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Block 3: Partial Derivatives

Unit 3: Differentiability and the Gradient
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3.3 1(L)

In our study of the calculus of a single real variable, we saw
that if f'(a) existed then f was continuous at x = a. 1In other
words, we saw that the property of being differentiable implied
the property of continuity. (In geometric terms, we are saying
that if a curve is smooth then it must be unbroken.)

Analogously, one might expect that, in two variables, if f_(a,b)

and £ (a,b) exist then f must be continuous at the point (a,b).

The aim of this exercise is to show that this need not be true.
Before we actually do the exercise, let us observe that, in the

case of one independent variable, the fact that f'(a) existed
guaranteed that the directional derivative existed in each direction,
since in this case there are only two directions. In the case

of two independent variables, however, the fact that the directional
derivatives exist in both the horizontal and vertical directions

tells us nothing about what is happening in other directions.

Rather than continue with an abstract discussion, we shall show

in this exercise that the function g has the property that

gx(0,0) and gy(0,0) both exist - yet g is not continuous at the
point (0,0). This, in turn, is enough to show that the assumption
that g is continuous at a point, after we know that both Iy

and gy exist at that point, is not redundant.

As far as the solution of our exercise is concerned, part of it
is trivial, since we have already proven that g was not continuous
at (0,0) in Exercise 3.1.8(L).

Thus, we need only show that gx{o,o) and gy{0,0J exist. The
easiest approach is to work directly from the definition of Iy
and g_ .

4
lim gl(a+Ax,b)-g(a,b)
Ax

For example gx(a,b} means o .o so that we

have
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3.3.1 continued

I

_. LAt g(ax,0)-g(0,0)
9,(0,0) A [ ! T J

2Ax(0) _ 0
_ lim | ax%+0? ]
Ax+0 Ax

_ lm | 0
Ax+0 | Ax
= Q*

Since g is symmetric in x and y [i.e., g(x,y)=g(y,x)], it follows
at once that

0 also.

gy(ﬂpﬂ}

(If the symmetry property doesn't strike your fancy, mimic our
procedure for showing gxto,OJ = 0 to prove gy(0,0J = 0.)

This exercise sets the stage for a deeper analysis of what happens
when we deal with functions of several variables. Without going
into detail about why it is so (the proof of Theorem 1 in Section
15.4 of the text shows this as does our optional exercise 3.3.9),
the fact remains that if fx{a,b) and fy{a,b) exist and if both

£, and fY are continuous at (a,b), then f will be continuous at
(a,b) (although in the text this conclusion is stated as part of

the hypotheses). From a somewhat intuitive point of view, the fact

*Do not be tempted to say that since g(0,0)=0, g% g(x,y)| =%%=0.

(0,0)
This would be true if g(x,y)=0. In the l-dimensional case, notice
that if g(x) = x2—2x then f'(x)=2x-2, Hence, g'(0)=-2 even though

g(0)=0. (Pictorially, g(x)=x2—2x says that the curve y=g(x) passes
through (0,0). It does not say that the slope of the curve at

this point is 0). Perhaps a better example might be the one we
used in Part 1 of the course where f was defined by

2

0 ifx 43
f(x) = x . This means that f(x) = x+3. Notice

6 if x = 3
that while £(3) = 6, £'(3) = 1 not 0.

S.3.3.2
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3.3.1 continued

that fx and £ are continuous at (a,b) means that the function is
"well behaved" in a neighborhood of (a,b).

To go one step further, and this will be discussed in somewhat
more detail in this and the next unit, it turns out that if we
want to think of f as being differentiable, it is not enough to
think only of fx and fy existing; they must also be continuous.
Quite in general, if f(xl,...xn) has the property that fxl,...,

and fx exist and are continuous at {al,...,an) then we say that
n
f is differentiable at (al,...,anJ. In this event, f is continuous

at (al,...,a ). f need not be continuous if £_ ,..., and f
n X, X

are not all continuous at (al,...,an).

To try this idea out in terms of our present example, since
gx{0,0) and gy{O,G) exist but g is not continuous at (0,0), it
must be that either g, or gy is not continuous at (0,0).

Let us look at gx(x;y) and see whether %;Ty}+(0'0)gx(x.y) exists.

Since
X (x,9)#(0,0)
X +y b
g(x,y) =
0 (x,y)=(0,0)

we obtain

2 2
(x7+y" ) 2y—-2xy (2X)  (, .)4(0,0)
(x2+yz)2

gx(x,y) =

0 (x,y)=(0,0)

or

85+3.3.3




Solutions
Block 3: Partial Derivatives
Unit 3: Differentiability and the Gradient

3.3.1 continued

2y ( z-xz)
_Y_Y__z (x,y)#(0,0)
gx(x,y) = < (x"+y©)

0 (x,y)=(0,0)

Now, one way of viewing %;my)+(0 O)gx(x;Y) is by first letting
r r

x>0 (holding y#0 fixed) and then letting y-+0.

If we do this, then

lim lim lim
(x,y)(0,0)IxXr¥) = 54 [x+0 9x(x’y)] '
and from (1) this yields

. . . 2 2
lim (2, ) = lim lim 2y (y " -x"7)
(x,¥)>(0,0)9x %Y = 450 | xs0 2

- [ ]

_ lim [g]
y*0 |y

+ = (depending on whether y+0' or y+07)

(1)

(2)
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3.3.1 continued

; _ lim *
Since T (0,0) = 0, (2) shows us that {x,y}+(0,0)gx(x'yl#gx(0’0) ,

so that by the definition of continuity, Iy is not continuous at
(0,0).

