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Solutions
Block 4: Matrix Algebra

Unit 3: Inverse Matrices

4.3.1

The main aim of this exercise is to stress the structure of matrix

arithmetic.

If we had been given the equation

-

= X — AB

W
I
(]

where X, A, B, and C were numbers, we would have at once concluded
that

1 =

3 X=2AB+C

or

X = 3(AB + C). (1)

The important point is that the rules which were used to arrive at
equation (1) are true in matrix arithmetic as well as in numerical
arithmetic. In other words, equation (1) is still valid when X,
A, B, and C are matrices.

In our particular exercise, the specific choices of A, B, and C
yield

Hence,

S.4.3.1
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Block 4: Matrix Algebra
Unit 3: Inverse Matrices

4.3.1 continued

Therefore,
10 11
AB + C = .
18 22

If we then recall that 3(AB + C) means to multiply each entry of
AB + C by 3, equation (1) becomes

30 33
X=3(AB +C) = . ' (2)
54 66

As a check, we have that with X as defined by equation (2),

30 33 5 7
bx-m-3(77)-
54 66 12 17
10 11 5 7
18 22 12 17
5 4
6 5

Cs

Il

In summary, when it comes to addition and scalar multiplication of
matrices, the arithmetic has the same structure as that of ordinary

numerical arithmetic.

b. If X, A, B, C, and 0 had been numbers, then the equation

AX - BC =0

would have possessed the solution

S5.4.3.2
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Solutions
Block 4: Matrix Algebra
Unit 3: Inverse Matrices

4.3.1 continued
x = a~1(BC) (3)

provided only that A # 0.

Now in arriving at equation (3), the only step that was not covered
by either addition or scalar multiplication was in assuming the
existence of A™Y. That is, we know that depending on the specific

choice of A, A~} may not exist even though A is not the zero matrix.

However, assuming that A-l does exist, the equation AX - BC = 0 is
solved precisely by the same structure as in the numerical case.

More specifically, we have

AX - BC =0

implies that

AX = BC

and if A”1 exists, this, in turn, implies that
a™l@ax) = a™t(so)

or, since matrix multiplication is commutative,
(ata)x = a~1(Bo).

By definition of A—l, A_lA = I and IX = X, hence, our last equa-

tion implies that
X = a1 (BC).

Thus, all that remains to be done in this part of the exercise is
to see whether A_l exists. If it does, we can use A_l to solve
equation (3) by using the ordinary matrix operations. If A_l does
not exist, then we cannot find the required matrix X. In other
words, if A-l doesn't exist, then the equation AX - BC = 0 cannot
be solved for X.

S.4.3.3
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4.3.1 continued

Now, one way of trying to compute A—l is to use the augmented
matrix technique discussed in our supplementary notes. That is,

1 110 ., |11 10| ., (1 0 3-1
2 3 0 1 0 1-2 1 0 1-2 1

so that A-l does exist and is in fact given by

3 =1
Ak ow . (4)
-2 1

Using equation (4) in (3) with B and C as given in this exercise,
we see from (3) that

3 -1 3 4 5 4
x=
-2 1 2 3 6 5
( 3 -1) (15 + 24 12 + 20)
-2 1 10 + 18 8 + 15
( 3 -1) (39 32)
-2 1 28 23
(117 - 28 96 - 23)
-78 + 28 -64 + 23

(5)

]
1
m
o o
1
PO
=W
N
-

As a check, the value of X in equation (5) implies that

S.4.3.4
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Solutions
Block 4: Matrix Algebra
Unit 3: Inverse Matrices

4.3.1 continued
(l 1) ( 89 ?3) /3 4)(5 4)
Z 3 -50 -41 \ N2 3 6 5
89 - 50 73 - 41 15 + 24 12 + 20
178 = 150 l46 - 123 10 + 18 8 + 15
(39 32 (39 32)
28 23 28 23
(0 0)
0o 0

AX - BC

Il

[l

which checks with equation (3).

