Solutions
Block 2: Vector Calculus

: ngential and Norma e

2.2.1(L)

The major aim of this part of the exercise is to help remove a bit
of mystery as well as a computational sore spot that many students

encounter in the formula

(1)

=4
I
i1

What usually happens is that R is not expressed directly as a
function of s (arclength). In many casesof akinematics nature,

for example, R will be expressed in terms of time (t).

For the sake of argument, let us suppose that R is expressed as a

function of some scalar g, not necessarily either arclength or time.

Then we have already seen Exercise 2.1.4 that gg is tangent to the

5
curve and its magnitude |%§I is equal to |g§l .

In other words, then, if R is expressed as a function of q, we may
find T quite conveniently simply by letting

fo= N0, (2)
|dR/dq]|

Equation (2) supplies us with an excellent hint as to why equation
(1) is correct. Namely, in the special case that we choose gq to
equal s, we have that g% = 1, whereupon equation (2) becomes equa-

tion (1) by the chain rule (proven in Exercise 2,1.3). That is,

dR/dgq _ dR/dq _ dR
|af/aq| /94 @S

Yet, there is an even better philosophical reason for defining T
by (1) rather than by (2), even though, in a given case (2) may
be more direct to compute than is (1). The thought is that a
unit tangent vector to a curve is determined by the shape of the

curve itself, not by either the particular coordinate system in
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2,2,1(L) continued

which we elect to write the equation of the curve nor the vari-
able used as the parameter. For example, there are many differ-
ent parameters that might have been chosen to represent the
vector equation for the curve. That is, in terms of our previous
notation, g could have been chosen in many ways, among which are
time and arclength. However, arclength (s) is an invariant of the
curve., In other words, if we measure the length of a given

curve between two points P and Q on the curve, the length depends
only on the curve and the two points, not on any particular
coordinate system: (although the degree of complexity of the
actual computations involved may well depend on the coordinate
system) .

-
In summary, then, the definition that % - %g gives us a defini-
tion of the unit tangent vector which is independent of any par-
ticular coordinate system under consideration. In this exercise,
however, it is our aim to emphasize that the actual computations
are best done in terms of the particular variable with respect to
which R is expressed.

With this discussion in mind we have
§=tI+-]§'(t2+2)3/2 3.

Therefore,

—'_dﬁ_-* Z -+
V—a'E—l‘l't\/t + 2 Je. {3)

From (3)

gy 2
| v| \A+ {t\v‘t2 + 2)

SO
vl + t2(t2 + 2)

J£4 + 2t2 + L

]

Vie? + 1)2

Therefore, |v| = t2 + 1, (4)
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-
Since V is a tangent vector,—— will be a unit tangent vector;

[v]
hence, (3) and (4) yield
%=1’+tt+2i
t% + 1
or
§=( l)-{_'_(tt +2):_]r. (5)
tz + 1 t: + 1

It should seem clear that no matter how cleverly we disguise it,
equation (5) somehow must contain the arclength s.

The easiest way to see that it does is to recall from the previous
unit the fact that

+, _ ds
vl = 3¢ - (6)
-+
Quite simply, then, when we formed "%" we were in fact computing
|v]
dR/dt _ dR
ds/dt ds °

In any event, equation (6) combined with (4) tells us that

g’%=t2+l
whereupon
6
2
s = (™ + 1)dt
0
6
=%rt3+t|
0
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2.2.,1(L) continued

3

=5+ 6

= 78.
3.2.3
We have

£ » 3/2 3,
R=571+302t+01) (1)
Therefore v = t 1 + (2t + 1)/2 3, (2)
AT R B (3)
J2t 7 1

42 1
a. At t = 4 the pagticle is at ( '3
from (1), x = Ef and y = %(Zt + 1)

From (2),

<+
]

and, from (3),

a = I3 3.
b, |v] =% and by (2)
|v| =

ds

Therefore e = € o 1
4
Therefore, s = %tz + t
0
= 12.

