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Solutions
Block 4: Matrix Algebra

Unit 5: The Total Differential Revisited

4.5.1

Since f is continuously differentiable in a neighborhood of (a,b),

we have that
f(a + h, b + k) - f(a,b) = fx(a,b)h + fy(a,b)k + elh + ezk

where e, and e, both approach zero as h and k approach zero.

This, in turn, says that elh + e2k goes to zero "faster" than
either h or k (that is, elh + ezk is a higher order infinitesimal),
and this is what we mean when we say that near (a,b), we may view
Aw = f(a + h, b + k) - f(a,b) as a linear combination of h and

k, i.e., fx(a,b]h + fy(a,b}k.

In still other words, in a sufficiently small neighborhood

of (a,b), the error involved in neglecting elh + ezk is negli-
gible both from a practical point of view as well as from a
theoretical point of view, and accordingly, we may think in

terms of saying that Aw "behaves like"

fx(a,b)h + fy{a,b)k. (1)

If we observe in (1) that h is what we usually denote by ix

and k is what we usually denote as Ay, we see that expression

(1) is simply what we have previously called AW, o (or in higher

1in). That is, ﬂwtan is exactly equal to (1) and

it is Aw which is approximately equal to 4w, _,.

dimensions, Aw

a., Given that w = f(x,y) = x2 - y2, we have

fx(x,y] = 2x
fy(x,y) = =2y ,
Hence

fx(3'2) =
fy{3,2) = -4
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4.5.1 continued

Therefore,

£(3 + h, 2 + k) - £(3,2) ¥ 6h - 4k (2)
if (3 + h, 2 + k) is sufficiently close to (3,2).

In particular £(3.,001, 1.99) has the form £(3 + h, 2 + k) with
h = 0.001 and k = -0.01. Therefore, (2) becomes

0.006 + 0.04
0.046, (3)

£(3.001, 1.99) - £(3,2) % 6(0.001) - 4(-0.01)

3ince £{3,2) = 3° - 22 = 5, equation (3) yields

£(3.001, 1.99)%¥ 5 + 0.046 = 5.046. (4)

An exact computation of £(3.001, 1.99) yields £(3.001, 1.99)
(3.001)2 - (1.99)2

= 9.006001 - 3.9601

5.045901. (5)

]

A comparison of (4) and (5) shows the percentage error in the

approximation is

|s.045901 - 5.046] x 100
5.045901

or

0.000099 x 100
5.045901 .

Therefore the error is about 0.002%.

b. £(7,5) = 7% - 5% = 24 . (6)
since f(7,5) = £(3 + 4, 2 + 3), equation (2) would yield
£(7,5) - £(3,2) = 6(4) - 4(3).
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4,.5,1 continued

Therefore,
£(7,5) ® £(3,2) + 24 - 12 =5 + 24 - 12 = 17. (7)

If we compare (6) and (7) we see that the percentage error

in our approximation is %4 x 100 or nearly 30%.

The point is that (7,5) is "far enough away from" (3,2) so that
the error term e h + e,k is no longer negligible. Notice that
£.(3,2)h + fy(3,2}k is still exactly equal to Lw,,., but that

&Wtan is not a good approximation for Aw[= £(7,5) - £(3,2)].

G+mi-(2+x-5

9 + 6h + h2 - 4 - 4k - kz = D

(6h - 4k) + (h% - k?). (8)

£(3 + h, 2 + k) - £(3,2)

]

Since fx(3,2}h - fy{3,2)k = 6h =~ 4k, equation (8) becomes

£(3+h, 2+Kk) - £(3,2) = £,(3,2)h + £(3,2)k + % - k3.  (9)

We can now write h2 - k2 in the form e,h + ezk as follows:

n? - k%= (h - k) (h + k)
= (h - k)h + (h - kK)k . (10)
Letting e, = e, = h - k we see that e, and e, approach zero as

h and k approach zero. Thus, using the result of (10) in (9),

we have

h + e k

£f(3 + h, 2 + k) =£(3,2) + fx(3,2]h + fy(3,2)k +t e, 2

where e, and e, approach zero as h and k approach zero since

el = ez = h - k.

With respect to part (a) we had h = 0.001 and k = -0.01.
Hence h - k = 0.001 - (-0.01) = 0.011.

Therefore,

S.4.5.3
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4.,5,.1 continued

elh + e2k = (h - k)h + (h - k)k

(0.011) (0.001) + (0.011) (-0.01)

0.000011 - 0.00011

-0.000099
which checks with the computation 5.045901 - 5.046 of part (a).

Notice that the determination of e, and e, is not unique.

1
For example, equation (8) could have been written as

f(3 + h, 2 + k) - £(3,2) = (6h - 4k) + h(h) + (-k)k, (1)

in which case we could let e; = h and e, = -k. [This is
actually more straight-forward than the choice of e, and e,
from equation (10), but the former method shows that el{and e2}
may depend on both h and k.]

What is important is the fact that ey and e, approach zero as h
and k approach zero. It is not too important (except for
computational case in making certain approximations) otherwise

how e, and e, are expressed in terms of h and k.

