
Solutions 
Block 2:  Vector Calculus 

t 3:  Svace Curve and the  Bi-Normal Vector (Optional) 

2.3.1(L) 

The main aim of t h i s  exerc i se  is  t o  give us a b e t t e r  f ee l i ng  about 

vector  calculus  appl ied t o  curves and, a t  the  same time, by extend- 

ing  our discussion t o  space curves, t o  ge t  a b e t t e r  understanding 

of how the  vector  concepts w e  have been discussing transcend t h e  

2-dimensional world. 

To begin with,  t he  equation 

represents  t he  locus of points  i n  space described by the  t h r e e  

s c a l a r  equations 

I f  we think (simply f o r  the  convenience of having a n i ce  physical  

i n t e rp re t a t i on )  of t a s  denoting time, it is not hard t o  see t h a t ,  

i n  most cases ,  t he  domain of 3 is  an i n t e rva l .  That is, we a r e  

usual ly  i n t e r e s t ed  i n  studying the  path of a p a r t i c l e  over some 

continuous time i n t e r v a l ,  f o r  example, from t = tl t o  t = t2. 

A very n a t u r a l  question t o  ask is  whether t he  locus of points  

(x ,y ,z)  forms a continuous curve. Perhaps we would f e e l  i n t u i t i v e l y  
t h a t  i f  x (t), y (t), and z (t)were a l l  continuous funct ions  of 

t, then so  is R ( t ) ,  and t h i s  is  prec i se ly  what p a r t  a. is  asking 
us t o  do. Namely, 

a. 	 We must f i r s t  decide what it means f o r  % t o  be a continuous function 

of t. In  terms of our previous s t r a t egy ,  it seems f i t t i n g  t h a t  we 

take a s  a f i r s t  approximation the  analogous d e f i n i t i o n  i n  t he  

s c a l a r  case.  That i s ,  

3 	 + 
R is  s a i d  t o  be continuous a t  t l s [ a ,b ]  i f  and only i f  	l i m  

-f 
R ( t )  = R ( t l ) .  

t+tl 

This, i n  tu rn ,  says t h a t  given E > 0 we can f ind  6 > 0 such t h a t  
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Our next  s t e p  is  t o  ve r i fy  t h a t  t h i s  formal de f in i t i on  agrees with 
our i n t u i t i o n .  To t h i s  end we observe t h a t  our d e f i n i t i o n  says 
t h a t  5 i s  defined a t  each t i n  t he  i n t e r v a l  and t h a t  there  a r e  no 

"gapsw i n  3 s ince ,  f o r  any tl i n  the  i n t e r v a l ,  3
R ( t )  can be made 

a r b i t r a r i l y  near ly  equal t o  s(tl)simply by choosing t s u f f i c i e n t l y  

c lose  t o  tl. Since1~lrneasures 
3

the  d i s tance  from the  o r ig in  t o  a  
po in t  on t h e  curve, the  f a c t  t h a t  t he re  can be no gaps i n  insures  
t h a t  there  can be no gaps i n  t he  curve. 

Thus, w e  may take  (3) a s  a  p r a c t i c a l ,  y e t  p rec i se ,  working def in i -  

t i on  of cont inui ty .  With t h i s  i n  mind, 

Therefore, ~ d ( t )  - %(tl) I r 

. 
I x ( t )  - x ( t l )  I + l y ( t )  - y ( t l )  1 + I z ( t )  

- z(tl)1 (4 )  

Since x, y ,  and z  a r e  a l l  continuous s c a l a r  functions of t, we may 

f ind  61, 63 such t h a t  f o r  a  given E > 0 ,  

0 < It - tll < 6 l  + l x ( t )  - x ( t l )  1 < 7
E 1 
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Hence, i f  w e  l e t  6 = mini61,62,.631, (5) tells us t h a t  

Combining (6) with ( 4 )  y i e l d s  

What we have thus shown i n  p a r t  a. is  t h a t  w e  can def ine  cont inui ty  

f o r  	a space curve i n  such a way t h a t  t he  d e f i n i t i o n  is independent 

of our coordinate system. But, i f  w e  a r e  deal ing with Cartesian coor-

d ina tes ,  we have t h e  "luxuryn of knowing t h a t  w e  can test f o r  conti-  

nu i ty  simply by t e s t i n g  each of t he  s c a l a r  components f o r  cont inui ty  

