Solutions
Block 2: Vector Calculus

Unit 3: Space Curve and the Bi-Normal Vector (Optional)

2.3.1(L)

The main aim of this exercise is to give us a better feeling about
vector calculus applied to curves and, at the same time, by extend-
ing our discussion to space curves, to get a better understanding
of how the vector concepts we have been discussing transcend the
2-dimensional world.

To begin with, the equation
R(t) = x(t)1 + y(£)3 + z(t)k (1)

represents the locus of points in space described by the three

scalar equations
x =x(t), y=y(t), z = z(t). (2)

If we think (simply for the convenience of having a nice physical
interpretation) of t as denoting time, it is not hard to see that,
in most cases, the domain of R is an interval. That is, we are
usually interested in studying the path of a particle over some
continuous time interval, for example, from t = t; to t = t,.
A very natural question to ask is whether the locus of points
(x,y,z) forms a continuous curve. Perhaps we would feel intuitively
that if x(t), y(t), and z(t) were all continuous functions of

t, then so is ﬁ(t), and this is precisely what part a. is asking

us to do. Namely,

We must first decide what it means for R to be a continuous function
of t. In terms of our previous strategy, it seems fitting that we
take as a first approximation the analogous definition in the

scalar case. That is,

R is said to be continuous at tle[a,b] if and only if lim ﬁ(t) = ﬁ(tl).

t+tl

This, in turn, says that given € > 0 we can find § > 0 such that
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0 < |- €| <8 » |R(t) - ﬁ(tl)| <E 4 (3)

Our next step is to verify that this formal definition agrees with
our intuition. To this end we observe that our definition says
that R is defined at each t in the interval and that there are no
"gaps" in R since, for any t, in the interval, ﬁ(t] can be made

arbitrarily nearly equal to ﬁ{tl) simply by choosing t sufficiently
close to t,. Sincelﬁ!measures the distance from the origin to a
point on the curve, the fact that there can be no gaps in R insures

that there can be no gaps in the curve.

Thus, we may take (3) as a practical, yet precise, working defini-
tion of continuity. With this in mind,

|R(t) - R(t) | = [x(0) + y(©)F + z(0)k) - [x(tl)i' + y(tl)§+z(tl)f€]]

[ixe) = x(e1E + [y(e) - y(e13 + (2(8) - z(t)K]

"

lx(e) = xe1E1 + lye) - ye13l + Tz
- z(ty)1k|

Therefore, |§(t] - ﬁ(tl)| g |=(E) = x{tl)[ + |y(t) - y(tl)[ + |z(t)

- z(t))] - (4)

Since x, y, and z are all continuous scalar functions of t, we may

find ¢ 62, 63 such that for a given € > 0,

lf
5 )
0 < |t=t)] <8+ [x(t) -x(e))] < 5
0 < [t~ tll S g |y () - Y(tl}l < % L (5)
0 < |t -t < 85 |2(t) - 2(t))] < 5. )
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2.3.1 continued
Hence, if we let & = min{ﬁl,ﬁz,ﬁa}, (5) tells us that

0 < |t=-¢t; <8+ |x(t) - x(tl}| + |y(e) = y(e) | + [z(8) - z(t))]| < e

(6)
Combining (6) with (4) yields

0 < |t=-ty] <8 |R(e) - R(g))| < e (7)

What we have thus shown in part a. is that we can define continuity
for a space curve in such a way that the definition is independent

of our coordinate system. But, if we are dealing with Cartesian coor-
dinates, we have the "luxury" of knowing that we can test for conti-
nuity simply by testing each of the scalar components for continuity

(and this is something we have already learned to do).

b. (1) Given a continuous space curve, say, R = ﬁ{t), we know that by
our rules for differentiation, in Cartesian form, we have

