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Block 4: Matrix Algebra

Unit 2: Introduction to Matrix Algebra
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4.2.1

The main aim of this exercise is to help you become more at
ease with the idea of the "game" of matrices. To this end,

we wish to use our basic definitions to arrive at certain
structural properties of matrices. Rather than run the risk
of becoming too abstract we have chosen the special case

of 2 x 2 matrices since in this case the actual computations
are not overwhelming (although they are a bit tedious) and at
the same time the procedure used in the 2 x 2 case generalizes
rather easily to the case of n x n matrices. Hopefully, the
interested reader will be able to see this on his own if he

so desires.

To begin with, let us denote A, B, and C as specifically
(and yet as generally) as possible by letting

11 212 by; By €11
s 1 %22 == b b © - -
21 22 C21. S22

a

Our approach will be to compute A(B + C) and AB + AC, then
show that these two matrices are equal term by term; hence

equal by the definition of equality.
In a similar way we shall compare A(BC) with (AB)C.

Using the notation in (1) we have
b b c c

12 5 AL 12 (2)
b

22 €21 Cp2

I il
A(B+C) = |\, R

21 22 bo1

L

By our definition of matrix addition we have that

=
B1 B ) o fCn Py Put s Rt S
b1 Py %1 % Bog *C1 Byt €5
* Notice that this verifies the rule of closure that
the sum of two 2 x 2 matrices is a 2 x 2 matrix.
Swdadal
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4,2.1 (continued)

and substituting this result into (2) yields

b + c

a;;  apg) bi; * 13

852 by; + ¢33

12 12

I

A(B + C)

a b + ¢

21 22 22

= - *
[(all' ajp) v by *+ ©y90 byy + cyy)
(agyr ay3) » (byy + c190 byy + C5y)

(a (b

11 212

12 ¥ Cpgn Bog ¥ czz)]
(ay1s a@33) * (byy + cyp,

baz * €3] |
= [all(bll + cyp) +oajylbyy *ocyy)
851(byg * €310 * 3a,5(byy + Cp4)

ajp(byy + €95) + ajy(byy + sz’]

ay1(byy + cp5) *+ ay,(byy + ¢y,)
[allbll *a5165q * a585 +812%)
a;1P11 * 33:C11 * agyby t a33C);

ajibyp + a11c)p + agghyy ¢ alzczz]

ay1P12 * 251G * 85355 + 35585, (3) '
Therefore,
A(B +C) = [allbll + 815059 * @71C33 * 815%;
aj1byy + ayyby; + @565 + 8556
|
ajiPa + 2350y + 27055 + @y5C5,
81019 * 855055 + 859G, + 35,5855 | - (4)

[Where the only difference between (4) and (3) is that in (4)
we have regrouped terms to suggest the form AB + AC which we

shall investigate next]

* Remember that bll + €11 is a number as is b21 + Cyye Thus

we are simply employing our usual rule for matrix multipli-

cation; in this case, dotting the first row of A with the

first column of B + C.
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4.2.1 (continued)

On the other hand

a a b b
AB:( 11 12)( 11 12)
by; by

41 %22
*

ajqbyy *agobyy apbry +agyby,

ay1Pyy * azyby;  apibyp *oapybyy | (5)
while

M1 %2 €11 Fip
AC =

251 3 A

2148y * BysCoy  Rya®rs T 89S0

Bo3Pyy F BypCoy  BpyCie V B50Cas | | (6)
Combining (5) and (6), we have
N [allbll tagphs  AnPig * alzhzz}

azjbyy t+ axyby;  ayybip + apyby;
N Lallcll t 819%3  R11%32 * 8425
25111 ¥ 4521 231%52 * 955%2 (7)

From our definition of matrix addition, (7) becomes

237P33 * B45P57 * #19%1 * 915%23
AB + BC = a..b + a,.b ES c -
21°11 29%231 7 %21%11 ¢ 92221
ajqbyo + a35byy + 359055 + 31,565,
+ a..b + a + a

B9y * ByaBon ¥ 8980 ¥ Banfaa . w®)
Comparing (8) with (4) and recalling our definition of matrix
equality (i.e., the matrices must be equal entry by entry) it

follows that

A(B + C) = AB + AC. (9)

¥ From now on we shall omit the step of writing a matrix
product in terms of dot products of n tuples and write
the result directly. The student who still feels
insecure should supply the missing step.

