not

Rather, we may proceed structurally by

(31 + 43 + 5k) x (21 + 63 + 7K)

-+

k

use of the distributive property of cross products.

31 x (21 + 63 + 7K)

+ 43 x (21 + 63 + 7%)
-+ -+
+ 5k x (21 + 63 + 7K)
3% x 23) + 31 x 63)
+ (31 x 7k) + (43 x 21)
+ (43 x 63) + (43 x 7%)
-+ -+ ->
+ (5k x 21) + (5k x 63j)
- -+
+ (5k x 7K) (2)
-+ +
A x B, egquation (2)

-+ -+
By the associative property that mA x nB = mn

-+> -+ -+ + +* -+ -+ -+ .y >
61 x 1 + 18i x j + 21i x k + 8j x i + 243 x jJ

o
28 x

-

k

(3)
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1.5.1(L) continued
+ + + -+ -+ -+ -+
ixi=jgxi=kxk=0

F_ o> i S
, J Xk =1 and k x 1 = j, we see that equation (3)

ES
o

|

b

s
while i

becomes
+ -+ -k -+ -+ -+ -+ -+ -+
60 + 18k - 21j - 8k + 240 + 28i + 10j - 30i + 350 =
> - >
- 2i - 113 + 10k (4)

The determinant technique merely allows us to obtain the answer in
a more compact form. Namely,

-+ -+ -+
i 3 k
v=1|3 4 s
2 6 7
4 5 3
-1 3 ) EE
5 ) 2

-+ -+ e
i(28 - 30) -j(21 - 10) +k (18 - 8)

-+ -+ -+
-2i - 113 + 10k (5)

The fact that (4) and (5) are identical indicates the convenience
of the determinant method in finding the same answer that the
direct method yields.

The main point is that by the arithmetic of vectors we can show
directly that

+ -+ g T + > o
(all + azj + a3k} > 4 (bll + sz + b3k) = (a2b3 = a3b2}1
=

f {a3b1 = alb3)j

-+
+ {albz = azbl)k (6)

-+ -+ + +
*Note the need for stressing order., Namely, i x k = -(k x i) not
- > - - > > -+ - SR
k x i. Consequently, since k x 1 = j, i x k = =j,.
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1.5.1(L) continued

Notice that (6) has a rather distinctive, easy-to-remember form
quite apart from the determinant notation. Namely, only the second
and third subscripts appear in the first (i.e., the I) component,
only the first and third subscripts appear in the second component,
and only the first and second subscripts appear in the third com-
ponent. Moreover, the term is positive if the subscripts appear
in the correct cyclic order and negative otherwise. By cyclic
order, we merely mean: write 1, 2, and 3 in the given order and
imagine them to arranged on a circle rather than on a straight
line. Then a cyclic rearrangement is any one that may be obtained
by starting at any of the three numbers and proceeding in the
direction of 123. That is 231 and 312 are cyclic arrangements of
123. 1In a similar way the cyclic arrangements of 1234 are 2341,
3412, and 4123. Pictorially,

/*l) N
~— NS/

3

1

It is simply that equation (6) is easier to remember in the de-
terminant form. We want those who are not too familiar with de-
terminant notation to realize that there is no need to know de-
terminants to find cross products. In still other words, had de-
terminants not already been invented for better reasons, it is un-
likely they would have been invented to compute cross products.

1.5.2(L)

From the points A(1,2,3), B(3,3,5) and C(4,8,1), we may form the
vectors AB and AC. We then know that for a line to be perpendi-
cular to a plane it must be perpendicular to each line in the
plane., In particular, the line we seek must be perpendicular to
both AB and AC. If we vectorize the problem, we seek a vector
perpendicular to both AB and gb, but from the material of this
unit, we know that one such vector is AB x AC. Since AB = €2;1.:2)
and AC = (3,6,-2), we have:

$.1.5.3
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1.5.2(L) continued

-+ -

AB x AC =

NwY

W N -y
= R

1]

(=2 = 1)1 =3 (=4 =6) +R{iZ = 3)

> -+ e
-14i + 10j + 9k

I

Thus, the correct answer to (a) is any scalar multiple of
-141 + 109 + 9k.