41 + 33 therefore, |v| = V4% + 32 =5

2
\Jtz + [(2t # 1)1/21 - Vtz +2t+1=|t+ 1|, but 0

[2(4) + 1]3/2) = (8,9), since

r

$tga
implies that |t + 1| =t + 1

S.2.2.4
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c. At t =4, v =4l + 3§ and |$| = 5.
> * 7 3
> dR dR/dt v 41 + 373 4 + 3+
Therefore, T = e = = = i+ Je
s ds/dt > 5 5 5
v
2,2,3(L)
a. The result asked for here has been derived twice before--once

in the lecture and once in the text (in fact, it is essentially
done twice in the text). Certainly, we could justify this part
of the exercise on the grounds that the result is important
enough for you to make sure you can derive it. Yet, there is
still a better reason for assigning this exercise. It allows
us to introduce a rather interesting subtlety concerning the
difference between a curve and the path traced out by a parti-

cular particle.

The idea is this: if we are given a particular particle and

we study its motion, it is very natural that at any point on

its path we will pick as the unit tangent vector the one whose
sense is the same as the velocity vector. That is, we visualize
the curve as being generated by the moving particle. Of course,
the curve, itself, is inanimate. It does not know how the
particle is traversing it, and what could be even more compli-
cated is the fact that different particles may traverse this

same curve in different ways.

The key thought is that if we are mainly interested in the curve,
we are free to assign it a sense in any way we please, and, once
this is done, the particle may traverse the curve in any way it
wishes, 1Its speed, however, will be negative if the particle
has the opposite sense as the curve at that point, and positive
if it has the same sense as the curve at that point. (This is
much like the convention we have adopted with respect to the
x-axis, If a particle is moving from left-to-right at a given
point, we call its speed positive, while if it moves from right-
to-left, we call its speed negative.)

ke
The beauty of the definition T = gé is that no matter how we
elect to define the sense of the curve, F will always have the

S.2:2.5
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same sense as the curve. (This is explained in the text as well
as in the lecture.) If we now think of a particle traversing
the curve according to some rule R = ﬁ(t), we have by the chain
rule,

t - (@& @t

-

from which we may solve for ; (= g%), to obtain

-
v =

T (1)

QJIQ.-
(aa 17

where all we can be sure of is that T and v have the same
direction. We cannot be sure that they have the same sense.

That is, once the sense of the curve is assigned, a particle

may traverse it so that its sense is opposite to that of the
curve, in which case g% is negative.

If we differentiate (1) with respect to t (remembering to use
the product rule since both g% and T are functions of time [i.e.,

T has constant magnitude, but except for straight lines, its
direction varies with time]) we obtain

> _av _ d%s » . as at
a=a—t——-€i—;—'2'T+a'Ea?- (2)
|
G4

To replace gf by more "familiar" terms, recall that in the

lecture we saw

- + : +
T=cos ¢ L + sin ¢ 3,

whence,

S5.2:2:6
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S
=ej=t

= -sing 1+ cos¢ 3 = cos (¢ + 90°)1 + sin (¢ + 90°)§-

%
This led us to the conclusion that g% was the unit vector obtained
by rotating T 90° in the positive (counterclockwise) direction

> _ gt

and this unit vector is defined to be ﬁ, i.ei, N I That is,

e
ﬁ—% T
Vs
/¢ﬂ
s/

(Note: had we assigned the sense of our curve in the opposite

direction, we would have

In other words, ﬁ'may point "in" or "out" depending on the

sense of the curve.)

To get the right side of (2) into the desired form (i.e., to
replace g% by ﬁ}, we again use the chain rule to obtain

; o dzs T o+ ds 4T a
2 p—— .
dt2 dt d¢ dt
-
. dT _
and since 3 = ﬁ,

S.2.2.7
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2
+* _ d's # ds d¢ =
a—w7dtT+a-Ea—EN. (3)

With respect to (3), we observe that g% - g% g% and that %%, being

the measure of how the direction of the tangent to the curve is
changing at any instant, is an excellent parameter by which to

measure curvature. We, therefore, let k = dg, and (3) becomes

-+ 2 = -+
a= d9—§ T+ $@ (G
t
2
dts » ds,2 =
= = T + (==) kK N . (4)
dtz dt

Equation (4) is the desired result, but notice that our proof
offers an alternative to the text in the sense that we used the
derivation of (4) to motivate the "invention" of k (while the
text derived k in its own right first and then applied the re-
sult to the derivation of (4)).

