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In the given diagram both assumptions are obeyed but not the con-
clusion. This means that the conclusion does not follow inescap-
ably from the assumptions. By definition, then, the argument is
invalid.

2. 7x - 4y = 3.

3. (7/3, 14/3, 3).
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Unit 1: An Introduction to Mathematical Structure

1.1.1(L)

To show that an argument is invalid, all we need do is give one

set of conditions in which the assumptions are obeyed but the con-
clusion is false. This is the "beauty" of proving that something
is false rather than trying to prove that something is true. To
show that something is true we must show that it happens every
time, and this can be quite difficult. To show that a statement

is false, however, requires only that we show one instance in which
it is not true. Albert Einstein said this rather cryptically in
his quotation: "All the experiments in the world can never prove

me right, but a single one may prove me wrong."

Returning to our exercise, the stated conclusion is "No A's are
C's." The negation (contradiction) of this statement is "It is
false that no A's are C's." This, in turn, may be paraphrased as
"At least one A is also a C," and this is often rewritten as "Some
A's are C's." (In logic, the phrase "at least one" is usually
written as "some.") Thus, as soon as we can depict a situation in
which it is true that no A's are B's, no B's are C's, and some A's
are C's, we will have shown that both hypotheses in our argument
are true while the conclusion is false; hence, that the argument

is invalid.

One such situation is depicted below.

No A's are B's

po

Some A's are C's

The main point is this. If we look at the last diagram, exactly
as drawn, then we see that "No A's are B's" is a true statement
(since the circles denoted by A and B do not intersect) and we see

that "No B's are C's" is also true. Yet the conclusion that
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1.1.1(L) continued

"No A's are C's" is clearly false in our diagram since the circles
denoted by A and C do intersect.

Thus, our diagram gives us a situation in which the assumptions
are true but the conclusion is false. This is enough to guarantee
that the argument is invalid since in a valid argument the truth
of the assumptions guarantees the truth of the conclusion.

The key lies in the idea of inescapable. As soon as the conclusion
can be false in even one case while the assumptions are true is
enough to guarantee that the conclusion is not an inescapable con-
sequence of the assumptions. In this vein, notice that we could
have drawn our three circles as

in which case the assumptions and the conclusion would have been
true, but this is not enough to make the argument valid, since
validity means that the conclusion can never be false if the

assumptions are true.

To see this in more concrete detail, consider the argument

No lions are tigers

No tigers are elephants

Therefore, no lions are elephants

Certainly, our conclusion is as true as each of our assumptions,
but the truth of the conclusion is independent of the truth of the
assumptions, at least in the sense that we can give an argument

of the same format in which the conclusion is false even though
the assumptions are true. For example,

s5.1.1.2
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1.1.1(L) continued

No men are women

No women are males

Therefore, no men are males

and we now see that, while both arguments have the same form of
"No A's are B's and no B's are C's, therefore, no A's are C's," in
one case the assumptions are true and the conclusion is false while
in the other case the assumptions are true and the conclusion is
true. This is enough to prove that the truth of the conclusion
rests on more than the truth of the assumptions - so the argument
is invalid.

In terms of our course, we only want to accept those things as
theorems which follow inescapably from our assumptions. We do not
want our personal bias to allow us to accept invalid conclusions
simply because we want to believe the conclusion. Rather, we want
only inescapable consequences of our rules to bear the stamp of

"facts."

In other words, it often happens, if we are not on our guard, that
if we like the conclusion of an argument we will accept the argu-
ment on which the conclusion was based, even if the argument is
invalid. This, among other reasons, is why, when we make proofs in
mathematics, we often use letters such as a, b, and c to denote
numbers rather than use particular examples. The abstract letters
do not suggest special properties that particularly chosen numbers
(but not others) might possess. The same is true in geometry.

