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Block 3: Partial Derivatives

Pretest

1. Use polar coordinates to obtain w = 2% i 8 (F Go8 0) »

: r2
2 sin 6 cos B if r # 0. Therefore, w = sin 26 (r # 0) and
therefore, lim w = 1lim w = sin 29O and this depends

(’X;Y)'*-(ﬂ ,0) (r,6)=>(0 reo)
on 30.
2. 5x + 7y + 6z = 18.

3. h"(r) + Zh'(n).

- 95 :xzey + ex + ef = 2.
o

> T
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Unit 1: Functions of More Than One Variable
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3.1.1(L)

while it was more natural, in terms of an extension of lower
dimensional cases, to invent the Euclidean metric, the point is
that a metric is defined solely by the properties mentioned in

this exercise. Since, from a logical point of view, we use nothing
but inescapable consequences of these properties, it follows

that any metric that has these same properties may be used in our
study. In particular, we want to show in this exercise that the
Minkowski metric has these properties. Thus,

since || = max{]xll,...,]xn|} the fact that each [xi],(i=l,...,n),
is at least as great as zero guarantees that the maximum of the

xi's is also at least as great as zero. This proves that

k[l > 0

Now, if it happens that |j|| actually equals 0, then by definition,
the maximum [xii is also zero. But no |xi| can be less than zero;
thus, the maximum |xi| being zero guarantees that all |xi| equal
zero or that all X, = 0, and this means that

X = (Xl,...,xn) = (0100'10) = g"

As for checking that [x+y|| < [x|| + [lgl|/, we see from the definition
of the Minkowski metric that this is equivalent to proving that

max{]x1+yl|,...,|xn+yn[} < max{]xll,...,|xn|} + max{]yl|,...,|yn|}
(1)

Unless we are bothered by the fairly abstract notation, (1) is
almost trivial to prove. Namely, let |xk+yk| denote the maximum
of |x+y;|,..., and |x +y |. We then have

maX{[xl+Y1|r"*f|xn+Yn|} = |xk+yk| i

S5.3.1.1
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Block 3: Partial Derivatives
Unit 1l: Functions of More Than One Variable

3.1.1(L) continued

and, since x, and Yy are real numbers, we already know from part 1

k
of our course that |xk+yk| < |xk| - [yk[. Hence,

max{|x,+y; [oeeen|x +y |} € Ix | + |y | (2)

Finally, since |x |< max{|x;[,...,[x |} and |y, |« max{|y [,... [y, |},
we have from (2) that

max{[x1+yl[,...,[xn+ynl} < max{|x)|,eeo,|x |1+ max{|y |,e..ly |}

In fact, if the x's and y's all have the same sign, equality can
hold if and only if

|%, | = max{|x;|,...,[x |} and |y | = max{|yq|seeerly [} o

which means that the maximum components of x and y "match" (i.e.,

have the same subscript).

For example, if x = (2,4,1) and y = (3,2,5), the maximum components
do not match (in x it is the second component, 4, and in y it is
the third component, 5). In this case x+y = (5,6,6), whence

Ix+yll = 6; while |jx|| + |yl = 4+#5 = 9. Thus [x+y| < [x| + [}zl

(3,7,2) [where the maximum
12 while “i” + |&“ = 5+7 = 12,

On the other hand if X = (2,5,1) and Y

components match], |k+y|| = max{5,12,3}
so that |k+y|l = |x[l + ligll-

Finally, we must show that
la x|l = la| [xI .

At any rate,

8.3.1.2
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Block 3: Partial Derivatives
Unit 1: Functions of More Than One Variable

3.1.1(L) continued

lla x|| max{laxll,...,laxnl}

max{|a||x1|,...,|a||xn|}

*
|al max{|x1],...,]xn|}

lal il

From a mechanical point of view, this is hardly a learning exercise.
In fact, it is more like a trivial drill exercise. We are given
that x = (2,4,1) while y = (4,4,5). (We picked n = 3 so that you
could use your geometric intuition if you so desired; that is, with
n = 3 we may think of x as being 27 + 43 & E, etc).

Then,

x.y = (2)(4) + (4)(4) + (1) (5) = 29 (1)

On the other hand, our definition of the Minkowski metric yields
that

||| = max{2,4,1} = 4 (2)
and
lyll = max{4,4,5} =5 (3)

From (2) and (3) we have that |k|| |ly| = 20, and comparing this
result with (1), we have that

|xeyl > [l izl (4)

*
Notice that if ¢>0 is any constant, then

max{cx ...cxn} = c max{xl,...,xn}

1!

since ¢ "magnifies" each Xy in the same ratio.