In passing, it is worth making the aside that in the case of 2 x 2
matrices, it is not too difficult (in fact, it might even be easier
than our augmented matrix technique) to find A-l directly. Namely,

letting

X X
it ( 11 12)
%21 %22

we have

implies that
(1 1) (xll xlz) _ (1 0)
2 3 %31 %5, L TS

This.tells us that

$.4.3.5




Solutions
Block 4: Matrix Algebra
Unit 3: Inverse Matrices

4.3.1 continued
( Ba Yt Fymyp  Fy xzz) _ (l 0)
lel + 3x21 2x12 7+ 3x22 0 1

and, therefore that

X + x =1
11 21
(6)
2x11 + 3x21 =0
while
X +: X =0
12 2
2 . _ (7)
2x12 + 3x22 = 1

Equations (6) may be solved to yield

X9 = i Xyq = -2

while equations (7) yield

Xy = -1 and X5y = 1

so that

g =1
-2 1

as obtained in equation (4).

The drawback to this latter technique lies in the fact that when n
is large (even when n is 3, 4, or 5) finding At for the m % n
matrix A becomes extremely cumbersome since we obtain several
systems of equations in several unknowns.

S.4.3.6
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rY £1 1 1

X X
% =( 11 12).
X1 *22

We shall see what conditions are imposed on X110 X997 Xpqv and %59

by the equation

equation (1) becomes

(a b) (xll x12)=(1 0)
e 4 %51 x22 g9 1
Hence,

(axll - bx21 axy, + bxzz) _ (1

+ dx2 + dx

= 1 Sy 22

11
Therefore,

axll + bel =1

(1)

(ansy

cxll + dx21 =0
and
ax + bx =0
12 22 . (2)
cx12 + dx22 =1

S.4.3.7
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Block 4: Matrix Algebra
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4,3.2 continued

In the "usual way" we solve (1') by multiplying the top equation
by d and the bottom equation by -b to yield

ad =+ bdx21 =d

B

—bcx11 - bdx21 =0

(3)

If we add the two equations in (3), we obtain

(ad - bc)xll = id, (4)

From (4), we see that X1q is uniquely determined provided ad - bc
£Z 0. For in this case,
da

X11 = 2@ - be (5)

[If ad - bc = 0, then if d # 0, there is no value of %11 which can
satisfy equation (4) since in this case, equation (4) says

Oxll =d#0

which is impossible since Oxl1 = 0 for all X191+

On the other hand, if both ad - bc = 0 and d = 0, then any value

of X171 satisfies equation (4).]

Thus, for the number Xy, to be uniquely determined, it is necessary
that

ad - bc # 0. (6)

The question now is whether this condition is also sufficient.
The best way to find out is to assume that condition (6) holds and

then see whether Xipr X510 and x are uniquely determined.

22
To this end, we return to equations (1') and now multiply the top
equation by c and the bottom equation by -a to obtain

acxll + bcx21 = C

-acxyq - adx21 =0

5.4.3.8
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Block 4: Matrix Algebra
Unit 3: Inverse Matrices

4.3.2 continued

whereupon adding these equations, we obtain

(bc - ad)x21 = c

or to emphasize condition (6),

(ad - bc}le = -C (7)

then since ad - bc # 0, equation (7) yields that %51 is uniquely
given by

e i
¥X21 T ad - be’ (8)

In a similar way, we try to use equations (2) to see if both Xy

and x are uniquely determined. To solve for Xipr We multiply

22
the top equation by d and the bottom equation by -b to obtain

adxl2 + bdx22 =0

-—bcxl2 = bdx22 = -b

whereupon adding these two equations yields
(ad - bc)x12 = -b

or since we are assuming that ad - bc # 0, this means that

~b

12 = ad - be- (9)

b4

Finally, to solve for Xypr We multiply the top equation in (2) by
-c and the bottom equation by a to obtain

|
o

—acx12 - bcx22 =

Il
W

acx, 5 + adx22
and adding these two equations yields

(ad - bc)x22 = a,

5.4:3.9
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Inverse Matrices

4.3.2 continued
and, again, since ad - bc # 0, this implies that

= a
¥22 T 2@ - be' (10)

