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Solutions
Block l: Vector Arithmetic

Unit 3: Applications to 3-Dimensional Space

1.3.1(L)

Note: The study of lines and planes comes up later in our course
after we have studied the additional concepts of the dot and the
cross products for vectors. The point is that we already have all

the ingredients which are necessary to handle lines and planes,
even though we lack a few more powerful computational tools. Our
feeling is that the equations of lines and planes play such a vital
role in the study of real functions of two variables that we want
the student to have as much familiarity with these equations as

is possible. It is our thought that equations of lines and planes
introduced here will make their later study much easier to grasp

when they are reintroduced later in the course.

The main aim of this exercise is to point out that the structure
of vector arithmetic, as developed in the first two units of this
Block, is independent of whether we think in terms of two
dimensional space or three dimensional space. For example,

in the previous section we saw that if A, B, and C were any three
points in the (Cartesian) plane then aB = AC + CB. The key point
now is to notice that this same result is true even if A, B, and C

are considered as points in 3-space. Pictorially,

Notice that A, B, and C determine a
plane, so at least aB, &®, and BC are
in the same plane.

With this in mind, we have

(1)

and since P is on AB, we have that AR = t Aﬁ, where t is a
scalar variable which depends on the position of P along the

line which joins A and B.

S5.1.3.1




Solutions
Block 1l: Vector Arithmetic
Unit 3: Applications to 3-Dimensional Space

1.3.1(L) continued
Putting this into (1), we obtain
0P = OR + t AB. (2)

Again recalling that AB = a0 + OB and that AQ = —OK, equation
(2) becomes

-+

OP = OR + t(-OR + OB)

I

OR - t OR + t OB

(L - t)oR + t OB. (3)

We hasten to point out that it is almost as important to recognize
that (3) looks exactly as it did when we solved the same problem
in the last unit (when we were restricted to the xy-plane rather
than to xyz-space) as it is to see that (3) is the correct answer.

Now that we have solved part a. of this exercise, we observe that
the plan of attack on part b. again mimics what we did in the last
section. Now, however, we are in three dimensional space rather

than in two dimensional space. More specifically,

b. If we let A = (al,az,a3) and B =(bl,b2,b3), then we know that if
0 denotes the origin, the vector o0& has components equal to a,
ay, and ag, respectively. That is,

- -+ + >
OA = a;1 + a,] + a3k
and, in a similar way,
- E G T T
0B = b;I + b,J + bk,
Since we still multiply component by component to find scalar
multiples of a vector, we see that
(1- )0k = (1 - t)a,l + (1 - t)a,d + (1 - t)ask
while
> + o+ >
t OB = t byi + thy] + t bsk.
Sele3isd
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1.3.1(L) continued

Adding component by component (which still holds in 3-dimensional

Cartesian coordinates), our result of part a. becomes

-+ -+ +
OB = (a; - ta; + tbl)I + (a, - ta, + th,)J + (ag - tag + thyK .

If we now assume that P is represented as the point (x, y, z), we
have that OB = X1 + y§ + zﬁ, and since in Cartesian coordinates two
vectors are equal if and only if they are equal component by compo-
nent, the fact that 0B = (1 - t)OK + tOB allows us to conclude

that

X =a; - tal + tbl

<
I

a, - ta, + tb2 - (4)

.

Notice in (4) that the a's and b's are given constants (since they
are the coordinates of two fixed points) and that t is the only
"unknown" on the right side of the equations. Since t appears only
as a linear factor, we can easily solve each of the three equations
in (4) for t, to obtain:

.
X - a

1 = %
by =3
¥ = Ay

=t S (5)

b2 - a,
z - a

3.
by -, '

And (5) can be written on one line as:

X - a y - a z - a
1 - S 3 (= t) . (6)

b, = a,

S5.1.3.3




Solutions
Block 1l: Vector Arithmetic
Unit 3: Applications to 3-Dimensional Space

1.3.1(L) continued

While we have now found the answer to b. there are a few remarks
worth making about equation (6). For one thing, get used to the
form of (6) so that you see at a glance that it is really three
equations in three unknowns (that is, x, y, and z are the unknowns
while the a's and b's denote coordinates of fixed points) and that
it has but one degree of freedom. That is, as soon as we specify
any one of the three coordinates of the point, equation (6) uniquely
determines the other two coordinates if the point is to be on the
given line. For example, as soon as we specify a value for x,

(x - a;)/(b; - a;) becomes a fixed number (constant) and equating
this number to each of the expressions (y - az)/(bz - az) and

(z - az)/{b3 - a3) gives us unique values for y and z.

