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3.6.1(L) 


a. We have 


W = f(XIYI 

and letting x = r cos 8 and y = r sin 8, we also have that 

w = f(r cos 8, r sin 8) 

Now, by the chain rule 


[Again, to emphasize f and g, equation (3) should be viewed as 


since g is used to express w in terms of r and 8 while f is used 

to express w in terms of x and y.1 


From x = r cos 8, y = r sin 8, we have 

x = cos 6, yr = sin 8 r 


x, = -r sin 8, y, = r cos 8 1 

Substituting (4) into (3), we obtain 


w = wx cos 8 + w sin 8. r Y 


To find wrr, we now need only take the partial derivative of 

equation (5) with respect to r. This, of course, assumes that @ 

is our other independent variable. Thus, looking at the right 

side of equation ( 5 ) ,  we see that both sin 0 and cos 0 may be 
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3.6.1 (L)  continued 

viewed as constants when we take the partial derivative with 


respect to r. The "trickier" aspects involve differentiating wx 


and w with respect to r. The key is that both wx and w are 

Y Y 


themselves bona fide functions of x and y, so that the chain rule 


also applies, just as it did to w. In still other words, we may 


think of wx(x,y) as being denoted by, say, h(x,y). Then to dif- 


ferentiate wx with respect to r, we need only differentiate h with 


respect to r, but from the chain rule we know that 


hr = hxcos 0 + h sin 0. 
Y 


Since h = wx, it should be easy to see that hx = wxx and that 

h = ( w ~ ) ~= wXy.

Y 


With this notation in mind, equation (6') may be read as 


+ w sin 0 .  (w,) = wXXcos r XY 


If the substitution h(x,y) = w (x,y) seems a bit artificial, the X
following explanation may seem more acceptable. 

In the expression 


think of f as being a "place holder" in the sense that equation 


(8) really says 


If we now "fill in" the parentheses in ( 8 ' )  by ax,aW we obtain: 
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aw aw 
a a 
If we next let -ax = wxxI -aY = W~y'ar -

ax = cos 8, and = sin 5 ,  


we see that equation (9) is the same.as equation (7). 

At any rate, if we return to equation (5), we have 


+ -- a(wxcos 8 w sin 8)

ar 


- a(wxcos 8) a(w sin 8)
- + 

ar ar 


a (wX) a t w  I 

= - a cos 8 + sin 8r ar 


(recalling that sin 8 and cos 8 are constants when we differentiate

with respect to r). 


From either equation (7) or equation (9)I we know that 


a (w,) 2 2 

-- -2cos e + -a a sin 8r axay
ax 


By similar reasoning 


2 
= - a cos 8 + 22 

sin 8. 
ayax 


aY 


2w *Conceptually, -aaxay and -a y a x  
a2w are very different. In most cases,

they happen to b e  equal, but this need not be the case. For a 

more complete discussion, see Exercise 3.6.2. 
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3.6.1(L) continued 

Therefore,  

a 2
2 cos  e + 2 axay s i n  0 )  cos 0 + (Acos  0 + 9 sin0

a 2 ayax r aY 

-- 92 
2 cos e + q2 2 2 

s i n  e + (&+ cos  8. 
ax aY axay ayax 

a2 2 
[Again, n o t i c e  t h a t  w e  a r e  n o t  presupposing t h a t  = -?-!! 

2 2 axay - ayax' a w  I f  it happens t h a t  -= -a then (10) may be w r i t t e n  a s  axay ayaxt 

2 2 2 2
- = - 2a w  a w c o s ~ + 2 m  a s i n  8 cos 8 + 9 s i n  2 8.1 
a r ax2 ay 

b. If w = f ( x , y )  = x2y3, then 

w = (r cos e ) 2  (r  s i n  8) 3 

5 3 2 
= r s i n  8 cos  6 = g ( r , e )  

- - 4 3 2
aW -a 5 r  s i n  8 cos  @r 

On t h e  o t h e r  hand 
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2 2 
a w - -[Note that -axay - ayaxa in this example.] 