Notice that there was nothing sacred about choosing AB and AC as
our vectors. For example, we might have elected to pick AB and BC
as our pair of vectors. In this case, ﬁE = (1,5,-4) and then

AB x ﬁ& would be given by

(ST N S
[, I R W P
P SRR ]

or
(-4 - 10)1 + (-8 - 2)(-3) + (10 - 1)k

which is again -141 + 103 + 9K.

b. 1In part (a) we found a vector perpendicular to a plane by computing
a cross product of two vectors in the plane. In the example we
chose, the cross product was the same in both cases. In general,
we would not expect two different pairs of vectors in the plane to
give the same cross product although we would expect the answers
to be scalar multiples of one another. The reason that both
answers were the same in (a) is part of our study in (b). The key
point is that if the vectors A and B are placed at a common origin,
we may think of the parallelogram determined by A and B as adja-
cent sides. In this case, the magnitude of K % E denotes the area
of the parallelogram.

In particular, the parallelogram which has AB and AC as adjacent

sides has area equal to Iiﬁ X §E|. 0f course, this is the same

parallelogram as the one which has AB and BC as adjacent sides.
S§.1.5.4
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1.5.2(L) continued

Hence, the area of this parallelogram is also given by AB x BC.
This will explain geometrically why AB x BC and AB x AC could at
"worst" be the negatives of one another. Namely, they have the
same direction (both are perpendicular to the same plane) and they
have the same magnitude (the area of the parallelogram).

c. The point now is that triangle ABC has half the area of the par-
allelogram formed by AB and ﬂb, and as seen in our discussion of
(b) the area of the parallelogram is given by |AB x AC|.
Accordingly, the area of the triangle is given by
|aB x AC|/2
or
A-10% &+ an® & (y4ys
or
V377/2 = 19.4/2 = 9.7
1.5.3 (5)

a, As an introductory aside, let us first observe that the concept of

skew lines exists in three-dimensional geometry but not in two-
dimensional geometry. That is, when we say that parallel lines
are lines which do not intersect, we are assuming that the lines
being considered all lie in the same plane. Clearly, however,
given two non-intersecting lines in three-dimensional space it
might well happen that there is no one plane which contains both

lines.

When two lines in different planes do not intersect we call these
lines a pair of skew lines. It seems natural (hopefully) to define
the distance between skew lines as follows. There are infinitely
many planes that can pass through a given line. Essentially, once
we have one plane that passes through the line we may rotate that

501-5-5
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1.5.3(L) continued

plane about the line, and in this way we change the position of

the plane (hence we change the plane) but it still passes through
the given line.

We pass planes through each of the lines and we then "pivot" the
planes until they are parallel. Stated more concisely, we imbed
the lines in a pair of parallel planes. We then define the dis-
tance between the skew lines to be the (perpendicular) distance
between the two parallel planes.

While the study of planes and lines is the subject of the next
unit, most of the basic ideas are already available to us.

We should point out that there are other ways of defining the dis-
tance. For example, we could pick a point on one line and drop a
perpendicular from that point to the other line. That would be
the distance from that particular point on one line to the other.

We could then repeat this procedure (sort of like a max-min calculus
problem) for each point on the first line, and the minimum distance
from a point on the first line to the second line could be defined
as the distance between the two lines. It should not be too hard

to check, however, that the method we outlined earlier is equiva-
lent to this method but a bit easier to handle computationally.

b. A rather convenient way of finding the distance between two par-
allel planes is to form a vector AB from the point A in one of the
planes to a point B in the other, and then project this vector
onto a vector N which is perpendicular to both planes. Pictorially,

-
N

P

Z‘waﬁzlhh
Parallel planes P, and P

1 2
are viewed "on edge."
This is the dis-
tance between the
planes and is the
projection of

= -
AB onto N.