when we want to prove things about triangles in general, we try
not to draw an isosceles triangle, since the picture might then
lead us to conjectures which are true for these special triangles
but not for others. This is also why we have written such things
as "All A's are B's" rather than, say, "All mathematicians are
brilliant," Namely, the latter statement lends itself to a more
emotional analysis than the former. In fact, it is for this reason
that the type of logic we are talking about in this exercise is
known as formal logic to indicate that validity depends on the
form of the argument rather than the truth of the statements which

comprise the argument.
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1.1.1(L) continued

b. Here all we wish to do is review our language of sets. Notice that
(b) is precisely the same as (a), only rewritten in the language
of sets. For example, to say that no A's are B's is the same as
saying that no element of the set A is an element of the set B.
This, in turn, says the same thing as the intersection of A and B
is the empty set or, more symbolically, A N B = @. 1In a similar
way, A N B # @ says that the intersection of A and B is not empty
which, in turn, means that there is at least one element that
belongs to both A and B, or at least one element is both an A and a
B. That is, some A's are B's.

Y.1.2

a. "Some A's are not C's" is negated by "It is false that some A's
are not C's." That is, "It is false that even one A is not a C."
This, in turn, may be paraphrased as "All A's are C's."

Thus, to show that the argument is invalid we need only construct
a circle diagram of the form

)

in which the assumptions are obeyed. Since "Some A's are not B's"
is fulfilled as soon as at least parts of the A and B circles do
not overlap etc., we have, for example,

This diagram is sufficient to establish the invalidity of the
argument, since in terms of this diagram the assumptions of the
given argument are obeyed but the conclusion isn't.

s.1.1.4
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1.1.2 continued

“Some A's are not B's" means the same as "Some A's are non-B's."
In the language of sets, we denote the set non-B's by B', the
complement of B. That is, "Some A's are non-B's" means that at
least one element belongs to both A and B'. In other words, in
the language of sets "Some A's are not B's" is written as

A NB' # g*,

Thus, the argument "A M B' # @ and B NC' # f implies that

A NC' # @ is invalid as it is merely a paraphrase of part (a).

The assumptions and the conclusion are true but the argument is
not valid. The reason that the argument is not valid is that it
has the form

Some A's are not B's

Some B's are not C's

Therefore, some A's are not C's

(where in this case A = set of all numbers which are divisible by
2, B the set of all numbers divisible by 7, and C the set of all
numbers divisible by 3).

The circle diagram, in this particular real case, is given by

B

in which case the assumptions and the conclusion are obeyed, but
based on the form of the argument alone, the circles did not have
to be drawn this way.

*The more astute student may notice that B' is ambiguous in the

sense that it depends on the universe of discourse I. That is,
B' = {x:xeI but x¢B}. This problem, however, is irrelevant here
since A M B' denotes those members of A which are non-B's. 1In

other words, the fact that all elements under consideration must
belong to A removes the need for our having to know the entire
universe of discourse (universal set), I.
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1.1.2 continued

In still other words, while it is true that some numbers which are
divisible by 2 are not divisible by 3, this truth requires more
than the facts that

(1) some numbers which are divisible by 2 are not divisible by 7
(2) some numbers which are divisible by 7 are not divisible by 3.

1.1.3

a. In the diagram

A

it is true that some A's are not B's, but it is false that some
B's are not A's. Hence, "Some A's are not B's" and "Some B's are
not A's" do not have the same meaning.

b. In the language of sets

ANB' # 4@
and
A' N B # @

do not mean the same thing, Pictorially,
A
N
/I)\\

It makes a difference as to
whether it is A N B' or
A' N B which is non-empty.

S5.1.1.6
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1.1.4

If aRb means that a lives next door to b, then since a person
doesn't necessarily live next door to himself, it follows that aRa
need not be true. Hence, R is not reflexive. On the other hand,
if a does live next door to b then b also lives next door to a.
Hence, in this case if aRb is true so also is bRa. Thus, R is
symmetric. Finally, if a lives next door to b and b lives next
door to ¢, in general c will not be next door to a but rather two
doors removed from a. An exception is that if the three houses

form a "circle"; that is

In other words, the truth of both aRb and bRc is not enough to
guarantee the truth of aRc. Thus, R is not transitive.