So equation (10) becomes in this case 

2 a w  3 2 2 2 2-= 2y cos 8 + 6x y sin 8 + (6xy2 + 6xy )sin 8 cos 8 
ar 2 

3 2 2 2 2 = 2y cos 8 + 6x y sin 8 + 12xy sin 8 cos 8 

3 2 2 2 = 2(r sin 8) cos 8 + 6(r cos 8) (r sin €))sin 8 + 12(r cos 8 )  

2(r sin 8) sin 8 cos 8 

3 3 2 = 20r sin 8 cos 8. 

A comparison of equations (11) and (12) shows us that we obtain,.
L 

a using either method.the same value for 7 
ar 

There are several particular results which we wish to emphasize in 

this exercise. First of all, let us observe that our definition 

of f is such that f is continuous at each point (x,y) in the 

plane; and that in particular, f is continuous in a neighborhood 

of (0,O). Since f is defined in terms of a product and quotient 

of polynomials in x and y, it should be intuitively clear that 

the only possible trouble spots are places at which our denomina-
2tor is 0. Since our denominator is x + y2, we see that we are in 

2trouble only if x + y2 = 0, and this can happen if and only if 

both x and y equal zero. In other words, f should be continuous 

in the neighborhood of each point in the plane, except possibly 

for the point (0,O). 

To check whether f is continuous at (0,0), we must show that 

lim f (x,y) = f (010) 
(x,y)-+(OI01 
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Keeping in mind the crucial fact that lim f (x,y) must be
-
(x,y)+(O,O)


independent of the path (otherwise the limit doesn't exist), it is 


probably wise to switch to polar coordinates since then (x,y)+(O,O) 

is equivalent to r+O, regardless of the value of 8. 


At any rate, if we switch to polar coordinates, then (x,y) # (0,O) 

implies 

2 2 2 2 

- (r cos 8)(r sin 8)(r cos 8 - r sin 8) 

2 
r 


4 	 2 2 

-	- r sin 8 cos 8 (cos 8 - sin 8) 

2 
r 


Therefore, 


2 

lim f(x,y) = lim r sin 8 cos 8 (cos 8 - sin 


2
(x,y)+(O,O) r+O 	 r 


2 	 2 2 
= 	lirn [r sin 8 cos 8 (cos 8 - sin 811 (since r#O) 
r+O 

2 2 
= 0 sin 8 cos 8 (cos 8 - sin 8) 

and since f(0,O) is defined to be 0, we have from equation (2) 


that 


lim f(x,y) = f(0,O) 

(x,y1+(0,0) 


so that f is continuous at (0,O). 


Our next endeavor is to show that fx exists at each point (x,y) in 


the plane and that fx is continuous at (0,O). Again, from the 


definition of f, the trouble spot involves the computation of 
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fx(O,O) [since f has a "special" definition at (0,O)I. If 

(x,y) # (0,0), fx(x,y) is still cumbersome to compute, but the 

computation is straightforward. 

Namely, if (x,y) # (0,0), then 

Hence, by the quotient rule, (3) yields 


The right side of (4) is well-defined provided (x2 + y 
2

) 
2 

# 0 and 
since our assumption in deriving equation (4) was that 

(x,y) # (0,O), it is clear that 

Before we compute fx(O,O), let us 0bserv.e that the continuity of 


fx at (0,O) will involve showing that 


lim fx(x,y) = fx(O,O). 
(x,y)+(O ,O) 



Solutions 
Block 3: Partial Derivatives 
Unit 6: The Chain Rule, Part 2 

3.6.2 continued 

Thus, we might as well compute lim f (x,y) from equation 
(x,y)+(OIO) 

X 

(4). Again, introducing polar coordinates,.we have 

4 4 2 2 2 2 4 4 -- r sin 8 [r cos 8 + 4r cos 8 r sin 0 - r sin 01 

r 4 

5 
- - 4 2 2 4- sin 8 (cos 8 + 4 sin 8 cos 0 - sin 0) 
r 4 

Iherefore, 

4 2 2 4
lim fx(x,y) = lim [r sin 8 (COS 8 + 4 sin 8 cos 0 - sin 

(x,y)+fO,O) r+O 

To compute fx(O,O), it is perhaps safest to return to the basic 

definition 

fx(a,b) = lim [f (a + Ax.b) - £(arb)] 
Ax+O Ax 

so that 

fx(0,o) = lim [~(AX~O) -AX~(o,o)] 
Ax+O 

Since lirn implies Ax # 0, we may use equation (3) to conclude that 
Ax-tO 

2 
f(Ax,O) = (Ax)(0)(E~- 0 1 = -

-2 2 O 0-
Ax + 0 -2Ax 

Moreover, 
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by definition. 