Equations (5), (8), (9), and (10) show us that as long as
ad - bc # 0, A™' exists and is in fact given by

x X
Al ( 11 12)
*21. *a2

d -b
ad - bc ad - bc

|

. : (11)
- a
ad - bc ad - bc

Recalling our rule for scalar multiplication, (11) may be rewritten
in the form

d -b
T [ ] i (12)

a b
A= (13)
e d

a comparison of (12) and (13) reveals that to obtain A_l from A,

where

a b
A= :

c d
we interchange the two entries on the main diagonal, change the
sign of the other two entries, and multiply the resulting matrix

S.4.3.10
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Solutions
Block 4: Matrix Algebra
Unit 3: Inverse Matrices

4.3.2 continued

1
by 33 = b
exist.

* -
provided ad - bc # 0. If ad - bc =0, A : does not

While, in the interest of computational simplicity, we have con-
centrated solely on 2 x 2 matrices in this exercise, the fact is
that these results generalize to n x n matrices, in the following
form.

Notice that if

o

A=

c d

then ad - bc is the determinant of A. In other words, what we
showed in this problem was that if det(A) # 0, then A-l existed.
We further went on to compute A-l in this case. 1In general,
although determinants are "nastier" for square matrices of dimen-
sion greater than 2 x 2, the same result holds for all n x n
matrices. Namely, if A is any n X n matrix, then A_l exists if and
only if det(A) # 0. We shall wait until Block 8 before we probe
the question of what a determinant looks like in the case of an

n x n matrix with n greater than 3, but for now we thought it an

interesting observation to show how the existence of A-l was re-
lated to the determinant of A,

4.3.3

o |
Consequently, the result of the previous exercise that

a b
Given that A = ( ) is a diagonal matrix, we have that b = ¢ = 0.

*Arithmetically, a particularly simple case arises if ad - bec = 1
(or even -1) since then the factor ;EF%EEF = 1 (or -1) so that in

this case

S S R

For this reason (and others as well), special study is made of

b) for which ad - be = *1.

. a
matrices
c d

5.4.3.11
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4,3.3 continued

-1 1 d -b
A" =3 =-bc
ad - bc
-c a
yields
A-l_ld 0
T ad
0 a . (1)

Obviously, for (1) to be mathematically meaningful we must have
that ad # 0, which in turn means that

a#0and d # 0.
(If either a = 0 or d = 0, the fact that b = ¢ = 0 implies that

ad - bc = 0, so that A-l
gonal 2 x 2 matrix has an inverse provided that none of its

does not exist. In other words, a dia-

entries on the main diagonal is 0.)

At any rate, if ad # 0, equation (1) becomes

d
— 0
A 3 o ad
_a
0 ad
1
o =7 . (2)

As a quick check that (2) is correct we observe that
a
a 0 a 0 1 0
1
0 d 0 x 0 1 /.

Notice that (2) generalizes to any diagonal n x n matrix.

Namely, assume that A = (aij) is any n x n diagonal matrix with
-1 -1

ajqs azgi..., and Ao all unequal to 0. Then a7 s 8 rees
and B are real numbers with
-1 _ _ -1 _ 1
allall - - . - annann — -
S.4.3.12

Gl S I U S S S BE NS B B o S

L3 3 2




L |

I 0N N B fh Bh D OB BN S PR PG PR BE BN &S

M M

Solutions
Block 4: Matrix Algebra
Unit 3: Inverse Matrices

4,.3.3 continued

Now we already know that to multiply two n x n diagonal matrices

we simply multiply the diagonal entries term by term. Hence

=1

a1 0 S— all 0 Cas 0
-1
? a22 wan 0 0 a22 e 0
-1
0 0 & 0nn 0 0 oo B
-1
allall 0 as 9
0 azzazg wwve 0
=' -1
0 0 o Bople
1
1
4 1
1
- In &
4.3.4(L)