Secondly, notice that, in Cartesian coordinates, if A = (al, ayy a3)
-+

and B = (bl, bz, b3) then AB has as its components bl - a, b2 - ay,

and b3 - aj. That is,

> - - >

AB = (bl - al)l - (b2 - azlj + (b3 - a3)k ‘

This, in turn, shows us that our denominators in (6) are the compo-
<>

nents of the vector AB (see the note at the end of this exercise

for an additional remark).

Since this discussion may seem a bit abstract, we illustrate our

above remarks in terms of a specific example. Namely,

c. We have A = (2, -3, 5) and B = (5, 4, -1). Therefore, if we wish
to use the result of (6) mechanically we have
a; = 2, a, = =3, az = 5
b, =5, by, =4, by = -1
bl -a; = 3, b2 = By Vg b3 = @z = -6 .
Hence
_}_;___5_2_= +3=§___E__5___ (1)
As a check that (1) is correct, observe that we know that (2, -3, 5)
S.1.3.4
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Solutions
Block 1l: Vector Arithmetic
Unit 3: Applications to 3-Dimensional Space

1.3.1(L) continued

and (5, 4, -1) must belong to the required line. Consequently,
equation (1) must be satisfied by the sets of values {x = 2,
y==-3, z=5}and {x =5, y=4, z = -1},

A quick check shows that the first set yields

2 ; % - ; 3 = 5_; > or 0 =0 = 0, which checks,

and the second set yields

; % = '1_E 2 or 1 =1 =1, which also checks.

Had we wished to proceed from scratch without reference to b. we
could have let P(x, y, z) denote any point on AB. Then

oF + aB

[

(0.4
= 0X + tAB
= ok + t(ad + OB)
= 0k + t(-0& + OB)

toX + tOB

]
S
I

£) (22 - 37 + 5k) + £(53 + 4 - %)

(1

- - =+
(2 - 2t + 5t)i + (=3 + 3t + 4t)3j + (5 - 5t - t)k, or:

-
xi +yT+2zKk=(2+3t)1 + (7t - 3)7 + (5 - 6t)k

I

-

Therefore’ b4 = t

Il
b
+
w
"
0
H

ul.

<
I
~J
o+
I
{8
-
1:
()
I
&
Ll

z =5 = 6t or E:%—é =t .
X - 2 _ + 3 _z =5
Therefore' —-—-3-'-—- = = T .

8. 1.355




Solutions
Block 1l: Vector Arithmetic
Unit 3: Applications to 3-Dimensional Space

1.3.1(L) continued

We shall talk more about equations of lines later, but, for now,
it is our main aim to make sure that the concept of vector arith-
metic is becoming more familiar. In this example, we are again
trying to show that the structure of vector arithmetic is indepen-
dent of whether we are dealing in 2-space or 3-space.

A Note on Equations of Lines

We have just seen that the equation of the line which passes through

(al, ay, a3J and (bl, bz, b3) is given by

x - a y - a, z - a,

= = = = - (= t). (1)
b, - a; by -a, bjy-a,

While we may not be used to the equations of lines in 3-space the
fact is that this equation is a "natural extension" of equations
of lines in 2-space.

For example, if A = (al, az) and B = (bl, b2) with a; # bl' we
have that the slope of our line is

by, = a3

b, = a;

Then if (x, y) is any point on our line, we have

y-a, b;-a,

22 it r
X a; bl a

2 8

which is the special case of (1) in the event ag = b3 = 0.

1.3.2
a. A= (3,5,1), B= (7, 2, 4)

Therefore, aB = (7 - 31+ (2 - 5)3 + (4 - 1)K

= 43 - 37 + 3k .
¥ =3 y=5 2z =3

TREESIOLS; ~—p— = W = Sege: 4 (1)

B.1:3.6
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Solutions
Block 1l: Vector Arithmetic
Unit 3: Applications to 3-Dimensional Space

1.3.2 continued

The point (x, y, z) at which the line intersects the xy-plane is
characterized by the fact that z = 0. With z = 0, (1) becomes:

Therefore, we must have

E.i,i = :% or 3x - 9 = -4 therefore x = %
=3 m=l g 3y - 15 = 3 therefore y = 6 .