Notice also that (4) is true no matter how the sense of the
curve is initially chosen. Once the sense is chosen, observe

that §§(= k) may be either positive or negative. That is,

S
T
s
T
LN X
de a
<o 3%"‘0

With this in mind, we complete our problem by reserving our
choice of sense of the curve until this moment (since no harm
is done by waiting because (4) is true for any sense that we

choose) and we then assign the sense to our curve that makes

5.2.2.8
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%% non-negative. For example, given the curve C without an

indicated sense, where C is

AN

s

We choose the sense of C as shown below in order to make g% > 0s

As the particle traverses C in
the indicated direction (sense)

¢ increases.

: ; d
In cases where no sense is assigned to the curve, H% has an
ambiguous sign, and in this event it is customary to define k to

be |§%| which agrees with our definition of sense and also with
the text's definition of «.

There now remains only one major issue that must be resolved
between our approach and that of the text. At the moment N has
been defined in two different ways. On the one hand, using our

initiative visual model, N was a positive 90° rotation of T. 1In

the text, N is the unit vector in the direction and sense of gz
. af art|> at. a
That is, 3o = |gg|N. Now |(33](3%)| | —$| =(1) (k) = k.
Thus, if we rewrite (2) from this point of view, we obtain
8:2:42.9
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2 2 = 2 2
+ _ d's ds df _'d’'s = ds 2
a=—=3 T+ @@ F-IzT+ @ «°F

and comparing this with (4) we see that N has the same meaning in
either case. The beauty of the text's approgch is that we need
no knowledge of geometry to see that T and gg are perpendicular.
The drawback is that the approach is sufficiently abstract (if you
are not used to thinking in terms of vectors) that you may get no
feeling for the result. The advantage to our approach is that

it is sufficiently visual that you can see what is happening. On
the other hand, our approach depends on being able to discover a
few geometric results that might not have seemed that obvious.

In particular, when we want to investigate 3-dimensional space
curves, the geometry may be enough more complex so that this
approach will be even more difficult to apply, in which case we
may prefer to use the more analytic approach of the text.

Notice that the validity of (4) does not require that we be able
to interpret the result physically, but (4) does have a rather
easy interpretation. Namely, the tangential component of the
acceleration is the acceleratiog of the particle along the curve

(since this is precisely what E_g measures). The normal compo-
dt
nent of the acceleration is the product of the curvature and the

square of thespeed of the particle along the curve. While this
may not seem familiar, the student of elementary physics might
remember the formula for centripetal acceleration in circular
motion as being E? where v is the speed of the particle and r is
the radius of the circle. If we define the radius of curvature
p to be the reciprocal of the curvature, i.e., p = % B quation

(4) yields that the normal component of acceleration is 33.

b. From (1) and (4), we have that

2 - 2+
$x3=§%$x(§§~:f+x(%§} N)
_ ds d’s T x T) + (ds)3(T x ) (5)
- dE G2 “lae '

8¢2.2:10
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But, since T L N and |T| = |N| = 1, |T x N| = 1. Hence, (5)
becomes
15 x 3] = x| (@] =«I¥]>.
|V x 3
Therefore, k = T:T§-~ . (6)
v

Equation (10) yields k in terms of the motion (; and a) of the
path, a very practical form in many applications, since v and a
may well be the only available parameters.

C. We had
v =41 + 33
3=I+-lj-3’.
-+
Therefore, |v| = 5
and
v x a = %(I x j) + 3(§ X I)
= 3% - 3%
= 3
= -3 K.
-+ > 5
Therefore, |v x a| = 3

Therefore, from b.

vx3al 2
K:.——.l-_-‘;.l—.?-=51=ﬁ.