S.4.2.3
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4.2.1 (continued)

[Notice that the more experienced student could have derived

(9) directly from (4) by observing that

(allbll + ajobyy *a33611 * 23,6

dygPyy ¥ Agobay * 851894 ¥ @550,

31999 F By absy b By Cyo alzczz)

ay1P1p + 85055 + 8,510, + ay,0,,

(allbll + aj;obyy  ayby, +a35by, )

251931 * BP0y Bagbya v asobs,
; (a11°11 ¥ &2%y  213%1s +-‘312‘322)
%2a%1a T PggCax SxFyp T A3380
= AB + AC].
As for verifying that A(BC) = (AB)C, we have

BC =
\byy by + byycy; Pyi€1p * byCy;

(10)

€21  ©22f \P21%11

Hence

I

A(BC)

aj; alz) by1€11 * P3a€3;  bp3€52 * b12c22)
ay1 233) \P1C7;3 t PypCy;  PyiC15 * Dy,C,,

aj1(by3€y3 + Pyp€yy) + aj5(byye57 + byycy)

a,y(by3€17 ¥ b1C55) + ay5(bye,9 + byycyy)

+ 5
+ b

2222)
22%22)

a;1(Py1C15 + Py5C55) + a5;5(by0;,
ay1(by1C15 + by;C5,) + ay;(by¢y,
¥ ay5055C57

+ a55b55C5;

a;1P31%11 * 211P12%1 * 31502119

b + a, b

a51P11%11 * 321P12%1 * 332P21%

b)1C15 + a13P12%5 + 215P51C15 + 315P55C;;

+ ay1b15Cy, + 355059615 + ay5055C,,
(11)

i
2511112

(bll blz) (011 clz) (b11°11 + bypcy;  bp€1p t b12c22)

S5.4.2.4
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4,.2.1 (continued)

On the other hand from (5),

+ a

a;iPy1t a3Pyy  a1Pyp *21oby;

AB:
ay, Pyy Faybyy @y by, Fasobyy
Hence,
aj byg *ajpbyy apbyy tagyby, 31 “iz
(AB)C = a,-b + a..b a~-b + a,.b c e
21211, 22231, 21°i% 22055 31 S22
= | (@13byg *+ ajbyy Jeyy + (aggbyy +ag5bs5)0,,

(ay)byy + @yybyy degg + (ay;by, + ay,by5)¢)

b + a + + a

(aj1bg3
(@ay,P17

12222722
22222722

(a;;Py>
+ (ayyby5

12P217¢12

+ a,

22P217¢12 # &

a;1b11637 + @15Pp1C17 + 211P15%1 3120220

ay1b11C1y + @yP51C17 + 35101587 F 3550556
b

b + a..b + a..b

811211%2 12722512 117%12%22. T 31292553
ay1P11C10 + @55Pp1C15 + 2331P1260 32502227

(12)
or more suggestively,
a31b179C17 * 33991221 * 212P21%1 * 212P22%0
(AB)C = lay by1Cy) + ay1P1,Cy; + @55b51C1) + 350556
a;1b11C15 * 3170565, ¥ 315P51C1, F 2150558,
a,1P11C 5 + @51b15C, + 35505967, F 3550558,
(13)
Comparing (11) with (13) shows us that
A(BC) = (AB)C (14)
4.2.2
T
a. Letting B = 11 12 we see that AB = 0 means
b
21 P22
S.4.2.5
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4.2,2 (continued)

( 1 1\(by; b\ _ [0 0
& L\ By Bgq o o). (1)

Now
LoLlhifkis B o [Pt Pa Tis s
1 1/\by; by, byt byy  byy ¥ by (2)

Substituting the result of (2) into (1) yields

bj; *by; by *

22 ) _ Y i
by +hyy Byt 0

22 0 -

Since matrix equality means that the matrices must be equal

entry by entry, equation (3) implies that

bll + bzl =0 (4)
and
b12 + b22 =0 (5)

Equation (4) is obeyed provided only that b21 = -bl1 while
equation (5) is obeyed provided only that b,, = = by,.