Hence, (7) may be rewritten as 


= lim 0 

Ax+O 


Combining (8) with (6) , we have 

so that fx is continuous at (0,O). 


A similar treatment shows that f exists and is continuous at 

Y 


(0,O). In more detail, we differentiate (3) with respect to y to 


obtain 


From (9) , it follows that lim fy(x,y) = 0. 
(x,y)+(O,O) 

[We could carry out the details as we did before. A quicker ob- 

servation is that if we express the right side of (9) in polar 

coordinates, the numerator has r5 as a factor and the denominator 

has r4 as a factor so that the quotient has the form r g ( 8 ) .  

whence the limit as r+O is 0.1 
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Then 


f (0~0) = lim [f (0.b~)- ~(o.o)]

Y Ay-tO AY 


Hence, 


lim f (x,y) = fy (0 .O). 

(x,y)+ (0 t o )  


Summarizing our results to this point, we have shown that f, fx, 


and f exist and are continuous at (0,O). 

Y 


Let us next investigate f (0.0) and fyx(OIO). 
XY 

To begin with, f (0,O) means 


xy 


For convenience, if we let h(x,y) = fx(x,y) I we have that 

f = hy
XY 


Therefore, 


= - h(0.0) Jlim P(O.AY)

Ay-tO AY 


and since h = fx, it follows that 

fx(OfAy) - fx(O,O) 

2 (0,O) = lim 

XY Ay-tO AY 
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From ( 8 ) ,  fx(O,O) = 0, while from (4) [since Ay f 01 

Hence, equation (11) may be rewritten as 


= lim [-11 

Ay-tO 


Similarly, 

f (0,O) = kx(O,O)
YX 


where 


Hence, 


Again, from (lo), f (0,O) = 0, while from (9) 
Y 


= Ax. 
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Hence, equation (13) may be rewritten as 


Comparing (12) and (14) , we see that 

since f (0,O) = -1 while f (0,O) = 1. 
XY YX 


Now, if the theorem stated in the introduction to this exercise is 


correct, it must mean that f is not continuous at (0,0), for if 

xy


it were, the theorem guarantees that in this event f (0,O) exists 

YX 


and is equal to f (0,O).

XY 


Thus, to round out this exercise, we should compute f and show 

XY 


that f is not continuous at (0,O). 

XY 

From (4) , if (x, y) f (0,O), we may differentiate fx with respect 
to y to obtain 

or, since (x,y) # (0,O) [so that x2 + Y2 f 01 I 
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Therefore, 


From (15) t 

while 


From (16), we see that 


if (x,y)+(O,O) along the line y = 0. While from (17), we see that 

if (x,y)+(O,O) along the line x = 0. 

Thus, while f (0,O) exists, 1 im f (x,y) does not exist 

XY (x,y)+(O,O) XY 


since the value of the limit depends on the path along which 


As a final note on this exercise, observe that we have just 


shown by example that the fact that f, fx, and f all exist and 

Y 


are continuous at (arb) [in this case, (0,0)] is not enough to 


guarantee that f or f will also be continuous at (arb). In 

XY YX 
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other words, the fact that fx and f are separately continuous 

Y 


does not guarantee that the mixed partials f or f will be 

XY YX 

continuous. 

The converse is also true. That is. if we know that fyx. say, 

exists, we cannot conclude that both fx and f exist. As a 

Y 


trivial (and not too exciting) example, suppose f (x,y) = g(x) 

where g is a function of x which is not differentiable. Then, 

since gl(x) doesn't exist and gl(x) = fx(x,y), it follows that 

fx does not exist. On the other hand, the fact that f(x,y) = g(x) 

means that f is independent of y and this in turn means that 

f (x,y) not only exists but that it is identically zero, since f 
Y 

depends on x alone. Therefore, f is identically zero, and 


Y 

accordingly 


In other words, in this example, we have shown that f exists 

YX 


even though fx does not exist. 


The main point through all of this is to learn to be "respectful" 


to the subtleties of taking partial derivatives and in particular 


to learn not to jump to "obvious" conclusions which happen to be 


false. 