S.3.1.3
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Unit 1l: Functions of More Than One Variable

3.1.1(L) continued

Equation (4) violates a key property of a dot product, especially
as we know it in the 2- and 3-dimensional cases. In other words,
Minkowski metric does not obey the structural property that is so
often used in dot products (namely, |[x-y| < [x| |il) while the
Euclidean metric does have this structural property (as we have
proven in our supplementary notes).

This explains why most texts stress the Euclidean metric over the
Minkowski metric, even though as we shall see in the next few
exercises, the Minkowski metric is most helpful in our discussion
of limits in the case of real functions of n-tuples, expecially
with n>3.

In our later work (especially Block 7) we will do a great deal of
work with the generalized notion of a dot product and in this
context the Euclidean metric has desired properties not shared

by the Minkowski metric.

From the point of view of our "game," however, the Minkowski
metric is on a par with the Euclidean metric in the type of
investigation we are currently undertaking where the dot product

of two n-tuples is not an issue.

= 1

5 |

im im _
and Efé.gti) =L

1
We have x5

f(x) = Ll 2°

Given €>0, we must find 6>0 such that
0 < |k-all < & » |[£(x)+g(x)] - [L;+L, 1| < e.
Just as in the scalar case, we observe that
| [£(x)+g(x)] - [Li+L,1[= |[£(x)-L;] + [g9(x)-L,]|
< |£(x)-L;| + |g(x)-L,] (1)

By definition of Ll and L,, we can find 61 and 52 such that

S.3.1.4
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Block 3: Partial Derivatives
Unit 1l: Functions of More Than One Variable

3.1.2 continued

0 < |k-all < &, » |[£(x)-L,]| <

o]

L (2)

0 < IIJ_(_EH < 62 Z [g(E)_Lzl <

NTRL)

4

Thus if & < min{Gl,Gz} it follows from (2) that

0 < HE_E“ <8 S |f(§)-Ll| + |g(§)—L2| < % $ E=% (3)

o™

Combining (3) with (1) yields the desired result, namely

0 < flx-all < 6 » [[£(x)+g(x)] - [L+L,]1] < €

Note:

In this exercise, we did not have to specify whether it was the
Euclidean metric or the Minkowski metric that was being used. The
point is that our proof used only those properties that were true
for either metric. To be sure, the actual value of § for a given
value of £ might depend on which metric was used, but the existence
of 6§ did not.

On the other hand, there may be a tendency to think in terms of the
Minkowski metric when we say "let § = min{$,,8,}." The point is
that while this part of our logical strategy is the same whether

it is the Euclidean metric or the Minkowski metric which is being
used, what is true is that the motivation behind the strategy is
the same as that which inspired the "invention" of the Minkowski
metric. Namely, in both instances, the idea is that to make sure
that something is sufficiently small, we make sure that its maximum

dimension is sufficiently small, regardless of how we define "dimension."

One final word that may be of interest is that in our l-dimensional
study of calculus, that is, when we were studying limits of functions
of a single real variable, there was no distinction between the
Euclidean and the Minkowski metric. The interesting point is that

S$.3,1.5
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Block 3: Partial Derivatives
Unit 1l: Functions of More Than One Variable

in the special case of n=1, the two metrics are identical. Namely,
for a real number, x, |x| andVx? are the same (and, obviously, for

the case of only one component, |x| = max{|x|}). That is, either
the Minkowski or the Euclidean metric would have led to the same

definition of magnitude in the case of a l-dimensional space.

3.1.3(L)
a. We must find 8§ such that
2.5 -3
0 < |{x,¥y)-(2,3)]] < § » |x“+y -31| < ¢
. 2.3 .

As seen in our supplementary notes, |x“+y~-31|< e if

2 £ 3 £
|x“-4] < 5 and |y7-27| < 5
To make [x2—4| < % we take into consideration that x is near
2 (i.e., € is small). That is, we may assume that
2-E < x < 2+ & where |E|< 1 .
In particular, then,
I & 3% <3
and therefore
3 < x+2 <5 (1)
Thus, near x=2,
|x%-4| = |x-2||x+2| = |x-2| (x+2)
or, from (1)

2 (2)
|x“-4] < 5|x-2]
From (2) it is easily seen that |[x-2| < f% implies that

2 £
|X —4' < 7 -

§.3.1.6
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3.1.3(L) continued

Thus, the 61 referred to in our notes may be taken to be f%. In

other words,

0 < |x-2| < 5> [x*-4] < % (3)

As for making |y3-27|( % , we observe that

y3-27 = (y~3)(Y2+3y+9}
Hence
3 B 2
ly®-27| = |y-3||y“+3y+9]| (4)

Since we know that y is near 3, it follows that y2+3y+9 is near 27

(because we already know that y2+3y+9 is a continuous function of y).