This tells us, for example, that bll and b12 may be chosen

completely at random while b21 and b22 must then be given by

byy) = = by; and by, = = by,

In other words, if AB = 0, then

b,, b b,, b
gal Al Y 11 °12 (6)

by; Py =By "By

To check this result, observe that with B as in (6)

S.4.2.6
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4.2.2 (continued)

11 Y12
AB = ]
L Lak=byy ~byg
[P "R Pz P
i1 "By1 Bz "By
0 0
“\o o/.

What this Exercise shows us is that it is guite possible
for the product of two matrices to be the zero matrix even
if neither of the factors is the zero matrix. In this
particular example, we showed that if

I 1

A= :
11

then if B was any matrix, such that, entry by entry, the
second row was the negative of the first row, the product
AB would be the zero matrix. In other words, there are
infinitely many different matrices B for which AB = 0, even
though neither A nor B need be the zero matrix.

b. Here we wish to emphasize the problems that occur because
matrix multiplication is not commutative. We have just

seen that for AC to be the zero matrix, then C must have

the form
X Y
C = (7)

where x and y are any real numbers chosen at random.

If we now use (7) to compute CA, we obtain
X v} ( 1 3
-X -y) 1 %

x + ¥ X +'y
( ) (8)
X = ¥ =% = ¥

S.4.2.7
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4.2.2 (continued)

and from (8) we see that for CA to be the zero matrix, both
x + y and -x -y must be 0, and this in turn means that y

must be -x.

In other words, if CA is also to be the zero matrix, we need

the additional constraint that only one entry of C can be

chosen at random. In particular, in terms of the notation

in (7), we must have that

X -X

(@]
I

=X X

With C as defined in (9) both AC and CA are equal to the

zero matrix. As a check we have

2B 1 X =-X X -X -X + X
AC = =
iL 1 -X X X -X -X + x
0 0
= =
0 0
while
X =X e 1 X =3 X o=- X 0 0
CA = = =
-X bid 1 1 -X +X =X + x 0 0

The important thing to observe, however, in this case, is

that the set of matrices B for which AB = 0 is not the

same as the set of matrices C for which CA = 0. This result

is quite different from the corresponding result of ordinary

multiplication and also of, say, dot product multiplication

where it is true that A . B can be 0 even though neither A
nor B is 0, but in this case it is also true that A * B =
B - A
4203
In this case letting

b b
B = 3 12 )

ba1 P2

S.4.2,8
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4,2.3 (continued)

we have that AB = 0 means

1 1 bll blz F 0 0
1 =, h21 bzz 0 o /.
Hence,

bjj +by; b3y *+ by,

bj; = by;  byp = by 0 0 /.

byy * bgy =0

bll - b21 =0 (1)
and

bjg *+ by, =0

b12 - b22 =0 (2)

The system (1) [as may be verified by first adding and then
substracting the two equations] is solvable if and only if
bll and b21 = 0. Similarly the system (2) is solvable if and
only 1if b12 and b22 = 0.

Thus, in this example B must itself be the zero matrix

A comparison of this exercise and the previous one reveals the
following interesting (and complicating) fact, Given a square
matrix A which is not the zero matrix, there are situations in
which it is possible to find infinitely many matrices B such
that AB = 0. On the other hand, there are other situations in
which for the given matrix A there is only one matrix B (namely

the zero matrix itself) such that AB = 0.

S5.4.2.9
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4.2.3 (continued)

This result is different from most arithmetic we have studied.
For example, in numerical arithmetic if a # 0 then ab = 0 if
and only if b = 0, while in dot-product-arithmetic if a is
a non-zero vector a + b = 0 always has infinitely many

solutions for b.

In the next unit we shall discuss this property of matrix

multiplication in more detail.

Notice also that in the case in which B = 0 is the only matrix
for which AB = 0, then CA = 0 yields only the scolution C = 0.

For example, using A as in this exercise, we see that if

cll c12 1 L _ 0 0
Cyy Cyy 1 -1 0 0
then

Sxx P %2 ©11 7 Gl I L
o + C 0 0

i) 22 ©21 T G5

whereupon we conclude as before that €1 = €13 = 0 and

= c = 0.

& 22

21

The results of these last two exercises should not be confused
with the converse problem. That is, while AB = 0 does not tell
us whether either A or B must be the zero matrix, it should be
clear that if 0 denotes the zero matrix then A0 = 0. Namely,

in the 2 x 2 case we have

a a 0 0
AQ = 11 12
azl a22 0 0
- 0 0
0 0
= 0

That is, A0= 0, but AB = (0 does not always mean that B = 0.