3.3.2

a.

W= Elx,y) = Ko+ yeys

Therefore

f(x+ax,y+ﬂy)=(x+ax)2+(x+Ax)3(y+ay)+{y+ay)3

x2+2xﬂx+E§2+(x3+3x2&x+3xE§2+E§3}(y+ay)

+ (y 4392y +3yBy S +By)

x2+2x&x+E§2+x3y+3x2yax+3xy3§2+y323

[}

+x3Ay+3x2Axay+3x3§26y+323&y

+ y3+3y23y+3y3§2+E§3
therefore

f(x+Ax,y+Ay) -£f(x,y)

= (2x+3x2y]Ax+(x3+3y2)ﬁy+(ﬁx+3xyﬂx+yE§2+3x2Ay+3xﬁxﬂy+3§2&y)ﬂx

+ (3yAy+3y?) Ay

E lim
Notice that ick
o we picked one special path to compute (x,y)+(0,0)gx(x’YJ'

Since along this path, the limit was not equal to gx(0,0), It

guarantees that By is not continuous at (0,0), for if it were,
lim

then (x,y

)+(0,0)gx(x,y) would equal gx(0,0) along every path.

S.3.3.5
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3.3.2 continued

and since
- 2 - 2
fx(x,y} = 2x+3x"y and fy(x,y}—x +3y ’

we see that

f(x+ax,y+&y)—f(x,y)=fx{x,y)Ax+fy(x,y)ay +k &x+k2ﬁy

1

where

k Ax+3xyﬂx+y3§2+3x2&y+3x&xﬁy+E§26y

1

k, = 3yby+By”

Hence, kl,k2+0 as Axl,ﬂy+0.

b. To estimate (1.001)2 + (1.001)>(1.002) + (1.002)° we may use (a)
with x=y=1, Ax=0.001, and Ay=0.002

£(1,1) = 3

Then
£.0,1) =5
f (1,1) = 4
y( )

so that

fx(l,l)Ax + fy{l,l)&y = 5(0.001) + 4(0.002) = 0.013

Therefore

£(1.001, 1.002)

o

£(1,1) + £,(1,1)8x + £ (1,1) 8y

v 3+ 0.013 = 35.0X3

3:3..3 (%)

The aim of this exercise is to help make it clear that fx and

f are essentially just two special directional derivatives, but
tiat the concept of a directional derivative makes just as good
sense regardless of the direction. At the same time, we want to

5.3.3.6
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3.3.3(L) continued

make it clear that if fx and fy exist and are continuous at the
point (al,az} then the directional derivative of f at (al,az}
exists in every direction, and, in fact, the directional
derivative in each direction can be quickly obtained by knowing
the values of f_ (a) and fy(g).

Before continuing further, perhaps a picture or two will be

helpful.

(1) a=(1,2) w (3) This plane intersects
wﬁ?%i';;=x +x3Y2+ 4 gt the surface w=x5+x3y2+y4
There%ore Y in some curve C which
P=[1,2,£(1,2)] passes through P.

=(1,2,21) (4) This plane is as "logical"

(2) a and b to consider in any

direction as it is in the
special cases where the
line joining a and b
happens to be parallel
to either the
x-axis or the
4 y-axis.

determine a
straight line
We then draw
the plane
which

passes 0
through

this line

and is
perpendic-
ular to th
xy-plane,

(Figure 1)

a. If we now label by s the direction of the line from a to b, the
curve C lies in the w;s-plane. That is, our shaded portion of

Figure 1 may be viewed as

S:3.3.7
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3.3.3(L) continued

(1) The slope of

(2)

The interesting point is that we can compute
refer to a 3-dimensional diagram.

C at P is
dwl
a§ *

s=a

The complica-
tion that
exists here
but didn't
when we com-
puted

aw ow

Eandw

is that while

w1

4

>

(3)

Therefore, we may
think of the wl-axis

as being shifted to
coincide with the
w—-axis, and the s-
axis as being shifted
parallel to itself to
pass through 0.

s

(o it

the x- and y-axes

pass through 0,

the

s-axis need not.

Yo

|o

(Figure 2)

(4)

dw

ds

dw
_ 1 dw
In this way b7 1A
since the curve C is
not affected (only its

position in space).

without having to

Namely, we know that viewed

in the xy-plane, s is the line determined by (1,2) and (3,4);
Its equation, therefore, is %E% = 1, or

hence, its slope is 1.

Y

= x+1.

