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Solutions
Block 2: Vector Calculus

Pretest

1.

(a) E(t)-F'(t) =0, i.e., if £(t) and F'(t) # 0 then F(t)if' (t).

(b) The acceleration is always directed toward the center of
the circle.

2. (a) ap = A2 ,oay = 2
2 2
1+4t 1+4t
(b) « = z
(1+4t2)
3. r=0 (the origin),( §Z§11.1cos'l 51{12 ){%(0.23,i141°)1,
(=1.,%+90%); (—%, + 60°) (Therefore, seven points in all)
m 1
o gioag
5. a, = -7 (2+m) ¥ _4 fr/sec?
ag = 7 (1-m % -(3.4) ft/sec?
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Solutions
Block 2: Vector Calculus

Unit 1: Differentiation of Vector Functions

2.1.1 (L)

The only reason this is a learning exercise is that we wanted
at least one more opportunity to emphasize how the parallel struc-
ture of vector arithmetic to numerical arithmetic allows us to

carry proofs over from one to the other.

While we do not include the steps used in the numerical proofs,
you should be able to verify that each proof in this exercise is

a "transliteration" of the corresponding numerical theorem.

The only place we must be on our guard is in any place where a
scalar proof hinges on the fact that |ab|= |a||b|, for with respect
to either the dot product or the cross product, the best we can
get is

-

|a - B| < |a]|B]

With these remarks in mind, we continue with this exercise.
> >
Here we pick f(x) = ¢ in our definition of lim f£(x). What we

x+a
must show is that for e > 0 we can find § > 0 such that

0< |x-a|l <6~ |E(x) -L| <€

In this example, f(x) = ¢ and we are testing L = &. Thus, we
must show that for ¢ > 0 we can find 6§ > 0 such that

0< |x=-a|l <6+ |E=-2] <e. (1)

-

But |[¢ - ¢| = 0.

i

e -
Therefore, € > 0 » |c - ¢| < €.

Hence we may choose § > 0 arbitrarily to satisfy (1).

S.2.1.1




Solutions
Block 2: Vector Calculus

Unit 1: Differentiation of Vector Functions

2,1.1(L) continued

b. For a given € > 0 we must show that we can find & > 0 such that

0<|x-a|l<8§+|&-Fx)-¢- 1] <e.

Now,

¢« F(x) -2 . I| =

2« (Fx) - D) ¢

[e] |E(x) - L|*. (2)

So given € > 0 pick 6§ > 0 such that 0 < |x - a|] < 6§ » |[f(x) - L]

* %
< TET « This is possible by the definition of lim f(x) = L.
o) xX+a

Combining this with (2) yields

0 < |x=-a] <68 = IE cF(x) - & . E] < ]E|_E_

therefore, 0 < |[x —a| <6 » |c - F(x) =& « L] < ¢

therefore, lim G - f(x) =¢ - L.
X+a
c. h (x) = C . f{x) (Notice that h is a scalar function.)

*Notice that we needed nothing stronger than |a + b|< |a||b].
**This is permissible provideg IEI # 0. If, however, ]?[ = 0, we
are in no trouble since when ¢ = 0,

lim ¢ * f(x) = c . T
X+a

is trivially true, since both sides equal 0.

S.2.1.2
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Block 2: Vector Calculus
Unit 1l: Differentiation of Vector Functions

2,1.1(L) continued

h{xl + Ax) = h(xl)
Therefore, h'(x;) = lim =
Ax—+0
-+ <> +
[c © Elmy + da) ~© f(xll]
= lim
Ax
Ax+0

f(x) + 8x) - £(xg)

I

and by part

I Ax~+0 Ax b. above,
o [Eey e am - Eoxg)
= lim ¢ * lim R . (3)
Ax+0 AX+0 o
|
-+
| From a. lim ¢ = & while, by definition,
} Ax~0
j ) ?tk(xl + Ax) - f(xl) )
lim T £ ()«
i Ax+0
l Putting these results into (3) yields
II h'(xq) = ¢« F'(xp).
j In other words, just as in the scalar analogque
L
| (@ Fx1r =2+ f'(x
1
2.1.2
I a. Ty = £ + 2 + (2t + V)R
I g(t) = 37 + 3t + 2 + 1K
Therefore, E(t) xg(t) = i } Kk
l 15 t2 2t+1
|
| I 3 3¢ %41
|
1
‘ n S.251.3
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Block 2: Vector Calculus
Unit 1: Differentiation of Vector Functions

2.1,2 continued

= Tree? + 1) - 32t + 1)) - Jre® + 1)

- 32t + 1)] + K[e(3t) - t3(t9))

=(t? - 562 - 35)T +(2¢? - ©)F + (3¢? - O

Therefore, fo(£(t) x § (£)] = (4t> - 10t - )T + (8t7 - 13

+ (6t - 5tHE.