(and t h i s  is  something we have already learned t o  do) .  
+ 	 + 

b. 	 (1)Given a continuous space curve, say,  R = R ( t ) ,  we know t h a t  by 

our r u l e s  f o r  d i f f e r e n t i a t i o n ,  i n  Cartesian form, w e  have 

then 

O u r  	claim is t h a t  t he  vector  defined i n  (8) i s  tangent t o  the  space 

curve. Perhaps t he  e a s i e s t  and t h e  s a f e s t  way t o  s ee  t h i s  is  with-

ou t  reference t o  I,, 5, and $ components. Quite i n  general ,  i f  % 
and 	

+ 
R + AR 

+ 
a r e  two vectors  drawn from the  o r i g i n  t o  points  on t he  

curve, it is easy t o  see  t h a t  A f t  is  t he  vector  t h a t  o r ig ina t e s  a t  

one of t h e  po in t s  and terminates a t  t h e  other .  Thus, 



Solut ions  
Block 2: Vector Calculus 
Unit 3: Space Curves and the  Bi-Normal Vector (Optional) 

2.3.1 continued 

I f  we now hold one of the  po in t s  f ixed ,  it i S  easy t o  v i sua l i ze  

t h a t  a s  A$ approaches 
-+ 
0 ,  our chord approaches t h e  d i r ec t i on  of " then 

tangent l i n e  t o  our curve. We have put  "the" i n  quotation marks t o  

h igh l igh t  a new degree o f d i f f i c u l t y t h a t  is  introduced when we dea l  
with space curves r a the r  than plane curves. In  a genuine space 

curve, t h e  curve does no t  always s t ay  i n  t he  same plane ( fo r  i f  it 

d id  it would be a plane curve).  Thus, from an i n t u i t i v e  po in t  of 

view, t h e  curve l i e s  i n  some s o r t  of instantaneous plane a t  any 

given t i m e ,  and w e  th ink of t he  tangent l i n e  a s  ly ing  i n  t h i s  plane. 

That is, i f  we f i x  the  po in t  Po on our space curve C, and we.look -
a t  t he  vector  POP where P i s  any o ther  po in t  on C, then i f  our -
curve is  smooth, w e  s ee  t h a t  a s  P approaches Po, the  vector POP ap- -
proaches a -f ixed  d i r ec t i on ,  and it i s  t h i s  vector  t h a t  we c a l l  the  

tangent vector  t o  t he  curve. 

What r e a l l y  h igh l igh ts  t h i s  discussion may be seen from the  follow- 
+ 

i n g  2-dimensional case. Suppose T i s  tangent t o  t h e  curve C below. 

I f  we now l e t  S denote any plane t h a t  i n t e r s e c t  C, then by construc- 

t i o n  any l i n e  i n  S which passes through P i s  tangent t o  t h e  curve 
0 

C i n  t h e  sense t h a t  it "touches" C a t  Po. In  t h i s  respect ,  then, 

t he re  a r e  i n f i n i t e l y  many l i n e s  t h a t  a r e  "tangent" t o  C a t  Po. 

( S t i l l  another way of looking a t  t h i s  is  t h a t  t o  t a l k  about a tan-

gent  plane a t  a point ,  we should be r e f e r r i n g  t o  a sur face  no t  a 

curve. ) 

dR'The po in t  is t h a t  aZ picks ou t  the  most "natural"  d i r ec t i on  f o r  us 

t o  c a l l  a tangent t o  the  curve a t  Po. That is, i f  given no o ther  

i n s t ruc t i ons ,  we could look a t  a small p iece which was " su f f i c i en t ly  

smallH and w e  could assume t h a t  it was i n  a plane. The po in t  is t h a t  

dS dR'-is a vector  i n  t h i s  plane. In  o ther  words, t h e  d i r ec t i on  of -6.fd t  
is  the  one we would pick i n t u i t i v e l y  a s  t h e  d i r ec t i on  of t he  curve 

a t  the  point .  