Thus, while w is a function of the two independent variables x and

y, once we restrict our consideration to those points (x,y)

Notice that a=(a,,a,) refers to coordinates in the xy-plane.
In the w,s-plane 3 would have the form (31,0)

That is:

In our particular

example, a=(1, 2)*31 = V2,
i'l.y s
(3,4)
(1,2)
9
) ( 3
(0,1
o
S.3.3.8
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3.3.3(L) continued

for which y = x+1, x and y are no longer independent. 1In other
words, in the direction of s, w can be expressed entirely in terms
of x (or of y or, for that matter, of s). 1In particular, our
definition of w leads to the fact that in the direction of s,

W= x+x> (x+1) 2+ (x+1) 2 (1)

whereupon expanding and collection of terms yields

w = 250+3x 45316 ax+l (2)

[Notice that (1) and (2) are special cases of w = x5+x3y2+y

for a particular path. 1In general, if s had been any line drawn
from (1,2) but not parallel to the y-axis, then the line s would
have the form y = mx+b, whereupon (1) would have been

W o= x5+x3(mx+b)2+(mx+b)4

so that it should be clear that how w varies with x does indeed
depend on the direction of the line from (1,2).]

If we differentiate w in (1) with respect to x, (See Remarks in
Figure 3) we obtain

4

v = joxtr125 +15%2+12%+4 (3)

and evaluating (3) for x=1 [i.e., at the point (1,2)] we obtain:

G | s
(1,2)

(4)

S.3.3.9
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3.3.3(L) continued

2 w
(1) Given x, (2) In the special case

that ab is parallel

a'<x <b' we draw - 3
0= to the x-axis

wEy, Eeiment %;-happens to be the
ab at c. aw

Then same as ~— , but we
w(xg)=f(c). may talk about g—‘;

for any direction s.

(Figure 3)

The trouble with (4) is that it is the right answer to the wrong
problem. We wanted the value of gg not of g;. This matter is
easily remedied by our use of the chain rule (and here it is
important to understand fully that w is a function of the single
real variable s; for while s does depend on both x and y, along
any fixed line the value of x determines the value of y, so that

we have indeed only one degree of freedom). We have
dw _ (dw dx
- (ENE) (5)

and, pictorially, it is easy to visualize %g; namely,

-l e

S.3.3.10
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3.3.3(L) continued

tan ¢ = slope of line s=1 or ¢ = %

therefore
Ax _ m™_ 1
Ig = oos g = 32

(Figure 4)*

. Ax: 1 dx _ lim Ax
Since 7= is the constant > V2, A5 ™ Aast s

bining this with (4), equation (5) yields

= % V2 , and com-

ds 2
E?{1,2)

i ‘ 53(%/2') 53V2 . 37.5

That is, the derivative of w in the direction s which joins (1,2)

with (3,4) is 5355 . (With reference to Figure 1, the slope of
the curve C at the point P is Siff )

Since, in our present exercise, w is a polynomial in x and y, it
is readily verified that w, Wi W all exist and are continuous
at a. Thus, the fundamental result of this assignment holds; namely,

*
Note that Figure 4 is independent of w. That is, all Figure 3
takes into account is what is happening in the xy-plane.

S:3.3.11
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3.3.3(L) continued

Aw = fx{1,2)&x + fy(l,2)&y + klﬂx + kzﬁy

where k, and k,>0 as Ax and Ay~0.

Therefore,
Aw _ Ax Ay Ax Ay
As fx(l'z) As T fy(l’z} is v X1 75t k2 35

(This was derived in both the text and the lecture, but it is
important enough so that you should see it again.)

Letting As+0 makes both Ax and Ay+0, so that kl and k2+0

aw _ lim Aw _ dx d dx dy
= = Nast Re = B (L,2) go fy(l,Z} alé +0zc+ 03K
(1,2)

: dx _ dy _ _.
or since i - cos ¢ and 3% = sin ¢ ,

dw | 3

_— = f (1,2) cos ¢ + £ (1,2) sin ¢ (6)
ds (1,2) 74 y

or in dot product notation

o ’ = [£,(1,2),f_(1,2)] - [cos ¢, sin ¢] (7)
ds x vy

Our first factor on the right side of (7) is ﬁf(l,2) which depends
only on £ and the point (1,2) while our second factor is the unit
vector in the direction of s which is independent of f and (1,2).

Pictorially,

S.3.3.12
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3.3.3(L) continued

Thus, (7) becomes

dw _ L

= ‘ = VE£(1,2) g (8)
(1,2)

Now, since £(x,y) = x>+x’y’+y?, we have £ (x,y) = 5x'+3x%y? and

fy(x,y} = 2x3y+4y3. Hence, fx(l,z) = 17 and fy(x,y} = 36.

Therefore

¥£(1,2) = (17,36) . (9)

Since the vector from (1,2) to (3,4) is

T > o
ot 23,5, - 2l el 1 g (2,72)
[l21+27 || f22+22

Putting this result and the result of (9) into (8) we obtain

dw . AVZ /2
s = (17,36) ( 503 )
(1,2)
_17V/2 4 3672
-T2 2
_ 53/2
-2 ;

S:3.3.173
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3.3.3(L) continued

which agrees with our result in (a).

From (8) and (9)

dw = .
— = (17,36) -« u (10)

(1,2)

If our direction s is now determined by the vector from (1,2) to
(4,6), we have,

> _ 31+43 _ 31443
S |13T+43] 2

Hence, (10) becomes

(17,36) - (3,2

55)

I
|
(%}
{t=]
8]

Notice how much more convenient this approach is than if we had

to resort to the approach of part (a) every time we wanted to

find a directional derivative.