(1)
b, F'(t) =1+ 2t] + 2k
vty = 3t%T + 33 + 2tk

Therefore, [£(t) x g'(t)] + [£'(t) x g(t)] =

i j K i j Kk

2 _
£ t° 2t+1] + |1 2t 2 =
3¢2 3 2t 3 3¢ t241

Tie2(2e) - 32t + 1)1 - J[e(2t) - 3t2(2t + 1)] + R[3t - t2(3t%)] +

Tize? + 1) - 3621 - Jrae? + 1) - 2631 + K13y - t32w)) =

2t3 - 6t = T + (6¢3 + tHT + (3t - 3H¥ + (2)

2e3 - ae)T + 2t2 - 2 - 1T + (3t - 2tHE = (3)

(at3 - 10t - 3)T + (8t3‘— 1T + (6t - 5thHE. (4)
S.2.1.4
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Block 2: Vector Calculus
Unit 1: Differentiation of Vector Functions

2.1.2 continued

Comparing (1) and (4) yields the desired check.

cn
d. From (2) we know that
ey x ' (&) = (2t - 6t = )T + (6t> + t9)T + (3t - 3eH# €
and since g(t) x () = =[F'(t) x g (t)1, (3) yields
Ft) x B (&) = (4t - 2T+ (1 + % - 2e2)T + 2¢? - k. &)
Adding (5) and (6) yields
-+ -
[£(t) x g' (8)]1 + [3(8) x £' (©)] =
(=2¢ = )T + @ed + 262 + 1T - ¢ £ (7)
e, Comparing (7) with either (4) or (1) shows that there is an error
caused by changing the order of the factors in the cross product
and in fact by the time we get to the final step our error is more
than "just a sign change" (i.e., we cannot convert (7) to (4) just
by changing a signj.
This doesn't contradict our general procedure. It merely means
that we must take care with cross products not to mimic scalar
proofs which use the commutativity of multiplication since the
cross product is not a commutative operation.
¥
2:1,3
a.
ak' _ .. AR
at = lim Iﬁ:— . (1)
_ At+0
t=t
1
-+ +>
+ _ AR _ [dR
Let k = e (H'E) (At # 0). (2)
=tl
Then, by (1),

S5.2.1.5
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Unit 1: Differentiation of Vector Functions

2.1.3 continued

Fa g
Il
o

lim
At~+0

(3)

From (2) we have

AR = \%gln At + k At
£y
f (4)

where, from (3), lim k = 0.
At+0 :

Observe that k must be a vector rather than a scalar because it

is the difference of two vectors. Notice also that such expressions

5
as %% At and k At are well-defined vectors since each is a scalar
times a vector. (Perhaps this would be more suggestive had we
written At K or At g? which is our usual order for writing scalar
multiples.)

b. We have by part a. that
-+
_ dr >
AR = T Ax + k Ax. (5)
(Replacing t by x has no bearing on our discussion since either
t or x denotes a real variable.)
From (5) we have
AR _ dR Ax . g Ax (6)
fu = dx Au iu’
< dx e
If we now let Au+0 we observe that lim — = G by definition of
Aus0 AU u
the fact that x is a differentiable function of u and we also
notice that Ax»0 as Au+0 since x is a (continuous) function of u.
-
Then, since k+0 as Ax+0, equation (6) becomes
AR _ dRdx , 2 d
. ;.4 X

lim — = + 0
Ausp U dx du u
or

5. 24146
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Block 2: Vector Calculus
Unit 1: Differentiation of Vector Functions

2.1.3 continued

215,
|

£15

e

c. R=(t+1I+¢2F 4+
dr _ 7 > 27
=1+ 2¢3 3e%k. (7)
4 dt 3

But t = u’; hence oz 5 4u Combining this with (7), the chain

rule of part b. yields

g% = g% F = d o+ 23 + 3% ad’

4u31 + studd + 12¢2 W3 k. (8)

On the other hand, letting t = u4 in our original expression for
R, we obtain:

R = (u4 + 1)1 + u8§ 3 gk® ¥
whereupon
&= 40T + 8u’3 + 12wl

-
= 4u31 + 8(u4)u3§ + 12(1.14}2 u3k

3 2 .3

37 + >
= 4u’i + 8tu~j + 12t u’k

which checks with our result in (8).