If R=x(t)I + y(£)F + z(v)k

Our claim is that the vector defined in (8) is tangent to the space
curve. Perhaps the easiest and the safest way to see this is with-
out reference to I} 3, and k components. Quite in general, if R
and R + AR are two vectors drawn from the origin to points on the
curve, it is easy to see that AR is the vector that originates at

one of the points and terminates at the other. Thus,

(R + AR) - R = AR

oy
+
=g
by

oy
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If we now hold one of the points fixed, it is easy to visualize
that as AR approaches 6, our chord approaches the direction of "the"
tangent line to our curve. We have put "the" in quotation marks to
highlight a new degree of difficulty that is introduced when we deal
with space curves rather than plane curves. In a genuine space
curve, the curve does not always stay in the same plane (for if it
did it would be a plane curve). Thus, from an intuitive point of
view, the curve lies in some sort of instantaneous plane at any
given time, and we think of the tangent line as lying in this plane.
That is, if we_{ix the point Po on our space curve C, and we look
at the vector POP where P is any other point on C, then if our

—_—

curve is smooth, we see that as P approaches P the vector PoP ap-

0!
proaches a fixed direction, and it is this vector that we call the

tangent vector to the curve.

What really highlights this discussion may be seen from the follow-

>
ing 2-dimensional case. Suppose T is tangent to the curve C below.

If we now let S denote any plane that intersect C, then by construc-
tion any line in S which passes through P is tangent to the curve

C in the sense that it "touches" C at Py« In this respect, then,
there are infinitely many lines that are "tangent" to C at P
(Still another way of looking at this is that to talk about a tan-
gent plane at a point, we should be referring to a surface not a

curve, )

-+
The point is that g% picks out the most "natural" direction for us
to call a tangent to the curve at Po' That is, if given no other

instructions, we could look at a small piece which was "sufficiently

small" and we could assume that it was in a plane. The point is that

- -+
g%is a vector in this plane. In other words, the direction of g%
is the one we would pick intuitively as the direction of the curve

at the point.

The major gquestion that remains is that of coxrelating the sense
of the curve C with the sense of the vector g%. The point is that
just as in the planar case, if we let our parameter be arclength
(s), then gg will be a unit vector and its sense will be the same
as that of the curve, no matter how we elect to choose the sense of

the curve,
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2.3.1 continued

If there is no reason for otherwise choosing a sense for our curve,
we simply define T by dividing g? by its magnitude. 1In any event,
if we let ﬁ(t) be expressed in Cartesian coordinates, we have:

E(t} - x(t}I + y(tjg + z(t}i

whereupon our rules for differentiating vectors yields

+

GR _ &xp , gyt 4z
%

and we can now see why it is natural that %% be called the velocity

vector {?). Namely, it is tangent to the curve and the components

of it are %%, g%, and g%, which are the components of the speed of

the particle.

->

with+3 now defined to be g%, we simply define the acceleration to

dv
be IE*

(2) With respect to our example,

R=cos 3t 1 + sin 3t J + t k (9)
vV = -3sin 3t 1 + 3 cos 3t J + Kk (10)
32 = -9cos 3t 1 - 9sin 3t 3 (11)

therefore, |V| = \/{-BSin 3t)2 + (3cos 3t)% + 12

|¥| = /IT . (12)

(3) From (12), we see that the particle moves with constant speed.
From our earlier discussions, when the speed is constant, the
acceleration vector must be at right angles to the velocity vector.
As a check, (10) and (ll1l) show that

S.2.3.5
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+ -+
v+a=20,

-
c. Since 35 is a tangent vector, H"//| will be a unit tangent vector. *

In our present example, equation (10) shows that

"
Hf{= v) = =3sin 3t 3 4 3cost 3 - i, while (12) shows that

Thus,
dR /|dR| _ -3sin 3t 1 + 3cost 3 + k
dt/ |[dE| ~ 715 (13)

and since a—-/‘

. + - >\ ki
o=t ( 3sin .3t 1+ 3cos £ 3 + k) . (14)
Y10
212 > at
d, Since T * T = |T|*“=1, T - I = 0 [c.f., Exercise 2.2.3(L)]. Thus,
//| is a unit vector perpendicular to T, call this vector N.

-+

<+ -+
Then, if we multiply gg by the scalar 'gg‘ e

r

*We say "a" rather than "the" since if the curve has a sense of its

.
own and T denotes the unit tangent vector with this sense, then

-+ -+
dR /dR _ + 2 dR a3
dt//;t = = T depending on whether 7= and -= have the same sense

(i.e., whether %% is positive or negative),.