If aRb means that 2a + b = 15 (in the language of analytic geo-
metry, this problem says that aRb means that (a,b) is on the line
2x + y = 15) then 7Rl is true (since 2(7) + 1 = 15 is a true
statement) and 1R13 is true (since 2(1) + 13 = 15 is a true
statement). On the other hand, 7R13 is false because 2(7) + 13 # 15.
Since it is true that 7Rl and 1R13 but that 7K13 (just as #

denotes the negation of =, K denotes the negation of R; that is,
agb means that aRb is false), this shows that R is not transitive
since if it were it would have to follow that 7R13 was true since
both 7R1 and 1R13 are true (in the language of our definition here
a=7,b=1, and c = 13),

1R7 says that 2(1) + 7 = 15, and this is false. Hence, 1R7 is
false. But from (b) we saw that 7Rl was true., If R were symmetric
the truth of 7R1 would insure the truth of 1R7. Since this is not
the case, R is not symmetric.

If aRb, then we know that a + b = 15. On the other hand, we also

know that a + b = b + a. Hence, if a + b = 15, then b + a = 15.

In terms of our definition of R in this example, it follows that

S.1.1.7
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1.1.4 continued

aRb implies also that bRa. Hence, R is symmetric. In the lan-
guage of analytic geometry, we are saying that the line x + y = 15
has the property that (a,b) is on this line if and only if (b,a)
is. NOTE: We are not saying here that aRb is true. All we are
saying is that if aRb is true then so also is bRa. For example,
since (3,4) is not on the line x + y = 15, 3R4 is false in this
example.

1.1.5(L)

If we assume that parts (a) and (b) of the same problem should be
related (otherwise they should have been two different problems),
it might seem strange that we have chosen (a) and (b) as we have

here. The point is that both problems say the same thing, but in
one case the situation transcends mathematics while in the other

we give a specific illustration in mathematics.

Hopefully, at this stage it is not a learning exercise to discover
the argument is valid. In terms of a circle diagram we have

Acts which are
good for
society

Acts which help
the poor

(The act of)
Giving handouts
to beggars

While the argument is valid, we do not have to accept the truth of
the conclusion. In particular, false assumptions plus valid rea-
soning may well lead to false conclusions. In this exercise, if
we reject the truth of either

(1) Giving handouts to beggars helps the poor
or
(2) Helping the poor is good for society

then the valid conclusion needs no longer be accepted as true by us
(though it should be noted that even if we reject the truth of the

assumptions, we can still believe the conclusions, since there

5.1.1.8
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1.1.5(L) continued

might be another valid argument which leads to the same conclusion
but one in which we feel we can accept the assumptions as being
true). In summary, we have to accept the conclusion of a valid
argument as being true only if we agree that the assumptions upon

which the conclusion is based are true.

The discussion in (a) applies very nicely to (b). Notice that the
usual rule for n! whereby we consider the product of all integers
from 1 to n inclusive presupposes that n is a natural number (i.e.,
a positive whole number). Since 0 is not a positive whole number,
it has not been defined by the above definition of factorial. 1In

other words, at this moment 0! is undefined.

Now as we mention in the exercise, the structural property of the

factorial that we want to use is that
(n + 1)! = (n + 1)n! (1)

If we now want (1) also to be true when n = 0, we see that with

n =0, (1) becomes

(0 +1)! = (0 + 1)0! (2)
Since we know that 1! = 1 and that 0 + 1 = 1, we may transform

(2) into

1 =1(0!) (3)

Since 1(0!) = 1, (3) then becomes
0! =1 (4)

Equation (4) establishes the desired result, but the major learn-
ing experience here is to note that it is foolish, at least in one
manner of speaking, to ask whether (4) is true. We could have

defined 0! any way we wished. What is true is that (4) is an

inescapable conclusion only if we agree that we want to accept (1)

as still being true.

8.1l:1+98
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1.1.5(L) continued

In other words, to the student who didn't particularly care whether
(1) was preserved or not, he would have no logical reason to
define 0! as 1 (unless we believe that the fact that he was told
is reason enough). What happens in most mathematical situations
is that the alternative of not having the structure obeyed is far
worse than accepting the structurally-imposed definition. 1In
still other words, armed with the choice that he can let 0! = 0
(which seems to be what most students intuitively want to believe)
but that he must then agree to forego the use of equation (1) when
there is the possibility that n = 0, the intelligent student would
sooner give up the option of believing that 0! = 0. In more
general form, many difficult mathematical choices as to how to
define things are decided by how well these choices allow us to
maintain the previously-defined structure.