- 3

Therefore, the line meets the xy-plane at (%, 6,0).

B(2,4,1)

>C(4,8,5)
A(1,2,3)

(Notice that there is no need to try to draw things to scale since
our vector methods work with the values of the coordinates of the

points, not with the geometry.)

We saw in the previous unit that a required vector would be
|a&| AB + |aB| al (1)

and that any other solution would be a scalar multiple of (1).

The point is that only the computation, not the theory, is affected

by a switch to 3-space from 2-space.

Noticing that

S:l1.3.7




Solutions
Block 1l: Vector Arithmetic
Unit 3: Applications to 3-Dimensional Space

1.3.2 continued

AB=(2-1)T+ @-2)3+ (@1-3k=1+27-2%
A= (4-1)1+ (8-2)T+ (5-3)K =237 + 67 + 2k,
we have:

aB| = V12 + 22+ (22 = /I+d4+4=3

|ag| = \/32 +62+22= O +36+a=7.

Putting this into (1), we see that one correct vector is:
7(T + 23 - 2K) + 337 + 63 + 2k) = 7 + 147 - 14K + 9§ + 187 + 6k
= 161 + 323 - 8k = 8(2f + 43 - k).

Therefore, any scalar multiple of 21 + 4} - ¥ is a solution.

1!.3.4
a. Again, every step that we used in Exercise 1.2.5 applies verpatim.
B{bl,bz,b3)
D
A
(a;r,ay,
a3)
€(c1,2,,C5)
0(0,0,0)
-+ -+ +
OM = OA + AM
-+ 2 =
= 0OA + -EAD
- 2 -+
= 0A + E(A'B + BD)
S.1.3.8
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Solutions
Block 1: Vector Arithmetic
Unit 3: Applications to 3-Dimensional Space

1.3.2 continued

= ok + 3B + 2D

o

= ok + 2(a8 + oB) + 2(380)
=0A+%~A++%0§+%-BE
=0$-§03+§0§+§(BB+0§)
= OA - §oi + %03 + %Bﬁ + %OE
= o - %0k + 308 - JoB + 300
=%0*+§0§+%03

- %(oﬁ + 0B + 00).

b. Utilizing Cartesian Coordinates and letters M = (ml,mz,m3) we see
that:
- + > 1 > + e -+ -
m, i + m,J 4 m3k - jl{alx + a,] + a3k) + {blI + sz + b3k)
> ¥ T+
+ (cyi + cp] + c3K) ]
~ (al + by + cl) - @2 + b, + c2)+ @3 + by + cﬂ
= s 3 =k
3 3
a, + b, +c a, + b, + ¢ a, + b, + ¢
s | 1 1 -2 2 2 _ 3 3
Therefore m, = 3 ¢, W, = T ’ 3 .
c. The medians of AABC meet at
1+2+4 2+4+8 3+1+5 7 14 3 )
3 ' 3 ' 3 T L :
d. If we let C be denoted by (Cl, Cys C3), we want:
1+2+Cy 2+4+Cy 3+1+ C3 B
3 ' 3 ' 3 = 10, 9y 0)
S.1.3.9
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Solutions
Block 1l: Vector Arithmetic
Unit 3: Applications to 3-Dimensional Space

1.3.4. continued

L 3 c1
Therefore, TrT——

0 or c, = =3

2 + 4 + c2

e & | OF Ty = ~§

3+ 1+ C3
e ——— 0 or c, = -4,

Therefore, if the medians of AABC are to meet at the origin, then
C must be the point (=3, -6, =-4).

1.3.5(L)

Perhaps the only major difference between this exercise and any
of the others is that we are now interested in planes rather than
lines. It is also worth noting that the equation of the plane is
not given in terms of the Cartesian coordiantes of the points A,
B, C, and P. While we might feel more at home with x, y, and z
as variables, the fact remains that the form in which we have
stated the equation of the plane depends only on the points which
determine the plane, and are, thus, free of any particular coordi-
nate system. 1In particular, this means that our present equation
is valid, regardless of the coordinate system under consideration.
Now, we know that if a point P ison the line determined by two
points A and B, then, vectorially, we have that there exists a
scalar t such that

Suppose now that we are given three points A, B, and C not on the
same straight line. 1In this case, the three points determine a
plane. Vectorially, this plane is determined by the vectors AB
and AC. Thus, the point P is in this plane if and only if there
exist two scalars t) and t, such that

AP = tlﬂﬁ + tzAé (see diagram on next page).