S.2.2.11
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2.2.4

Starting with the "if" part, we assume the speed is constant.
2
That is, %% = constant. Therefore Q_% = 0., In this case,
dt

2= d . @25
dt
implies
2
§=0T+K(g{:} N. (1)

From (1) a is a scalar multiple of N so that the acceleration
is normal to the path in this case.

Conversely, if we now assume that the acceleration is normal to
the path then thg T-componenﬁ of acceleration must be 0. But the

T—component is ﬂ,%, Since g—% = 0, g% is constant, and the asser-
dt dt

tion is proved.

(From a rigorous grammatical point of view "only if" should be
translated that if g% is not constant then the acceleration is
not normal to the path. 1In this case the argument would be that

since g% is not constant,g—% cannot be identically 0. Hence the
dt

%—component of the acceleration (i.e. g—% ) is not always 0.
dt

Hence the direction of the  acceleration is not always in the
direction of N.)

22 510T)

a We have k = af = |90 but when the curve is given in the form
) Is| T |3 ¢

y = £(x), neither ¢ nor s may be convenient parameters.

In still other words, when the equation is ig the form y = £(x)

it is usually convenient to compute Y ana §_¥.

dx dx

Now, what we do know is that

tan¢ = g%. (1)
S.2.2:12
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Pictorially,

Y y = £(x)

=
Il

tan ¢

7 *
Differentiating (1) with respect to x, yields
2
2 d¢ d
sec ¢ = .
dx dx
d¢ 2 d2
Therefore, g= = cos“¢ . (2)
dx

Now , tang¢ = gx implies that

1

[+ @?]

cosz¢ = (i.e., secz¢ - tan2¢ =1).

Hence, (2) becomes

2
a'?% = Ermme—— (3)

1 # (gi-)z

By the chain rule

B-pE-gk.

- Em BN EE BN m A BE BN BN D Bl D D G e BE o e
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. (4)

*
2
g%//é\fl + (%%J

Substituting (3) into (4) yields

Therefore g = |g§l =

2

[T [ of

X
—3- -

2
Bk

Had we wished, we could vectorize y = f(x) into a motion problem
by writing

e

R=t 1+ £(8)3

(i.e., x =t and y = £(t) -y = £(x)).

Then

e

-
v =

+ £ ()3

and a = f“(t);.

By our previous result,

|v x a] |£"(t)K|
3
Vi+ (£'(6)1°

| £" (&) l

l«l =

kil

3
( 1+ [f'(t}lz)

“*The sign, even though it will make no difference when we compute

¥k, depends upon whether %% is positive or negative, that is,

whether s increases or decreases in the direction of the positive
x-axis. Our definition that Kk is positive avoids this problem.

S.2.2.14
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2.2.5(L) continued

Note

Unfortunately there are several mathematical concepts that lend

themselves to more than one convention.

Curvature is one of these.

We have elected to use the approach that k = l§§|, whence k 2 0.

Some people define k to be positive or negative depending upon

whether the curve is "convex" or "concave" with respect to the

position vector.

In this case, one writes that

Therefore, gx = 2e2x

X
2
d = 4ezxo
dx
4ezx
Therefore, |k| = since |k| =
4x /2
(1 + 4e77)
= A = A,
2/2
b. R=t1+e?t3
Therefore, v=1+ 2e2t 3
a= 4e2t 3
v x 3] |4e%t K|
Therefore, =
HE 4e. 372
(1L + 47 )

, and letting k = t, we obtain

S.2.2.15
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4e2x
K =
3/2 °
(1 + 4e%%)
2527
d2
a. From Exercise 2.2.5, y = ax + b ~+ = 0. Therefore,
dx
K = 0.

(Note: this is what we would expect intuitively for straight line.
Had we wished to see the g% for curvature, notice that for a
straight line ¢ is constant. Hence gg = 0.)