The major question t h a t  remains is  t h a t  of coqrela t ing the sense 
dR

of t he  curve C with t h e  sense of t he  vector  E. The po in t  i s  t h a t  

j u s t  a s  i n  t he  planar case,  i f  we l e t  our parameter be arclength 
dit( s ) ,  then s w i l l  be a u n i t  vector  and i t s  sense w i l l  be t he  same 

a s  t h a t  of the  curve, no matter  how we e l e c t  t o  choose the  sense of 

t h e  curve. 
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I f  there  i s  no reason f o r  otherwise choosing a sense f o r  our curve, 
+ aft

we simply def ine  T by dividing by i t s  magnitude. In  any event, 
+

i f  we l e t  R ( t )  be expressed h a C a r t e s i a n  coordinates,  we have: 

whereupon our r u l e s  f o r  d i f f e r e n t i a t i n g  vectors  y i e ld s  

+ 
dRand we can now see  why it is  na tu ra l  t h a t  a f  be ca l l ed  t he  ve loc i ty  

+ 
vector  (v ) .  =, Namely, it is tangent t o  t he  curve and the  components 

dx d dzof i t  a r e  df, and which a r e  t he  components of t he  speed of 

t he  p a r t i c l e .  
+ dR

4 

With+v now defined t o  be =, w e  simply def ine  t he  accelerat ion t o  

be n.dv 

(2) With respec t  t o  our example, 

+
R = cos 3 t  f + s i n  3 t  -j + t j: 

+ v = -3sin 3 t  Z + 3 cos 3 t  f + Z 

+ -+ 
a = - 9 ~ 0 ~  3 t  1 - gs in  3 t  j

there fore ,  = \/(-3sin 3 t )  + (3cos 3 t )  + 2 1

o r  

121 = Jnr . 

(3) From (12) ,  we see  t h a t  t h e  p a r t i c l e  moves with constant speed. 

From our e a r l i e r  d iscussions ,  when the  speed i s  constant ,  t he  

acce le ra t ion  vector  must be a t  r i g h t  angles t o  t he  ve loc i ty  vector.  

A s  a check, (10 )  and (11) show t h a t  
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dii c. Since i s  a tangent vector ,  dR/l d H ~w i l l  be a u n i t  tangent vector.  * aT ?IF 
In  our p resen t  example, equation (10 )  shows t h a t  

d"R -+ -t t=(=V) = -3sin 3 t  1 + 3cost  3 + , while (12) shows t h a t  

Thus, 

-+ 
and s ince  aZd f / d H l  = =  k T, 

-+ -+ d$ 
d. Since 3 T =  1 $ 1 2  = 1, T ==0 [c . f . ,  Exercise 2.2.3(L)]. Thus, 

-+
i s  a u n i t  vector perpendicular t o  T. Ca l l  t h i s  vector  8. 

d?Then, i f  we multiply by t he  s c a l a r  1 gv/1$, 
* W e  s a y  "a" r a t h e r  t h a n  " t h e "  s i n c e  i f  t h e  c u r v e  h a s  a  s e n s e  o f  i t s  

-+ 
own and  T d e n o t e s  t h e  u n i t  t a n g e n t  v e c t o r  w i t h  t h i s  s e n s e ,  t h e n  

-+ +&/$ = 2 % d e p e n d i n g  on w h e t h e r  2 and -
d t  

d R  h a v e  t h e  same s e n s e  
ds 

dS 

( i . e . ,  w h e t h e r  - i s  p o s i t i v e  o r  n e g a t i v e ) .
d t  

**Unles s  t h e  s e n s e  i s  p r e v i o u s l y  imposed on  t h e  c u r v e  C ,  we c h o o s e  
i t s  s e n s e  s o  t h a t  t h e  p o s i t i v e  s i g n  i n  (14)  i s  u s e d  t o  d e t e r m i n e  T .  
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I f  w e  def in. 1g1 t o  be curvature ,  K; w e  have from (15) 

In  our p resen t  example, from ( 1 4 ) ,  w e  have 

Therefore,  = 

d* 9
Therefore, from (17) a;; = m(-cos 3 t  ;- s i n  3 t  j). 

Therefore, 1 %  9 = = K. 