1.1.6(L)

a. The aim of this part of the exercise is to establish a structural
similarity between the properties of additions and those of multi-
plication. Clearly, the product of two numbers is again a number,
the product does not depend on the order of the factors, nor does
the product depend on "voice inflection." Stated more formally,

it is clear that for multiplication, we have

M-1: If a and b are numbers so also is their product, ab.
M-2: ab = ba
M-3: If a, b, and ¢ are numbers then a(bec) = (ab)c

Next, we observe that the number 1 does for multiplication what 0

does for addition. That is,

M-4: There exists a number, denoted by 1, such that al = a for
all numbers, a.

Notice that M=-1 through M-4 are obtained from A-1 through A-4
simply by interchanging 0 with 1 and the addition notation with

the multiplication notation.
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1.1.6 (L) continued

In a similar way, one might suspect that 1/a, or, equivalently,
a_l would play the role in multiplication that -a plays in addi-
tion. This is almost correct. Only we must be careful to notice
that any number times 0 is still 0 (this will be discussed again
in part (b)); hence, there is no number by which we can multiply 0

to obtain 1. Once this is taken into account, however, we see
that

M-5: Given any number a # 0 there exists a number denoted by a-l

(or 1/a) such that aa-l = 1.

These five rules are the multiplicative counterparts for our rules
for addition. Notice that M-5 indicates the usual wariness about
dividing (since division is the inverse of multiplication) by 0.

As yet, however, we do not have a single rule which combines addi-

tion and multiplication within the same "recipe." This is discussed
in part (b).

b. The distributive rule which tells us that for any three numbers a,

b, and c
a(b + ¢c) = ab + ac

is a link between addition and multiplication. In particular, if
we take the special case in which b = ¢ = 0, the rule tells us

that

a(0 + 0) = a0 + a0 (1)

We also know that m + 0 = m for any number m. With m = 0 this
says that 0 + 0 = 0. Replacing 0 + 0 by 0 in (1) we obtain

a0 = a0 + a0 (2)
Stripped of embellishment, we may now subtract a0 from both sides
of (2) to obtain the desired result. To do this more formally

within the framework of our game and at the same time emphasize
the use of previously proven theorems, notice that we are sure,

S.1.1.11
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1.1.6 (L) continued

from M-1, that, whatever else is true, a0 is at least a number.
Let's call it b. Then (2) becomes

b=b+b (3)

We now want to show that b = 0. To this end we observe that since
the cancellation law for addition has already been established as
valid in the "game" of arithmetic, it would follow that b = 0 if

we knew, for example, that b + 0 = b + b, for we could then simply
"cancel" b from both sides of the equation (that is B + 0 = ¥ + b).
Now what we do know from A-4 is that b = b + 0, Thus if we replace
b on the left side of (3) by b + 0, we obtain

b+0=b+b (4)

and our result follows from (4).

Notice that we are not saying that our proof is unique. Often
times there is more than one valid way to establish a conclusion.
For example, in (3) once we observe that -b exists (from A-5), we
haée that

b + (-b) = (b + b) + (-b) (4')

and from (4') we can derive our result just as we did in the ori-

ginal proof of the cancellation law for addition.

The important point that transcends the result of this part of the
exercise is not so much that a0 = 0 is true for numbers, but rather
that the truth follows inescapably from sixteen rather obvious
properties of arithmetic (namely, rules E-1 through E-5, A-1
through A-5, M-1 through M-5, and the distributive rule). In other
words, once a system had a structure that obeyed these sixteen
properties the result of part (b) follows inescapably. We shall
explore this idea in more detail in Exercises 1.1.8 and 1,1.9.