5.4.2.10
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Block 4: Matrix Algebra
Unit 2: Introduction to Matrix Algebra

4.2.4

This exercise is actually a companion, or a corollary, of the

previous two exercises. Recall that the fact that ab = 0

implied that either a = 0 or b = 0 hinged on the fact that a-l
existed. Our claim is that in part (a) the matrix A has an
inverse (that is, we intend to show that there is a matrix X
such that AX = I, and X is then denoted by A_l), while the
matrix B in part (b) does not have an inverse.
a. Letting

X X
X = 11 12

o Fag
we have

1 1 X %
Ax = G

1 =1 51 X55

_fg ¥ gy Eyg T Egy

BT R Tap T Mgpd
Hence AX = I implies that
Xjq * By Eyy ¥ By 1 0

¥y = Hgp  ¥yg < Bpy 8 L1
Therefore,
Rig ¥ By = X -
s R~ 1 A
and
X5 + Xy = 0 (2)
By = Xgg =1
Solving the pair of equations (1) for X4 and X531 yields
5.4.2.11
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4.2.4 (continued)

o, % = X ==

21

N =

11

Similarly solving (2) yields

Putting (3) and (4) into our definition of X yields

(3)

(4)

X x i 1
PR e B 127 12 2
X X 1 1
21 22 5 -5 )
As a check
i | : 5
AX =
1 =1 i X
2 2
1,1 1_1
127 2 2" 2
o S | N |
5TF 27%%
L 0
0 e “
Therefore,
1 1
% A 2 Z
i 1
2 2
b. Letting
X X
| AR A2
“ox %22
we have
o o| BT [ Fiz) [t Yo a2 T %22
i ¢ i B X571 X590 X1t X5y X1p T X (5)
Then since BX = I, equation (5) implies that
S,4.,2.12
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Block 4: Matrix Algebra
Unit 2: Introduction to Matrix Algebra

4.2.4 (continued)

Xy + Xy = 1 (6)

and also that

X4 + Xy, = 0 . (7)

Equations (6) and (7) together imply that 1 = 0 (since both
equal X9t le}.

This contradiction establishes the fact that there is no

matrix X such that BX = I.

Thus B~ does not exist (and this is closely related to why
there are infinitely many matrices Y such that B = 0 while only
the zero matrix satisfies AX = 0). In other words, the matrix

equation BX = I has no solutions.

4,2.5
1 1
a. A =
1 2
Therefore,
2 1 i 1 1 1 +1 1+ 2 2 3
A = = = (L)
1 2 1 2 1+ 2 1+ 4 3 5

[
=
|_d

'_l
N
RO
——— .
o
18] ot
L ios

2 1 (2)

[since matrix multiplication is associative (see Exercise 4.2.1)]

Substituting the result of (1) into (2) we obtain

RV [

S5.4.2,13
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4.2.5 (continued)

2%+ 3 2 + 6

3+ 5 3 + 10

5 8
8 13
Aside: The interested reader may observe that multiplying

a matrix X on the right by

L 1
A =
i 2
yields
o - X117 %2 1 1
X1 %55 1 2
o (P3P ¥y gyt eEyg
X571 + X595 X531 + 2x22 .

Thus, in any event the first column of XA is obtained by

adding the entries in each row of X. In particular in computing

A2 we pick X = A so that
1 1 1 I 1. —_— 2 e
5 2 1 2 I+ 2 —_— 3 —

The specific choice of X = A also tells us that the entry in

the first row, second column is the same as the entry in the

second row, first column, while the entry in the second row, sec-
ond column is the sum of the entries in the first column. Thus,

the various powers of A will be given by

1 1 2 3 5 8 13 21 34 55
> > - -
&l 2 3 5 8 13 = 34 55 89
a a2 a3 at A>
S.4.2.14
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Unit 2: Introduction to Matrix Algebra

4,.2.5 (continued)

89 144
-+
144 233
AG
;i 1
B A =
1 1 (1)
1 1) 11 RS | 2 2)
A2= — =
(1 1 1 1 1+1 1+ 1 2 2 (2)
1 I )] 1 1 1
A3=
1 T 1 1 1 1
5} 1 1 i 1! l)
1 1 1 1 1 1
2 2 1 1L
2 2 1 1
}
2+ 2 2 + 2
2 + 2 2 + 2
4 4)
4 4 (3)
Comparing (1), (2), and (3) we may conjecture that
n-1 n-1
An . 2 2
2n—1 2n-l .
Since
1 1 22 2.9
A1=A= = )
1 1 2° 29
2 2 2 2l 2l
A = =
2 2 2t 3t
S.4,2.15
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4,2,5 (continued)

and

-l OGS - = s

One way of confirming our conjecture is by use of mathematical

induction, Namely we already know that
k=1 k-1 -

2k-l 2k-l

is true when k = 1,2,3.