4.5.2

The main aim of this exercise is to emphasize why we always
specify "continuously differentiable" when we talk about
differentials.

Notice that we have already, in previous units, done the compu-
tations required for this exercise. By way of review, we have
shown that wx{0,0J = wy(0,0} = 0. Namely, for example,

wx(O,GJ = lim [w( x,0) - w(0,0)
Ax + 0 Ax

504.5.4

L2 2

L2

[

L3

N B s . e




Solutions
Block 4: Matrix Algebra
Unit 5: The Total Differential Revisited

N P D ) h O S e a .

aE E fa m m

ra M

r

4.5.2 continued

2 6x(0) _
i |22, a2

]

Ax™+ 0
x>0 %
Ax+0 Ax
= 0 -

Hence wx(G,OJ dx + wy(G,O)dy is well-defined. The crucial
point, however, is that this is not a good approximation for
Aw in any neighborhood of (0,0), no matter how small the

neighborhood!

In particular

w (0,0)dx + wy(0,0)dyE 0 (1)
while
bw = w(x,y) - w(0,0) [(x,y) # (0,0)]
2xy
X + ¥

Introducing polar cordinates, (2) becomes

A = 2r2 sin 8 cos 8
Wi 2

r

and since r # 0 [i.e., (x,y) # (0,0)]

2 sin O cos 6
sin 28. (3)

Aw

1]

From (3) we see that in any neighborhood of (0,0) Aw takes on
all values from -1 to 1 inclusively, while from (1) we see

that wx{0,0}dx + wy(0,0)dy is always zho.

In other words if we let dw = wx(0,0}dx + wy(0,0]dy, dw is not

a reasonable approximation for Aw. For this reason we refrain

5.4.5.5
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4.5.2 continued

from using the notation dw unless w is a continuously

differentiable function of x and y.

As a final computational check, note that "continuously
differentiable" means that W and wy not only exist but they are

also continuous.

If we compute wx(x,y] at any point (x,y) # (0,0), we have

(x2

+ y2)2y - 2xy (2x)
(x2 + y2)2

2y3 - 2x%y

(x2 - y2)2 2 - (4)

Wx(XaYJ

If we apply polar coordinates to (4), we see that

2r35in39 - 2r2c0829 r sin @

Wy (X,¥) i

2(sin39 - sin @ 0052 8)

r . (5)
From (5) we see that
. Z(Bin39 - sin € cosze)
lim wx{x,y} = lim
(x,y)=(0,0) r-0 r . (6)

Therefore, unless sin39 - sin 9c0528 = 0, equation (6) reveals

that

lim W, (x,y) = = # w(0,0) [= 0].
(x,y)~>(0,0)

In summary, in this exercise w is not continuously differentiable
in any neighborhood of (0,0), and it turned out that wx(U,O) dx
+ wy{D,O) dy was not a good approximation for Aw.
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4.5.3

Given that

2 2}
a=x" =y

= 2xy (1]
our definition of differentials yields
du = 2xdx - 2ydy
dv = 2ydx + 2xdy (2)
We may now solve (2) for dx and dy in terms of du and dv to
obtain
2 2
xdu + ydv = (2x + 2y )dx
and
2 2
-ydu + xdv = (2x~ + 2y~ )dy
so that
= X NS,

dx —'2_'—-‘—'2‘ du + 2 ) dv

2x° + 2y 2x° + 2y
and
dy = —ZLL—-Z du + —2x—z dv (3)

2x” + 2y 2% F 2y
Assuming that x and y are continuous differentiable functions
of u and v, we also know that
dx = xudu # xvdv
and
dy = y,du + y.dv (4)

Then, since du and dv are independent variables, we know that

Mldu 4 Nldv = Mzdu + dev+w Mlz MZ and le N2. Therefore,

equating the expressions for dx and dy in (3) and (4) we may

S.4.5.7
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4,.5.3 continued

conclude that

Xy = g Xy = i
u v

2(x° + yv°) 2z o+ )

= = = X
Yy = =g 1 Yy T T

2(x" + y2) 2(x° + y7)

4.5.4(L)

First of all, let us observe that
£x,y) = (x% - y2, 2xy) - (1)

is another way of writing

U
v = 2xy . (2)

That is, we may think of £(x,y) as being the 2-tuple (u,v)

[since F:E2 »E] and then by (1), since (u,v) = (x* - y°, 2xy)
it follows from the definition of equality that u = x2 - §

and v = 2xy.