We have already proven in our supplementary notes that the can-
cellation law is true for addition (i.e., if a + b = a + ¢ then

b = c¢). The point is that the same rules which were true for
addition that were used in this proof are also true for multipli-

cation, once we make sure that a # 0. In fact, once a # 0, we

S.1.1.12
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1.1.6 (L) continued

need only take the proof in the addition case, and everywhere re-

place 0 by 1, + by x, and -a by a-l. Without bothering to recopy

the proof of the cancellation law for addition, this process would
yield

ab = ac

and a # 0 implies that
a“l{ab]= a-ltac),

and this implies that
(a”la)p = (alaye,
which in turn implies

I xb

1. %,

or

b &% 1 =g x d,

and by M-4 we have

b =c

A quick check should show that the above proof was obtained
"mechanically" from the corresponding proof for addition. On the
other hand, if we forget about this and simply look at the above
proof as it appears, without reference to any other proof, the
proof is self-contained in terms of the appropriate rules of the
game. It is in this sense that we mean that two different models
"behave alike" provided that they share the same "rules of the

game 4 "
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1.1.7

Paraphrased, this exercise asks us to prove that if the product of
two numbers is zero then at least one of the two numbers is zero.

Step 1
We know that a0 = 0 [from (b)]. Hence,

ab = 0 implies ab = a0.

Step 2

Since a # 0 we may cancel [by (c)] a from both sides in the egqua-
tion ab = a0l.

Therefore, b = 0.

Note that we could have started from scratch as if (b) and (c)

hadn't existed to obtain the same result. Namely, a # 0 a-l

exigte. ThHerefore, ab = 0 + a Y(ab) = a™1o + a~Y{ab) = 0. But,

a Liak) = (a"lajb = 1b = b; therefore, b = 0.

I

However, we chose again to emphasize the structure of our game and
to show how previously proven theorems are later used as "facts."

1. 1. 8(L)

The main aim of this exercise is to reinforce the concept of the
game of mathematics from several points of view. In part (a) we
want to emphasize the use of "=" as an equivalence relation even
though it does not have the properties of what we usually think of

as being equal.

Here, for any integers a and b we are defining a = b to mean that
a and b leave the same remainder when divided by 7. (If the equal
sign seems to cause a mental block, replace a = b by aRb.) While
this may seem to be a strange form of "equality," there are often
cases in which the remainder is more important than the quotient.
For example, the ancient Greek often came to grips with so-called
Diophantine equations in which one equation had two or more
unknowns subject to the condition that the values of the unknowns

S.1,1.14
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1.1.8(L) continued

had to be integers. As an illustration suppose we want to find

positive integers x and y such that
Sy = 100 - 19x (1)

In such an example, we are more concerned with values of x for
which 100 and 19x leave the same remainder when divided by 5.
Namely, since the left side of (1) is divisible by 5, the right
side must also be divisible by 5 if the equality is to hold. But
for 100 - 19x to be divisible by 5 it is necessary (and sufficient)
that 100 and 19x leave the same remainder when divided by 5.

As far as this exercise is concerned, the calendar gives us an
excellent physical example in which remainders when we divide by 7
are important. Suppose we would like to know what day of the week
it will be 100 days from now. Since there are seven days in a
week, every seventh day will be the same day of the week as the
present day. Notice that 100 leaves a remainder of 2 when divided

by 7. That is,
100 = 14(7) + 2 (2)

In other words, 100 days from now is precisely 14 weeks plus 2
days, and as a result 100 days from now will occur on the same day
of the week as will 2 days from now. Notice that if all we want
is the day, it is not so important that there are 14 weeks in 100
days as it is that when the greatest number of weeks is deducted
from 100 there are 2 days left over.

Historically, the study of numbers having the same remainder when
divided by a given number was known as the theory of congruences

and more modernly as modular arithmetic.

In terms of the language of congruences, one wrote
a = b modulo 7
or more compactly

a = b (mod 7) (3)

5.1.1.15
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1.1.8(L) continued

(read as "a is congruent to b modulo seven") to indicate that a
and b left the same remainder when divided by 7.

By way of a few illustrations, we would write that
21 =0 (mod 7), 21 = 7 (mod 7), 38 = 3 (mod 7).

On the other hand, 38 # 4 (mod 7) since 38 does not leave a re-
mainder of 4 when divided by 7.