S.1.5.6
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1.5.3(L) continued

It is the dot product that allows us, in terms of vectors, to pro-
ject one line onto another, 1In the present case, the distance we
seek is the magnitude of AB-EN where GN is a unit vector in the
direction of N. (See Exercises 1.4.6 and 1.4.7 as a review if

necessary.)

All that we need now is a vector perpendicular to the parallel
planes which contain our given skew lines. Here we employ the
properties of the cross product. Namely, let us vectorize the
given skew lines and call the resulting vectors v and w. Clearly
a vector perpendicular to a plane is perpendicular to every line
in the plane. Hence, the vector we seek must, in particular, be
perpendicular to both vV and w. This means that v x w will be one

such vector.

Putting our discussion all together, we now have a rather straight-

forward recipe. Specifically,

Step 1. Vectorize each of the skew lines, calling the vectors,
- -+
say, v and w.
Step 2. Form v X W. (Summarizing our discussion above, this is a

vector perpendicular to a pair of parallel planes which
"house" the lines.)

Step 3. Let ¢ denote a vector that originates at the first line

and terminates at the second line.

Step 4. Dot ¢ with the unit vector in the direction of v x w

(that is, project ¢ onto v x G).

The magnitude of the number obtained in Step 4 is the desired

distance.

This is just an application of parts (a) and (b). In this case we

have

S XabLl
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1.5.3(L) continued

(43531)

(1,2,3)

c b
(2,3,5)  (3,6,8)

.
ra

Therefore,

AB (4-1,5-2,1-3) = (3,3,-2)

-

¢b = (3-2,6-3,8-5) = (1,3,3)

Hence, a vector N perpendicular to a pair of parallel planes which
house our two skew lines is given by

+ =¥ >
1 J k
- - -+ > + -
N =AB x CD = |3 3 -2| = 1(9+6) =-3(9+2) +k(9-3)
1 3 3
-+ -+ -+
= 151 - 11 + 6k
Therefore,
-+ +* > > e 2 - i - -+
¥ = 151 - 131y + 6k _ 151 - 113 + 6k _ 15i - 113 + 6k

N 1si - 113 + ek| 2 V382

/15% + (-11)% + 6

Therefore, the desired distance is given by

B3yl = (4-2,5-3,1-5) - E2.21L.6) | (2,2,-4) - (15,-11,6)]
V382 /382
_ |30 - 22 - 24| _ 16 _ 16v/382 _ 8/382
/353 382 382 191
B 1:5.48
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1.5.3(L) continued
Pictorial Summary

-+ b = -+
N=V XWw

A

3(4 55
- A(l
=+
o
C{2’3'5) Di3:5 )

-
Note: Had we used CA, say, instead of 5%, the distance would have

been given by

|Ca-G| = [(-1,-1,-2) + (15,-11,6) |
V382
_ 1=15 + 11 - 12]
/382
_ 16
V382

which agrees with our previous answer. In other words, as one
would probably expect, the distance between the lines is indepen-
dent of the point of reference we choose on each line. Pictorially,

in terms of a "side view"

N
A

& Bl Bll Bui

-
AC is the vector projection of ﬁﬁ', Eﬁ'h AB"' onto N.

S.1:5.9
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c(4,5,9) D(6,11,14)

B(5,6,8)

b = (2,6,5)
- - -
i 3j k
> - e T + i+
N=AB xCD= |3 3 4| =1(15 - 24) -3(15 - 8) +K(18 - 6)
2 € .5
= -97 - 79 + 12k

%] = /(-9)2 + (-1n?% + 12)% = /277

Therefore,

# o (59,°7;12)

Uy B oLt l

V274
g ; &
Distance between lines = |AC-u|
- | (2,2,8y - Acfeclida)
V274

|-18 - 14 + 60| _ _28 _ 28/274 _ 14/274
/270 e AN W3z

& L7
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1.5.5(L)

" E EE .