In particular, we shall assume y is close enough to 3 so that
y2+3y+9 (=|y2+3y+9|) < 28.

With this in mind, (4) becomes

3 2
ly™-27| = |y“+3y+9]||y-3|

]

A

28|y-3| - (5)

From (5), it follows immediately that if |y-3| < g% then

|y3—27| < %. In other words
0 < |y-3] < & > |y3-27] < &
Yy 56 Yy 5 ’

€ i
and 5g 1s the 62 of our notes.
€ £

Since € is positive, it is clear that 5¢ < 10 - Hence, if
8

min{él,ﬁz} we have

£
56 .

S.3.1.7
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3.1.3(L) continued

In summary, using the Minkowski metric, given €>0 choose & = g% .

Then
2 3
0 < |(x,y)=-(2,3)]] < 6 » |x“+y~-31] < ¢

[and by our remarks in the supplementary notes, the value of § also
suffices if we are using the Euclidean metric, as we shall review
in part (b)].

b. Pictorially, we have

(2],3)

wn
-— mlm-

: [= .

Since |x2+y3-31| is true for all (x,y) in rectangle ABCD, it is, in
particular, true for all (x,y) in the circle centered at (2,3)
with radius ;% . The equation of this circle is

(x-2)2 + (y-3)2 = (g%)z )

In any event

J-2)2+g-12 < = > [Py’

5 -31| < €

S.3.1.8
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3.1.3(L) continued

Hence,

0 < |lx,y)-(2,3) || < 55 ~ |x%+y3-31] < e

is true even if ||(x,y)-(2,3)| now denotes the Euclidean metric.

3.1.4(1)

2 3 2
We have x = (xl,xz,x3,x4), 1=(,1,1,1) and f(§)=xl +2x2+x3 X,

We must prove that

lim _
x+1 f(x) = £(1) (1)

Since 1 = (1,1,1,1), the definition of f tells us that
£(1) = £(1,1,1,1) = 1%42(1) + 1% + 1% = 5. Thus, we see that
f(x) exists at 1 and its value is 5. Next we must show that

Lism 212x +x3+x,%) = 5 (2)

xrl (X1 F2XHX3THX, )
Equation (2), by definition, now implies that for a given e>0 we
must find §>0 such that

0 < |k-1] < & » [x 24 2% 4%, +x 2—5] % & (3)

ih 273 4

Up to now we have not specified what metric we are using. If we
specify the Minkowski metric (noting that the same § will also
work for the Euclidean metric), (3) becomes

Find &>0 such that

max{[xl—1|r [xz“l[r |X3-l|, |x4_l|} <6~

|x12+2x2+x33+x42—5] < g (4)

S.3.1.9
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3.1.4(L) continued

3

We rewrite |x12+2x +x3 +x42-5] in the more suggestive form

2

| (x,%-1) + 2(x,-1) + (x37-1) + (x,%-1)|

(since this is how we got 5 in the first place), where upon we
may conclude that

|x12+2x2+x33+x42—5| < |x12-1[+2|x2-l|+|x33-1|+|x42-l| (5)

From (5), |x12+2x2+x33fx42—5| will be less than € as soon as
2 3 2
|x1 —l|+2|x2—1|+]x3 -l|+|x4 -1| < e.

This, in turn, will happen as soon as each of our four summands

is less than %. That is, we need only make each of the numbers
|x12-1], 2|x,-1], ]x33—1|, and |x42—1| less than %, In other words
we must have:

(1) |x12—l| < %
£ €
(2) 2|x2—1[ < g (or |x2—l| <3 L 6
3 £
(3)  [x37-1] < 7
2
(4) |x4 -1 < %

-

The key now is that each of the four inequalities in (6) involves
only scalars. In particular, since we know that

lim 2

xl+l |

lim
x2+l 1

lim 3

x3+1

1lim 2
x4+1 4

S.3.1.10
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Block 3: Partial Derivatives
Unit 1: Functions of More Than One Variable

3.1.4(L) continued

it follows that we can find 61, 52, 63, and 64 such that

2 £
0 < |xy-1] < 8, =+ [x;%~1] < i
>
0 < [x,-1] < 8, » |x,-1]| < 3
3 €
0 < [x4-1] < &5 » |x37-1] < 3

2
0 <|x,-1] < 8§ > |x,°-1] < 3

1

} (7)

Hence, if we let § = min{61,62,53,64}, we may conclude from (7) that

% 5 [xi=l|<6 (i=1,2,3,4) then

3
3

2

lxl

-1+ 2[x,-1] + |x
and from (5) this guarantees that

| % 242 +x33+x42-5| <

1 2

2
-1 + |x4 -1] < ¢

In other words, from the definition of the Minkowski metric,

0 < |g-1f] < 6 » max{[x;-1], |x,-1], |x;-1|, [x,-1]} < & >

lxi—ll <6 1= 1;2,3;4 *

|x12+2x2+x33+x42-5] < €

which was precisely what had to be shown.