2.1.4(L)

a. We have that
R=x(t)1 + y(t)3. (1)

Pictorially,

§.2.1.7
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Block 2: Vector Calculus
Unit 1: Differentiation of Vector Functions

2,1.4(L)

x(t)

9
— .
< ES
] I

P(x(t), y(t)) y(t)

I
}: y(£)3 (1)

If we now differentiate (1) with respect to t, we obtain

5
dR _ dx7 dy+
Je = qel * 3e- (2)
In terms of Cartesian coordinates, the slope of a vector is the
guotient of the ; component divided by the i component, and the
magnitude of the vector is the square root of the sum of the
squares of the components. Applying this to (2), we find that:

-+

The slope of gn is (dy/dt)fdx/dt) = dy/dx (3)
and the magnitude of dR/dt is

2 2
= | (4)

® o+

where s denotes the arclength of the curve.

If we analyze (4) we see that the magnitude of g% is the instantan-

eous rate of speed of the particle along the curve (for this is
precisely what ds/dt measures, namely the instantaneous rate of
change of the arclength).

-..
At the same time (3) tells us that if %% is placed at the point
P on the curve, it is tangent to the curve at that point (since
the slope of the curve is dy/dx).
-+

Thus g% is tangent to the curve and its magnitude is the speed

at which the particle moves along the curve. This is a mathemati-
cal verification of the usual physical convention that instanta-
neous speed is tangential to the path and its magnitude is the
speed at which the arclength is being traversed. Again pictorially,

S.2.1.8
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Unit 1l: Differentiation of Vector Functions

2.1.4(L) continued

drR _ =
HE--V
vl = §&

R(t)

NOTE: Throughout this exercise we have assumed that t denoted
time, It should be noted that if § is a function of any scalar
variable, say, gq, then the vector 3« will still have its slope
equal to Hx and its magnitude will be

2

This follows mechanically with respect to q. I.e.,

From a more intuitive point of view, we realize that since R is
measured from the origin to a point on the curve, R really
varies only with s (arclength), but how fast it changes will
depend on the rate of change of the parameter q.

In particular there will be times in our discussions when we
wish to choose arclength as our parameter. For one thing arc-
length seems "natural" in the sense that it is independent of
any particular coordinate system. Notice that if we let s = g,
we find the interesting result that

+

dr| _

Is| =1
since

2 2 2

dx™ + dy” = ds”.

S.2,1.9
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Block 2: Vector Calculus
Unit 1: Differentiation of Vector Functions

2,1.4(L) continued

b, If ﬁ{tl) = ﬁ(tz} this means that the same point occurs on the
path for two different values of t. Pictorially,

oy
|

|
Ay
e

=
ﬁ terminates here for two different values of t,

say t = t1 and t = t2.

0

In other words, in terms of the vector form, the fact that ﬁ is
a 1 = 1 function of t means that the path of motion never crosses
itself.

Notice the difference between R being 1 - 1 and f being 1 - 1 as
far as graphing is concerned. When £ is 1 - 1, the usual Carte-
sian coordinate graph indicates that a line parallel to the
x—-axis meets the graph in at most one point. When E is 1 -1,
the graph can double back as far as x and y coordinates are con-
cerned, but it cannot cross itself. Graphically,

y=f (x)

fisl1-1

5.2,1.10
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Block 2: Vector Calculus
Unit 1l: Differentiation of Vector Functions

2,1.5
. . . - ; P :
a. Since x = e and y = e” ~, the equation of motion in vector form
becomes:
Ezset T+ 23
whereupon

v=e®3+ 2%t 3

a=-¢e" 1+ de J.

b, At t = 0 we have:

<+
[}
[
+
8]
(]

R

n

et

+

(=9
o

-

Hence, at t = 0, the particle is at (1,1) and has a speed of

o= \/(l)2 - (2}2 = V5 ft/sec in the direction tangent to the

path and an acceleration of /17 ft/sec2 in the direction of
- ->
i+ 4j. Pictorially,

wy
<+

=1+ 23 therefore, speed = I$| = /5

at t
(1,1)

Il
o

S.2.1.11
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Block 2: Vector Calculus
Unit 1l: Differentiation of Vector Functions

2.1.5 continued

c. We know that 3 is tangent to the curve R=e + e2t§, but this
is the same curve as the one whose parametric form is x = et and
y = eZt. Thus, from part b. T+ 23 is tangent to the curve at the
point corresponding to t = 0, and this point is (1,1). The
vector i + 23 has slope 2. Hence the given curve has slope 2 at
(1,1).