By the definition of cross product, the vector R x B) x C is
perpendicular to both (A x B) and C. We first observe that any
vector perpendicular to 2 x B must itself be parallel to the plane
determined by A and B. That is, if, for example, we let D=1RAx E,
the locus of all vectors perpendicular to D is a plane to which )
is perpendicular. (We say "a plane" but it might just as well be
"the plane" if we utilize the fact that we may move any vector to
any starting place. In other words, we may assume that X and B
have a common origin and that all other vectors under consideration
share this origin.) But, since D is perpendicular to both X and B
it is perpendicular to the plane determined by R and B. Thus, the
locus of all vectors perpendicular to D (= A x B) is the plane
determined by X and B. Pictorially,

=+ b -+

D=AXxB
Any vector through 0 perpendicu-
lar to D is in the plane My

N
e
A >
:f determined by A and B.
0 B

In other words, if K and E are non-parallel, the vector (i X EJ x &
lies in the plane determined by A and B (if they are parallel then
they do not determine a plane) and at the same time is perpendicu-
lar to E.

We may rephrase our answer more geometrically as follows. We look
at the plane determined by A and B (all that is required for this
plane to exist is that A and B not be parallel*). cCall this plane

M;. We then take the plane which has ¢ as its perpendicular

*I1f X and B are parallel then A x B = 0 whence (K x B) x ¢ = 0 and
the discussion is then “erivial," Similarly £ X and B are not
parallel, (X x B) x ¢ will still equal é is parallel to
(A x B) since the cross product of parallel yectors always yields
the zero vector. In other words, if either A and B are scalar
mulgiples, of one another_ or if is normal to the plane determined
by A and B, the vector (A x B) x C is the zero vector.

5851.5.21
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1.5.5(L) continued

(normal). (Keep in mind that we are assuming that all vectors
originate at the same point in our discussion.) Call this plane
MZ' Now, unless M2 and Ml are parallel+thez intirsect in a line.
This line determines the direction of (A x B) x C.

-+
The same argument as in (a) indicates that the vector A x (E X E)
-
is perpendicular to A and lies in the plane determined by B and C.
Among other things, then:

-+ -+ - ) i <+ >

(A x B) x C lies in the A-B plane
while

-+ e -+ . . -+

A X (B x C) lies in the B-C plane.

+ + + -+
Clearly the A-B plane and the B-C plane need not be the same,
which proves the assertion in (b).

In other words, the cross product of three vectors is not an
associative operation. This means, in particular, that we must be
careful in dealing with any arithmetic involving the cross product.
It is such a common thing for us, based on our past experience
with multiplication, to assume that K X g X E is unambiguous that
we can make serious errors if we arbitrarily shift the parentheses
in the expression K X (E x E} (for example, we just showed that it
can change the plane in which the vector lies).

1.5.6

-+ -
A vector which lies in the plane of A and B and which is perpen-

2 - > ->
dicular to C, as we saw in the previous exercise, is (A x B) x C.

Since A = (1,2,3), B = (3,5,4), and C = (6,8,9) we have:
- > Y
i j k

AxB=|1 2 3| =31(-15 -3(4 -9) +k(5 - 6)
3 5 4

R g

-_> -+
=7% + §j =

Sul.5:12
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1.5.6 continued

Therefore,
-+
1
- -+ -+
‘ (A x B) xC= |=7
6

I

> =+
where A-C = (1,2,3
+ -+

B-C = (3,5,4)- (6,8

e . i -+ 2
(A-C)B - (B:C)A

[l

I

which agrees with

1.5.%

> + >
531 + 577 - 86k

-+ > > > > > > + >
(We could also have used the formula (A x B) x C = (A*C)B - (B-C)A
)-(6,8,9) = 6 + 16 + 27 = 49 and
,9) = 18 + 40 + 36 = 94. Then

- -+
L
5 -1| =145 + 8) -3(-63 + 6) +k(-56 - 30)
8 9

49 (3,5,4) - 94(1,2,3)
(147,245,196) + (-94,-188,-282)

(53,57,-86)

our earlier answer.)