NOW, since x = r cos 0 and y = r sin 0 ,  we have 


x8 = -r sin 0 and y 0 = r cos 0. 


Putting (2) into (1) yields 


we = -W r sin 0 + w r cos 8 . 

X Y 


Therefore, 
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a [-wXr sin f3 + w r cos 81 wee = Y 

- -a [-wxr sin 81 + -a [w r cos 8' - ae ae Y 

Since r is constant when we differentiate with respect to 8, 


equation (4) may be rewritten as 


a a
wee = -r ae [w, sin 81 + r [wY cos 8 1 -

We must next remember that both wx and w are, by the chain rule, 

Y a 


functions of r and 8. Hence, evaluating either [wx sin 01 or 

a 

ae iWy cos €11 requires the use of the product rule. 


More specifically, 


a a (w,)
-ae [wx sin 01 = wX cos 8 + -ae sin 8 

and 


a(w

-a [wy cos el = -w sin e + ----I--ae Y ae cos 0. 


Now 


2 L 
= --a w r s i n e + - a r cos 

2 axayax 


and 


2 2 

-- -- a w r s i n e + -a ;r cos e. 

ayax 

ay 
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Substituting (8) into (6) and (9) into (7), we have 


a 2
,,[wx sin 81 = wx cos 8 - w r sin 8 + w r sin 8 cos 8 
XX XY 


and 


a 2
[wy cos 81 = -W sin 8 - w r sin 8 cos 8 + w r cos 8. 
Y YX YY 


Finally, we substitute the results of (10) and (11) into equation 


(5) to obtain 


2 2 2 
wee = [-rw
X 
cos 8 + wxxr sin 8 - wXYr sin 8 cos 01 


2 2 2
+ [-rw sin 8 - w r sin 8 cos 8 + w r cos 81. 
Y YX YY 


Since w, Wxf wyp Wxy exist and are continuous, it follows that 


W = w  and we have 

YX XY' 

- 2 2 2w r sin 8 cos 8 2 + w 2 2 wxr cos 8 Wxxr sin 8 - r cos 0 -- xy YY 

- w r sin 8. 
Y 

. From Exercise 3.6.1, 

2 2 
W = wxx cos 8 + 2w sin 8 cos 8 + w sin 8. r r XY YY 


Theref ore, 


2 2 2 2 2 2 
r w  - r cos 8 + 2w r sin 8 cos 8 + w r sin 8. rr - Wxx XY YY 


Adding equations (13) and (14) yields 


2 2 sin 0) .r w  rr + w8 8 =wXXr2 + w  
yyr 

- r (wx cos 8 + w
Y 
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C. Since cos 0 = xr and sin 0 = yr 

w c o s 0 + w  s i n 8 = w x  
x Y x r -I-"yyr = r' 

Therefore, 


Therefore, 


Therefore, if r # 0 ,  then 

3.6.4(L) 


Aside from supplying us with additional drill, another major aim 

of this exercise is to generalize our results beyond polar coordi- 

nates. In this exercise, we assume only that w is a continuously 

differentiable function of the two independent variables u and v, 

and that u and v are differentiable functions of x and y. In the 

special case of polar coordinates u = r and v = 8. 

a. At any rate, by use of the chain rule, we have that 


W = W u + wvvx.
X u X 


Applying the chain rule to (I), we have: 


-(wxIx - (wuux + wvvxIx 

= ( w u )
U X X  + (wvvxIx 



- -  - 
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Now, by the chain rule, 


(wu),= (wu u u X + ( w )  vu v x  


and 


Putting the results of (3) and ( 4 )  into (21, we obtain 

Since the conditions of this exercise guarantee that wUV = w vu' 
we may collect terms in (5) to obtain 

By reversing the roles of x and y, we may deduce from equation (6) 


that 


Of course, had we wished, we could have derived (7) without refer- 

ence to (6) . That is, we have 

W = w u  + W V .  