Of course, there is no need to emphasize 7. Quite in general, we
write

a = b (mod m)

to indicate that a and b leave the same remainder when divided by
m. Correspondingly, we write

a Z b (mod m)

if a and b leave different remainders when divided by m.

Obviously, congruence depends on what number we are dividing by as
well as on the numbers themselves. For example, 40 = 5 (mod 7)
since both 40 and 5 leave a remainder of 5 when divided by 7,

40 Z 5 (mod 4) since 40 leaves a remainder of 0 when divided by 4

while 5 leaves a remainder of 1 when divided by 4.

An interesting pictorial way of visualizing "congruence modulo m"
is to think of the integers arranged sequentially in m columns.

For example, to study congruence modulo 7, we think of the integers
arranged in seven columns:

0 1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 3k 32 33 34
35 36 3 38 39 40 41

S.1.1.16
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1.1.8(L) continued

Then two numbers are congruent modulc 7 if and only if they appear
in the same column in our chart. For example, 5 and 40 appear in
the same column. On the other hand, if we wrote the numbers
sequentially in four columns, 5 and 40 would appear in different

columns.
To illustrate our chart we began with 0, but it should be pointed
out that our chart is not restricted to non-negative numbers.

Indeed, we could also write

-14 -13 -12 -1 ~-10 -9 -8

In this way, it is still true that numbers in the same column leave
the same remainder when divided by 7. For example, -12 appears in

the same column as does 2. Notice that
-2 = 7(-2) + 2

and thus -12 leaves a remainder of 2 when divided by 7. (We must
keep in mind here that the definition of remainder requires that a

remainder be non-negative.)

In any event, any number is in the same column as itself (that is
when a is divided by m it leaves the same remainder as a when it is
divided by m); thus for congruence mod m we have that for any

number a, a = a; that is, a = a (mod m).

Secondly, if the first number is in the same column as the second
then the second is in the same column as the first. In terms of

the arithmetic language, if a and b leave the same remainder when
divided by m so also do b and a. That is, if a = b (mod m) then

b = a (mod m).

Finally, if the first and the second numbers are in the same column
and the second and the third numbers are in the same column then
the first and the third numbers are also in the same column. That
is, if a and b leave the same remainder when divided by m and b

and ¢ leave the same remainder when divided by m, then a and c

leave the same remainder when divided by m.

811,17




Solutions
Block 1l: Vector Arithmetic
Unit 1: An Introduction to Mathematical Structure

1.1.8(L) continued

These three results show that congruence modulo m is an equiva-
lence relation.

The fact that we have an equivalence relation means in terms of
our chart that once we know one number in a column we know them
all. For example, with respect to modulo 7, the column which con-
tains 0 contains all numbers which leave a remainder of 0 when
divided by 7 (that is, the multiples of 7). Similarly, the column
which contains 1 contains precisely those numbers which leave a
remainder of 1 when divided by 7. In this way, we can use

0, 1, 2, 3, 4, 5, and 6 to name the seven columns. Notice that we
then have a "natural" way to add and to multiply columns. For
example, suppose we take any number in the column which contains 3
and add to it any number in the column which contains 5. It
follows that the sum must be in the column that contains 1.
Namely, to be in the column which contains 3 means that the number
must have the form 7k + 3 where k is an integer (that is, all
numbers of this form leave a remainder of 3 when divided by 7, and
the value of k merely picks out the particular number under con-
sideration). For example, if k takes on all integral values from
-3 to 3 inclusively, 7k + 3 takes on the values -18, -11, -4, 3,
10, 17, and 24. All of these numbers leave a remainder of 3 when
divided by 7.

In a similar way, all numbers in the column which contains 5 have
the form 7m + 5 where m is an integer. Thus, the sum of any
number in the column containing 3 and the column containing 5 has
the form

(7x + 3) + (Tm + 5) =
(7k + 7Tm) + 3 + 5 =
7(k +m) + 8 =
7k + m) + 7 + 1
7(k +m+ 1) +1
7n + 1

where

n=k+m+ 1.
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1.1.8(L) continued

Since the sum of integers is again an integer, n is an integer;
hence, 7n + 1 leaves a remainder of 1 when divided by 7. There-
fore, the sum is in the column which contains 1 as asserted.