A major aim of this exercise is to have you become convinced that

the idea of a metric applies to higher dimensional cases (in our

example, we used it in the 4-dimensional case), and that the
Minkowski metric allows us to find an n-dimensional distance in

terms of n l-dimensional distances.

S+ 3. . TL
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o

Given >0 we wish to determine &§, in terms of & such that

lx-1][ < 6 » |x 2+2x,4x34x,%o5] < e .

We may take equation (6) of the previous exercise as our starting
point.

Namely, near Xy = i X, + 1l is near 2. In particular, we may
assume |xl+l| = x;+1 < 3. Then
| % 2-1| = |x,+1| |x,-1] < 3 |x,-1]|
1 1 1 1
Hence, if we make sure that |xl-lI < f% , we obtain
2 3e €

. £
In summary, with 61 =17 ¢ We have

2 €
0 < |x;-1] <&, » |x,°-1] < 7

and (1) of Equation (6) in the previous exercise is obeyed.

£

Next, with respect to (2) of Equation (6), we want |x2-l| < g

but now it is trivial to see that 62 = %, allows us to say

E
0 < |x,-1] < 85 = |x2—1| <z .

As for (3) of Equation (6), we first write

3 L 2
X4 -1 = (xa-l){x3 +x3+l)

when X is near 1, x32+x3+1 is near 3. Again, we pick our interval

small enough so that |x32+x3+1| = x32+x3+1 < 4. Once this is done
we have
| x 3.1| = | %=1 |x Z4x 41| < 4| x4-1]
3 3 3 3 3
S.3.1.12
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3.1.5 continued

and if we now make sure that |x3—1| < f% , we have

|x3>-1] < 4 (%) = 5, and (3) is obeyed.

In summary, if we let 63 = f% then

3

0 < |x3-1] < 83 » |x37-1] < 7

Finally, we treat (4) of Equation (6) by observing that near 1,
x4+1 is near 2, hence, for a sufficiently small neighborhood of

1, we may conclude that |x4+1] = x,+1 < 3. Then,
|x,%-1| = |x,+1||x,-1] < 3|x,-1|
4 o 4 4
so that if [x,-1| < f% , then |x42-1| < % . That is, in this

case we may let 54 = f% .

’ - g€ . B & £
Letting 6§ = m1n{61,62,63,64}, we have § = {TT' 3 16’ 12

since €>0, the fraction with the greatest denominator will be

}, and

the minimum.

Hence, we may let

—

6 = 16 *

That is

2 3.2
0 < [l(xq,xy,%5,%,)-(1,1,1,1) || < 1 * 1% “+2xtxy 4x, 55| < e

The key point is that § was found by looking at four l-dimensional
limits, and it is in this sense that higher dimensional problems
are as real as the lower dimensional ones. Moreover, for every

B

x such that |[x-1[ < 17 , [£(x)-5| < e.

(Note: If you have no quantitative feeling for § = f% in this
exercise, it might be worthwhile to carry the computational details

a bit further. Namely, § = g describes the domain

§.3.1:13
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3.1.5 continued

€ £
1 - 16 < ¥ < 1+ 1
€ £
1 - < X, <1+
Is A 16 \ i.e., a "4-dimensional cube"
l-I%<x3<1+I§G-
€ €
1 - T < ¥4 < 1l + i

o

Assuming that e€>0 is sufficiently small to insure that all numbers

in the above inequalities are positive, we have

2 2
£ £ 2 £ £
leg*tmg<*x <1+g*t g
= =
2 - §-< 2x2 < 2 + B
3e 952 a3 £ 3 € .
L=y * oty = qoos ™ Wl % % < g
2 3
=1 + 3e ) 9e + _E

52 2

l-5+m5< % <1l+g+ g
Therefore

£ 52 £ 3e 962 53 £ 52 )
(1‘§+m+2'§+1'ﬁ+m'm+l"§+m

is a lower bound for

2 3 2
x1 +2x2+x3 +x4

in this case, while

(1+f‘-+ & +2+-€-+1+3€+£+i+1+5+£2—)
8 256 8 16 256 4096 8 256

is an upper bound.