1/2

b. y = (a° - x%)

Therefore, %& = i‘-(a2 - le (-2x) = = 173 (gﬁ) = —§£-——.
(a2 - 5%) a“ - x
) 2
1+ (%ﬁ) = A
a - XK
-3
172
2y _ @ - x) (D - (mgla’ - X)) (2w
=
dx 1/2
[(a2 = xz) ]

(a

S.2+2:16
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2.2,7 continued

3/2
-az//fa2 - xz)

Therefore, k = =
2,2 2 L
(a”/a” = x7)

Note: y = Vai - xz is the equation of a semicircle of radius a,
centered at (0,0) with y 2 0.)

/. :

0 N g =0

For this circle, of course, a is constant and ¢ = 0 + 90° or d¢ = do.
- _ d¢ _ do _ 1

Also s = ac hence ds = ado. Therefore, W e i A8 before, In

this case, the curvature is the reciprocal of the radius. With this

in mind, given k for any curve, we define % = p to be the radius of

curvature at that point. Pictorially, p is the radius of an "instan-

taneous" circle called the osculatory circle. I.e.,

C
In many kinematics problems, we study the
motion of a particle by assuming the par-
p . ticle is on the osculating circle at the
K P given instant.
2.2.8(L)
We have
a. R=tl+ (¢2+1)J (1)
v=T4+2t3 (2)
2 = 23. (3)

S5.2.2.17
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We already know that v is a tangent vector but not necessarily a
unit tangent. This is easily remedied by dividing v by its mag-
nitude. From (2) we then obtain

~
T = . 5
Letting T = —— we have our desired unit tangent vector. Namely,

P o= e (T # 2t ). (4)

1+ at?

We saw in the previous section that [¢| = %% and we know that

|3| = V1 + 4t? in this exercise. See note at end of this exercise.

Hence,
%% = V1 + at? ., (5)
ZS
But, we know that ap = =
dt

Therefore, a ds _ d(ds) _d(vl + 4t")
G s S R -

Therefore, a, = 8t = 4t R (6)

T
2V1l + 4t2 Ji + 4t2

From (3) we know that |a|
3] = ap” + ay”. (Here it is most important to observe that R, v,
and a are properties of the motion of the particle, not of the

|2§| = 2, and we also know that

coordinate system. Thus, while the { and 3 components of a are
different from the T and N components of 5, a is the same vector

in either case. Pictorially,

5.2.2.18
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2>
b

a4+

(023

-+
13 =b+c=a, 7T+ ay ﬁ, but a is the same
d b
e = + = g
= te=a; 1+ aj J, in either case.) |
In any event,
2 - 2 2 (Recall an and aN are scalars since they are

ay = EY = ap the components of acceleration in the T and N

directions,
So from (3) and (6)

2

I

2 2 it
ay” = (2)° - )
. V1 + 4t

1+ at2

Therefore, a,_ = S (7)

N
V1 + 4t2
ds, 2 aN

b. We know that aN = K{a?) . Hence k = -E;—i .
(HE)

From (7) ay = J~_-—E=.:=? while from (5) g% =vV1 + 4t° ,
1l + t

Therefore, k = ( 2 ) (1 + 4t2) = 2 (8)

377 ¢
1+ 4t? (1 + 4t?)

S.2,2,19
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Note: the procedure used here outlines a rather common approach
for finding the tangential and normal components of acceleration
when the equation of motion is given in Cartesian coordinates.
From the given equation we compute vV and a. The magnitude of v

is the speed of the particle along the curve, which is also
denoted by ds/dt. From ds/dt we can find the tangential compo-
nent of acceleration, since this is simply dzs/dtz. Since we

then know both the total acceleration ; (which is the same whether
we are in Cartesian coordinates or in % and ﬁ coordinates), we

use the Pythagorian Theorem to determine the normal component of

acceleration. That is,

_aTo

‘Earlier we showed how to find the curvature as a "bonus" if we

already know the speed of the particle and the normal component
of acceleration. In part b. we want to emphasize that we do
not have to resort to any special set of coordinates to compute
the curvature. As we mentioned in Exercise 2.2,3 b.,, curvature
is a property of the path and not the coordinate system. This
was why we developed a formula for curvature completely in terms
of the velocity and the acceleration of the particle at a parti-
cular point, Recall that this formula was given by

|v x a|

k)=« (9

¥

From (2) and (3) we see that

vxa=(I+2t] x 23
=203 x5 +4eFx D
= 2k.
Therefore, |V x a| = 2. (10)
$:2.2.20
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2.2.8 continued
Moreover, |v| = g% = V1 + at? implies that