From (161, 

w e  have 

,d 3  9 +
= m ( - c o s  3 t  i - s i n  3 t  z) 

While w e  have now solved t h i s  p a r t  of t h e  exerc i se ,  it might s t i l l  

be b e n e f i c i a l  t o  see what t h e  s i gn i f i c ance  of 8 r e a l l y  is. Notice 

t h a t  when w e  r e s t r i c t e d  our  s tudy t o  p lane curves,  once was deter-  
+

mined, N was determined up t o  sense. That i s ,  s i nce  * and 8 had t o  



Solutions 
Block 2: Vector Calculus 
Unit 3: Space C.urves and the  Bi-Normal Vector (Optional) 

2.3.1 continued 

+ 
be i n  t h e  same plane, N was determined up t o  sense once we knew 

t h a t  it had t o  be perpendicular t o  5. In  3-space, however, the 

problem is a b i t  more complex. The locus of a l l  vectors  $ such 
-t

t h a t  3 N = 0 is now a plane. Thus, we can f i nd  an in£i n i t y  of 
+ +

vectors ,  N, each with d i f f e r e n t  d i r ec t i ons  such t h a t  !$ * N = 0. 

I n t u i t i v e l y ,  i f  w e  th ink of t he  plane which contains C i n  a small 

neighborhood of Po, we may think of f a s  ly ing  i n  t h i s  plane, and 

i n  terms of t h i s  plane ( i .e . ,  from an instantaneoys po in t  of view, 
dTwe a r e  back t o  t he  planar c a s e ) ,  we expect t h a t  -- should a l s o  l i e
d s  

i n  t h i s  same plane. (In o ther  words, f o r  small increments, we 

f e e l  t h a t  9 and ? + ~3 ake i n  t he  same plane.) 

The po in t  is t h a t  3 and 8 (as  defined i n  t h i s  exercise)  determine 

a plane t o  C a t  Po (as  would % and any o ther  vec to r ) ,  and t h i s  

p a r t i c u l a r  plane is ca l l ed  t he  osculat ing plane t o  C a t  Po. Phy-

s i c a l l y ,  it means t h a t  a t  any given i n s t a n t  w e  can assume t h a t  t he  

p a r t i c l e  is  t r a v e l l i n g  i n  i t s  osculat ing plane r a t h e r  than along 

t h e  space curve. In  t h i s  sense,  the  osculat ing plane is  i n  

3-dimensions what the  osculat ing c i r c l e  was i n  2-dimensions. 

e. With 3 and 8 a s  defined i n  the  previous p a r t s  of t h i s  exercise ,  w e  

may now view a plane moving along the  curve from point  t o  point .  

This plane,  a s  we saw i n  the  previous p a r t  of t h i s  exercise ,  is the  
+

osculat ing plane. I f  we now def ine 8 by g = 3 X 8 ,  w e  may view B 

a s  a u n i t  tangent vector (s ince it i s  the  c ross  product of two u n i t  

tangent vec tors )  which is  perpendicular t o  the osculat ing plane. 

Since 3 is  a u n i t  vec t  r ,  we know t h a t  it can only change i n  di rect iol  
d%no t  magnitude, hence must measure the  change i n  d i rec t ion  of 3 

a s  we move along the  curve. Since 8 is always normal t o  t he  oscu-

l a t i n g  plane,  t he  change i n  d i r ec t i on  of % a l s o  measures the  change 

i q  d i r ec t i on  of t h e  osculat ing plane. That i s ,  the  magnitude of 
dB measures how f a s t  t he  curve i s  being "twisted" ou t  of the  oscu-

l a t i n g  plane a t  a given point .* 

dB'
We a l s o  know t h a t  ince  5 has constant  magnitude, a;; i s  perpendicu-

dZ
l a r  t o  8. Hence a;; i s  a vector  which l i e s  i n  t he  osculat ing plane 

( s ince  t h i s  plane is t h e  locus of a l l  vectors  perpendicular t o  3 ) .  

-f + 
*In t h e  s p e c i a l  c a s e  o f  a  p l a n e  curve ,  T and N always l i e  ig t h e  

+ -P aB 
same p l a n e ,  s a y ,  t h e  xy-p lane .  In t h i s  c a s e  B m k whence - = 0 .  
In o t h e r  words t h e r e  i s  no t o r s i o n f o r  a  p lane  curve .  ds 
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More analytically, 


+ + + 
Since B = T x N, 

d? . +From d., a;5. = KN. 

di5 d3 + +Therefore, = ( 8x 8) + (f x =), and since N x N = 6,  

From (19), dii is perpendicular to ? (it is also perpendicular to 
di$ 
but we do not need this for our purpose) and we already know that 

di5 -bis also perpendicular to B. 


dB -b -b. Since is perpendicular to both B and 5 is parallel to N. 

dii +Hence, = TN where I .r 1 = 1g1 since ih is a unit vector. That 

is, r = + 1g1 and is called torsion (a measure of the "twist") 
of the curve. 