L3 13 .13

L2 31 L3 132 £33 L3 K2 B3 LD EA EQ L2

R EE e
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3.1.5 continued

Simplifying we find that x12+2x2+x33+x42 is between

5o 9 EIES | eP i
16 256 ~ 4096
and
2 3
9e lle £
5 + et o5 + Z096 (2)

Our claim now is that for ¢ sufficiently small the numbers named

by (1) and (2) be between 5-¢ and 5+e. For example, assuming that

e<l, we have g < e? < 53, whereupon

9¢ lle2 53 9e lle E £

et 756 * 7096 < 16 * 756 * 7096 - 709 |9(256)+11(16)+1]

Therefore,
2 3
9¢ 1lle [ €
7t 75 * 7098 < 709¢ (2304 + 176 + 1) < € (3)
[Actually, by choosing § to be the minimum of 51, 62, 63, and 54

we narrowed the interval and this is why %%g% € occurred rather

than something closer in value to €].

In any event, (3) shows that

9e 1152 53

5 * ygt - ¥ Iinw

< 5 # E) .

3.1.6(L)

a. Many of the same questions that could have been asked about limits
in our study of calculus of a single variable can also be asked now.
Among other things, the form 0/0 enters into things here just as
before. Part (a) of this exercise is meant to emphasize that
f(x,y) cannot be continuous at (0,0) since it is not even defined there.

8.3.1.15
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3.1.6 (L) continued

In still other words, if f were continuous at (0,0), it would
mean that

lim
(x,yp(0,0)E(x,¥) = £(0,0)

but this is impossible since £(0,0) is not defined (0/0).

Even though f is not defined at (0,0), it does not prevent our
writing %;Ty}KD,O)f{x’Y) since then we are interested in what
happens to f as (x,y) gets arbitrarily close to (0,0) without
equaling (0,0). The problem is that the limit might (and in
this case, it does) depend on just how (x,y) approaches (0,0).
For example, suppose both x and y are not equal to 0 and we let

(x,y) approach (0,0) along the indicated path:

= (x,y)

N

(0,0)

(Figure 1)

In terms of the indicated path, we first hold y constant and let
x approach 0. As soon as our path reaches the y-axis we hold x
constant (x=0) and let y approach 0. Computing the limit this

way means

lim lim
S.3.1.16
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3.1.6 (L) continued

Notice that (1) is a special way in which we may write

lim

(x:Y)-"(U;O) £ty

That is, (1) indicates but one of the infinitely many paths by
which (x,y) may approach (0,0). Evaluating (1) yields

. : 22 ;
lim | 1im x"- i Ty o 2
+0 x+oTY7] = ywo B =1 2
¥ x“+y

on the other hand, the path

AY
(x,y)
¢ 3%

(0,0)

suggests
. 4 2 -2 . 2

lim | 1im x"-y _ lim x” e i (3)
x>0 | y»0 x2+y2 x>0 2

A comparison of (2) and (3) shows that the value of

1lim
(x,y)~(0,0)Fx:¥)

in this example depends on the path by which we approach (0,0);
since even for the two special paths we considered, we got two

different answers.

The point is that when we say

lim _
xra £(X) =L

5.3.1.17




Solutions
Block 3: Partial Derivatives
Unit 1l: Functions of More Than One Variable

3.1.6 (L) continued

we mean the limit exists and is L for every possible path by which

x+a. (In higher dimensions it means that when we make |x1-al[,...,

and ]xn—an[ small, our numerical answer must be independent of
this order in which we make these quantities small, and this, in
turn, says that our answer is uniquely determined once Xy is

sufficiently close to ay for kK = LGisein)a

From a more positive point of view, if we are told that

lim
(er)"‘{arb}f(x'Y)
exists, then we can be sure that its value, among other ways, is

given by either

lim | 1lim lim | 1im
y~b [x+a f(x,y)] = x+a [Y+b f(x,y)}

The main caution is that unless we know the limit exists, these
two different limits may yield different answers, as in the case

of the present exercise.

Here we try to show what goes wrong near the origin by utilizing
polar coordinates. (Among other things, this shows us that
polar coordinates have a purpose quite apart from central force
fields!)

Letting x = r cos 6 and y = r sin 6 we see that

x2-y2 = rztcosza-sinze)
2

x2+y2 " o

cosze - sinza , provided r # 0

I

cos 26 , provided r # 0
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3.1.6(L) continued

In other words, computing

. 2 .2
lim X -
(x,y)+(0,0) x2+yz‘
; : i lim
is equivalent to computing >0 COS 20.