Hopefully, we see at a glance from (10) that gg is maximum
(1:2)

when ES is in the direction of (17,36), and, in this event,

= (17,36)-u_ = [|(17,36) || [since u_ is parallel to (17,36),

(17,36)

cos = 1]

u
]

2

I
- J17%4362 = J1s85 ~ 39.8

5.3.3.14
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3:3.4

a. Since w fix,y) = e* cos y + xzy,

e* cos y + 2xy

fx(X.y)

-e* sin y + x2

fy(x,y)

m, _ _n2 m T _
fx(in 2i f) = e cos 3 + (2 &n 2) 3 =T 4n 2

£.(tn 2, J) = -*? sin J + (#n2)2 = =2+ (2n 2)2
y
Therefore,
-+ m 2
Vf(Ln2, 7) = [7m &n 2, =2+(&n 2)°]
b.
dw _— o 2 .
e = v &n 2, -2+{2n2)%] + (1,0)
(2n2,7)
= min 2
Cla
gi- = [7 %n 2, -2+(2n2)%] - (0,1)
S ™
{9.!'12 ff)

-2+ (2n2) 2

d. The direction in which %g is maximum is in the direction of the
gradient, which we computed in part (a) to be [m &n 2,-2 + (&n 2)2].

2
V£ (en2, D = \Aﬂ£n2)2+[—2+{2n2]2}

=)

W

"
1
wn

I

(¢n2,3)

I

\/;21n22 + 4-4£n22 + 2n42

5.3.3.15
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3.3.5(L)

The main aim of this exercise is to show that the definition of
the gradient vector is independent of any particular coordinate
system, but that the form of it does depend on the coordinate
system.

In particular we wish to show that the convenient expression

fo + fy} which expresses the gradient of f in terms of Cartesian

coordinates is a rather special case. For example, if one were
merely to memorize the expression for the gradient in Cartesian
coordinates, one might expect that in, say, polar coordinates
where the basic unit vectors are Er and Ee, the gradient would be
given by frar + feﬁe. The aim of this exercise is to show that
this is not the case.

a. Given that r and 6 are the independent variables of polar
coordinates, we have from w = r sin 6 that %% = sin 6 and
%% = r cos 6. Since Er = Ccos BI + sin 83 and Ge = -sin81+cose§
(why?), it follows that
ow > ow >
ar r T 30 Yo
= sin 6(cos 6i+sin B§)+r cos 6(-sin 6i+cos 63)
= (sin 6 cos § =-r sin B cos B)I+(sin20+r cosza)g ‘
Recalling that sin6=3riand cose=§, we obtain
oy g o(xg_wm)r, (.23
3r "r © 36 e 2" )* r )7
r ¥
+ 1 2 25
= 5% (1-r)i + - (y"+rx")3J
i r
' _ "%x“i‘{l' Jx2+y2)I ¥ 21 5 (Y2+X2 x2+Y2}-jr (1)
X +y X +y
5:3.3.16
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3.3.5(L) continued

b. If we convert to Cartesian coordinates, we have that w = r sin 8
implies
w =3 ’
whence
3w_ aw“ *
-a—;(‘—-ﬂ and W_l
Hence,
ow 7 oaw T+ _ T
x Ty d T3 (2)
But we have already seen that Vw = %% T ¥ %% 3

Hence, from (2),

While parts (a) and (b) should not have caused you too much
difficulty to obtain, the implication we want to make is that we
must not be spoiled by the convenience of Cartesian coordinates

and conclude that if w is expressed in terms of u and v and if

gu angng repgisint the unit vectors in this new coordinate system,
then 7a Su b 3 Sy represents the gradient of w with respect to

u and v. To be sure we can compute the vector, but it need not

be the gradient. This is precisely what we showed in this exercise.
Namely, equation (1) made well-defined sense, but equation (2)

showed that (1) was not the gradient vector.

With respect to this particular exercise, we may use the following
"geo-analytic" approach. If we elect to write all gquantities at

a point in terms of Er and Ge then

*
See Note at the end of this exercise.
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3.3.5(L) continued

Ww=1[]0u + () (3)

r 6
We utilize the fact that Er . Ge = 0, to obtain from (3) that
-+
Vw-u =[] (4)
while
Vw » a, = () (5)

8

But 3w-ﬁr, by the definition of the gradient, is the directional
derivative of w in the direction of Er, and since Er is measured

radially, it seems geometrically clear that this directional

derivative is simply %% %
That is,

_ 3w
[ 1 =37

-
In a similar manner, $w-ue is the derivative of w in the direction

>
of ﬁe. Now, ug is not in the direction of 8, since (among other

things) this doesn't mean anything. What is true is that the
direction of ﬁe is that of a 90° positive rotation of Gr’ and
for small A6, the change at right angles to u_ is measured by rA8.
In other words, our geometric intuition might now lead us to

. + 3
suspect that the derivative of w in the direction of ue is

lim  Aw 1 ow
A6>0 TAE °Fr ¥ 38

In other words,

ow

() = E’a

HlF

Without worrying how to determine this result more rigorously

(or for that matter, more generally in the case that the coordinate

system is not as simple as Polar coordinates), it appears that a
reasonable guess for w is

5:3:3:18
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3.3.5(L) continued

@
=

Er + (6)

Vw =

K|
I
v

NE
=5
fan]
L=

To conclude our discussion, let us compute the right side of
(6) in our present exercise and see how it compares with the

gradient found in part (b).
To this end:

We already know that

lE

7 ow ¥ ¢ o - .
= sin 6, 38 r cos 6, ur = Ccos 8{+51n 83, and ue ==-sin eI+cosB§

Hence,
aw > 1l 3w >
% TrIe Y

= sin @(cos 81 + sin 93) + cos 6 (-sin 61 + cos e})

= (sin28 + cosze) J = 3 /

and this agrees with Vw as determined in part (b) of this exercise.