(a)

The main aim of this part of the exercise is to emphasize the
arithmetic structure of matrices. Certainly, one could elect

to solve this problem by brute force as follows. We let

a a b b i
X 11 12 SHEl B 11 12

431  H3a e Bag
and we then compute A~ and B ~, after which we compute B-lAFl.
We then compute AB, after which we compute its inverse (AB)_I.
Finally we compare B-J‘A-l with (AB}'l, and if we haven't made

any computational errors, we find that the two matrices are
equal. The fact that we are dealing with 2 x 2 matrices makes

the computation a bit easier since we may then use the "recipe"

S.4.3.13
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4.3.4(L) continued
derived in Exercise 4.3.2 for finding inverse matrices.

The point is that the above procedure, even in the 2 x 2 case,
is cumbersome, and in the general n x n case the computations

quickly tend to get out of hand.

Yet from a structural point of view, we can use our "rules of
the game" to obtain the result asked for in part (a) in an effi-
cient manner which also happens to apply in the more general case

of n x n matrices.

More specifically, we look at

(aB) (871A7) (1)
where A and B are both n x n matrices, and we are assuming

that both Aul and B_l exist.

Since multiplication of matrices is associative, our expression

(1) may be rewritten as
(aB) (8"1a"1) = a@ms™hHal . (2)

By definition, BB L = I_ (the n x n identity matrix), so
that (2) may be rewritten as

(aB) (8™1a7Y = a(z )a7t. (3)

Again, by associativity, A(In}A_l is equal to (AIn)Aﬁl, and by

the definition of I AIn = A, so that (3) may be rewritten in

the form

(aB) (3871a7l) = (a1 )a”t = a7t (4)

. R s -1 -1

Finally, from the definition of A ~, AA = In' so that (4)

becomes

aB) (37 1a7h) = 1_ . (5)
S.4.3.14
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Solutions
Block 4: Matrix Algebra
Unit 3: Inverse Matrices

(b)

4.3.4(L) continued
A similar sequence of steps shows that

(871a™1) (aB) = 1 (6)

and equations (5) and (6) show that by the definition of

1L _ o-1,~1

= B A 7.,

(aB) "L [i.e., (aB)(aB) T = (aB) "1 (aB) = .1, (AB) ~

As a final note to our computation, notice that just as in
ordinary algebra, we may abbreviate the above sequence of steps

simply by writing

(AB}(B_IA-I} = A(BB"I}A‘l = AInA_l = (AIn)A‘l = AR = I -

The beauty of the structural proof, aside from the fact that we
don't get bogged down in computational details, is that we see
how the result follows from the basic properties of matrices

independently of the dimension of the matrix.

It should also be noted that it might seem more natural that

(aB) ! = 2”187, This result is not usually true.

In this part of the exercise we simply want to check the result

of part (a) in a particular example. We have
\

1 l\ 3 4
A= while B = )

2 3} 2 3

Consequently, as seen in Exercise 4.3.1,

5 7
AB =
12 L7 |
-1 -1 -1 . .
We may now compute A ~, B ~, and (AB) by the process derived in

Exercise 4.3.2, noting that we have "cleverly" chosen A and B
so that det A, det B, and det AB are all equal to 1*.

*While we do not need this result for our present work, it is a fact

(theorem) that if A and B are n x n matrices then det AB = det A x
det B, In particular, if det A = det B = 1, then det AB = 1. 1In a
similar way, if either det A or det B is zero then det AB = 0, but
we snall not explore such results in mere detail here.