This part of the exercise is designed merely to help make sure

. that you understand the language implied by (1) and {2
(1) From (1)
£3,2) = 132 - 2%, 23 @)1
= (5,12).
(2) Again from (1)
£(3.001, 1.99) = [(3.001)2 - (1.99)%, 2(3.001) (1.99)]
and, leaving the computational details tc the reader, this
means
S.4.5.8
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4.5.4 (L) continued
£(3.001, 1.99) = (5.045901, 11.94398) (3)
(3) This is a generalization of (2). Namely, from (1)

[(3+h)2% - (2+K2%, 23+h)(2+K]

]

£(3 + h, 2 + k)

= (9 + 6h + h% - 4 - 4k - X°,

12 + 4h + 6k + 2hk)
= (5 + 6h - 4k + h% - k2, 12 + 4h + 6k + 2hk).
(4)
As a partial check of equation (4), let us observe that
equation (3) is the special case h = 0.001, k = -0.01 since
3.001 = 3 + 0.001 and 1.99 = 2 + (=0.01). Putting these
values of h and k into (4) yields

2

£(3.001, 1.99) [5+ 6(0.001) - 4(-0.01) + (0.001}2 = (=0,01)"

]

12 + 4(0.001) + 6(-0.01) + 2(0.001) (-0.01)]

Il

(5 + 0.006 + 0.04 + 0.000001 - 0.0001,

12 + 0.004 - 0.06 - 0.00002)

(5.045901, 11.94398),

which checks with (3).

Here we start to come to grips with what linear algebra is all
about using the language of differentials discussed in the
previous unit, equations (2) yield

du = 2xdx - 2ydy
dv = 2ydx + 2xdy (5)
In another form (5) says that

SadeD,d
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4,5.4(L) continued

-

Au

_ 2xAx - 2yly

Av 2yAx + 2xAy . (5"}

tan

In particular, when x =3 and y = 2, we see from (5) that

=

du 6Ax - 4Ay

dv

40x + 60y | . (6)

The point we are stressing in this part of the exercise is that

sufficiently close to (3.2) du is a good approximation for Lu

and dv is a good approximation for Av. Hence, (and again letting
h = Ax and k = Ay)

£(3 +h, 2 + k) = (5 + du, 12 + Av) . (7)

[That is, £(3,2) = (5,12) and changing the input of f to (3 + h,
2 + k) means that the new output has the form (5 + fu, 12 + Zv).]

If we now make the assumptions that du alu and dv¥iv, we may
substitute (5) [or (5') into (7) to obtain

f(3 + h, 2 + k) (5 + 6 4x - 44y, 12 + 4 &x + 6 Ay)
= (5 + 6h - 4k, 12 + 4h + 6k). (8)

If we compare (8) with (4) we see that the error in our u-
coordinate is h2 - k2 (which certainly goes to zero "rapidly"

as h and k approach zero), while the error in our v-coordinate

is 2hk (which also goes to zero rapidly).

Thus, near (3,2) the mapping (function), E:E2+ E2 defined by

(1), may be replaced by the linear mapping ,

Q:E2+Ez, defined by (8).
That is, g(3 + h, 2 + k) = (5 + 6h - 4k, 12 + 4h + 6k) so that
S.4.5.10
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4.5.4(L) continued

Ag g(3 +h, 2 + k) - g(3,2)

(5 + 6h - 4k, 12 + 4h + 6k) - (5,12)

(6h - 4k, 4h + 6k). (9)
If we write (9) in the form

Ag = (Au,bv)

we see that

-

Au

66x - 4dy

40% + 6AY . (10)

Av

J
Notice in (10) that these are no longer approximations., These
are the exact values for Ax and Ay if we are dealing with g.
It is only an approximation when we replace f by g.

The important point is that near (3,2), the values of
£(3 + h, 2 + k) and g(3 + h, 2 + k) are "about the same". The

advantage of using g rather than f lies in the linear properties

of g.
At any rate,
g{3 +h, 2+ k) =(5+6h - 4k, 12 + 4h + 6k)

so that

g(3.001, 1.99) [5 + 6(0.001) - 4(-0.01), 12 + 4(0.001) +
6(-0.01)]

(5.046, 11.944). (11)

i

Comparing (11) with (3) shows that g is indeed a good approxi-
mation for f at (3.001, 1.99). In fact, using the language

S.4.5.11
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4,5.4(L) continued
of the Euclidean metric, we have
||£(3.001, 1.99) - g(3.001, 1.99)||= ||(5.045901, 11.94898) -

(5.046, 11.944) ||

/T5.045901 B 5.046)2 -

Il

/(11.94398 - 11.944)2

v /1 x 1078

%

o107t (12)
As we shall see in the next exercise, one does not need a
geometric interpretation for replacing ;:En-'-En by g:En+ ER,

but in the cases n = 1 or 2 (especially n = 1), there is an
interesting geometric interpretation which we shall discuss in

the following note.

A Note on Exercise 4.5.4(L)
In the special case r = 1, E:En+ E" reduced to a function of

a single variable, for which we usually used the notation

y = f(x).

The idea was that if f was differentiable* at x = ¢, then
vy = flle)x c, was a good approximation for y = £(x) in a
sufficiently small neighborhood of x = ¢. In terms of a
graph, all we were saying is that near x = ¢ [i.e., near
the point (c,f(c)] we could replace the curve by the line

*Notice that in the case r = 1 we talked about f being
differentiable at x = ¢c. We did not invoke the more stringent
condition that f be continuously differentiable at x = c,

which would have meant that f' be continuous at x = ¢, The
reason for this, quite simply, is that f' exists at x = c it is
automatically continuous there., Pictorially, since the curve
is smooth in a neighborhood of (c,f(c)) the slope can be made
as nearly equal to f'(c) at a point P on y = f(x) just be
choosing P sufficiently close to (c, £(c)).