Note:

Suppose we are given that

and that we also know that x and y are themselves functions of two

other variables, say, u and v. For example,

x = g(u,v) and y = h(u,v) (2)

Putting (2) into (1) yields

w = f(g(u,v) h(u,v)) (3)

£.3.3.19
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and from (3) we see that w is now a function of u and v. (This
discussion will ultimately generalize in a later unit to the
chain rule for several variables, but this is not important at
this moment.)

The point is that how u and v must be combined to yield a
particular w need not be the same as how x and y must be combined
to yield this same value of w. To make this point more concretely,
suppose that -

w=f(x,y) = x+y (1')
and that
x = u’ while y = sy (2')

Putting (2') into (1') yields
w= £, vi) =u -y (3')

The point is that (1') and (3') define entirely different functions.
Namely in (1') we add the first component to the second to obtain

w, while in (3') we subtract the square of the second component
from the square of the first to obtain w. In other words, we

could have rewritten (3') as
w = f(uz, -vz) =u° - v° = F(u,v) 3")

where we use F to indicate that the rule for combining u and v
to form w is different from the rule for combining x and y to
yvield w.

Returning to the general case, (3) may be written in the form

w = F(u,v) (4)

If we now want to form the partial of w with respect to u, it is
clear that we are referring to Fu(u,v), while if we wish to form the
partial of w with respect to x, it is clear that we are referring

to fx(x,yL

5.3.3.20
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With regard to the present exercise, when we write %% or %% we
are referring to the formula w = r sin 6 while if we write

%g or %% we are referring to the formula w = y.

3.3.6(L)

This exercise is actually a buffer (in terms of its geometric
simplicity) to help us clarify a point that is often difficult
for the beginner to grasp. Given w = f(x,y), we have seen

graphically that the gradient is a vector in the xy-plane which

points in the direction of the maximum gg and whose magnitude is
this maximum value. Now "all of a sudden" (in particular, see
Exercises 3.3.7 and 3.3.8) we are talking about the gradient

not being in the xy-plane but rather being normal to our surface.
There is a subtle (but extremely inportant) difference between
the role of Vf when we think of f in the form, w = £(x,y,2);

or in the form f£(x,y,2z) = c.

To see this difference as clearly as possible, it was our feeling
that we should introduce the idea with an example involving an
even lower dimension than that discussed in the text.

We have that w = f(x,y) =y - xz.

b -
From this it is easy to see that VE is given by -2x1 + j. This
tells us that if we move from the point (xo,yo) the maximum

2 i : : dw 2
directional derivative, 35 ¢ 1is

“4x§ + 1

and this occurs in the direction —2xoz + 3.

r

So far, so good! Now, we consider a completely different question.

We look at a special set of points (x,y) in the xy-plane for which
f(x,y) = 4; i.e., y - x2 = 4, 1In this event, x and y are no

longer independent variables since the restriction that f(x,y)=4,
or in this case, y-x2=4, fixes the value of y, for example, once

the value of x is known.
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3.3.6 (L) continued

While it is clear that y-x2 = 4 is a curve in the xy-plane,
relative to w = y-xz, this curve consists precisely of those
points for which w=4. In other words, we say that y-x2 = 4 is an
equipotential curve of the surface, w = y—xz. If we let C denote

the curve y—xz = 4, it follows that gg must be identically zero,

where s denotes the direction of C (i.e., s denotes the direction
of the line tangent to C at any point), since w is constant along

C.

But we know that

dw_—r—r
E—Vfus

where Es is the unit tangent vector C at any given point. Since
dw
ds
to

(since Gs is a unit vector, it can't equal 0). Now we have already

0, it must be that either Vf is 0 or that Vf is perpendicular

(=L
0]

, since these are the only ways in which ﬁf-ﬁs can equal zero

seen that Vf = -2x I+§; and since the coefficient of j is always
1, we see that 3f is never equal to 6. Hence, it follows that

VE is perpendicular to C.

As a quick check, we may observe that the slope of y = x2-4 at
(xo,yo) is given by 2x0, while the slope of —2xI+§ at this same
point is l/—2x0. Since 2xo and 1/-2xo are negative reciporcals,
we see that the gradient of f at (xo,yo) gives the slope of the
line normal to f£(x,y) = 4 at this point.

In a similar way, when we work with w = f£(x,y,z), the gradient of

f is a vector in 3-dimensional space whose direction and magnitude
tell us the direction in which %%
of this maximum is. When, instead, we work with the surface

(2 degrees of freedom) f(x,y,z) = constant, then the gradient of
f is a vector normal to this surface. The key is to distinguish

between w = f(x,y,z) and f(x,y,z) = c. In this particular exercise

is a maximum and what the wvalue

we compared w = f£(x,y) with £(x,y) = constant.
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3.3.6(L) continued

As a final note on this exercise, we should like to discuss the

notion of orthogonal trajectories. Suppose we are given a 1-

parameter family of curves (i.e., the family contains one
arbitrary constant). The most general representation of such a
family is

f(x,y,c) =0 i

(That is, there is some functional relationship between x, vy,
and an arbitrary constant, c).