§.1.3.10
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Block 1l: Vector Arithmetic
Unit 3: Applications to 3-Dimensional Space
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1.3.5(L) continued

(1) Since A, B, and C are not on the same line, AB and ad

are not parallel, Hence, they determine a plane.

(2) If P is in the plane we may draw two lines through P,
one parallel to AB and the other parallel to AE, thus forming
the parallelogram ADPE.

(3) aB = ad + Dﬁ, and since ADPE is a parallelogram,
DB = AE. Therefore, AP = AD + AE; but AD is a scalar multi-
ple of AB and AR is a scalar multiple of ad. Hence, by

definition, there exist scalars tl and t2 such that AD = tl AB

and AE = t2 AE.
Therefore, AP = tl AB + t2 ac.

(4) Notice that t, and t, are variables that depend on the
choice of P. t, measures the relative length of the "parallel"
projection of AP onto AB (and in this respect if JBAP > 90°
ty will be negative) while t, does the same for the projec-

tion of AP onto AC. It should be clear that if AP = & AB +

t, AC and AP, = t; AB + t, AC then P = P, if and only if

tl = t3 and t3 = t4, for if the points are different at least
one of the projected lengths must differ.

5.1:3.11
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Block 1l: Vector Arithmetic
Unit 3: Applications to 3-Dimensional Space

1.3.5(L) continued

In this respect then, nbt only can we relate A, B, C, and P by
AP = t, aB + 3 ad

but (since aB is not parallel to AC) we may also conclude that
for a given P, the choices of t and t, are unique.

(In other words, t1 aB is along the line AB and t2 ad is along
the line AC, so the sum of two such vectors lies in the plane
determined by AB and A¢ since the plane depends on the loca-
tion of the lines, not on their lengths. We now proceed systema-
tically by writing

oF = ok + AB. (1)

Then, since P is in the plane determined by A,B, and C, we have
that there are scalars tl and t, such that

AP = E, AB + & ac. (2)

If we then put (2) into (1), we obtain

0B = OR + €y AB + £y aé. (3)

Now, as we have already done several times, we write

AB = a0 + OB = OB - O&
and
a¢ = a8 + of = o - OA.

Putting these results into (3), we obtain

Sile3a12
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Solutions
Block 1l: Vector Arithmetic
Unit 3: Applications to 3=-Dimensional Space

1.3.5(L) continued

-+ -+ - -+ =+ +
OP = OA + tl(OB - OA) + tz(OC - OA)

and we then expand and collect terms (again, just as in ordinary
arithmetic since the rules of the games are alike) to obtain
the desired result:

> - -
- tZ)OA + t£t. 0B + t, 0OC,

-+
or = (1 -t 1 2

1

We may wish to observe that this recipe seems to be a natural

extension of the result for a line, namely
+ - -
OP = (1 tl)OA + OB

where we have written t1 rather than t simply to emphasize the

similarity in the expressions.

1,3.6(L)

We have that

P = (1 A+ 0B ¢
OB = (1 -t; - t,)OA + t; OB+ t, OC

]

(1L -t, - tz)(I + 23 + 3k) + tl(zI + 43 + 5K) + t (41 + 53 + 7k)

1

(1 =&, =¢

+ _ T
1 & 2tl + 4t2J1 + (2 - 2t1 2t2 + 4tl + 5t2)]

2

+ (3~ 3% = FEy + 58 + 7t2}§

2 1

> +
L+t +3t,)T + 2+ 26 + 3t)T + (3 + 2t + g5k,
(1)

Letting P = (x,y,2), equation (1) becomes

S: 13513
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Block 1l: Vector Arithmetic
Unit 3: Applications to 3-Dimensional Space

1.3.6(L). continued

xI+yJ+zk= 1+t +3t,1+ 2+ 26) + 3t,)3 + (3 + 2t
-+
- 4t2)k.
Therefore,
-
x—l+t1+3t2
Y =2+ 2¢ +3t, »

3 + 2tl + 4t2

N
I

-

where x, y, and z appear as linear combinations of tl and tz, as

we expect should happen in a plane.

b. Recall that ty and t2 were defined by
-
AP = t; AB + t, AC.

In particular if P = A, aP = Ak = @. Therefore, ty 2

= t = Ol

(2)

%
(Remember in this case AP =0=02B +0 Aa, and as we remarked

in 1.3.5; t, and t, are unique for a given P.)