5.4.5.12
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4.5.4(L) continued

tangent to the curve at (c,f(c)). That is

In

is

In

Y y = £(x) The distance between
4k P and Q goes to zero
P faster than the
y=£'(clx + y distance between c
(c,f(c) 0 and ¢ + Ax as b4x > 0,
E ¢ F X R
(Figure 1)

terms of the language of Exercise 4.5.4 (6), y = f'(c)x + P
the linear (straight line) function Q:En+ E" in this case.

the case n = 2 we may view _‘f_:E2-+E2 as a mapping of the

plane into itself. To avoid confusion we refer to the domain

of

f as the xy-plane and to the range of f as the uv-plane.

While this might seem strange, notice that we have already

done something like this in the case n = 1. Namely when

f:E—~E the domain of f and the range of f are the same

(namely, E). Pictorially this means that both the domain and

range of f are the number line. Yet to avoid confusion, we

refer to the domain as the x-axis while the range is called

the y-axis.
At any rate we have

y v
A A P = £(P)

/_\ o i
P = [u(x,y) vix,y)]
s . (u,v)

(x,y)

|Hh

Y

In

;-_

(Figure 2)

terms of the specific f and P of Exercise 4.5.4(L) we have

S.4.5.13
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4.5.4(L) continued

X s v
N ():ﬂ/’——’_’\_[\
(x*-y2,2xy) = (u,v)
£ —7 P(5,12)
P(3,2)
ralRs > ¥
(Figure 3)

If we let Q denote the point (3.001, 1.99) in the xy-plane
then £(Q) = Q(5.045901, 11.94398). If we were to add this
information to Figure 3, drawn to scale, the points P and Q

would seem to coincide since both would lie within the dot

which denotes P.

A similar result pertains to P and Q. So let us distort the
graph a bit so that all four points are clearly labeled.

Y v

Ab A
P(5,12)
f”é#

£ st

P{3liiHﬂfﬂﬂﬂﬂfﬂﬂfﬂﬂ#fﬁﬂ*,fwﬂ*“ 0(5.045901,11.94398)
0(3.001,1.99) &

— X >

(Figure 4)

According to equation (12) of Exercise 4.5.4(L), if we draw

a circle centered at Q with radius J 1 3¢ 10_8 (- 10-4,
g(3.001, 1.99) would lie within this circle. Clearly, if
drawn to scale, this circle would be encompassed by the

dot that names Q. That is, at least geometrically speaking,
we would conclude that £(3.001, 1.99) = g(3.001, 1.99), since
we could not distinguish between these two points in the uv-

plane. Again pictorially,

S.4.5.14
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4.5.4(L) continued

A A e
—d
£ put g(Q)
,f—ff‘”ﬂﬂf’. also lies
N\in this
dot
—% X > u
(Figure 5)

Mapping the xy-plane into the uv-plane is not as geometrically
"pleasant" as mapping the x-axis into the y-axis. That is, we
may place the y-axis at right angles to the x-axis so that the
mapping may be viewed as a plane curve. But in this context,
mapping E2 into E2 would require a 4-dimensional graph since

both the domain and range of f are 2-dimensional,.

We shall, little by little, talk more about mappings of the

xy-plane into the uv-plane as we continue with our course.

4545

a. Our mapping in this case is equivalent to the change of

variables
\
_ 2 2 2 4
Lll = Xl + X2 + x3 T x4
Uy = Ay HaRg¥y >
(1)
_ 3 3
‘L13 = Xl i x2 + }(3}{4
u = X + X.X + . X 2
4 1 23 174 ) *

Using differentials, (1) yields

dul = 2x1dxl + 2x2dx2 + 2x3dx3 + 2x4dx4
du2 = x2x3x4dxl + xlx3x4dx2 + x1x2x4dx3 + xlx2x3dx4 i)
= 2
du3 3xl dxl +23x2 dxz + x4dx3 + x3dx4
= ur b w v A
du4 {le + Xy }dxl + x3dx2 + xszB 4 2“1"4ﬁh4
5.4.5.15
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4.5.5 continued
If we now let Xy = Xy = X3 = Xy = 1, the system (2) becomes

" \
du) = 2dx; + 2dx, + 2dx, + 2dx,

du2 = dxl + dx2 + dx3 + dx4

du3 = 3dxl + 3dx2 - dx3 + dx4

du, = 3dx, + dx2 + dx, + 2dx4

4 1 35
/
Now
;(1,1,1,1) = {ul, u,, Uy, g4), so by (1),
E(l,l,l,l) = (4,1,3,3).
Therefore
f£(1.001, 1.001, 1.001, 1.001) = (4 + Aul, 1l + Luz,

3 + 3”3' 3 ¥ au41.