**Unless the sense is previously imposed on the curve C, we choose
its sense s¢ that the positive sign in (l4) is used to determine T.
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2.3.1 continued

att _ |af|(af /|aF
ds _|ds|\ds/ |ds
. ‘g.z_' 3. (15)

i
If we define |g§ to be curvature, k; we have from (15)

35 = KN (16)

In our present example, from (14), we have

-
%% = ;%%(-QCOS 3t 1 - 9sin 3t 3). (17)

at _ 4t /ds _ 1 df
Therefore, = T T/ TET ;E% T

Therefore, from (17) g-g = %ﬁ-(-cos 3t T - sin 3t J). (18)
Therefore, gg - %ﬁ = K.
From (16),
af _ & _ |af|(at ldf
ds ds|\ds/ |ds
we have
gg = %ﬁ{-cos 3t { - sin 3t J)
T
< w

While we have now solved this part of the exercise, it might still

be beneficial to see what the significance of N really is. Notice

that when we restricted our study to plane curves, once T was deter-

mined, N was determined up to sense. That is, since T and N had to

S<2:3.7
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2.3.1 continued

be in the same plane, ﬁ was determined up to sense once we knew
that it had to be perpendicular to T, 1In 3-space, however, the
problem is a bit more complex. The locus of all vectors N such
that T + ¥ = 0 is now a plane, Thus, we can find an infinity of
vectors, N, each with different directions such that T - & = 0.
Intuitively, if we think of the plane which contains C in a small
neighborhood of P_, we may think of T as lying in this plane, and
in terms of this plane (i.e., from an instantaneoys point of view,
we are back to the planar case), we expect that %g should also lie
in this same plane. (In other words, for small increments, we

feel that T and T + AT are in the same plane.)

The point is that T and N (as defined in this exercise) determine
a plane to C at P, (as would T and any other vector), and this
particular plane is called the osculating plane to C at Po' Phy-
sically, it means that at any given instant we can assume that the
particle is travelling in its osculating plane rather than along
the space curve. In this sense, the osculating plane is in

3-dimensions what the osculating circle was in 2-dimensions.

With T and N as defined in the previous parts of this exercise, we
may now view a plane moving along the curve from point to point.
This plane, as we saw in the previous part of this exercise, is the
osculating plane. If we now define B by B=7Tx ﬁ, we may view B
as a unit tangent vector (since it is the cross product of two unit

tangent vectors) which is perpendicular to the osculating plane.

Since B is a unit vect r, we know that it can only change in direction,
not magnitude, hence gg must measure the change in direction of B

as we move along the curve. Since B is always normal to the oscu-
lating plane, the change in direction of B also measures the change
in direction of the osculating plane. That is, the magnitude of

gg measures how fast the curve is being "twisted" out of the oscu-

lating plane at a given point,*

-+

We also know that gince B has constant magnitude, g% is perpendicu-

lar to B. Hence gE is a vector which lies in the osculating plane

(since this plane is the locus of all vectors perpendicular to §).

5
*In the special case of a plane curve, T and N always lie ip the

-+ > dB
same plane, say, the xy-plane. In this case B = k whence ™ 0.
In other words there is no torsionfor a plane curve.

S'2I3lB
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2.3.1 continued

More analytically,

. + -+ -+
Since B =T x N,

g.g-= (gg-xii)+ (Tx%—ﬁg).

From d., s = KN.

Therefore, gg = {Kﬁ X ﬁ) + (% 4 ggl, and since N x N = 3,

-+

dB _ = _ dN

el e

-+
From (19), aB is perpendicular to T (it is also perpendicular to
ds Perp

an

I but we do not need this for our purpose) and we already know that

3
gg is also perpendicular to B.

-
Since gg is perpendicular to both B and %,%g is parallel to N.

dB
I

IO T |g§l and is called torsion (a measure of the "twist")

; &+ ;
since N is a unit vector. That

-+
Hence, gg = 1N where |1]| =

of the curve.

- ds &, (1)

<+
=

S5.2,3.9
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-
"_dV___C}___g_%*
a=F-w@x?
_as® . ds af
gt2 dt dt
2
_ d”s % & ds dT ds (2)
_"dtz dt ds dt *

¥ B8 g, x(d5;2 N (3)
at? ae

[Note that (3) has precisely the same form as in the 2-dimensional
case even though T and N are now space vectors. Notice that (3)
agrees perfectly with the 2-dimensional case if we think in terms
of the particle being in its osculating plane.]