We call the family of curves g(x,y,c) = 0 a family of orthogonal
trajectories to the family f(x,y,c) = 0 if at every point of
intersection between a member of g(x,y,c) = 0 and a member of
f(x,y,c) = 0, the angle of intersection is 90° (hence the name
orthogonal). Recall that angles between curves are defined to
be the angles between their tangent lines at the point of inter-

section.

Computationally, the way we find a family of orthogonal trajectories
(if indeed such a family exists), is that we compute %% from
f(x,y,c) = 0 in a way that eliminates c¢. That is, we express

¥ in the form Y - h(x,y). We then solve the differential
equation

ay = =1

dx hix,y) !

the idea being that the resulting curves must be orthogonal to
those of the first family at the points of intersection by virtue

of the fact that their slopes are negative reciprocals.

In our particular example, we have that the l-parameter family
of curves y-x2 = ¢ (which are the equipotential curves for
w = y—xz) satisfies the differential equation

dy _
9% 2x .
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3.3.6 (L) continued

Hence the family of orthogonal trajectories is given by the
differential equation

ay _ -1
dx = 2x

Solving this equation yeilds

or
y = -% Ln|x|+ c

Hopefully, it is clear that the notion of orthogonal trajectories
is not restricted to gradients and equipotential curves, but

there is an interesting application in this respect. Suppose we
are given the surface w = f(x,y) and we wish to start at the point
(xo,yo) and move in such a way in the xy-plane that the height of
the surface is always changing as rapidly as possible.

What we do is sketch the equipotential curves of w. We then

start at (xo,yo) on the equipotential curve Wi ™ f(x,y), where

W is the wvalue of f(xo,yo), and we move along the orthogonal
trajectory to this equipotential curve. In other words (and this
may seem clear from an intuitive point of view), to make %% maximum
we must "cut across" the family of equipotential curves as swiftly

as possible, and this is done by moving orthogonally to the family.

At any rate, it is our hope that this discussion has cleared up
the distinction between the role played by Vf when we consider
w = f(x,y) and the role of Vf when we consider f(x,y) = c. The
next two exercises extend this notation to w = f(x,y,z) and

f(x,y,z) = 0.
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3.3.7(L)

In our previous encounters with finding normals to surfaces, our
surface was in the form z = f(x,y). In the present exercise,
it is at best difficult to solve for any variable explicitly in

terms of the other two.

Now, given

Oryizdixyz® = 3 (1)
we may think of a new function
g(x,y,z) = x5+ydz3+xyz5 (2)

In (2), x, y, 2z are independent variables. Again, since g is a
polynomial in x, y, and z, we may compute the gradient of g to

obtain
= X +yz~, 4y z +xz", 3y 2z +bxyz
ﬁg (5 4 5 4 3.3 5 yé 2 4)
therefore,
>
Vg(1,1,1) = (6,5,8) (3)

Now, equation (1) may be viewed as a special set of points, S,
for which g(x,y,2) = 3 for all (x,y,z) S. In other words,
restricted to S, g is a constant. Hence, on S, Ag = 0.

But %% = 3g-§s along any curve s in the surface S. That is

vg-ﬁs must be zero; yet, from (3) 3g#a, nor can ﬁs=6 since Es is
a unit vector.

> >
Hence, 3g-us =0 » Vg u
Since ﬁg is perpendicular to each curve on S at (1,1,1), ﬁg is
normal to S.

In other words

61 + 57 + 8k

is a vector normal to the surface x5+y4z3+xyz5 = 3 at the point

(1,1,1)

5.:3. 325




Solutions
Block 3: Partial Derivatives
Unit 3: Differentiability and the Gradient

A Note on Normal Lines to Surfaces

Suppose we are given the surface whose equation is, say,

f(x,y,2z) = c . (1)
There is a danger that you may confuse two quite different points
here. For the sake of argument, let us suppose that equation

(1) can be solved for z, explicitly in terms of x and y. That is,

let us suppose that the surface S whose equation is given by

equation (1), is also given by

z = g(x,y) (2)

It is important to note that it is the gradient of £, not g, that

is normal to the surface S. In fact, the gradient of g is a vector

in the xy-plane, and it is hardly likely that the normal to the
surface S would always be in the xy-plane (or parallel to it).

To see this from a different perspective, suppose we start with

equation (2). We could then define a function f(x,y,z) by rewriting
(2) as

z-g (x,y) = 0

and let

f£(x,y,2) = z-g(x,y) . (3)

In this case, f(x,y,2z) = 0. That is, the gradient of f is normal

to the surface defined by (2) since this surface is an equipotential

surface of f(x,y,2z).