€.4.3.15
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4.3.4(L) continued

Thus from the result of Exercise 4.3.2 we have:

3
AL =

-2
_ 3
e

~2
and
(aB) "1 =

-1

1

i

=12

(7)

(8)

From (7) and (8) we see that

=
[vs]
|

Comparing expression (9) and (11) we see that (AB) ~= B~
but if we look at (10) we also see that (AB)

as a"1s7L,

(9)
-4 11 =15
3 -8 11 (10)
-1) ( 17 —?)
1/ T\-12 5 (11)
L, grl~d

1 is not the same

In fact, if we look at A and B as denoting the first and
second factors respectively rather than specific matrices, the

=1 =il

result of part (a) indicates that A "B should be the inverse
of BA. That is, part (a) says that to invert the product of
two matrices we take the product of the inverses with the

order commuted.

BA

I

(
i

8

Again, det BA = 1, so

check, we have,

)

the recipe of Exercise 4.3.2 tells us that

S.4.3.16
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Block 4: Matrix Algebra
Unit 3: Inverse Matrices

4,3.4(L) continued

11 =15

(Ba) "t =

-8 11

and this result checks with the result of equation (10).

(BA}-l = a~1p71,

That is

Thus, once again we see that it is important to keep matrix

factors in their given order.
AB # BA, (aB) !

will not be the same as (BA)

.

In other words, since, in general,

1 3 5 1 o o0 1 3 s 1 o o
2 7 9 0o 1 o0 6 1 <1 =2 1 0
3 9 7 o o 3 o o -8 -3 o 1
i o & 7 -3 O
& 4 -1 -2 1 8
0 o -8 -3 0 1)
1 o 8 7 -3 0
o -8 8 16 -8 0
o o -8 -3 0
1 o 0 4 -3 1]
o -8 0 13 -8 1
o o -8 -3 0 1
5.4.3.17
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4,3.5 continued

ol
£Ed E3 23 3

E 0 o1 4 -3
]
I
T L T -+
|
r 3 1
g & Ty % -3 .
Therefore, -
1 3 sylya -3 1 !
will 135 1
A"t =2 7 o |- 1 B l
3 1
3, 9 7 3 0 5/ - u
As a check we have
1 3 5 4 -3 1 3
s 7 9 y|=& i % m
3 i
g 9 7 - 0 - m
39 .15  _ _3_5
4 - 43 3% 3540 1-32-3 J
|
! Bl 27 _1_29
8 5 + 8 6 + 7+ 0 2 8 5
37 21 .2_1 u
2 e +p 9 +9 +0 3-3-3
1 0 a
=0 3 =1,
0 0 1 ; U
Similarly,
4 -3 1\ 1 3 5 4 =6 %3 12=321L %95 30 ~27 41 g
13 1 138 s 3 3% a9 68 o 1
g 1 9 2 7 9 1= 8+2 5 8+7 g -—8-+98 H
3 3 9 9 15 7
3 0 -g[l3 9 7 gio-g g¥-g§ g '
8
S.4.3.18 u
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(b)

4.3.5 continued

1 0 0
= 0 1 0 = I3
0 0 i .

[Note: The fact that AX = I is not enough to guarantee that
XA = I (see for example Exercise 4.3.6 (d) and (e). This is

why we must show that both AX and XA equal I before we conclude

that X = A"1.]

Solving part (b) is a corollory of our solution to part (a).

Namely, if we are given the system
r

[y = Agq¥ky T BpaXy ¥ ByaX,
Fa T 39%] * 255%; + 333%;

Y3 = azyx) + agpXp; + azzx; (1)
and if we let A = [aij} then if A-l exists it follows that if
A-l = (bij), equations (1) may be solved for Xy1Xg, and X3 in
terms of yl,yz, and Y3 by

Xy = Byaly ¥ Byo¥y. ¥ By g¥s

Xy = by¥y + byo¥y + byav;

Xy = bigg¥y * Bty * Dag¥s s (2)
This follows from coding equations (1) in the augmented matrix
form

1
1, . Xg Py = i Xy Tg
all 312 al3 : 1 0 0
[
By B33 Ay 0 T 0
[

833 23z %33 ¢t ¢ 0 1]
and using the procedure of part (a).