From (1) and (3), we obtain

2 3
b - ds d’s ds
vxa-s= (F xT) + (&) (F x M)
dt dtz dat

%
and since T x T = 0 while T x N = ﬁ, we have

3
vxa-= K(g;n B. (4)

3
Therefore, |v x a| = |k| |§%| |B| = K]3|3 (since |B| = 1 and « is

positive).

Not only does (4) reestablish the validity of the recipe

|§ x 3|
R s (5)
V]
S,243,10




e ém fm &ah aam S o0 G m ¢ e A e bm o8 =m

Solutions
Block 2: Vector Calculus
Unit 3: Space Curves and the Bi-Normal Vector (Optional)

2,.3.2 continued

even for 3-dimensions but it also tells us that v x a has the same
direction as B which reaffirms why we call the plane determined by
T and N the osculating plane. Namely, this result is consistent
with v and a both being in the osculating plane.

We now use the result of a. as follows.

From the equation for ﬁ, we can find v and a. By forming the cross
product of v and a we get a vector parallel to ﬁ, hence normal to
the plane determined by T and N (the osculating plane). We then
write down the equation of the plane. More specifically,

R=t1+2t% + 3%,

Therefore, v = 1 + 4t + 3t%%
a = 4? + 6t K.

Therefore, at the point corresponding to t = 1, we have

R=1+27+k
vV=1+ 47 + 3k
a = 47 + 6k (6)
Therefore, v x a = |1 3 k| = 121 - 63 + 4k. (7)
1. 4 3
0 4 6

Therefore, 127 - 63 + 4k or, equivalently, 631 - 33 + 2K is normal
to the required plane, while (1,2,1) is a point in the plane (this
is the meaning of R=1+ 23 + k).

Therefore, the equation of the plane is
6(x = 1) = 3(y ~ 2) + 2(z-1) =0
or

6x - 3y + 2z = 2,

Se2s 311
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2,.3.2 continued

c. From (6), |v| = VT ¥ I6 ¥ 9 = /26. Therefore ];IB = 26°/2 = 26/78,
while from (7)

|V x 3| = VITE 36 716 = /196 = 14.

Therefore, from (5)

14 147286 7/Z%

6= 2677 ~ Ty (28Y  T3an

[Note that from a physical point of view the meaning of parts b.
and c. is that, at the given instant t = 1, we may assume that

the particle is at the point (1,2,1) in the plane 6x - 3y + 2z = 2,
moving along the circle in that plane (the osculating circle) whose

radius is p = é = ig;zi.}

d. Most of the information we need for this problem is already known.

Namely, to all intents and purposes, we know f, since it is simply
-

-ﬁ%r . We essentially know ﬁ, since we have already shown that
v
Vxas= K|3]3 B (8)

—
and we have found k and v.

Oonce 8 and T are known, we find N from the relation N B x T,
(In the same way that T and N behave structurally like and ; at
any point on a plane curve; %, ﬁ, and B behave like I, ;, and k at
any point on a space curve. Consequently, we may view B=TxN
in the equivalent forms, T=NxBand N = B x T.) Pictorially,

>
i

e -
i i N T

-+ -
k B

- - -

*Notice here that we must use 12i - 6j + 4k not another scalar
muliiple such as GI - 33 + 2¥ since the recipe for Kk specifically
requires [; X ;|.
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2.3.2 continued

More specifically, at t = 1, we saw earlier in this exercise that

v =1 + 43 + 3k therefore, |v| = /26
a= 43 + 6k
v x a = 121 - 6] + 4k therefore |v x a| = 14.
lv x a
Therefore, «k = =" 14
[v] 26/26
Hence (8) yields
121 - 63 4 a8 = 24 _ (26/7%) B = 143.
26726
+ + >
Therefore, B = % 1- % 3+ % it =Bt 2k
7
Moreover,
$ = v _ 1+ 47+ 3k
V| V2%
i 3 k
Therefore N = B x T = ——— 6 =3 2
726 1 3
- -*é—-[*l? T-1673F + 27 E] ;
7V/26
2.3.3
N=Bx? implies that
s -+ +
dN o dT dB
E=(Bxaﬂs—)+fa-§x-'f}- (1)

- 3>
: aT > dB
Since I 8 kN and e Tﬁ, (1) becomes

5.2.3.13
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an
I

(B x <N) + (1N x T)

]

K(E X ﬁ)~+f(ﬁ x T). (2)
5 g > b o -» e

From the cyclic orientation of T, N, and B,

BxN==Ffand NxT = =-B.

