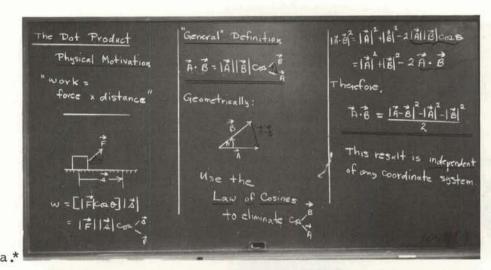
Unit 4: The Dot Product

1. Lecture 1.040



In Cartesian Coordinates, Example 1

If $\vec{A} = \vec{a} : \vec{i} + \vec{a} : \vec{j} + \vec{a} : \vec{k}$ and $\vec{B} = \vec{b} : \vec{i} + \vec{b} : \vec{j} + \vec{b} : \vec{k}$ then $\vec{A} \cdot \vec{B} = \vec{a} : \vec{b} : \vec{a} : \vec{a} : \vec{b} : \vec{a} : \vec{a}$

Example 2

Projections $A \cdot B = 1 \text{ is the projection}$ Therefore, given any to vector A, we let a = A.

Then $A \cdot B = 1 \text{ is the projection}$ Therefore, given any to vector A, we let a = A.

Then $A \cdot B = A \cdot B =$

Lecture 1.040 continued

Arithmetic Structure of
$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$
 of the Dot Product in monsensical since we do not dot numbers with vectors; i.e., neither $(A \cdot B) \cdot C$ nor $(A \cdot B) \cdot C$ is defined.

But

But

But

Therefore

of $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

In particular,

if $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

To particular,

if $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

or $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

Therefore

of $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

is defined.

Therefore

of $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

To particular,

if $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

or $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

To particular,

if $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

or $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

To particular,

if $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

or $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

To particular,

if $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

or $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

To particular,

if $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

or $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

or $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

is defined.

Note: Last equation on first board (a) should read:

$$\vec{A} \cdot \vec{B} = \frac{\left| \vec{A} \right|^2 + \left| \vec{B} \right|^2 - \left| \vec{A} - \vec{B} \right|^2}{2}$$

- 2. Read Thomas 12.6.
- 3. Exercises:

1.4.1(L)

- a. Let $\vec{A} = \vec{i} + \vec{j} + \vec{k}$ and let $\vec{B} = 2\vec{i} + 3\vec{j} + 4\vec{k}$. Find the relationship between x, y, and z if $\vec{A} \cdot \vec{B} = \vec{A} \cdot \vec{C}$, where $\vec{C} = x\vec{i} + y\vec{j} + z\vec{k}$.
- b. Use vector arithmetic to generalize the result of part (a) by showing that if $\overrightarrow{A} \cdot \overrightarrow{B} = \overrightarrow{A} \cdot \overrightarrow{C}$ and we know that $\overrightarrow{A} \neq \overrightarrow{0}$ and $\overrightarrow{B} \neq \overrightarrow{C}$, then \overrightarrow{A} is perpendicular to $\overrightarrow{B} \overrightarrow{C}$.
- c. With \overrightarrow{A} and \overrightarrow{B} as in part (a), use the result of part (b) to interpret geometrically the set of all vectors \overrightarrow{C} for which $\overrightarrow{A} \cdot \overrightarrow{B} = \overrightarrow{A} \cdot \overrightarrow{C}$.
- d. In terms of structure, explain why the result of this exercise is not a contradiction of the cancellation law of numerical arithmetic.

1.4.2

- a. Let $P_0(2,3,4)$ be in the plane M and let $\vec{V} = 5\vec{i} + 8\vec{j} + 6\vec{k}$ be perpendicular to M. Determine the relationship between x, y, and z if P(x,y,z) is to lie in the plane M. (This relation is called the equation of the plane in Cartesian coordinates.)
- b. Is (1,1,8) in the plane M? If not, where is it relative to the plane? Explain.

1.4.3

Lines are drawn from A(1,2,3) to both B(3,3,5) and C(4,4,9). Determine the measure of $\mbox{\cite{A}}$ BAC (i.e., the angle between $\mbox{\cite{AB}}$ and $\mbox{\cite{AC}}$).

1.4.4(L)

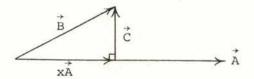
Find the point at which the line through A(2,3,4) perpendicular to the line y = -3x + 2 meets the line y = -3x + 2.

1.4.5(L)

Let $\overset{\rightarrow}{v_1} = 3\vec{i} + 2\vec{j} + 5\vec{k}$ and let $\overset{\rightarrow}{v_2} = 2\vec{i} + 7\vec{j} + 3\vec{k}$. Determine the value of $(3\overset{\rightarrow}{v_1} + 4\overset{\rightarrow}{v_2}) \cdot (4\overset{\rightarrow}{v_1} - 3\overset{\rightarrow}{v_2})$.

1.4.6(L)

- a. In the diagram below, $\stackrel{\rightarrow}{A}$ and $\stackrel{\rightarrow}{B}$ are given vectors. Determine $\stackrel{\rightarrow}{xA}$ and $\stackrel{\rightarrow}{C}$ in terms of $\stackrel{\rightarrow}{A}$ and $\stackrel{\rightarrow}{B}$ by using vector arithmetic.
- b. Do the same as in (a) but use geometry instead of arithmetic.



1.4.7

Find the length of the projection of \vec{i} + $5\vec{j}$ + $6\vec{k}$ onto the vector $2\vec{i}$ + $6\vec{j}$ + $3\vec{k}$.

1.4.8(L)

Use vector methods to show that the perpendicular distance from the point $A(x_0, y_0)$ to the line ax + by + c = 0 is given by

$$\frac{\left| ax_0 + by_0 + c \right|}{\sqrt{a^2 + b^2}}$$

1.4.9

The line L is determined by the two points in space, (1,2,3) and (2,4,5). Find the perpendicular distance from the point (3,5,9) to L.

MIT OpenCourseWare http://ocw.mit.edu

Resource: Calculus Revisited: Multivariable Calculus

Prof. Herbert Gross

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.