We must then show that the assumption that

2k-l 2k—l
Ak
2k-l 2k—-l
k+1 2k zk
implies that A = Kk K .
2 2
To this end,
gk=1 k=11 1 3
k+1 k
AT =S foged kel
2 2 1 1
2k-l+ 2k—-l zk—l+ 2k-1
2k—l+ 2k—l zk-l+ 2k—l
2(2]-1—1) 2(2k-l]
22k 202k 1) |,
Hence
k k
Ak+1 _ 2 2
k 2k

and our proof by mathematical induction is complete.

S.4.2.16
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4.2.5 (continued)

Therefore,
i 1 3 f i
a%=| s 2 6 5 2 6

2 &) =3 -2 -1 -3

1+5-6 1+2=-3 3+6-=-29
5410 =12 5+ 4 - 6 15 +12 -18
-2 -5+6 =2=24+3 =6-6+9

0 0 0
={ 3 3 9
-1 -1 =37,
Therefore,
A3 = AAA
= (AA)A
= a%a
0 0 0 i 1
=| 3 3 9 5 2
1 =1 -3 2 -1 - B
Therefore,
0+0+ 0 0+ 0+ 0 0+0+ 0
A3 =l 3 +15 -18 3+6 -9 9 +18 =27

), w5 g g =l =2 k.3 =3 = g9

Il
o
(=]
o

This example shows that it is possible for a power of a non-
zero matrix to be the zero matrix. Such a matrix is given a

special name. Namely if the non-zero matrix A has the

S.4.2.17
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4.2.5 (continued)

property that there is a positive whole number n such that

a" =0 (where 0 denotes the zero matrix), then A is called

a nilpotent matrix.

a. Therefore,

A2

]

34 6

(1)

(=)
=
[=2]
.

Now recallingthat cA means the matrix obtained by multiplying

>
Il
w
[¥%]
G S T O O U O BN B o = e

each entry of A by ¢, we also have

-10 -6
-2A =
-6 +6 | . (2)

I

Then =241

-24 0

0 -24 (3)

Combining equations (1), (2), ana (3) we have

S.4.2.18
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4,2.6 (continued)

2 34 6 -10 -6 -Z4 0
A = 24 - 24 I = o -
6 18 -6 6 0 -24
or,
2 34 - 10 - 24 6 -6 +0
A =~ 2A - 24 I =
6 - 6+ 0 18 + 6 =24
0 0
0 a9
That is,
A2 - 2A - 24 I =0 (where 0 is the zero matrix). (4)
Note:

Although the proof is beyond the scope of our course, there is
a very remarkable theorem that applies to square matrices. We
shall discuss the meaning of the theorem in more detail in Part
3 when we talk about eigenvalues but the "mechanics" are the
following. Suppose we have a 2 x 2 matrix (and corresponding
results hold for matrices of higher dimensions, but the compu-

tations are messier)

a

1 12

a

21 22

We then form the matrix A - xI, which is given by

11 12

A - xI

Il
i
"

21 22

1l

1]
w "]
V1]
[
18]
———
1
(= H
- (=]
-\—._-_.-.‘"

21 922

5.4.2.19
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4,.2.6 (continued)
[all =X Byz J
asq ay, = %] .

We then look at the eguation obtained by setting the
determinant of the matrix A - xI equal to 0. This yields

(a;q = x)(ay, = x) = ajjyay, =0

or

x2 - (a + a,,)x + (a,,a = Aia@,5) =0 (i)
11 ¥ 3 11322 ~ 21232 ’

Without worrying here about why one would want to use equation
(i) the amazing fact is that if the matrix A is used in place
of x in equation (i) and matrix arithmetic replaces numerical

arithmetic, equation (i) is still obeyed.

For example, in this particular exercise

5 3
A=
3 -3
Hence, |
|
5 3 -x 0
A-xI = +
3 =3 0 -x |
5 = x 3
3 -3 - x EI
Therefore,

L3

det(A - xI) = 0 implies .