Hence, (2) becomes

a. We have already seen that

-
dR _ &

ds (1)

at _ =«
E"s—z'—ag—-KN- (2)

3= -+
d R dN de >
Therefore, = K/ + N. (3)
dsj ds ds

From our previous discussion,

e
‘alfsl = -k - 1B, (4)

Putting (4) into (3) yields

S.2‘3ll4
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3+
adR - - dk
g;-g--l(( KT Tﬁ) +a-g§.

3=

Therefore, Q'TR = -KZ
ds

T + %g N -k1B. (5)

The interesting point here is that T, ﬁ, and B behave structurally
just the same as I, 3, and k. Thus, if two vectors are written in
terms of T, ﬁ, and B components we may compute their crossproduct
just as we did in the I, 3, and k case. This is perhaps what might
motivate one to compute

aR _(dz_ﬁ . d3ﬁ)
B \ag?  as>

Namely, since the first vector has only a T component and the second
only an N component, we see that the determinant that yields the
triple scalar product is given by:

1 0 0
0 K 0
™ g% =R

and expanding along the top row yields

l[-KzT -0 gg] = —K2T.

In other words,

(6)

—EE‘Q—%E:KZ
dsz d52

. (7)

Putting (7) into (6) yields the desired result:

S.2.3.15
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il - 235 235 (8)
a’Rr . @R
as?  as?

While we make no attempt to prove it here, it is an interesting fact
that knowing k and 1 at each point on the curve is enough to deter-
mine the shape of curve uniquely up to position in space. This is
analogous in the study of plane curves to saying that knowing the
slope of the curve determines the shape of the curve up to position.
(In fact, this is precisely what adding an arbitrary constant to

the indefinite integral is all about.)

c. In Cartesian coordinates

- + > +

Therefore,
R a 3
dR _ dxr dy+ dz>
ds 331 i+ ng * dsk
2% 2 2 2
d°R _ d°x7 , dyz acz>
—-—::.-——rl‘!' j+———§k > (9)
ds ds ds ds
L 2
a3r _ a3xi + a3 E E d3z+
ds ds>  as ds3 J
2 2 2
2 2 2 2 2
Therefore K2=d§.d§=(d§) +(d ,,,(dz) .
ds ds ds ds d33

While from (6) and (9)
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2.3.4 continued

xI Yl zl
_KZT _ %" v 2" where the differentiation is with respect
to s.
xlll y“l zlll
xl yl zl
Therefore, x" y" z"
xlll y"l zlll
T = =
(x? + (y%+ (22
2,3,5
<> 2+ 3
a. The mimicking procedure will have us replace gg, : R, and %—% by
s s
-+ 2 3 +
g%, Z ﬁ, and g;%; or G, ;, and g%. (In other words %% will play
t

a prominent role in 3-dimensions when we are interested in torsion.)

From earlier work, we have

* = d5

v—a-Ef (1)

2= szT + 35% (2)
ae? I

-+
From (2) we can compute g% (which we do for practice, but we will
only need the coefficient of B since

+
da _ _ >, _ = =
where It a; + azN + a3B )

= kg 9

> ,(+ da)_ a%s ds
a =
dt

31 2: %3

and expanding this determinant along the first row, we obtain

g%[a3x g% - a20] = aBK{g%)z.
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In other words, neither a, nor a, appear in the value of the
determinant.