Y U Y  V Y  


Hence, 




Solutions 

Block 3: Partial Derivatives 

Unit 6: The Chain Rule, Part 2 


3.6.4(L) continued 


- + (w 1 U I + rwvvyy + (w v I- Iwuuyy U Y  Y 	 V Y  Y 

-- [wuuyy + (wuuuy + W V )U I+[wv + (wvuuy + W  v )V 1.  
uv Y Y v YY W Y  Y 

At any rate, we need now only add equations (6) and (7) to obtain 

W + W = wuu(ux + u 2) + ww(vx2 + v 2) + 2wuv(uxvx + U v ) 
xx YY Y Y 	 Y Y  


Notice from equation (8) that in general, wxx + w  involves 

YY 


five terms; i.e., wUU, wVV, wUV, wU, and wv when we make our 


change of variables. 


b. 	 In the special case of polar coordinates, we have u = r and v = 0 .  

From r 2 = x 2 + y2 and tan 0 = y, we obtainX 


2r rx = 2x. 


Therefore, 


- Xr X - r =  cos 0 


provided r # 0. 

(If r = 0, -X r is undefined. To avoid this dilemma, we assume that 

the region in which our function w = f(r,0) is defined does not 
include r = 0. For example, if R denotes the domain of f, we 

could have 
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The case r = 0 will be discussed in more detail in a later unit.) 

Similarly, 

2 r r  =2y.
Y 

Therefore, 

r = Y =  
Y r 

sin 8, r # 0. 

Finally, tan 0 = 5 implies 

2 ae sec e -= -3, 
ax x 

therefore 

2= -5cos 8 = -r sin 8 2 sin 8 
ex 2 2 cos e = --x r cos 8 r 

and 

2 ae 1sec 0 -= -
ay X I  

therefore 

c0sLe0 = - =  c0sLe = cos e 
Y x r cos €I r 

Therefore, 
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2 2 

2 + v  2 = sin 8+ cos- 0 -- 1 

= e  = -cos 8 
vx Y r2 r r2 

Y Y r 

sin 8 
u v = cos 8 IX X 

u v  + u v  = o  

x x  Y Y  


u v = sin 0 
Y Y  


2
-- -sin 8 
r 


u = sin 8 + u = (sin 8) = cos 8 -a e 
Y YY Y aY 

2 
-- -cos 8 
r 


Therefore 


-r cos 0 -a e + sin 8 -ar sin 8 sin 8 - ax ax= -- + VXX = ( - I x  -x r 2 
r 


-- [-r cos 81 1 '1 Sin
- 7 + sin cos e sin cos 
-
-

r 2 r 
2 

V 
Y 

cos e=-+v 
r YY 

cose-- l Y = 
-r sin 8 - - ae 

aY 
r2 

ar
C O S O -

aY 

Therefore, 
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-r sin 8 (cos 8 ) - cos 8 sin 9 sin cos 

v = 
 = -
YY 2 2 
r r 


Therefore, 


2 sin 0 cos 9 - 2 sin 8 cos 8 v 
xx 

+ v
YY 

= 2 2 _ 0. 
r r 


Substituting the results of (91 ,  (101, (111, (121, and (13) into 

(8) yields 


and we see that equation (14) checks with equation (16) of 


Exercise 3.6.3. 


c. Without reference to equation (81, we have 


2 2 

w = e  +y cos (x 2 - y 2) 


Therefore, 


2 2 2 2 
2xeX +Y cos (x 2 - y2) - 2xeX +Y sin(x

2 - y 
2

)Wx = 

2 2 

= 2xeX +Y [cos (x 2 - y 2) - sin (x 2 - y 2) 1 


Therefore, 
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Theref o r e ,  

2 2 
 2 2 2 2 2 2 

=W x ~ 2eX +Y [ [ cos (x  - y ) - s i n ( x 2  - y ) 1 + 2x [cos (x  - y ) 


- s i n ( x2 - y 2) I  + x[-2x s i n ( x  2 - y 2) - 2x cos ( x2 - y 2 ) ] ]  

2 2 

= 2eX +Y [cos (x  2 - y 2 ) - s i n  (x  2 - y 2 ) - 4x2 s i n ( x 2  - y2) ]  (15) 