As a check, we observe that x = et implies that ezt = {et)z - xz.
Thus, eliminating the parameter tells us that the equation of
motion is y = x2 and at (1,1) the slope of this curve is 2,

which checks with our answer.

(Notice that ; tells us more than the direction of the curve at
a point, It tells us how fast the particle is moving along the
curve when it passes through that point.)

2.1.6 (L)

a. We know from the product rule for dot products that

sl - B =Ew - o+ e - B (1)
-+ o -+ <> . i
Now f'(t) + f(t) = £(t) » £'(t) since the dot product is commuta-
tive. Thus (1) becomes
-»>
el - E)) = 218 - Ere)l. (2)
Now F(t) - £(t) = |E(&)|%.
d -+ 2 - oy
Therefore, ¢ |[£(t)|© = 2[£(t) = £'(¢)]. (3)
1f |£(t)| is constant* so also is ]f{t)|2 and the derivative of
a constant is zero., Putting this into (3) yields
21E(t) - £r(r)] = 0.
*Notice that the fact that the magnitude is constant does not
require that be constant. A vector depends on both magnitude
and direction. Thus if the magnitude is constant but the direc-
tion isn't then the vector is a variable. We shall discuss this
in more detail in b.
Ss2+1:L2

£ 32 L3 (.13
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Block 2: Vector Calculus

Unit 1: Differentiation of Vector Functions

2.1.6 (L) continued
Therefore, £(t) * £'(t) = 0

Therefore, either f(t) = B, fr(t) = 0, or Fr)y L £ (v).

Let v denote the velocity of our particle. The fact that the
particle has constant speed means that [6[ is constant. Hence

the hypothesis for part a. prevails and we have

(4)

<+
s
I
o

But, by definition, =a (= acceleration).

%

Hence, (4) becomes

-+ -+

v *a=2=0

from which we conclude

.
(1) v = 0, which means the particle is stationary, a rather

trivial situation

or

(2) 2= E, which means that there is no acceleration, and this

means that the velocity as well as the speed is constant (in
other words our particle changes neither speed nor direction).

or

(3) vl 3, which means that the acceleration is always perpendi-
cular to the instantaneous direction of the particle (since v is

in the direction of motion).

Case (3) is particularly interesting, at least in the following
sense. Before we have the notion of vectors, we think of acceler-
ation as causing a change in speed. What we have now seen is that
when the speed is constant there can still be acceleration. The
fact that there is acceleration means that the velocity (a vector)

o e
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Block 2: Vector Calculus
Unit 1: Differentiation of Vector Functions

2.1.6(L) continued

must be changing, but since the magnitude of the velocity (speed)
is constant it must be the direction that is changing. Case (3)
shows that this change in direction is always at right angles to
the direction of motion.

c. In the case of a particle moving with constant speed in a circle
we know from plane geometry that at any point on the circle, the
tangent to the circle at that point is perpendicular to the
radius drawn from the center of the circle to that point. Thus
if a particle moves with non-zero constant speed in a circle,
case (3) of part b. applies, and we have that the acceleration
is perpendicular to the velocity. Since the velocity is tangen-
tial to the circle, it follows that the acceleration is directed
along the radius.
2ald

a. We have
B= 51n11t + tvl - tz 1+ 1t2+

2 2 Z= ds
Hence,
;- &
V= aE
/ 2 2
v = = +15t- . it e}
2v1 - 2 2V1 - 2
2 2
= LAl =% ) =& .o 3
2v1 - ¢?
2
25 R
1-t2
5.2.1.14
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Block 2: Vector Calculus
Unit l: Differentiation of Vector Functions

2.1.7 continued

Therefore |Vv| = \/( 1 - tz),z + t2 =1 = constant.
By N e 3
+ _dv _@awil=t"/F . —g(t 1
dt dt ge'c 3
TP (2)

Therefore, v a (from (1) and (2)) = (Vl = tz)(;——:E——) + (1)

Vi - t2

2 2
>12 _ -t 2 _ E
EH [7::ﬂ-+m 1
1-t
_ 1
1 - t2

Therefore, the magnitude of a is variable, even though the magni-

-+
tude of v is constant.

d. When t = 3, (1) and (2) yield

ve\l-2 T+33=214+33
B oy T
fmeet T3 == 3143
1- = 5

2.1.8(L)

a. The main aim of this exerciseis to show the close parallelism
between finding the anti-derivative (indefinite integral) of
£(t) and that of f(t).