Then, 
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+ 
Since dT = KS, (2) yields 

[Note that (3) has precisely the same form as in the 2-dimensional 

-b -+ 

case even though T and N are now space vectors. Notice that (3) 


agrees perfectly with the 2-dimensional case if we think in terms 


of the particle being in its osculating plane.] 


From (1) and (3), we obtain 


-+ 
and since 3 x 5 = 0 while '5 x 8 = st we have 

3-+ -+ -+ 
Therefore, Iv x a( = Irl $ 1  161 = ~ 1 (since I B (1 = ~ 1 and r~ is 

positive). 
Not only does (4) reestablish the validity of the recipe 
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even f o r  3-dimensions bu t  it a l s o  t e l l s  us t h a t  ? x has t he  same 

d i r ec t i on  a s  8 which reaff i rms why w e  c a l l  the  plane determined by 

3 and 8 t h e  oscu la t ing  Namely, t h i s  r e s u l t  i s  cons i s ten t  

with 2 and both being i n  t h e  osculat ing plane. 

b. 	 We now use t he  r e s u l t  of a. a s  follows. 

From the  equation f o r  
+
R, w e  can f ind  3 and 2. By forming the  cross 

+
product of 2 and a we g e t  a vector  p a r a l l e l  t o  8, hence normal t o  

t he  plane determined by 5 and 3 ( t he  osculat ing p lane) .  We then 

wr i t e  down the  equation of the  plane. More spec i f i ca l l y ,  

Therefore, v 
+ 

= 
-f 
1 + 4 t 3  + 3t2% 

Therefore, a t  t he  po in t  corresponding t o  t = 1, we have 

Therefore, v 
-b 

x 
-b 
a = 3 = 121 - 65 + 4%. 


1 4 3  


0 4 6 


Therefore, 121 - 63 + 4 2  o r ,  equivalent ly ,  6 1+ - 33 + 2$ is normal 

t o  the  required plane,  while (1,2,1) is a po in t  i n  t h e  p l a n e - ( t h i s  
-tis  the  meaning of = 1 + 23 + z).  


Therefore, t he  equation of the  plane is  
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c. 	 From (61, I;( = + 16 + 9 = m. Therefore 1;13 = 263'2 = 2 6 m ,  

while from (7 )  

Therefore., from (5) 

[Note t h a t  from a  physical  po in t  of view t h e  meaning of p a r t s  b. 

and c. is t h a t ,  a t  t h e  given i n s t a n t  t = 1, w e  may assume t h a t  

t h e  p a r t i c l e  is  a t  t he  po in t  ( 1 , 2 , 1 )  i n  t h e  plane 6x - 3y + 22 = 2, 

moving along t h e  circle i n  t h a t  plane ( t he  oscu la t ing  c i r c l e )  whose 

r ad iu s  is  p = -1 
K 

= --I 
1 3 m  

d. 	 Most of t h e  information w e  need f o r  this problem is al ready known. 

Namely, t o  a l l  i n t e n t s  and purposes, w e  know $, s i n c e  it is simply 
.+ 

-v 	 , W e  e s s e n t i a l l y  know 8, s i nce  we have a l ready shown t h a t  
1G1 

and 	w e  have found K and 2. 

Once 8 and a r e  known, w e  f i n d  3 from t h e  r e l a t i o n  8 = 3 x +. 
( In  t h e  same way t h a t  $ and 8 behave s t r u c t u r a l l y  l i k e  

+ 
i and 

+ 
j a t  

+ + + 	 t
any po in t  on a  plane curve; T,  N ,  and B behave l i k e  i, 3 ,  and a t  

+ 	 + + -any po in t  on a space curve. Consequently, we  may view B = T x N 

i n  t h e  equivalent  forms, 3 = 8 x 8 and 8 = 8 x 3.) P i c t o r i a l l y ,  

-~ - - -

* N o t i c e  h e r e  t h a t  we must u s e  121 
+ - 6j 

+ + 4k + 
n o t  another s c a l a r  

m u l i i p l e  such a s  6 1  
+ - 3 j  

+ + 2k  
+ 

s i n c e  t h e  r e c i p e  f o r  K s p e c i f i c a l l y  
+ 	 +

r e q u i r e s  Iv x a ] .  
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More s p e c i f i c a l l y ,  a t  t = 1, w e  saw e a r l i e r  i n  t h i s  e x e r c i s e  t h a t  

-+ 
v = f + 43 + 3% t h e r e f o r e ,  I f 1  = 

+ 
a = 4 3  + 6% 

+ + 
v x a = 121  - 65 + 42 t h e r e f o r e  15 x = 14. 