S i m i l a r l y ,  

2 2 2 2
2 2 2 2 
w = 2yeX+Y c o s ( x  - y )  + 2 y e X + Y  s i n ( x  - y )
Y 

2 2 

= 2ye +Y [cos (x  2 - y 2 ) + s i n  (x  2 - y 2) I 


2 2 

w = 2 2 2 2
2 e X + Y  [ c o s ( x  - y )  + s i n ( x  - y ) I

YY 

2 2 


+ 2y (2ye X + Y  ) [ c o s ( x2 - y 2 + s i n ( x2 - y 2) I  

2 2 

+ 2 y e X + Y  [2y s i n ( x  2 - y 2) - 2y c o s ( x  2 - y 2) I  

Therefore ,  

Adding (15) and (16) y i e l d s  
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d. 	 The cumbersome computation of part (c) can be simplified by use of 

equation (8 )  if we make the rather natural substitution 

and 


This substitution yields 


u 
w = e  cosv 


and, in this form, it is easy to differentiate with respect to 


either u or v since our factors have u and v separated. More 
specifically: 

wU = e u cos v 

wUU = e u cos v 

wv -- -e u sin v 

w = -eU cos v
W 


w 	 = - e  u sinv 
uv 


We also have that 


Hence, 
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v + v  = 2 - 2 = 0  

xx YY 


With these particular results, equation (8) becomes 


= 4ueu cos v + 4u(-eu cos v) + 8v(-eU sin v) + 4eU cos v 

= 4eu cos v - 8veu sin v 

and, if we now replace u by x 2 + y2 and v by x 2 - y2, we see that 

equation (19) is the same as equation (17). 

While the next remark is subjective, it is our feeling that the 

second method, using equation (8), it less cumbersome and easier 

to keep track of than is the first method [part (c) 1.  

3.6.5(L) 


From a computational point of view, this exercise is a rather 


simple application of the previous exercise. What we did want to 


emphasize in this exercise, beyond any computational consequences, 


is the role of this unit in the solution of partial differential 


equations. 


It turns out that in many applications of mathematics to physics 


and engineering we become involved with partial differential 


equations of the second order. Three "well-known" examples are: 


(1) The Wave Equation 


2 

Wtt = a XX 1 


S.3.6.25 
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(2) The Heat Transfer Equation 


(3) Laplace 's Equation 

w + w  = o  
xx YY 


(If w denotes temperature, Laplace's equation is known as the 


steady state equation.) 


In solving such equations, we are usually given certain boundary 


conditions, meaning we are told what the solution must look like 


along certain curves (boundaries). Very often, it is convenient 


to introduce other coordinate systems in order to express the 


boundary conditions in as helpful a way as possible. 


For example, we might be called upon to solve Laplace's equation 


in a situation where we have circular symmetry. That is, suppose 


we know that wxx + w = 0 and also that w depends only on the 
YY 


distance of the point from the origin. As an illustration, w 


might denote the magnitude of the force at a point in a central 


force field in which the force is proportional to the distance 


from the origin to the point. In such a case, it would be natural 


to introduce polar coordinates and view w as the special case of a 


function of r and 0 in which the function is independent of 0. 


In terms of more formal language, we are saying that in this case 

w = f (r, 8) = h (r) . What part (a) of this exercise asks us to do 

is express wxx + w in terms of h (r) and r. 
YY 


a. We already know that in general if w = f(r,e) then 

Since w = h(r), it follows that we must be identically zero since 

h(r) is independent of 0; while wr = hl(r) since w is a function 

of the single variable r, thus makinq the partial derivative and 

the ordinary derivative the same. 
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3.6.5 (L) continued 


With these remarks in mind, equation (1) simplifies to 


b. 	Thus, in this particular situation (i.e. knowing that w depends 


only on r), Laplace's equation 


may be expressed in polar form as 


Since h' and h" appear in (3) but not h, the substitution g = h' 

reduces (3) to a first order differential equation in which the 

variables (g and r) may be separated. Once this is done, equation 

(3) may be solved by the method of anti-derivatives discussed in 

Part 1 of this course. More specifically, letting g = h', equa- 

tion (3) becomes 

and in differential notation, equation (4) may be written as 


whereupon 


so that 
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3.6.5 (L) continued 


Therefore, 


and since g' = h, it follows that 

h' (r) = -C r 


so that 


If we restrict r to mean magnitude (without direction), then 


r b 0, so that (5) may be written as 


where c and k are arbitrary constants. Recalling that r = m, 
we may now rewrite equation (6) in Cartesian coordinates as 


Equation (7) gives us the following interesting information. 