The point is that the value of cos 286 depands only on 6§ - not r.

For example, if we choose the ray 6 = %, then cos 28 =

m

if (x,y)>(0,0) along the ray 6 = ¢ then

lim 1
(x,y)+(0,0)Ex¥) = 5 .

Therefore,

8| =

As a check, notice that in Cartesian coordinates the ray 6 = %

becomes the half-line % = tan % in the first quadrant. Since

1 X

tan % = = we have y = = on this ray.
/3 V3
2
2. x 2 .2

$oge REm= X g
_f—xf = > =3I 77 if x#0
% ¥ k. TX

3
Therefore,

ST

lim xz— 2 _
(x,y)+(0,0) P2 |

X +y

Pictorially,

Thus,

, as predicted.
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3.1.6 (L) continued

If (x,y)#(0,0), f(x,y) is constant
on each ray B=eo, but the wvalue of

the constant depends on 80. Namely,

the constant is cos 290; i.e., for each
point (x,y) on the line 6=8
f(x,y) = cos 26

0'
O-

(x,y)

[(0,0) is excluded from consideration
on 8=80, since

2 2

£(x,y) = 3L only if (x,y)#(0,0)].
X +y

(Figure 2)

In summary, here, we have a rather exceptional example in which
we can make f(x,y) take on any value in [-1,1] merely by choosing

(0,0)

the appropriate path by which we allow (x,y)=+(0,0).

~

3.1.7
a. We have
f(x,y) = h%EXE
X +y
Letting x = r cos 6and y = r sin 6, we have that
£(x,y) = £(r cos 6, r sin ) = 2£ €0S 8 (r sin O)
r
= 2 sin 0 cos 6, provided r # 0
therefore
f(x,y) = sin 2 8, provided r # 0
S.3.1.20
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3.1.7 continued

therefore
lim _  lim : .
{x,y)+{0’0)f(x;y) = [, Sin 26 = sin 2§, (2)

B=80

Since the path is determined by 6, (2) shows that different paths
lead to different values for the limit. This will be explored

in more detail in the remaining parts of this exercise and also

in the next exercise.

m

If 90 o (2) yields
1 —sin2(L)=sin L=
(x,y)+(0,0) £(X/y) = sin 2 (4) sinz=1. (3)

As a check by = % corresponds to the ray y=x, x20. In this event,

we have
2x2 :
f(x,y) = -3 = 1 (if x#0) =
X +X

Therefore, on y=x, x20, we have

lim _
(x,y)+(0,0)E(Xr¥) =1

which checks with (3).

Along the ray 6=0, (2) yields

lim vt _
(x,y)+(0,0)f(x'y) = sin 2(0) = 0

As a check this is the ray y=0, x20. In this event

S.3.1,21
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3.1.7 continued
X +y ;5

therefore

lim 2x _
(x,y)+(0,0) (TLE)‘ 0 .

X +y

When 8§ = % , 20=1 and sin 26 = 0. Therefore, on the ray x=0,
y20;

2xy_ _ 0
X +y - y2

therefore,

lim 2 .
—EEX— = thi 5
(x,y)+(0,0) " +y2 0 in is case also

: ; lim _ :
Comparing (b) and (c) we see that while (x'y)+(0'ojf(x.y} =0
if (x,y)+(0,0) either along the x-axis or the y-axis,

lim T

(x'y)+(0’0)f(x,y) = 1 along the line of approach 8 = 7 This shows
that (1) %;my}+(0 O)f(x,y) does not exist since its value depends
r r =S

on the path by which (x,y)»(0,0), and as an aside, (2) merely
knowing that f(x,y) approaches the same limit as (x,y) approaches
(0,0) along either the x- or the y-axis is not enough to say that

¢ . lim
this common value is (x,y)+(0,0)f(x'y)'

3.1.8(L)

In a way, this exercise is a corollary to the previous one, but
it is of enough significance in terms of what comes next in our
course that we wanted to present the idea here.

S.3.1.22
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3.1.8(L) continued

In our later work, expecially with 2-tuples, we shall select two
paths (four, counting sense) by which (x,y) will approach (a,b),
and we shall try to do almost everything else in terms of what
happens along these two paths. The paths will be (1) we hold

y constant and let x approach a, then we hold x constant and let
y approach b; (2) we hold x constant and let y approach b, then
we hold y constant and let x approach a. These two paths are

indicated below.

Y s

l(a,b) (a,

5 X

(1) (2)

W
"

Now, as we said in Exercises 3.1.6 and 3.1.7, the limit of f(x,y)
as (x,y) approaches (a,b) may be different along these two paths.