In this case (2) yields
™
x =1

Yy = 2 » as required.

z =3

-
If P = B, then
e >
AP = t, AB + t, adé

1

implies

S.1.3.14
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1.3.6(L) continued

B = AB + t. AC
AB"tl 2 -

One set of choices that will obviously work is t, =
since then we obtain AB = AB.

be that

I

1l +
2 +
3 +

N
I

Finally

Aé':tl

t, = 1 and t, = 0, whereupon (2) becomes
1+0=

2 +0=4 as required B = (2,4,5).

2 +0=25

if p=c; aB =t a8 + t, AC implies that
AB + tsy KC, Therefore, tl =0, t2 = 1.

Then (2) becomes

y=
z:
™ &
AP = aB

+ 3(1) = 4
+ 3(1) =5 which checks since C =
+ 4(1) = 17

= 1 implies that P is defined by

+ ad.

(4,5,7).

1, tz =0
Since t; and t, are unigue, it must

But AB + AC is a diagonal of the parallelogram determined by aAB
That is, P is the point such that the quadrilateral ABCP

is a parallelogram.

and AC.

From (2) with tl = t2 = 1 we see that

1l +
2 +
3+

]
]

We know

+ ‘t
+ 2t + 3t2
+ 2E

1+ 3=
A S|
2 + 4

|
wn

7 therefore P = (5,7,9).

Il
0

that whenever (x,y,z) is in the plane

1t 3,

1

S+143515




Solutions
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1.3.6 (L) continued

Therefore, if x = 3 and.y = 4 we must have:

]

l+tl+3t2 tl+3t2=2

or _
2+ 2tl + 3t2 2t1 + Ity = 2

therefore, tl = 0 and t2

2

(In other words, if (3,4,z) is in the plane it must lie on AC
since AP = t; AB + t, AC » aB = 2 a¢ » ap || ac.)

But, now that we know t, and t,, z is completely determined.

Namely,
_ _ 2t = 8. 1¥F
z =3 + 2tl + étz +z=3+ 2(0) + 4(§J = 3 + 3= =3
f By ISy
Therefore, (3,4,—§) is in the plane.
Therefore, (3,4,5) is below the plane since 5 < &L That 1is,

30

both (3,4,5) and (3,4,£%) are on the line parallel to the z-axis

which passes through (3,4) in the xy-plane.

This point is in the plane.

z
17
F (3’4'__?)
(3,4,5)
4 —
>y
/ (3,4)
X
1.3.7
D A + t OB + t,0C
a. OP = (L - t; - t,)O0R + £, £,0C.

S.1.3.16
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1.3.7 continued

- t,) (21 + 33 + 4k) +
3+ 2K + ty4 + 23 + s5K)

(1 -
-

—+ -+ e

Therefore, xi + yj + zk t1

1( 1«
= - - +

= (2 2ty 2ty + 3t; + 4t211 +
(3 = 34y = 3, + & + 2t2}3 +

1 g™ .
(4 - 4t - 4, + 2t; + 5t,)K

= ’ T - = i g
= (2 + t, 2t2}1 + (3 2tl t2)3 +

-+
(4 - 2t + t )k

[

Therefore, x

v
z

2. # tl + 2t2
3 - 2tl = t2 (1)
4 - 2t, + £y

Il

In (1) if we let tl = t2 = 0 we obtain (2,3,4). If we let tl =1,
t2 = (0, we obtain (3,1,2); and if we let tl =0, t, = 1, we obtain
(4,2,5). Thus, the three points we are sure must belong to the

plane "check out.”

From (1) once we know that x = 5 and y = 6, we must have:

2 + tl
3 - 2t

+ 2t2 o t1 + 2t2 = 3
— t2 -2tl = t2 = 3.

1

We may solve simultaneously to obtain

t1 + 2t2 = 3 2tl + 4t2 =
= = = = + 3t, = 9. Therefore,
—2t1 = By 3 2ty ty =3 2
t2=3,tl+2t2=3 * &y = =3

With t1 = =3 and t2 =3, z =4 - 2tl - t2 +z =4+ 6+ 3 = 13.
Hence, (5,6,13) is in the plane (and is obtained from (1) with

t, = -3, t, = 3); consequently (5,6,14) is above the plane.

2 2

S.1.3.17
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