I. x aI 
Therefore,  K = - - - . -

1 4= -

1;13 2 6 ~ ~ 

Hence (8 )  y i e l d s  

+ 
Therefore,  6 = - 6 1  - 3 3  + 2% 

7 . 
7 

Moreover , 

+ + -+ 1
Therefore N = B x T = -

8 = x % impl ie s  t h a t  

d3 -+ d sSince -= KN and -= d s  d s  ~ 8 ,(1)becomes 
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2.3.3 continued 

From the 	cyclic orientation of 9, 8, and 8, 

Hence, (2) becomes 

2.3.4 

a .  We have already seen that 

and 

d33 d
From (2) 	--T= =(KN)

-+ 


ds 


d3"R d 3
Therefore, = u z  + ds 3. 

From our 	g ~ e v i o u s  discussion, 

& -* -+= -KT - TB. 

Putting ( 4 )  into (3) y i e lds  
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2.3.4 continued 

Theref o r e  d3"R 2 dK -+ , 7=-KT + a ; ; ~- K T ~ .  
ds  

b. The i n t e r e s t i n g  po in t  here is  t h a t  3 ,  8 ,  and 5 behave s t r u c t u r a l l y  
i - tj u s t  t he  same a s  1, 1, and z. Thus, i f  two vectors  a r e  wr i t t en  i n  

t e r m s  of 9, 8, and 3 components we may compute t h e i r  crossproduct 

j u s t  a s  w e  d id  i n  the  1. 3, and case. This is  perhaps what might 

motivate one t o  compute 

Namely, s ince  the  f i r s t  vector  has only a T component and the  second 
+

only an N component, we see  t h a t  t h e  determinant t h a t  y i e ld s  the  

t r i p l e  s c a l a r  product is given by': 

and expanding along the  top row y i e ld s  

In o the r  words, 

F ina l ly ,  s i nce  8 8 = 1, we may use (2) t o  commute 

ds ds' 

Pu t t ing  ( 7 )  i n t o  (6) y i e ld s  the  desi red r e s u l t :  
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2.3.4 continued 

While w e  make no attempt t o  prove it here,  it is an i n t e r e s t i n g  f a c t  
t h a t  knowing K and r a t  each po in t  on t he  curve is enough t o  deter-  

mine t he  shape of curve uniquely up t o  pos i t ion  i n  space. This i s  

analogous i n  t h e  study of plane curves t o  saying t h a t  knowing the  

s lope of the  curve determines t he  shape of t h e  curve up t o  posi t ion.  

( In  f a c t ,  t h i s  i s  prec i se ly  what adding an a r b i t r a r y  cons t a r t  t o  

t he  i n d e f i n i t e  i n t e g r a l  is  a l l  about.) 

c. In Cartesian coordinates 

-t i' t + 
R = x i  + Y-J + zk. 

Therefore, 

Therefore K~ = 

While from ( 6 )  and (9)  
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2.3.4 continued 

X' y '  z '  
2 where t h e  d i f f e r e n t i a t i o n  is  wi th  r e s p e c t  

-K  = XI' Y" Z "  

I' ' Y'" z" '  
t o  s. 

Theref o r e ,  

a. The mimicking procedure w i l l  have us r e p l a c e  d% d2"R d387 ,  and ;;;;5 by
d s  

d%,, d2'i a3R -+ + dgz, o r  V ,  a ,  and =.and 2; ( I n  o t h e r  words d a  w i l l  p l ay  

a prominent r o l e  i n  3-dimensions when we a r e  i n t e r e s t e d  i n  t o r s i o n . )  

From e a r l i e r  work, w e  have 

From (2)  w e  can compute d2 (which w e  do f o r  p r a c t i c e ,  b u t  w e  w i l l  

on ly  need the c o e f f i c i e n t  of 3 s i n c e  

-b
where -a;: = a T + a2N

+ + a3B
-b 

)d t  1 

and expanding t h i s  determinant  along t h e  f i r s t  row, w e  o b t a i n  
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2.3.5 continued 

In other  words, nei ther  al nor a2 appear i n  the value of the 

determinant. 