As a check, notice that the gradient of f in this case is the

vector

-+ + >
N S 4
9,1 gy]+k (4)
and this checks with our earlier result that the tangent plane to
the surface z = g(x,y) has the equation:
z-2y5 = g, (x_ ,¥.) (x-x0)+gy(xo.yo) (y-v,) ’

from which we can see that the normal is indeed as given by (4).
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3.3.8

We have

flx,y,2) = x4+y6z+xyz5

Hence,
Vf = (4x3+yz5, 6y52+x25, y6+5xyz4)
therefore

VE(1,1,1) = (5,7,6) (1)

Since x4+y6z+xyz5 = 3 defines an equipotential surface of f (i.e.,

Af = 0 on S), we have from (1) that 5?+?§+6ﬂ is normal to S at
(L1 1)

Therefore the equation of the tangent plane is

5(x-1)+7(y-1)+6(z-1) = 0
or
5x+7y+6z = 18 .

(Notice that the use of the normal and the equation of a plane are
the same as always; all that's new in the last two problems is the

technique for finding the normal to a surface.)

3.35.9

We simply invoke the technique of writing ab+cd as (a,c)-(b,d).
This yields

Af = [fxl(al,az),fxz(al,az)]~(ﬁxl,ax2)+(k1,k2J-(axl,axzj (1)

If we now let k = (kl,kz), Ax = (&xl,axz) and observe that

[fxl(al,az},fxz{al,azll is Vf(a), we obtain

Af = VE(a)-Ax + ke*AX (2)
lim -
where Ax+0 k=0 .
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3.3.9 continued

The validity of (2) required that fx and fx exist and be
1 2
continuous at x = a. Once these requirements are met we observe

that equation (2) bears a strong resemblance to the l-dimensional
result that if f is differentiable at x = a, then

lim k

Af = f'(a) Ax+kAx, where K50

=0 (3)
The interesting point is that (3) is a special case of (2). That
is, if we identify Vf(a) with the n-dimensional analog of f'(a)
and realize that in l-dimensional space the dot product and the
"ordinary product"are the same, we see that when translated into
l-space equation (2) becomes equation (3).

More generally the most important aspect of (2) is that it applies
in every dimension. Granted that our text proved it in the 2-
dimensional case and indicated that the proof applied almost
verbatim in higher dimensions, the fact is that the text was conducive
to our concluding that there were geometrical reasons for (2)
being true. Our aim now is to show that the technique of the text
does apply virtually word-for-word to higher dimensions in which
there is no intuitive appeal to geometry. We have chosen the case
n = 4, The point is that our proof reviews the one in the text

as we show that it applies to all dimensions. Admittedly, the
proof is abstract but we feel that it is important for you to
suffer through it in the hope that you will once and for all get

the true feeling of what the result means.

4
b. We have that f:E4+E is continuous and that a = (al,az,a3,a4}eE .

We are also told that £_ ,f_ ,f_  , and £ all exist and are
Ry ®g Fg |

continuous at a. We want to show that
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3.3.9 continued

*
Af = [f(al+axl,a2+ax2,a3+ﬁx3, a4+ﬁx4)-f(al,a2,a3,a4)]
= 3f(al,az,a3,a4}-a§}5-a§
lim _
where x>0 k=20

The "trick" in problems of this type is to add and subtract terms
in such a way that in each difference all but one of the variables
are being held constant. All that is required to make sure that
we can do this is that the variables be independent.

The only other "trick" is that there are many different ways that
we can add and subtract the terms. The key point is that by
continuity, we need not worry about more than one particular path,
since continuity guarantees us that whatever answer we get along
one path we get along any other path as well.

Thus, for example, we may write

Af = f(al+ﬂxl,a2+ax2,a3+Ax3,a4+&x4) - f(al,az,a3,a4) by
= [f(al+&xl,az+ﬁx2,a3+&x3,a4+&x4)—f(al,a2+ﬂx2,a3+Ax3,a4+&x4}]
+ [f(al,a2+ﬂx2,a3+ax3,a4+ﬁx4}—f(al,az,a3+&x3,a4+ﬂx4)]

-(4)

+ [f(al,az,a3+ﬁx3,a4+ax4)-f(al,az,a3,a4+&x4}]
+ [f(ay,a,,a5,a,+0%,)-f(a),a,,a5,a,)]

*

In n-tuple notation,

Af = f(atAx)-f(a)

where Ax = (&xl,ﬂxz,ﬂxB,&xa)

5.3.3.29




Solutions
Block 3: P
Unit 3: Di

artial Derivatives
fferentiability and the Gradient

3.3:9
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deriva
fxl, f
can't

continued

on (4) may then be rewritten so that the various partial
tives are emphasized (and this is why we assume that

, £, , and £ exist in a neighborhood of a, for we
2 X3 *4 -
really take advantage of the partial derivatives if they

b4

don't exist!)
We then obtain from (4) that
~ f(a1+ﬂxl,a2+&x2,a3+ﬁx3,a4+dx4)—f(aIa2+ﬂx2,a3+ﬁx3,a4+&x4)
Af = Ax
Ax 1
1
; f{al,a2+Ax2,a3+&x3,a4+ax4)—f(al,az,a3+ax3,a4+ax4) -
sz 2
L
. f(al,az,a3+ax3,a4+Ax4)~f(al,az,a3,a4+ax4) .
Ax 3
3
; f(al,az,a3,a4+5x4}~f(al,az,a3,a4)
Ax
ax4 4