(5 = x) (=3-x) - (3)(3) =0,

or

RE - 25 = 24 = 0 EoE

S.4.2.20
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4,2.6 (continued)

Letting A replace x in (ii) we obtain

22 - 2a - 24 1% = 0

which agrees with the result of this exercise.

We observe, of course, that just as in the previous exercise
we could compute A3 directly. Namely, from (1) in part (a),

5 3 5 3
a2 -
3 -3 3 -3
34 6
6 18 i
So that
A3 = AzA

]

170 + 18 102 - 18

30 + 54 18 - 54

188 84

Il

84 =36 .

We wish, however, to emphasize the result that for our choice
2

of A, A = 2A - 24 I = 0. To this end we write A3 in a form
which emphasizes A2 - 2a - 24 I,
2 3

Namely, if we multiply A - 2A - 24 I by A we obtain an A

term but also the term —2A2 - 24 AI, or since I is the

(5)

*We must be careful to observe that while 24 is a number
it is not a matrix, The interpretation used in the theorem

is that 24 is replaced by 24 I.

5.4.2.21
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4.2.6 (continued)

2

identity matrix, -2A2-24A. Hence if we add 2A" + 24A to this

expression we have the identity

2% = a@2 - 2a - 24 1) + 22% + 24a . (6)

Since Az - 2A - 24 I =0, it follows from (6) that

a3 = 222 + 24a%. (7)

Notice that (7) shows us that we can compute A3 in terms of
the lower powers A% and A.

In fact we may "reduce" a3 even further by observing that

28% + 24a = 2(2% - 2a - 24 I) + 28a + 48 I. (8)

and, again, since A2 - 2A - 24 I =0, (8) implies that
2a% + 24a = 28a + 48 I.

Putting this result into (7) yields

Al = 28a + 48 I. (9)

Equation (9) is particularly convenient for computing A3
since

9 3 1 0
28 + 48

3 -3 0 d

28A + 48 I

4

140 84 48 0
+
0 48

84 -84

140 + 48 84 + 0

84 + 0 -84 + 48

i1 L3

#This follows from the fact that if 0 is the zero matrix
then A0 = 0, Therefore A(A2 - 2A - 24 I) = A0 = 0 and since
0 is the identity matrix with respect to addition

A3 = 0 + 2A2 + 24A = ZAZ + 24A,

S.4,2.22
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Unit 2: Introduction to Matrix Algebra

4,2.6 (continued)

188 B84
84 =36 (10)
Equation (10) checks with the result in (5).
C. The main aim of part (b) was to emphasize that we may "reduce"

powers of matrices by a technique which is essentially the

same as the recipe for performing long division of polynomials.

3 2

For example, when we want to divide x~ by x° - 2x - 24,

the

recipe 1s nothing more than a convenient form for factoring
Without going through the specific

x2 - 2x - 24 from x3.
details, the point is

»
non

Il

Consequently, it is easy to see that when x
x2 - 2x - 24, the gquotient is x + 2 and the remainder is

that

28x + 48. In particular, if xz

x(x2 - 2x - 24) + 2x2 + 24x
wlx? = 2% - 24) + 2(x® - 2x - 24) + 28x + 48
(% + 2) (x* = 2% = 24) + 28x + 48.

3

- 2x - 24 happens to be

zero then the remainder is the gquotient,

is divided by

At any rate, if we now go through the procedure in (b) but
use the convenience of the long division notation, we have:

a’ A% < 2a =241
Al - 248 - 24a° A% + 2a% + 2823 + 104a% + 880A + 4256
2A6 + 24A5
2a° - 4a° - 482’
28a° + 48a’
288> - 56a% - 672a3
1042? + 672a°
104a% - 20823 - 249622
880A° + 2496a°
880A° - 1760A° - 21120A
4256A° + 21120A
4256a% - 8512a - 102144

29632A + 102144
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4,2.6 (continued)

Hence,

al = % + 2a% + 2

3 2

8A> + 104A% + 880A + 4256 I) (A° - 2A - 24 I)

+ 29,632A + 102,144 I.

Then, since A2 - 2A-24 1 = 0,

7

a’ = 29,632a + 102,144 1.

(11)

E 3

While the division in arriving at (1ll) was a bit cumbersome

and while the right side of (11) may look a bit cumbersome
as well, the point is that it would have been even more

cumbersome to compute A? directly in the manner that we

computed A3 in part (b).