Therefore, if we assume that du;& Luy, du,® du,, du3% tug,
and du4% Au,, we may compute du, , du,, du, and du, from (3)
with Axl = 0x, = Axy = Ax, = 0.001 and then replace Zu,,
auz, auB and ﬂu4 in (4) with these values of dul, duz, du3,
and du4.

In more detail, from (3)

(3)

(4)

dul = (2 + 2+ 2+ 2)(0.001) = 0.008
du, = (L+ 1+ 1+ 1)(0.001) = 0.004
du3 = (3 +3+ 1+ 1)(0.001) = 0.008
duy = (3 +1+ 1+ 2)(0.001) = 0.007 (5)

Hence, from (4),

f£(1.001, 1.001, 1.001, 1.001) = (4 + ﬁul, 1 + Au 3 + Au

3 + Au.d
5

2f 3’

S.4.5.16
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4.5.5 continued

= (4 + du 1+ duz, 3+ du3, 3 + du

ll

~(4.008, 1.004, 3.008, 3.007) .

4

(6)

[where (4 + dul, 1 ++ duz, 3+ du3, 3 + du4) = (4.008, 1.004,

3.008, 3.007).

The approximation refers to £(1.001, 1.001, 1.001, 1.001)].

b. From (1) with X] = Xy = X3 =X, = 1.001, we have

= 4(1.001)2
= 4(1.002001)

= 4.008004

= (1.001) (1.001) (1.001) (1.001)
= [(1.001)272

- (1.002001)2

= 1.004006004001

= 2(1.001)° + (1.001)2
= (1.001)2[2(1.001) + 1]
= (1.002001) (3.002)

= 3.008007002

w, = (1.00)% + (1.001)2 + (1.001)2 + (1.001)

= (1.001)3 + (1.001)3 + (1.001) (1.001)
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4.5.5 continued

(1.001)2 + (1.001) (1.001) + (1.001) (1.001)2

e
Il

4
= 2(1.001)% + (1.001)3
= (1.001)%(2 + 1.001)
= (1.002001) (3.001)
= 3.007005001,

so that

£ (1.001, 1.001, 1.001, 1.001) (ul, Yqr Ugs u4J

(4.008004, 1.004006004001,
3.008007002, 3.007005001). (7)

If we define Q:E4+ E4 by

+

g(l + Axl, 1+ ﬁxz, 1+ ﬂx3, 1 ax4) = (4 + dul, 1+ duz,
3+ du3, 3+ du4)
equation (6) yields

g(l1.001, 1.001, 1.001, 1.001) = (4.008, 1.004, 3.008, 3.007)

whereupon from (7) we obtain

f£(1.001, 1.001, 1.001, 1.001) - g(1.001, 1.001, 1.001, 1.001)

+ (3.008007002 - 3.008)2 + (3.007005001 -
3.007)2

/(4.009004 = 4.008)2 + (1.004006004001 - 1.004)2

/ (0.000004)2 + (0.000006004001)2 + (0.000007002)2 + (0.000005001)2

J4x1092+ 6x1092+ (7x109%+ (5x10%% =
/ (16 + 36 + 49 + 25) x 10712 =
/ 126 x 15712 ¥ 11 x10°% % 1070
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4.5.6(L)

- e oW M

Our aim here is to shed some light on inverse functions and to

show how we may use differentials in studying this topic.

In Exercise 4.5.4(L) we talked about

2 2

where f(x,y) = (x° = y°, 2xy)

and we investigated the value of f(a + h, b + k) knowing the
value of f(a,b). 1In part (a) of this exercise we are tackling

the inverse problem. Namely, knowing that £(3,2) = (5,12),
we would like to find the point (x,y) near (3,2) such that
f(x,y) = (5.00052, 12.00026). To this end we have:
a. We know that £(3,2) = (5,12) and that
£(3 + 4%, 2 + Ay) = (5 + Au, 12 + Av). (1)

From the given information in this exercise we have that

Au = 0.00052 (2)
while
Av = 0.0026 . (3)

What we would like to know is what values of Ax and Ay in

equation (1) would produce this change in u and v.

What we already know in this problem [see, for example,

equation (6) in Exercise 4.5.4(b)] is that

du = 6 dx - 4 dy
dv 4 dx + 6 dy . (4)

From a purely mechanical point of view, we can solve the
system of equations (4) to express dx and dy as linear com-

binations of du and dv. 1In particular

& & & & e O s O e o e e e o
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4.5,6(L) continued

3 du
2 dv

18 dx - 12 dy
8 dx + 12 dy

or

dx = i% du + T% dv (5)

Similarly

-2 du
3 dv

il

-12 dx + 8dy
12 dx + 18 dy

so that

dix + 5% av . (6)

ol
Wi

dy = -

Now, if we let du = 0.00052 and dv = 0.00026, equations (5)
and (6) quickly yield

[}

3 1
dx ¢ (0.00052) + 13 (0.00026)

I

0.00006 + 0.00002

(7)

= 0.00008
while
dy = - =% (0.00052) + == (0.00026)
Y I3 ©F 56 ‘U=
= - 0.00004 + 0.00003
= - 0.00001. (8)

If we then assume that Ax fdx and Ay /vdy then (7) and (8) yield

3+ Ax 2 3+ dx =3+ 0.00008 = 3.00008 (9)
and
2+ Ay ¥ 2+dy=2-0.00001 = 1.99999 . (10)
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4,5.6(L) continued

In other words,

£(3.00008, 1.99999) v (5.00052, 12.00026).