2
At any rate, we obtain from (2) (and recalling that g—%, T, K g%,
and N are all functions of t) dt

g _a’s 3z, a’s af , acas ;. % . ds ¥

v Sl v i A (- oy 3t aqt
| - d3s 7o+ dzs at ds + dk ds N+ Kdzs N+ de dN ds
| ot EEYTRET® =3 Jt ds dt
|

-

Then since ﬁg = kN and %g = =T - 1§, we have:

S 3 2 2 2

g% = g—% T + é—% g% KN + %% %% N+ Kg—g N+ K(g%} (~«T - 7B).

dt dt dt

-

3 2 2 2
da _|ad’s 2 .ds > ds . dk ds ds d“s
Rerelfons; ‘“-[g;a" < (FE ]T+[KE;Z+3'EH'E+ “azg;z]“

ds 2y
- KT(H?) B. (3)

(As a check of our earlier results if we think of t as being an

arbitrary parameter in (1), (2), and (3) and then let t = s, so that
2 3
g% =1, Q_% = g—% = 0, we obtain:
dt dt

() gg = T,

2=+
d R e - -

(2') =y = 0T + k(1)N = kN.
ds

(3') -—-3-‘13“ = [0 - 22T + [0 + @) + 0IF - kv (1)?B
ds ds

- R - ek
Se2.3:18
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2.3.5 continued

and these check with equations (1), (2), and (5) of Exercise 2.3.4 .)

Notice also, in passing, that the derivation of equation

(3) was

purely mathematical and required no insight to the physics of space

motion. To be sure, it might be nice to have a feeling for %%

as the rate of change of curvature etc., but this is completely

unnecessary for the problem we are trying to solve.

Returning to the problem at hand we have:

%% 0 0
- - dg dzs ds
vV *la X EE = '—7 'CHE 0
dt
@)’
al az KT a—E
3 2
where from (3), a, = Q_% - Kz(%%) and
dt
e Kdzs , dcds  ds A%
2 'd't"z' dt dt at d"tz

+ 4
Therefore, v -(5 X g%)= =g T(af) .

(4)

(Again, as a partial check of (4), if we let t = s we obtain

aRr .(dzﬁ a’&
a8 ds ds

finally, if we invoke the previously proven result that

v x a|

K= 3]
v ]

—7 X -§)= -k T, which checks with our earlier result.)
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Block 2: Vector Calculus
Unit 3: Space Curves and the Bi-Normal Vector (Optional)

2,3.5 continued

4 *
and if we recall that (g%) is the same as |v[4 , then egquation
(4) becomes

+ |$ X ;] - T|; x ;]2
> z -+ da —_— =+, 4 e
v (a XE-E)— ——“i':":-i'r—'fl‘fl ] -—-——l—i;:i-z-— .
<>
-|;|2[¢ AE d:)]
Therefore, 1 = . 5 " (5)

-+ -+
v x a

b. We had established that (Problem 2.3.5 b.)

[

B=t 1+ 2t27 + 3%

v=1+4at3+ 3%
a = 43 +6tk

and we now add to these equations:

da _ .
e o 6k.
N -» - -+ -
In particular at t = 1; v =1 + 43 + 3k,
-+ -+ dr’
a= 4} + 6k and H% = 6; therefore, at t = 1 we have

ds

4 dt
our case, only even powers of E% occur so everything is always
non=-negative.

*In general it is possible that and |v| differ in sign, but in
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Solutions
Block 2: Vector Calculus
Unit 3: Space Curves and the Bi-Normal Vector (Optional)

2.3.5 continued

> t >
1 3 k
> > - - +
v X a-= 1 4 3 = 121 - 6] + 4k.
0 4 6
> >
Therefore, |v x a| = V144 + 36 + 16 = 14,

Putting these results into (5) yields

_ _26(24) _ _156
196 - 43
Therefore |1| = 152.

Again, it is not our purpose to have you learn a short course in
Differential Geometry or the like, but rather that you get the
feeling of what curvature and torsion mean physically. The connec-
tion between 2-dimensional and 3-dimensional space curve is that
the vectors T and N as they exist in the 2-dimensional case form
the osculating plane at any instant in the 3-dimensional case.

o
In closing, it should be pointed out that the quantities %g, %g, and

gg obviously play important roles in the study of space curves. We
have already shown that:

& _
N
=

a-s-'— -Tﬁ - Kﬁ.

These three results are known as Frenet's formulas.
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