The important point is that since A2
polynomial in A can be reduced to the form cA + kI,
real numbers, That is, we can factor

where ¢ and k are

out A2 ~ 2A - 24 1 from the polynomial which means that
the remainder can be no more than a first degree polynomial

in A.

At any rate, with respect to our specific problem, equation

(11) shows that

- 2A - 24 1

any

al = 29,632a + 102,144 I
g 3 1
= 29632 + 102,144
3 =3 0
148,160 88,896 | , [ 102,144 0
88,896 -88,896 0 102,144
250,304 88,896
88,896 13,248
4.2.?
5 135
Letting B = bll blz we have
21 22

S.4.2.24
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4.2.7 (continued)

(1)

while

an = | M T2

21 P2

b -b + 2b

11 i 12

I

(2)

+2b,, | . |

231

Comparing (1) and (2) we see that AB = BA if and only if
-
By = Byg = By (3)

bZl = 2b21 (4)

+ 2Bys = by = by (5)

=by; 12 12

[bzl + 2y, = 2bas (6)

Both (3) and (4) imply that

With b21 = 0, equation (3) says that bll = bll’ and since
this is an identity, bll may be arbitrarily chosen.

Simiarly with b21 = 0, equation (6) becomes 2b22 = 2b22 which
is satisfied by any value of b22. So b22 may also be

- arbitrarily chosen.
Finally, equation (5) implies that

by, = by; = by, | (8)
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4,2.7 (continued)

Combining (7) and (8) with the fact that bll and b22 may be

chosen at random, we have

As a check,

&

I

b

11,

by

b1y
0

1

0

11

Therefore,

AB =

while

BA

i

Comparing (10) and (1l1) shows that with B as in (9) AB

Byi

0

11

11

by
0

b

12
by,
byj; = by
by
(9) yields
=1 byj; by = by
2 0 By
by; = byy = by
2b35
by = 2by,
2b,,
by, - by, | (1 -1
b22 0 2
=bj; + 2(b;; - byy)
Zbs3
byy - 2by,
2b .

22

(9)

(10)

(11)

= BA.

As specific examples of matrices which satisfy (9) we have

5 8 1
etc.
0 0 7
S5:4,2,26
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4.2.7 (continued

Since 5 - 3 =2 and 8 - 7 = 1.

4.2.8
2 3
a If A =
4 B 6
then
1 4
At = [2 s
3 6

b. The matrix (A")T is precisely A.

Namely we form AT by

interchanging the rows and columns of A. We form (AT)T

by interchanging the rows and columns of AT. In other

words we obtain (AT)T by interchanging the rows and columns

of A twice, but this is the same as leaving the rows and

columns of A in place.

1 2 3
For example, with A = 4 5 6
1 4
al= |2 s
3 6 /.
Hence,
- i 4\ ? 1 2
(A7)~ is 2 5 or
3 6 4 5
Ca Letting, as usual,
a a b
A 11 12 and B = 11
831 By ba1
we have
a a b b
AB = 11 12 11 12
a3 @[\ Pyy by
a,.b + a.,.,.b b

11711 12721 ®11%12

as1biy * 2505 2P,

+ a

we saw that

, which is A.

1222

+ a,,b

22722
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4,2.8 (continued)

Therefore,

A b
(AB)

allb

N S i

12

+ a

+ a

On the other hand,

v P11

blZ

by1%13

k123131

2y9P33

b

1712

Comparing (1) and (2) shows that (AB)T =B

From a learning point of view, the crucial part of this
exercise is the observation that since matrix multiplication
is not commutative, we must keep the order of the factors

intact.

Thus, while it might seem "natural" to say that (AB)T
the fact is that in general this result is not true.

true is that (AB)T
product is the product of the transposes, with the order of

multiplication reversed.

k)i

22

+

11
1:2

by1212

b,y23;12

31221

a;,P5;

There are many situations in which one is interested in the

12P21

1222

= BTAT.

ajzibyy * azyby,

31012 + 23,505,

o) |

Ry

blla21 + b

21a22)
byoay1 * Pyo3y;
b.. + a..b )

22311 22721

b

bya + a0y,

i

T

In other words,

A

(1)

(2)

the transpose of a

transpose of a matrix rather than in the given matrix itself.

We shall not pursue this idea further in this exercise but we

shall in our later work.
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