Unit 5: The Cross Product

1. Lecture 1.050

```
The Cross Product
                                                  Ax(Bxc) . L A
                         Note:
                                                       and BXE
  AxB a a vector
                        (1) AxB = BXA
                                                   Bic is I Band c
such that
                                                   : Ax(BxE) is
1. 1AxB - 1AllB||sin
                                                  parallel to the plane
2. AXB IS I A and B
                                                  determined by Bandic
                        (2) A×(B×さ) 丰
3 Thesonse is r.k. tale
                                                   (AXB) X to porrellel
  as Au rotated into B
through the smaller angle
                               (AxB)xZ
                                                  to the plane determined
                                                   by A and B
```

а.

```
Cross Product

has "a little" structure

\vec{A} \times (\vec{B} + \vec{C}) = (\vec{A} \times \vec{B}) + (\vec{A} \times \vec{C})

In Contenior Goordinates

\vec{A} = \vec{a} \cdot (\vec{A} + \vec{C}) + (\vec{A} \times \vec{C})

\vec{A} = \vec{a} \cdot (\vec{A} + \vec{C}) + (\vec{A} \times \vec{C})

Then

\vec{A} = \vec{a} \cdot (\vec{A} + \vec{C}) + (\vec{A} \times \vec{C}) +
```

b.

```
Very Brief Look at

Determinants

Def

|a b| = ad - bc

|a b| = ad
```

C.

Lecture 1.050 continued

- 2. Read Thomas, Sections 12.7 and 12.9.
- 3. Exercises:

1.5.1(L)

Find a vector which is perpendicular to both $\vec{A} = 3\vec{i} + 4\vec{j} + 5\vec{k}$ and $\vec{B} = 2\vec{i} + 6\vec{j} + 7\vec{k}$.

1.5.2(L)

Let A(1,2,3), B(3,3,5) and C(4,8,1) be points in space.

- a. Find a vector perpendicular to the plane determined by A, B, and C.
- b. Explain geometrically why \overrightarrow{AB} X \overrightarrow{AC} and \overrightarrow{AB} X \overrightarrow{BC} can differ, at most, only in their sense.
- c. With A, B, and C as above, find the area of ABC.

1.5.3(L)

- a. Outline a method for finding the distance between two skew lines. (For the definition of a skew line, see the introduction to the solution of this exercise.)
- b. Translate the method in (a) into a form which utilizes concepts of vector arithmetic.
- c. Find the distance between the two skew lines one of which passes through the points A(1,2,3) and B(4,5,1) and the other of which passes through C(2,3,5) and D(3,6,8).

1.5.4

Let A(2,3,4), B(5,6,8), C(4,5,9), and D(6,11,14) be given points in space. Find the distance between the skew lines \overrightarrow{AB} and \overrightarrow{CD} .

1.5.5(L)

- a. Describe the direction of $(\vec{A} \times \vec{B}) \times \vec{C}$.
- b. Use the answer in (a) to show why $(\stackrel{\rightarrow}{A} \times \stackrel{\rightarrow}{B}) \times \stackrel{\rightarrow}{C}$ and $\stackrel{\rightarrow}{A} \times (\stackrel{\rightarrow}{B} \times \stackrel{\rightarrow}{C})$ need not be equal vectors.

1.5.6

Let $\vec{A} = \vec{i} + 2\vec{j} + 3\vec{k}$, $\vec{B} = 3\vec{i} + 5\vec{j} + 4\vec{k}$, and $\vec{C} = 6\vec{i} + 8\vec{j} + 9\vec{k}$. Use the techniques of Exercise 1.5.5 to find a vector in the plane determined by \vec{A} and \vec{B} , and which is perpendicular to \vec{C} .

1.5.7

Use the result that $(\vec{A} \times \vec{B}) \times \vec{C} = (\vec{A} \cdot \vec{C}) \vec{B} - (\vec{B} \cdot \vec{C}) \vec{A}$, together with the appropriate arithmetic properties of the cross product to express $\vec{A} \times (\vec{B} \times \vec{C})$ as a linear combination of \vec{B} and \vec{C} (i.e., in the form $p\vec{B} + q\vec{C}$, where p and q are scalars).

1.5.8

- a. Express $(\stackrel{\rightarrow}{A} \times \stackrel{\rightarrow}{B}) \times (\stackrel{\rightarrow}{C} \times \stackrel{\rightarrow}{D})$ as a linear combination of $\stackrel{\rightarrow}{A}$ and $\stackrel{\rightarrow}{B}$.
- b. Geometrically, what does the vector $(\vec{A} \times \vec{B}) \times (\vec{C} \times \vec{D})$ represent?

1.5.9

- a. Vectors are drawn from the origin to the points A, B, and C in space. In terms of the vectors \overrightarrow{OA} , \overrightarrow{OB} , and \overrightarrow{OC} , express the condition that these three vectors (or the four points O, A, B, and C) lie in the same plane.
- b. Use the result of (a) to conclude that the vectors $\vec{A}(1,1,1)$, $\vec{B}(2,3,4)$, and $\vec{C}(3,4,5)$ originating at a common point lie in the same plane.
- c. A parallelepiped has one vertex at 0(0,0,0) and three other vertices at A(1,1,1), B(2,4,3), and C(3,4,5). Find the volume of this parallelepiped.

MIT OpenCourseWare http://ocw.mit.edu

Resource: Calculus Revisited: Multivariable Calculus

Prof. Herbert Gross

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.