To check the accuracy of our approximation, we have by the
definition of f that

[(3.00008)2 - (1.99999)7,
2(3.00008) (1.99999)].

£(3.00008, 1.99999)

Hence

£(3.00008, 1.99999) = (9.0004800064 - 3.9999600001,
12,0002599984)
(5.0005200063, 12.0002599984) ., (11)

I

Notice that what we wanted was the 2-tuple (x,y) such that

f(x,y) = (5.00052, 12.00026). (12)

Comparing (11) and (12) we see that while (x,y) is not exactly
(3.00008, 1.99999), the approximation

(3.00008, 1.99999)% (x,y)
is extremely accurate.

To summarize what we did in this exercise, we replaced the

function E:E2+ E2 by g:E2 +E2.

As described in Exercise 4.5.4(L), g is the linear function
g(3 + 4x, 2 + Ay) = (5 + 6 Ax - 4 Ay, 12 + 4 Ax + 6 Ay).

We then computed g ' (5.00052, 12.00026) and used this to
approximate the desired solution, ;fl(s.ooosz, 12.00026) .

This type of substitution is perhaps the best intuitive way
to think of the mapping

/. &
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4.5.6 (L) continued
£:E" > E".

Namely, we replace f by its linear counterpart g in the
neighborhood of some specified point, and let the answers
obtained in terms of g serve as the approximation for the

corresponding result involving f.

Again, the case n = 1 is the easiest to see pictorially.

In this case, we have:

Y
A y = £(x)
il :
b TN 7 - £
y = f'(c)x + ¥
vl
L]
]
I
= X
¥ c a
(Figure 1)

In Figure 1, given b we want to find a such that f(a) = b.
Graphically we draw the line y = b to meet the curve y = f(x)

at P(a,f(a)) and the x-coordinate of P is the required value
for a. Now it would be easier (arithmetically, not pictorially)
to solve for a if y = f(x) were replaced by the linear equation
y = f'(e)x + Y- Pictorially, this would involve letting

the line y = b intersect the line y = f£'(c)x + Y, at Q and
approximating a by the x-coordinate of Q. That is

Y y = f(x)

!

b 0

= £
y f' (e)x + ¥

Y
%

(Figure 2)
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4.5.6 (L) continued

Our claim is that if P is close to (c,f(c)) then a; is close to

d.

Notice, however, (as we stressed in part 1 of our course) that
in finding f-l(b} we want to use the fact that we want our
answer to be near x = c¢. For example, f need not be 1-1

globally (i.e., for the entire domain) such as

(Figure 3)

That is, both f(a) and f(az) equal b, but we choose x = a since

it is "near" x = c.

In this same vein, we are assuming in this exercise that the
domain of f is being restricted to a sufficiently small
neighborhood of (3,2) so that in this neighborhood f is 1-1.
(The conditions under which we can be sure such a neighborhood
exists will be discussed in the next unit.)

Note:

We may generalize this exercise by picking the point (xo, yo}
rather than (3,2). Then from equation (5) of Exercise 4.5.4

we have
du = 2xodx - 2yody
(13)
dv = 2yodx + 2xody
We may then solve (13) for dx and dy in terms of du and dv.
That 1is,
S.4.5.23
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4,5.6(L) continued

I

X _du

2 '
X 2x0 dx - 2xoyody

y dv = 2y02dx + ZxOdey .

o
Hence
%o Yo
dx = du + dv . (14)
2 2 2 2
2(x0 Ll 7 ) Z(XO ¥ ¥y )
Similarly,
— Y - x
dy = 2 du + 2 av (15)
2 2 2 2
2(x "+ y,") 2(x" + y,7)
; 2 2
except that (14) and (15) are undefined when 2(xo + ¥ ) = 0.
This can only happen if Xy = ¥y ™ 0, or when (xo,yc) = (0,0).

In other words, at least from a mechanical point of view, the
technique used in this exercise applies for all {xo, yo) in E?

except (0,0).

What does this mean pictorially? First of all, notice that
since £(x,y) = (x° - y%, 2xy), £(0,0) = (0,0). Now look at
any neighborhood of (0,0) in the xy-plane. Let (h,k) and
(-h,-k) be points in this neighborhood, other than (0,0).

Then

£ (h,k) = (h% - k%, 2nk)

£(-h, -k) = [(-n)2-(-k)2, 2(-h) (k)] = (% - ¥?, 2nK).
Therefore

£ (h,k) = £(-h, -k) even though h # -h and k # -k. That is,
£ is not 1-1 in any neighborhood of (0,0).

i 3
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4.5.6(L) continued

o4 A
N

Pl(_hr—k}
Given f(P) = Q where P = (h,k), let Py = (-h, =k); then
E(P1) = Q. That is, there is no neighborhood of (0,0)

for which £ is 1-1.