The point is that it should not be surprising that the limit
depends on the path as well as the point of evaluation of the
limit; yet, as we get further into the course, we shall become
more and more preoccupied with the two special paths discussed
above. What will happen is that we shall have, in general,
sufficiently smooth functions so that what happens along these
two special paths will govern what happens along any other path,
but barring this "sufficient smoothness," there is no guarantee
that what happens along these two special paths is enough to tell
us what happens along every path.

This exercise is meant as a forewarner; it is designed to make

sure that we understand that when we say "independent of the
path" we mean more than just either the horizontal or vertical

directions.
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3.1.8(L) continued

Based on the fact that f as defined in the previous exercise was
not defined at (0,0), coupled with the fact that the limit of f
as (x,y) approached (0,0) along the rays 6=0 and 8 = I was o,

2
we are motivated to define a new function g by:

25y, if (x,y) # (0,0)
X +y
g(x,y) = 4 (1)

0 if (x,y) = (0,0)

-

In other words, the g of this exercise and the f of the previous
exercise are identical provided that (x,y) # (0,0), but at (0,0)
f is not defined while g is defined, and, in particular, g(0,0)=0.

a. We already know from the previous exercise that g is not con-
tinuous at (0,0), since among other things we showed that if

(x,y) approached (0,0) along the ray 6 = % , then

lim 2x
(x,y)+(0,0) sz =1 (2)

X +y

Notice that the meaning of "limit" in (2) tells us that
(x,y)#(0,0), and under this condition, (1) tells us that

P = gx,y).

x“+y

Hence, (2) may be replaced by

%imy}+(o 0) 9(x.y) =1 # g(0,0) , since g(0,0) = 0. (3)

Il G i S I = I I G A I S S S UE VS UE e
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3.1.8(L) continued
Thus, at least along the path defined by 6 = %

1(:iclfy)+(o,01 g(x,y) # g(0,0) " @)

Equation (4) tells us that g is not continuous at (0,0) since if

it were

lim

(x,y)+(0,0) glx,y) = g(0,0)

along every path connecting to (0,0).
What we want to show here is that

lim =
(x,g1500,0) S = 50:0)
if the approach is along either axis.

If we approach (0,0) along the x-axis, y=0 for the entire path.

Thus we obtain, along this path,

lim _ 1lim 2
(x,7)+(0,0) TV = ) a00,0) (2,2
_ lim 2x
T x»0 2+ 2
y=0 * 7Y
*
_ lim 0
x+0
=0
= g(0,0) (5)
*Recall that x>0 includes both x+0+ and x>0 . In terms of polar

coordinates, we must check that the limits exist and are equal for
the two rays 0=0 and 6=m. 1In this case, since g(x,y) is sin 28
for (x,y)# (0,0), but 6=0 and 6=m make g(x,y) = 0 as (5) indicates.
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3.1.8(L) continued

Similarly, approaching (0,0) along the y-axis yields

lim _ lim 2xXy
(x,y)=(0,0) x=0 x2+ 2
y>0 g
_ lim 0
y*0 o2
=0 =g(0,0)

This example shows once and for all that if

lim -
(x,y)+(0,0) g(x,y) = g(0,0) (6)
as (x,y)>(0,0) along either axis, we cannot guarantee that g is

continuous at (0,0). (Trivially, of course, if we know that g is
continuous at (0,0) then in particular (6) must be true. That is,

ltirfy1+(o,0)g(x,y) = 5l0,0) Tor gvery Batd.

then we know that it's true for a particular path; if, however,

once we know that

we know what the limit is for some particular path, we cannot

necessarily conclude what it is for every path.)

3.1.9(L)

Our main aim here is to show how much more complicated functions

of several variables are than functions of a single variable.

We have deliberately chosen the case n=2 here so that (1) we can

again capitalize on any geometric interpretations and (2) we can

show that the complications do not require that we have more than

the "usual" 3-dimensional space.

The proof is not really too difficult once we get the hang of
things. (If you have difficulty visualizing our approach, perhaps
if, as we proceed, you refer to Figures 1 and 2, things will seem
clearer.) To begin with, if f happens to be a constant function

S.3.1.26
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3.1.9(L) continued

(i.e., f(xl,yl) = f(x,,y,) for every pair of points (x,,y,)
and(xz,yz) in the domain of f), the assertion of the theorem
follows trivially, for in this case there is a number c¢ such that
f(x,y) = ¢ for all (x,y) in the domain of f£f.