The first bracketed expression in (5) is related to fx in the

sense that 1
fxl{al,a2+&x2,a3+&x3,a4+ﬂx4)
lim f{al+Axl,a2+Ax2,a3+&x3,a4+ax4)-f(a1a2+&x2,a3+3x3,a4+ax4l
ﬁxl+0 Axl
Thus for a fixed Ax;#0, the definition of ;;m+0 implies that
1
S-3.3.30
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3.3.9 continued

Ax

[ f(al+ﬂx1,a2+ﬁx2,a3+Ax3,a4+ax4)—f(ara2+ax2,a3+ax3,a4+ﬁx4) ]
j i

= fxl(al;a2+&x2,a3+&x3,a4+&x4) + gy

lim - 0.

where ﬂxl+0 El =

Using similar reasoning we may also obtain

[ f(al,a2+ax2,a3+ax3,a4+ﬁx4}—f{al,az,a3+ﬁx3,a4+Ax4) }
Ax

2

= fx2(al,az,a3+ﬂx3,a4+ﬂx4)+€2

Ax

[ f(al,az,a3+ﬁx3,a4+ﬁx4)-f(al,az,aB,a4+ﬁx4) ]
3

= fx3(al,a2,a3,a4+ﬂx4)+53

[ f{al,az,a3,a4+ﬂx4)—f(al,a2,a3,a4)]

i, = £, (aj,a;,35,a4)+e,

4

e,*0 as Ax Ax3, ax4+0 .

where €xr  E3s 4 ot

Thus (5) becomes
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3.3.9 continued

Af i= fx (al,a2+ﬁx2,a3+&x3,a4+ﬁx4)Ax

+e.AX
1 1

R |

- fx2(alfaz,a3+&x3,a4+ﬂx4)Ax2+£2ﬂx2

+ fx3(al,a2,a3,a4+ax4)ax3+e33x3

- fx4(al,a2,a3,a4)ﬂx4+e4&x4 ]

where €1¢r €51 E34 s4+0 as &xl, sz, axs, &x4+0 &

All that keeps (6) from being the correct answer are the points at

which £ , £
1 Xy B4

need only assume that fx i E. i fx , and fx are continuous at

i %3 3 4

a = (al,az,a3,a4]. [Actually as we are doing the problem it

appears that we have no worries about fx since it is being
4

evaluated at the desired point a. However, as we mentioned we

could have chosen other paths in which case f might have been

(6)

i E are computed. To obtain the desired result, we

evaluated at a different point. The assumptioﬂ, therefore, that

fx is continuous at a protects us in the event we wish to use

4
a different path.]

Namely, for example, the fact that fx is continuous at a means

1

fxl(al,a2+Ax2,a3+ﬂx3,a4+6x4}+fxl(al,az,aB,a4)

as (al,a2

+dx2,a +ﬂx3,a4+&x4}+(al,a2,a3,a4) =

3
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3.3.9 continued

That is,

fxl(al,a2+5x2,a3+&x3,a4+ax4) = fxlfal,az,a3,a4) + ¢

Ax Ax ,+0 .

where c;+0 as Ax <37 4

2!’
Similarly,

fxz(al,az,a3+ax3,a4+Ax4} = fxz(al,az,a3,a4} + ¢,

where cz+0 as &x3, Ax4+0
fx3(al,a2,a3,a4+ﬁx4) = fx3(a1,a2,a3,a4) + 3

where c3+0 as 6x4+0

whereupon (6) becomes

AE = fxl(al,az,a3,a4)axl + (£l+cllﬁx1

+ fx (al,az,a3,a4}5x2 + (62+c2)ﬂx2

2

+ fx3(al,a2,a3,a4)ﬁx3 + (e3+c3)Ax3

+ fx4{a1,a2,a3,a4)6x3 + E4ﬁx4

Letting kl 1tcyr Ky 2
(al,az,a3,a4) by a, (7) becomes

Af = fxl(gjﬂx1+fx2(g}ﬁx2+fx3[g)ﬂx3+fx4(g)&x4

+ Iklaxl+k2ax2+k3ﬂx3+k4ax41

where kl,kz,k3,k4+0 as ﬁxl, sz, ax3, ax4+0.

- (7)

= g.+cC ki = € +c2, k3= e3+c3, k4 = €44 and abbreviating

o (8)
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3.3.9 continued

We are now home free if we introduce the notation

AE = {&xlrﬁxz.rQXBrAxfl)l vf(i) = [fx {i} ;fx (E)rfx {EJ ;fx (E}]
1 2 3 4

and

E_—' {klszfk3lk4}!

for, then, (8) becomes

lim %= 0

-
Af = VE(a) -Ax+k+Ax , where ax-0 £ =2

As a final note on this exercise, notice that we can always define
the gradient of f at (a) = (al,az,a3,a4l to be the 4-tuple

[, (a),f_ (a),f_ (a),f_ (a)], but if we want the difference
xl - Xz e x3 — x4 =
between Af and Vf(a)+Ax to go to zero faster than [[Ax] , then

we must insist that £_ ,f_ ,f_, and £ also be continuous at a.
&y s Xy -

Since we shall often require that the above difference does
approach zero "sufficiently fast," we shall agree that even though

the 4-tuple [f_ (a),f_ (a),f_ (a),f_ (a)] exists once the partial
xl p—. x2 — 1{3 — X4 —;
derivatives exist at a, we will not call this 4-tuple the gradient

of f at a unless the partials also happen to be continuous at a.
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