In the expression
tant to note that
the third than to

More symbolically,

- -+ -
(L x2) x 3 =

With this in mind,

> + > > > 3
(L=3)2 — (2+3)1

- + + + + > = . .
(A x B) xC (A+C)B - (B+C)A it is more impor-
+ -+

A denotes the first vector, B the second, and ¢

+ o+
note the names A, B, C themselves.

we have

B.1.5:13
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1.5.7 continued

> -+

-[(B x C) x AJ*

I

> -+ -+
A x (B xCC)

1
I
w
L
0
1
3)
y
i

1.5.8
-+ -+ -+ -* -+ -+ +
a. (AxB) x (CxD) = (A=xB) xE
= RE)B - (B-B)A
-
= [A-(C x D)]JB - [B*(C x D)]A
. + > > =+
b. The vector must be in both the A-B plane and the C-D plane. Hence,
it is in the intersection of the two planes.
In other words, except in degenerate cases, {K X EJ X (E X 5)
vectorizes the line of intersection between the plane determined
by A and B and the plane determined by C and D.
L.5.0
In general, we may think of three vectors emanating from a common
point as determining a parallelepiped (which is the three-
dimensional analog of a parallelogram, namely, it is a 6-sided
figure whose opposite faces are congruent parallelograms). The
volume of any parallelepiped is the product of the area of its
base and its height. If we think of B and E as forming the base,
then from what we have already seen it is clear that |§ X E| de-
notes the area of the parallelogram which is the base of our solid.
The height of the solid is the perpendicular distance from A onto
the base, and this is precisely |A cos 6|, where 6 is the angle
between 3 and ﬁ x ¢ (see Figure 1).
-+ -+ -
*Note %hat our established recipe requires the form (1 x 2) x 3 not
1 x (2 x 3;. We obtained the desired form by recalling that
VxW=-[W=xV].
§.1.5.14
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1.5.9 continued

Figure 1

Putting this all together, we see that the volume of the parallel-

epiped is given by
|| |B x &| |cos 8|

(where 6 is the angle between X and B x ¢) and by definition of
the dot product this is

|- (B x &) | (1)

This is a good structural example of where both types of vector
products are used in the same formula. Notice also that, except
for emphasis, the parentheses in (1) are redundant since (K-ﬁ) x C
would be meaningless because X-B is a scalar, and we only "cross"

vectors.

Formula (1) gives us a very convenient test for determining
whether three vectors are in the same plane, as well as for finding
the volume of parallelepipeds. HNamely, if our three vectors lie

in the same plane, the volume of the parallelepiped they generate
is zero (since in this case all three vectors lie, say, in the

base) .

If our vectors are given in Cartesian form, equation (1) takes on
a particularly convenient computational form. Namely, let

A= (al,az,aB}, B = (bl,bz,b3}, and C = (cl,c2,03). Then

Bx¢ = (b2c3 - b3°2’b3°1 - blc3,blc2 - bzcl), whereupon K-(ﬁ X E}
becomes

aj (byc3 = bycy) + a,(byc; - byeg) + az(byc, - bycy)

S§.1.5.15
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1.5.9 continued

and it is then easily verified that the above form is equivalent
to the 3 by 3 determinant

1 By By
by by By
Gy ©p 3

With these remarks in mind, we have:

+ + +
a, The vectors A, B, and C are in the same plane if and only if

-+ & -
A-(B x C) =0 (where, of course, 0 refers to the number zero since
a dot product is a scalar).

b. In this case,

(15 - 16) - (10 — 12) + (8 - 9)

-1 + 2-1 = 0,

+ > -+
which is the required condition that A, B, and C all lie in one
plane.

-+ -+ >
c. In this case, we would use the vectors OA, OB, and 0OC, in which

case the determinant would be

Il

(20 = 12) = (10 = 9) + (8 = 12)

3*, which is the regquired volume

*It is possible that the determinant could turn out to be negative,
in which case we use thg absolute value. This is because the
determinant names OA* (OB x 0C) while the volume we seek is
|oA- (0B x OC)|.

S.1.5.16
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