3/2
713 = @+ at®) " . (11)

Putting (10) and (11) into (9) yields

2
|| = 372
(1 + 4t2)

which checks with our answer in step 5 in Equation (8).

In closing this exercise we would like to take a few moments to
show the advantage, computationally,of the technigue used in this
problem. We obtained, for example, K and N as natural by-products
of relatively simple computations. We could have obtained these
quantities directly from their definitions, and it is probably
worthwhile to do this at least once.

We have that

gg = [%é|(i§§}/ﬁ§§|) = « f. (12)

From (4), we can find g%, and by the chain rule (proven in the

exercises of the previous unit) we have

at _ a4t ,4t, _ 4T ,ds
T~ x* & T T (13)

From (5), §¢ = V1 + at?

and by one of our product rules of vector calculus we have from

(4)

1
2
g% - [(1 +4t3) (d+ 2t 3)]
-1 g
=1+ 4ty 2 a%{I + 2t3) + [g?{l + 4t2) 2.](1* + 2t3)

S.2,2.21
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1 3
= (1 +4at?y 223 %(1 + at?) Zae) (3 + 2t3)
3 + -
- 23 = 4t (x # 253) . (14)
y /2
V1 + 41:2 (1 + 4t°)
- & -
% = /S8 = —=—— ¢ from which (14) yields
V1 + at?
- +
gg = 2) > At ) (I + 2t3)
LA oo g®
- -4t 17 . 2 gt +
= —---—-—--—-—-2 1+ 2 . 2 J
| (1 + at?) R T T
Y . [ ___,2._.._,2];
| (1 + at?) | (1 + 4t?)
= Z 5 ~2t I + _5]
(1 + 4t2) i
i +
i ; 2+ D A b ae?
(1 + at?) | /1 + at?
T .t
_ 2 =2ei = 4 | (15)
2,3/% 2
(L + 4t°) 1 + 4t
“ F v —
> _ dt,art
K 3g/|3§|
2.9
2=t21+sint] (1)
Therefore, v = 3t%3 + cos t 3. (2)

5.2,2,22
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Solutions
Block 2: Vector Calculus
Unit 2: Tangential and Normal Vectors

2,2,9 continued

2 =6t1-sint 7. (3)
> J 4 2. ds
Therefore, |v| =V9t" + cos”t = zr. (4)
From (4),
) 1
3= Flot? + cos?t) 2 (363 = Jpom ¢ sin &)
at
36t3 - sin 2t

2V 9t4 + coszt

Since the tangential component of acceleration ag, is equal to
2 :

9__;, , we have

dt

3 ;
8y = 36t sin 2t . (5)

2 \‘9t4 + coszt

As for the normal component of acceleration, ayr we have

+, 2 2 2 (6)

and from (3)

|§[ = V36£% + sin“t. (7)

Putting the results of (5) and (7) into (6), we obtain

2 2 (36> = gin 2¢)2 2

36t + sin"t = + 8w
4(9t4_+ coé2t} 3

S.2.2.23




Solutions
Block 2: Vector Calculus
Unit 2: Tangential and Normal Vectors

2.2.9 continued

Therefore,

aNZ = (36)2t6+-36t24 coszt-+36tasin2t-+4 coszt sinzt-—(36t3—-sin2t)

2

4{9t4 - coszt)

/36t% (4 cos’t + t2 sin’t + 2t sin 2t

/2(9t4 + coszt)

- 6t(2 cos t + t sin t)

N
2-’9t‘1 + coszt

S.2.2.24
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