Suppose that r denotes the distance from the origin to a point in 

the plane and that w is a function of r alone which satisfies 

Laplace's equation wxx + w = 0. Then w must have the form 
YY 


where c and k are arbitrary constants. 


As a computational check, let us take the special case c = 2 

(which eliminates the radical sign) and k = 0. We then obtain 

that 
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3.6.5 (L) continued 


Then 


Similarly, 


Therefore, 


Adding equations (9) and (10) , we have 

(Again, notice that our results are valid provided only that r # 0. 
In other words, we are again assuming that the domain of w does 

not include the origin. Physically, in situations such as "in- 

verse square laws," the origin is often omitted. Namely, if the 

force is proportional to ,1 or -2 ' then r must not equal 0.) r 
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3.6.6 	(L) 


a. 	 We have 

x = e u cos v, y = e u sin v. 

Hence, 

x
U 

= e u cos v, yU = e u sin v 


and 


x v = -e u sin v, yv = e u cos v. 


From the chain rule 


-wu 	- wxxu + w Y IY U  


so that from (2) , 


wu = w e u cos v + w eU sin v 
X Y 


= e u (wX cos v + w sin v). 

Y 


Therefore, 


a 
Wuv 	= (wu) 


-- -a u
av 	[e (wX cos v + w sin v)] ,
Y 

and since eU is constant when we differentiate with respect to v, 

= e u a (wX cos v + w sin v). (5)Y 


Since wx and w are also functions of v (and u), we use the pro- 

Y 


duct rule on ( 5 )  to obtain 
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3.6.6 (L) continued 


a (COS V) a (w,) a (sin V) + +sin v Iw uv =eu[wX av + av cos v + w y av 

a (w,) a(w 
= e"[-w x sin v + -cos v + wY cos v + -Lsinv]. (61av av 


a (w,) 

Applying the chain rule to -av yields 

so using ( 2 1 ,  

Similarly, 


u 

= w (-e sin v) + w (e" cos v) . 

YX YY 


Since w = w in this exericse, the result obtained by substi- 
YX XY 


tuting ( 7 )  and (8) into (6) is 


u 
w uv = e"[-wx sin v + f wxx (-e sin v] + w (e" cos v) 1 cos v +
XY 


u 
w cos v + {W (-e sin v) + w (eU cos v) )sin v 
Y XY YY 


u u 

= wx(-e sin V) + wXX (-e sin v) (eU cos V) + w k e cos V) 2 

XY 


u u
+ (-e sin v) (eU sin v) e cos v + w (eU cos V) 
YY 


(eU sin v). 


Finally, from (I), e U cos v = x and e U sin v = y, hence 



Solutions 

Block 3: Partial Derivatives 

Unit 6: The Chain Rule, Part 2 


3.6.6 (L) continued 


Theref ore 


b. From equation (lo), 


is equivalent to 


where x = e u cos v, y = e u sin v. 

The point is that equation (11) is particularly easy to solve. 


The technique hinges on the generalization of what we mean by a 


constant in terms of differentiation. Recall that in the case 


of a single real variable, f(x) denoted a constant if and only if 


f' (x) was identically 0 (that is, f' (x) = 0 for each value of x) . 
In the case of several real variables, suppose w = f(xl,...,x n 
where xl, ..., and xn are independent variables. Suppose also 
that, say, is identically 0. This says that if all the vari- 


Wxl
ables except xl are held constant then the rate of change of w 


with respect to xl is zero. That is, w is constant as far as xl 


is concerned. In another perspective, this says that w depends 


only on x2,..., and xn. 


With this idea in mind, the fact that 


(wUIV is identically zero 


means that wU is constant as far as v is concerned. That is, wU 


is a function of u alone. Say wU = f(u). Suppose now that F is 

any function such that F' (u) = f (u) . Then the fact that wU = f (u) 

means that w = F(u) would be an acceptable solution to equation 

(11). Now in the case of a single variable, we may always add on 


a constant of integration. In the case of several real variables, 
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3.6.6 (L) continued 


we may add on a function of integration. That is, suppose G(v) 


denotes any differentiable function of v. Then since u and v are 


independent variables, it follows that GU(v) is ,identically zero. 