As a second example, if we multiply a number in the column which
contains 4 by a number in the column which contains 3 the product

must be in the column which contains 5. Namely, we have

49km + 21m + 28k + 12
49km + 21m + 28k + 7 + 5
7(7km + 3m + 4k + 1) + 5
p # 5,

(7k + 3) (7m + 4)

where

P = 7km + 3m + 4k + 1

In this way, it is left to the reader to show that

+ 0] 1|2 [3]|]4]|5]|6 X 0f 1| 2| 3| 4| 5|6
0 0] 1]2|3]4]5]|6 0 0f 0JjojfojoOjo]oO
1 Li2]3 415060 1 0f 11 2] 3] 41516
2 2 3[4 |56 |0 |1 2 0] 2.]4] 6] 1315
3 3] 4{516 [0 (1 (2 3 0f 31 6] 2] 511]4
4 41 51610 131 |2]3 B 0] ¢131] S}1 21643
5 5|60 ]11|2(3]4 5 051316 |4]2
6 6l 0112|333 |4]5 6 o &Sy d) 32|k

Notice that the above tables give us an arithmetic which consists
of seven elements (not to be confused with the fact that, for
example, in ordinary arithmetic we have only ten digits 0, 1, 2, 3,
4, 5, 6, 7, 8, and 9 but these may be combined to form infinitely
many different numbers; in our tables, notice that we combine the
numbers 0, 1, 2, 3, 4, 5, and 6 so as always to obtain one of

these same numbers). This is why this type of arithmetic is often
referred to as finite arithmetic. For example, in ordinary arith-
metic, we can never test all triplets of numbers to see whether it

is always true that a + (b + ¢c) = (a + b) + ¢, since there are
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1.1.8(L) continued

infinitely many tests to be made. However, if a, b, and c are
restricted to elements listed in our tables, there are 343 tests
that allow us to check whether addition is associative. In other
words, a, b, and c can each be chosen in 7 ways; hence, there are
7 x 7 x 7 or 343 ways to choose a triplet of numbers (a,b,c). We
shall talk more about this in part (c) of this exercise.

As a final note, let us observe that when we do the arithmetic
implied by our two tables, we refer to this arithmetic as modular
arithmetic. In other words, when we deal with the columns denoted
by 0, 1, 2, 3, 4, 5, and 6, we talk about modular-7 arithmetic.
When we talk about the numbers in general and wish to discuss when
two numbers belong to the same column, then we refer to congruence

modulo 7. For our purposes, we need not pursue this fine point.
c. We use the addition and multiplication tables constructed in (b).

(1) If we were trying to prove that for all a, b, and c in
modular-7 arithmetic that a + (b + ¢) = (a + b) + c, among the 343
tests to be made would be the comparison of 4 + (5 + 6) and

(4 + 5) + 6. From our table, we have
4 + (5+6) =4+4-=1

and

(4 +5) +6 =2+6=1

Thus, at least when a = 4, b = 5, and ¢ = 6, the rule a + (b + c) =
(a + b) + ¢ is obeyed. Before we can say that the rule holds, we
must make similar tests for the remaining 342 cases. While this
may seem tedious, it involves a relatively small number of steps -
at least compared with the concept of infinity.

(2) From our table 3 + 4 = 0 and 1 x 5 = 5. Hence,
(3 +4) x5 =20
On the other hand, 4 x 5 = 6 and 3 + 6 = 2. Hence,

3+ (4x5)=3+6-=2

S.1.1.20
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1.1.8(L) continued

Since 2 # 0, it follows that (3 + 4) x 5 need not equal

3 + (4 x 5). In other words, it would not be a realistic rule of
the game to require that (a + b) x ¢ = a + (b x ¢) for all a, b,
and c, since we have seen at least one case in which it isn't true.
To be sure, there may be special cases when the two results may be
the same, such as: (a +b) x 1 =a + (b x 1) = a + b, but this is

not what's important.