Siz2=1515
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Block 2: Vector Calculus
Unit 1l: Differentiation of Vector Functions

2.1.8(L) continued

The point is that when we write f{t) in I and f components, we
have

f(t) = g(t) T + n(t) 7. (1)

To find a function F such that f'(t) = f(t), we may argue as
follows:

Since we differentiate a vector component by component, the 4
component of F(t) must be a function whose derivative with respect
to t is g(t), and, in a similar fashion, the f component of ?(t)
must be a function whose derivative with respect to t is h(t).

From our knowledge of scalar calculus (and it is crucial that
you recognize that g, h, G, and H are scalar functions of t,
with the vector contribution coming from i and 3}, we know that
if G is any function such that G'(t) = g(t), then the family of
all functions whose derivative with respect to t is g(t) is
given by G(t) + ¢ where cq is an arbitrary (scalar) constant.
Similarly, if H(t) is one function such that H'(t) = h(t), all
other such functions are given by H(t) + Cyr where cy is another

arbitrary (scalar) constant.

In other words, if F(t) is any function of the form:

F(t) = [6(t) + ;11 + [H(t) + c,]3. (2)
from (2) we see that

Frie) = g(v)i + n(v)3,

and comparing this with (1), we have that

Fr(t) = £(¢),

as desired.

-
The fact that (2) yields all functions ¥ such that F'(t) = f(t)
follows from the fact that if, say, the 1 component of ¥ is
different from the form G(t) + Cyr its derivative cannot be g(t).

5.2.1.16
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2.1.8(L) continued

Thus, in this case ﬁ'(t) could not equal f(t) since these two
vectors then have different 1 components. (Remember, in Cartesian
coordinates in the plane, two vectors are equal if and only if the
two 1 components are equal and the two § components are equal.)

We next note that (2) can be rewritten as

F(t) = G(t)1 + H(t)3 + cli + c2§. (3)

Since ¢, and c, are arbitrary scalars, CII + CZ§ is an arbitrary

2
vector constant*, and (3) becomes

F(e) = G(e)T + H(e)} + & (4)

and from (4) we see that to integrate a vector fuaction in
Cartesian coordinates, we integrate component-by-component and

add an arbitrary vector constant.

Restated, then, if F is any function such that f'(t) = %(t), then
the family of all functions whose derivative with respect to t is
f(t) is given by

{f(t} + ¢: ¢ is an arbitrary constant vector.}

This shows that the idea of integrating vectors, at least in

Cartesian form, is analecgous to our techniques in the scalar case.
-+

av
dat’
(8cos 2¢)1 + (BsinZt)g, then

Knowing that a = we may use part a. to conclude that if

-+
a

(4sin 2t)1 + (-4cos 2t)§ + (1)

&
v 1°

Since we are told that v = 0 when t = 0, we may put this into

(1) to obtain:

*Pictorially,
e -+
czj

>

cli

Sadu il
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Unit 1l: Differentiation of Vector Functions

2.1.8(L) continued

8= of-4a]+c]
whereupon we may conclude that El = 4}. This, in turn means

that (1) may be written as

. > 2 =
(4sin 2t)i + (-4cos 2t)j + 43

-
N

(4sin 2¢t)1 + (4 - 4cos 2t)7. (2)
> _ dR
Since v = Jcr We may again use part a. applied to (2) to obtain:

R = (-2cos 2t)1 + (4t - 2 sin 2t)7 + c;. (3)

Since R = 0 when t = 0, (3) becomes

0 = -27 + c;.
Therefore, 32 =

Therefore, R=(-2cos 2t)1 + (4t - 2sin 2t)F + 21
or
-

R= (2 - 2cos 2t)1 + (4t - 2sin 2t)7.

In other words, the equation of motion is given parametrically by

2(1 - cos 2t)
2(2t - sin 2¢t).

X

Y

(Notice how the vector equation replaces a pair of scalar equations.
In 3-dimensions

R(t) = x()1 + y(t)F + z(v)k

S.2:1.18
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Unit 2: Differentiation of Vector Functions

2.1.8(L) continued

x = x(t)
replaces the three scalar egquations y = y(t)
z = z(t) )

c. From b. when t = %; x = 2(1 ~ GGE 2(§q)= 2(1 - cosm) = 2(1 = (=1) = 4;

while y = 2(2[7] - sin 2()) = 2(n - 0) = 2m

Hence the particle is at (4,2m).

S.2:.1.19
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