This happens in the case n = 1 as well. Namely suppose

f'(c) = o. For example

g
M

o o ——

> X

c

There is no neighborhood of x = ¢ in which f is 1-1.

W

Generalizing still further suppose f(x,y) = [u(x,y), vix,y)]

where u and v are continuously differentiable functions of x

and y.

then

du

I

ux(xo,yo)dx + uy(xo,yo}dy

dv

1

vx(xo,yoldx + vy{xo,yo)dy.

(16)

We can then solve for dx and dy in terms of du and dv unless
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4,5.6 (L) continued

ux(xo,yolvy(xo,yo] - uy(xo,yolvx{xo,yo) # 0, that is, unless

ux(xo,yo) uy{xofyo]

det
vx(xo.yo) vy{xo,yoJ

=0 (17)

For example, if we multiply the top equation in (16) by
vy(xo,yo) and the bottom equation by —uy(xo,yo), we obtain

vy(xo,yoldu ux(xo,yo)vy(xo,yo}dx + uy(xo:yolvy(xo.YonY

Uy (X, ¥ av = —u (R, ¥ )V (X, ¥ ) dx = ug (XY, ) vy (%Y, ) dy
whereupon

vy(xo,yo)du - uy(xo,yo)dv N [ux(xo,yo]vy(xo,yo)vx(xo,yol]dx. (18)
Thus, as long as ux(xo,yo)vy(xo,yo} - uy(xo,yo)vx[xo,yo) #0,

we may divide both sides of (18) by it to obtain an expression
for dx in terms of du and dv.

The coefficients of dx and dy in (16) [which, by the way, are

constants once (xo,yo} is specified] form an important matrix
called the Jacobian Matrix of u and v with respect to x and y.

The Jacobian Matrix will be explored in somewhat more detail in

the next unit.

4.5.7(L)

w = 4xyz.
Therefore,
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4.5.7 (L) continued

du = xdx + 2ydy + 2zdz
dv = 6xydx + 3x2dy + 12z°az (1)
dw = 4yzdx + 4xzdy + 4xydz
In particular if x =y = z = 1, equations (1) become
du = dx + 2dy + 24z ?
dv = 6dx + 3dy + 124z (2)
dw = 4dx + 4dy + 4dz j .
Using our augmented matrix technique, we may solve equations
(2) for dx, dy, and dz in terms of du, dv, and dw as follows:
1 2 2 1 0 o0 2 1 0o o
6 3 12 0 il o] ~ |0 -9 -6 L 0
4 4 4 0 0 1 0 -4 -4 -4 1
1s 36 36 18 ]
~| 0 =36 0 =26 0
| 0 36 36 36 =9
s o 36 -6 4 0
~10 -36 0 -24 4 0
| 0 36 12 4 -9
18 0 =18
~10 -36 -24
| 0 0 36 12 4 -9
3 0 0 -1 0 1/2
~l0 1 0 273 =179 0
0 0 i 1/3 1/9 -1/4 .
Therefore
]
dx = -du + 1 dw
(3)
dy = % du - % dv
8.4.5.27
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4.5.7(L) continued

1

_ 1 1
dz = 3 du + 5 dv - 7 dw} (3)
Again, assuming that x,y, and z can be expressed in terms
of the independent variables u, v, and w, we know that
dx = xudu - xvdv + xwdw
dy = yudu + yvdv + ywdw - (4)
dz = z du + z dv + z dw .
u v w
Comparing (3) and (4) we have
h
=—lx=0x—l
*u . Sar r w2
2 1 P
yu=§'yv=-§'yw=0 (5)
gy R S |
u 3’ % 9 %w” 7T)°
From our original equations, when x = y = z = 1 we have that
u=2+1+1=3
v=23+4=7
= H
So that (5) really is read
5 = 5 5 _ 1
xu( "2‘; Fy 4) = lf XV{ "2': 7, 4) =0, XW{ Pl 7!’4) 3
5 2 5 5
vy (3, 7, 0 =%,v,03 7, 4 =-5 y,(3 7,4 =01 (6)
5 5 _ _k
z (3, 7, 0 =31,2(3 7 0=5 2,037 4 =7
J
4.5.8(L)

The main aim of this exercise is to show the ditference

petween a local inverse and a global inverse.
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4.5,8(L) continued

2

Given the mapping £:E2+ E” defined by f(x,y) = (exsin Y e*cos v) .

we have

Hence
Ia(er) Vy

X.a X
e sin y e cos. ¥y

X X .
e“cos y - e sin y

= -ezxsinzy - ezxcos2y
= -e?X(sin%y + cos?y)
2x (1)

= -e

¥ o
e” sin y dx

]

This is essentially equivalent to saying that du
+ e®cos ydy, dv = e*cos ydy = e*¥sin ydy and solving for dx and

dy in terms of du and dv, just as we did in the previous
2x >

exercises, but e # 0 for all real values of x.
Therefore
AWV £ o for all (x,¥).