Therefore

S.4.3.19
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4,3.5 continued
Therefore

Y T %X + 3x2 + Sx3
Yy =2xl + 7x2 + 9x3

Yy =3%; + 9%, + Tx, (3)

implies from our result of part (a) that

¥ = Ay =3y, ¥y
. !
%3 Y1t YT g¥3
_ 3 1
X3 3" g Y3 (4)

and one can now check directly by replacing X1, Xy and X4 in (3)

by their values in (4).

G T & = e e s o =

c. This is part (b) with ¥q = 8, Yg = 16 and Y5 = 32. Putting these
values into equations (4) we have

X = 4(8) - 3(1l6)+ 32 = 32 - 48 + 32= 16
_ _13 el S— _ —
Xy = —§(8) + 16 5(32} 13 + 16 4 1
- 3 -1 = - = -
Xy = 8(8} 8(32} = 3 4 1 =

As a check

16 + 3(-1) + 5(-1) = 8
2(1l6) + 7(-1) + 9(-1) = 16
3(16) + 9(-1) + 7(-1) = 32 .

£33 L3 3 3 2

-
i

1 3 5
With A = (2 7 9) we know from the previous exercise that
3 9 7 l:
4 -3 T
=1 13 1
A = =N 1 -'8' ’
3 1
5 ° g -
S.4.3.20 u
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4,.3.6 continued

Therefore

(a) AX = C means, first of all, since A is 3 x 3 and C is 3 x 2 that
X must be 3 x 2. That is, AX must be 3 x 2 and the number of

rows in X must equal the number of columns in A.

At any rate,

AX = C
implies
x = alc

provided, of course that A_l

and C is 3 x 2, the product is well-defined.

Hence,
4 -3 L 0 8
)13 L
X——-B— 1 8 4 2
3 1
\_i 0 “3 8 16

0 - 12 + 8 32 - 6 + 16
=0 + 4 -1 =13+ 2 - 2

C makes sense. Since A L is 3 x 3

0 + 0 -1 3+0 - 2
-4 42
=| 3 -13
=1 1
Check
1 5 -4 42 -4 + 9 -5 42 - 39 + 5
AX =1 2 9 3 =13 =|-8 421 - 9 84 - 91 + 9
3 9 7 -1 1 -12427 - 7 126 =117 + 7
0 8
= 4 2 = C,
8 16
S.4.3.21
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4.3,.6 continued

b. Mechanically, we have that YA = B means Y = BA-l [not A-lB since

YA = B implies {YA)A‘l = BA‘l]
Therefore,
& -3 3
Y=(§ : 12) = -3
i o 4
o B4+3 o+av0 0-g-1
" a2 L v 244240 8-2-2
T

]

c. Notice that B and C are related by B C” (where as in the

exercises of the previous unit CT denotes the transpose of C}.
The point is that from the equation
AX = C (1)

it follows that

ax)T = cT.

Since (AK}T = XTAT, this means that

But in this part A is a symmetric matrix (where by symmetric
we mean that A = A? which in turn means that A remains the
same when we interchange its row and columns) which was not the

case when A was chosen as in parts (a) and (b).

Since AT = A, eguation (2) becomes

S.4.3.22
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4,3.6 continued

xTa=ct
s T _
and since C° = B, we have
XA =B . (3)

Comparing (2) with (3) we see that if A is symmetric then
XTA = B as soon as AX = BT.

To check this in our particular exercise, we have

i ) 3 g 0o 0 1 2 3 1 0

| 0
| .