In other words, if wU = f (u) and F' (u) = f (u) , then w = F(u) + 
G(v) where G is any differentiable function of v has the property 

that wU = f (u) . Namely 

wU = FU(u) + GU(v) = F a(u) + 0 = f (u). 

Again, applying this discussion to equation (ll), we have that 


since wuv is identically zero, 


where F and G are any differentiable functions of a single real 


variable. 


The hardest part of this type of problem is that since x and y are 


given in terms of u and v, we may not always be able to solve 


explicitly for u and v in terns of x and y. (This will be dis- 


cussed in more detail later in this block under the heading of 


the Inverse Function Theorem). In this particular case, however, 


it is not too difficult to express u and v in terms of x and y. 


Namely, from (1) we have that 


u 
x = e cos v 

y = e u sin v 

Dividing the second equation by the first yields 


Y- = tan v 
X 


(where we must beware of any value of v for which cos v = 0, since 

as usual we are not permitted to divide by 0). 

If we now restrict our attention to principal values, we have that 




Solutions 

Block 3: Partial Derivatives 

Unit 6: The Chain Rule, Part 2 


3.6.6 (L) continued 


To find u, we square both equations in (1) to obtain 


2
x2 = e2u cos v 


2
y2 = e2u sin v 


and adding these two equations yields 


2 2 2 2u
-< + y2 = e2u (COS v + sin v) = e 


so that 


2u = In (X2 + y2) 


Putting the results of (13) and (14) into (12), we obtain 


w = P(ln m)+ G [tan-' ($11 . 

The main observations here are that (i) we cannot always find u 

and v explicitly in terms of x and y, and (ii) given a differen- 

tial equation such as (lo), it is not often easy to find the 

change of variables that will convert the cumbersome equation 

into something as simple as (11) . 
c. Letting F(u) = 2u and G(v) = tan v, equation (15) becomes 

w = 2 ln + tan (tan-' $1 
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3 . 6 . 6 ( L )  continued 

Check 


Therefore, 
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3.6.7 


a. We have 


and 


Hence, 


X = 2u, yu = 2v 
u 


and 


X = -2vr yv = 2u. 
v 

By the chain rule, 

wu = wxxu + WYYU 

Therefore, 
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3.6.7 continued 

Using (4) and the fact that w
XY 

= w
YX, 

equation (6 becomes 

w uv = 2u (-2v)wxx + 2u(2ulwXY + 2v(-2v)wxy + 2v (2u)w YY + 2wY 

or 

2 

w uv 

= -4uv Wxx + 4 (u - v 'wxy + 4uv w 
YY 

+ 2w
Y' 

BY (1). u2 - v2 = x and 4uv = 2y. so (7) becomes 


WUV = -2y w, + 4x w + 2y w + 2w 

XY YY Y 


= 2 ry Wyy + 2 x w
XY 

- y wxx + w
Y
I. 


b. Using (8), we have 

Hence, 


+ 2 x w  - y w x x + w  = O  

w~~ XY Y 


is equivalent to 


wuv = 0 where x = u2 - v2 and y = 2uv. 


The solution of (10) is 


Hence, the solution of (9) is 


w = F (u) + G (v) 

where u and v are defined implicitly in terms of x and y by 
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3 . 6 . 7  continued 

We can solve for  u and v i n  terms of  x and y i n  t h i s  case as  

follows : 

Theref ore,  

Therefore, 

u2 + v2 = 

and s ince 

u 2 - v 2 = x  

it follows that 

so  that 

Then, s ince u2 - v 2 
= x, 
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3.6.7 con t inued  

From (12 ) and (13) , w e  see t h a t  

s o  t h e  r e q u i r e d  s o l u t i o n  i s  

( A s  an  example, l e t  F (u) = u 2 and G (v )  = v 2 . Then 

The re fo re ,  

w = m 

shou ld  be a s o l u t i o n  o f  

-y wyy + 2x w y Wxx + W = 0. 
XY Y 

D e t a i l s  a r e  l e f t  t o  t h e  i n t e r e s t e d  s t u d e n t . )  



MIT OpenCourseWare 
http://ocw.mit.edu 

Resource: Calculus Revisited: Multivariable Calculus 
Prof. Herbert Gross 

The following may not correspond to a particular course on MIT OpenCourseWare, but has been 
provided by the author as an individual learning resource. 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