3) 3t =3

32 s3x3=2
33-32x3=2x3=6¢
3t a3¥ix3ms6x3=14
P -3tx3=ax3=5
A P |

The fact that 36 = 1 now gives us a very quick way of determining
3™ for any integral value of n. For example, if n = 105, we may
write that 105 = 6(17) + 3. Hence,

4105 _ ;6(17) + 3

- (36)1733

= (1733

33

6

(By the way, if we remember the connection between modular arith-

metic and congruences, the fact that 3105 = 6 in modular-7 arith-

105 105

metic means that 3 = 6 (mod 7). This, in turn, means that 3

and 6 leave the same remainder when divided by 7. In particular,

since 6 leaves a remainder of 6 when divided by 7, it follows then

that 3105 also leaves a remainder of 6 when divided by 7. We have

therefore found a very convenient way of solving the problem:

"Find the remainder when 3105 is divided by 7." To be sure we

could have actually computed the number 3105 and then divided by 7

to compute the remainder. Notice, however, that since the log

(base ten) of 3105 is 105 (log 3) = 105 (0.477) %50, then 3105 is
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1.1.8(L) continued

approximately 1050, so that in place value notation 3105 has about
51 digits, and this is far from a pleasant computation. We make
this point only to illustrate that if there were any situation in
which we wanted to know the remainder when 3105 is divided by 7,
then modular-7 arithmetic would certainly be a practical invention.
In fact, for this particular problem, modular-7 arithmetic is more

practical than "ordinary" arithmetic.

d. By 3_1 we mean that number with the property that 3 x 3-l = 1. 1If
we look at our multiplication table we see that 3 x 5 = 1. Hence,
3-l is another name for 5. In other words, whether it seems un-
natural or not, in modular-7 arithmetic, 3“1 = 5,

e. In a similar way, looking at the table reveals that

L x1=1; 2 ¥ 4= Iy 3 x5 =17 and 6 x 6 = 1;

I a1, 3 ety 37 =55 47 w95 8™ w5 and 67 = 6.

f. This is the final point we wish to make in this exercise about
structure. The proof that ab = 0 implies that a = 0 or b = 0 re-
quired only those properties of ordinary arithmetic that are also
true in modular-7 arithmetic. (Although we did not verify all 343
cases of the associative rule etc., we did check that M-5 was true
for modular-7 arithmetic since this was exactly the role of part
(e) of this exercise.) 1In other words, structurally, we may mimic
our proof in the case of ordinary arithmetic, noticing that step-
by-step, each statement is also valid in modular-7 arithmetic.

It is not our main purpose to teach modular arithmetic in this
exercise, but rather to emphasize further the structure of mathe-
matics. The interested reader should feel free, of course, to
pursue the study of modular arithmetic on his own. This topic is
included in most number theory texts as well as in textbooks on
modern (abstract) algebra.
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b. (1) (I x5 x2=3x2=40
- Therefore, (3 x 5) x 2 =3 x (5 x 2)
I3 x (5 x2)=3x4=0

(2) (3 Xx5) +4=3+4-=1
- Therefore, (3 x 5) + 4 # 3 x (5 + 4)

]
w

3x (5+4) =3 x3

3) sles, 52=85x5=12, 858 =52%85=1x%x5=5, etc. In

other words,
5, if n is odd

1, if n is even

Therefore, 51000 = 1 which, in terms of divisibility, says that

51000 = 1 (mod 6), or 51000 leaves a remainder of 1 when divided

by 6.

c. (1) 5% =05, since 5 x 5121 anas5 x5 =1.

(2) 3-1 doesn't exist since 3x = 1 has no solutions in modular=-6

arithmetic (just look at the multiplication table).

d. Notice that 3 x 2 = 0 even though neither 2 nor 3 is equal to 0.
This is not a contradiction to our previous result that if ab = 0
and a # 0 then b = 0. Namely, in the proof of this result we used
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1.1.9 continued

the "fact" that if a # 0 there exists a number a-1 such that

a x a-l = 1. As we saw in part (c), (2), this need not happen in
modular-6 arithmetic (in particular, when a = 3). Since the rule
does not apply here, neither need any inescapable consequence of

the rule apply.

e
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