2 5 7 : o 1 o ~jo 1 1 -2 1 o
|

37 81 o0 o o 1 -1 =3 0 1

[o
o

I
N

1
|_-l

1
j_l
L

.l Eh A 0D O e e

r
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4.3.6 continued

Therefore
M i iy 9
1 2 K L) [ 7 0 0 1 0 0 V1
|
' 5
2 5 7 "0 1 of ~ |0 1 0 -3
I
: 1
3 7 8 | 0 0 1 0 0 1 5

1 2 3
2 5 7
3 7 8

then A™T is the symmetric matrix

/

3 3 1

2 2 2
_3 1 1

2 2 2

h S r 1

2 ) b 2

At any rate, solving AX = C yields

[ ] B Ln

NS

N = haH|

=

x = alc
or
9 5 1
> -7 5 0 8
= _5 1 1
X = 5 7 7 4 2
3 % -2/ \s 16
-10 + 4 36 - 5 + 8
= 2 + 4 -20 + 1 + 8
2 - 4 4 + 1 - 8
S.4.3I24
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4,.3.6 continued

-6 39
6 =11
-2 -3 /. (4)
Similarly YA = B implies Y = BA~ L, or
S 1
2 2 Z
.. 0 4 8\ [ s 1 3
8 2 16 J - 2
1 1 1
) 2 ]

( 0 - 10 + 4 0+2+4 0+ 2- 4)
56 -~ 5 8 —20 %748 4+ 1 -8

(—e 6 —2)
“\39 -11 =3/ . (5)

Comparing (4) and (5) we see that

in this case.

d. We have

I PE PE B B S BE BE B B B Bl Bl BE BE BE e BEm .

1 0 1 oy %75 i g
X x =
0 1 1 21 a2 0 1
X31 %32
Therefore
Xyp *Xkgy  Fyy X} (L 0
Xop ¥ X531 ¥y t X3 @ 2
or
X, + Xy = 1 (6)
X571 + Xqy = 0 (7)
X1, + X3y = 0 (8)
Xog t Hzg =1 (v)
S.4.3.25
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4.3.6 continued

From (7) we have X,; = -X3; and from (6), X1 = L= X3q. Simi-
larly from (8) X1y = =Xz, while from (9), Xy = 1 = x5,

Thus, we may pick X3q and X390 S2Y, at random after which we

X =1

11 T Xy By W T &

must have x and X5y = 1 -

21 " T#31 32

Hence our matrix X is

31 32
and in this matrix we are free to choose X3q and X35 at random.

As a check

1-x5 = X33 L o= By A My = X3
(1 ¢ 1 “X3 LT X | T - kg txy 1o oxg
0 1 1 X X 3
31 32

e. On the other hand, if we look at

X137 X132\ /1 o 1 g
X x = 0
x24 _xzz . L )
31 32

we have

X1 *12 %31 * % 10 0

X1 *22 X0 ¥ ¥ = |° 0

X 0 0 1./ .

32 S )

Comparing the first rows of these last two matrices we have

b4

32"

#+ X32

+ 1‘{32

X171 = 2 [ X, = 0, and xll + Xy = 0 which is impossible since
Byy FRyp 2130 =i,
5.4.3.26
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Il e By m Pw B B PE DD BEm BE B Be

Il m EE .

4.3.6 continued

Hence, there is no matrix X such that XA = 13.

4.3.7

The main aim of the exercise is to point out the subtlety that we

must not make too many changes in our augmented matrix at one time.

The point is that if we start with

and replace the first row by the sum of the first and the second,

we obtain the new matrix
5 s (4 6)
3 4 .
When we now replace the 2nd row by the sum of the first and the

second, we are referring to B, not A. That is, we form the new

matrix C where
(4 6
€=% 10] .

In augmented matrix form

The point is that wherever we operated on more than one row of
a matrix at a time, we never touched a row once it was changed.
For example, when we subtract the first row from the second,
then the first row from the third , etc., none of the rows are
being changed more than once in the same augmented matrix and,
moreover, no changed row is ever used to operate on an unchanged
row. The point of this exercise is to show you that serious
errors may occur if we take too many liberties in replacing rows

too quickly. When in doubt, stop and begin with the next matrix.

rFa
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