A t  any r a t e ,  w e  obtain from (2) (and reca l l ing  t h a t  d2 s ds 

and 8 a r e  a l l  functions of t) 

d3 + d6Then s ince  = KN and a;; = - K t  - r t ,  w e  have: 

Therefore, 	-- ds d s 


d t  


(As a check of our e a r l i e r  r e s u l t s  i f  w e  think of t a s  being an 

a r b i t r a r y  parameter i n  ( I ) ,  ( 2 ) ,  and (3) and then l e t  t = s, so t h a t  
ds - d2s - d3s = 0 ,  we obtain:m - l t z - 2  
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2.3.5 continued 

and t h e s e  check wi th  equat ions  (1), (2) , and (5) of  Exerc ise  2.3.4 .) 

Notice a l s o ,  i n  pass ing,  t h a t  t h e  d e r i v a t i o n  of equat ion  (3) was 

pure ly  mathematical and requ i redno  i n s i g h t  t o  t h e  physics  of space 
dKmotion. To be s u r e ,  it might be  n i c e  t o  have a f e e l i n g  f o r  

a s  t h e  r a t e  of change of  cu rva tu re  etc.,  b u t  t h i s  is  completely 

unnecessary f o r  t h e  problem w e  a r e  t r y i n g  t o  so lve .  

Returning t o  t h e  problem a t  hand w e  have: 

3 2 ds  2 - d s -where from ( 3 )  , al - 2 K and 

2 ds  4(;; X $ ) = - K  T ( = )Therefore,  v 

(Again, a s  a p a r t i a l  check of ( 4 ) ,  i f  we l e t  t = s we o b t a i n  

2 = - K  T ,  which checks wi th  our  e a r l i e r  r e s u l t . )  

F i n a l l y ,  i f  we invoke t h e  previous ly  proven r e s u l t  t h a t  
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2.3.5 continued 

.. 4 
and i f  we r e c a l l  t h a t  (g) is the same as  I v 1 *, then equation 

( 4 )  	becomes 

Therefore, T = 	 -

b, 	 W e  had establ ished t h a t  (Problem 2.3.5 b.) 

Zi = t + 
1 + 2 t 2 j  + t3% 

+ 	 -t v = 1 + 4 t  f + 3t2z 


+ 

a = 4 3 + 6 t z  


and w e  now add t o  these equations: 


I n  	pa r t i cu la r  a t  t = 1; 
* v = 

-? 
1 + 4 3  + 3;, 

+ 
a = 	4 3  + 6z and $ = 6; therefore ,  a t  t = 1w e  have 

ds +
*In g e n e r a l  i t  i s  p o s s i b l e  t h a t  and Ivl d i f f e r  i n  s i g n ,  b u t  i n  

our c a s e ,  on ly  even powers o f  &-occur s o  everyth ing  i s  alwaysd tnon-negat ive .  
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2.3.5 continued 

Therefore, 1;
 x 21= a 4 4  + 36 + 16 = 14. 

P u t t i n g  t h e s e  r e s u l t s  i n t o  (5) y i e l d s  

156Therefore IT I = 7. 

Again, it i s  no t  our  purpose t o  have you l e a r n  a s h o r t  course  i n  

D i f f e r e n t i a l  Geometry o r  t h e  l i k e ,  b u t  r a t h e r  t h a t  you g e t  t h e  

f e e l i n g  o f  what cu rva tu re  and t o r s i o n  mean phys ica l ly .  The connec-

t i o n  between 2-dimensional and 3-dimensional space curve is t h a t  
-* -+

t h e  v e c t o r s  T and N a s  they e x i s t  i n  t h e  2-dimensional case  form 

t h e  o s c u l a t i n g  p lane  a t  any i n s t a n t  i n  t h e  3-dimensional case.  

d 3  diS13 c l o s i n g ,  it should be  pointed  o u t  t h a t  t h e  q u a n t i t i e s  s,s,and 
dN 

obviously p lay  impor tant  r o l e s  i n  t h e  s tudy  of space curves. W e  

have a l r eady  shown t h a t :  

+ 
dN = -ril - K d .az 


These t h r e e  r e s u l t s  a r e  known a s  F r e n e t ' s  formulas. 
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