2 (x,y)

Notice, however, that the validity of our approach requires

that Ax and Ay be sufficiently small so that Au % Au o etc.
Thus our results are "local" which means that for any point
(x,y) in the xy-plane there is a sufficiently small neighborhood
N of (x,y) such that f is 1-1 on N. That is, locally gﬁl exists

at each point (u,v) in the uv-plane. Pictorially,
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4.5.8(L) continued

There are neighbor-

¥ v
. hoods N1 and N, of
e (0,0) and (0,1),
ra respectively such
/’ that £:N, > N,is both (0,1)
" 1-1 and onto so that N,
N 1 £ LN+ N, exists.
>X = 2 1 >-u
(0,0)
£(0,0) = (esin 0, e%cos 0) = (0,1)
(Figure 1)
Moreover the results in Figure 1 extend to the trgatment of
any pair of points (xo,yo} in the xy-plane and (e ®sin Yar
X
e ®cos yo} in the uv-plane.
b, Since sin(yO + 2m) = sin ¥ and cos{yO + 2m) = cos Yor we
have that ;(xo, yo) E{xo, yo + 27).
That is,
*o *o
£(xo' yo} = (e “sin Y,» © “cos yo}
*o *o
= (e sin[y0 + 27], e “cosly, + 27])
= ;(xo, ¥, 27) . (2)

Since (xo,yo) # (xo,yo + 27), equation (2) shows that f is

not 1-1 globally. In terms of Figure 1, what this means is

the following, We were able to find sufficiently small
neighborhoods N, or (0,0) in the xy-plane and N, of (0,1)

in the uv-plane such that £=Nl+ NZ was 1-1 and onto. But if

we now choose a neighborhood of (0,0) which is not sufficiently
small then f need not be 1-1 on this new neighborhood. For

example, utilizing equation (1), suppose we choose our
neighborhood N of (0,0) to be large enough to include (0, 21 ).

Then not only does £(0,0) = (0,1) but £(0,27m) also equals
(0,1) [since £(0,2m) is equal to (e®sin 2T, e®cos 2m) = (0,1)].
Pictorially
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4.5.8(L) continued

¥ Y
N
N £
N3
(042m) (0/1)

A

No/ '

(Figure 2)

No matter how we shrunk N2 we cannot have Efl:N2+ N since
£_I{G,IJ would equal (0,0) and (0,27) contrary to our definition

that Efl is a single-valued function.

Thus, the fact that E:En +E™ has a local inverse everywhere is

not enough to guarantee that f has a global inverse.

Are there conditions under which we can be sure that E:En+ EP
has a global inverse?

In part 1 of our course we took care of the answer of r = 1.
Namely if f was differentiable, the fact that f'(x) was never
zero guaranteed that f was 1-1. (I.e., the graph was either

always rising or always falling.)

For the case r = 2 the following special result applies

(again, stated without proof).
Theorem

Let £ be a continuously differentiable function defined in

a region R of E2 such that the Jacobian determinant of f

is never zero in R. Suppose further that C is a simple closed
curve (i.e., a closed curve that never crosses itself and
which can be drawn from start to finish without taking the
pencil off the paper. For example is a simple closed

curve but @ isn't) which, together with its interior, lies
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4.5,8(L) continued

in R, and that f is 1-1 on C. Then f(c) is also a simple
closed curve and £ is 1-1 on the domain CIR (i.e., on R and

its boundary).

In terms of an example, consider Figure 1 of part (a).
Suppose we let C be the circle centered at (0,0) in the xy-
plane with radius equal to 1 and let R denote the interior

of the circle
Y

A

Q:// I >

Then, f£'(x) #0 for all xeR since f'(x) #0 for every x. Moreover,
for every pair of distinct points Py and P, on c, f(Pl) # f(Pz)
since the circle is too small to permit two points whose y-
coordinates differ by 271 to exist on the circle. (I.e., the
diameter of the circle is 2 which is less than 27 ). In more

detail, if Pl = (xl,ylj and P2 - (xz,yz) then £ (Pl) = E(Pz)

implies that

] | *2 g
(e “sin Yy, € “cos yl) = (e "sin Y,, € “cos yz), so that

X X
e 1sin y; = e 2sin Y,
(3)

% X
e ‘cos y; = e 2cos Yo :

Squaring both equations in (3) and adding yields

2x 2y 2y 2x
e ltsin L 4+ cos 1) = e 2(sin2y2 + coszyz)
or
2x1 2x2
e =e .
S:4:.5.32
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4,5.8(L) continued

But e* is an increasing function (hence 1-1). Therefore

2xl = 2x2
or
X = X, .

If we divide one eguation in (3) by the other we obtain

sin ¥q sin ¥y
cos ¥, cos v,

or tan yl = tan y2, etc,

At any rate, the theorem guarantees that f will map the circle
C into a simple closed curve C' in the uv-plane, R will be
mapped onto the interior of C', and if we let S denote C' and
its interior, we have that £:RUC - S is 1-1 and onto.

(Notice that the mechanics of computing f£(C) etc. are not

too simple.)
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