Thus, the interesting case is when f is not a constant function.
Assuming, therefore, that f is not a constant function, there are
at least two points P(xl,yl) and Q(xz,yz) for which £(P) # £(Q).
Now pick any number, subject only to the condition that it lie
between f(P) and f(Q). That there are such numbers is guaranteed
by the fact that £(P) # £(Q). Let us designate one such number

by m. Let C denote any curve that connects P and Q. Since £

is continuous, there must be some point on C, say X, for which

f(X) = m, since a continuous function takes on all its intermediate

values.

0f course, while you are likely to accept this last statement as
being true (or at least, as being reasonable), the fact remains
that we proved it only in the case of a single real variable.

This proof can be extended to the case of functions of several
real variables, but it is beyond our present purposes to become

so computationally involved at this time. While the interested
reader should feel free to prove this result on his own if he so
desires, we will use a geometrical interpretation. Recall that

in this case the domain of f is the entire xy-place. Now suppose
that £ is continuous. This means, pictorially, that the surface

z = f(x,y) is unbroken, Again, to add concreteness to our dis-
cussion, let us replace such literal points as P and Q by the more
specific points, say, P(1,2) and Q(3,4). Suppose, without loss of
generality, that £(1,2) = 6 while £(3,4) = 9. Now let C be any
continuous curve that joins P to Q. The path generated by a line
parallel to the z-axis running along C gives us a cylinder. (Recall
that mathematically a cylinder is obtained by tracing along any
curve in the plane with a line perpendicular to the curve), and
this cylinder intersects the surface z = f(x,y) to form an un-

broken (space) curve. All we are now saying is that since

S.3.1:27
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3.1.9(L) continued

this space curve is unbroken, and it passes through the heights
6 and 9, it must pass through every height between 6 and 9.
Stated in terms of planes, we are saying that our space curve
originates in the plane z = 6 and terminates in the plane

z = 9. Since the curve is unbroken, it must intersect every

plane z = k where 6 < k < 9,

Thus, still using our particular example, since 6 < 8 < 9,

there is a point Pl on the continuous curve Cl which connects

(1,2) and (3,4) for which f(Pl) = 8.
Notice that Cl was any curve that connected (1,2) and (3,4).

The point is that there are infinitely many such continuous

curves which have no points other than (1,2) and (3,4) in common.

For each of the curves Chr there is a point Pn for which f(Pn)=8.

Since the curves intersect only at (1,2) and (3,4) the point

Pi on Ci cannot be the same as the point Pj on Cj (no Pn can

be either (1,2) or (3,4) because f{Pn) = 8 while £(1,2) = 6

and £(3,4) = 9). Thus, we have infinitely many different points
Pl' PZ""’Pn""' for which f(Pl} = f(Pz) =...=f(Pn) = ... = B.
An attempt to summarize these results pictorially is made below:

S5.3.1.28
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3.1.9(L) continued

1 Ch is a continuous curve 3. P' is in the plane
; . z=6 since its
;?ltg? :ﬂdpé?ge4?onnectlng coordinates are (1,2,6)
! AR 1z Q' is in z=9 since its

2 The (right) cylinder coordinates are (3,4,9).

along Cn intersects the The plane z=8 inter-

sects P'Q' at, at least,
one point Qn since

surface z=f (x,y)
along the space

e P'Q'. . ;
curye: £°4 P'Q' is a continuous

curve.

(0,0,6)

5. The projection of Qn into the xy-plane
yeilds P on C  whereupon f(Pn) = 8.

(Figure 1)

The important thing in Figure 1 is that C, was any continuous curve
that joins P to Q. There are infinitely many such curves with

no points of intersection other than P and Q. 1In Figure 2 four
such curves Cl' C2' C3, 04 are drawn. By the construction in

Figure 1, we may obtain Pl on C;, P, on C2, P; on C3, P, On Cy

such that f(PnJ = B8 for every n = 1,2,3,4.
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3.1.9(L) continued

N

(Figure 2)

The point we now wish to make actually begins with the solution of
this exercise. We have now shown that if f:Ez+E is any continuous
function, then it is impossible for f to be 1-1. In fact, in the
particular illustration we used, there were infinitely many points
in the domain of f at which f was 8.

What this exercise shows is that if the mapping from n-dimensional
space (with n>1) into l-dimensional space is continuous, then f
cannot be 1-1. Restated more formally:

If n>1 and £:E"»E is continuous then f is not 1-1, and, in fact,
there can be infinitely many elements in E" which have the same
image in E.

(Notice that our argument holds if the domain of f is any subset
of E®. That is, all that our argument required was that
f(P)#£(Q) no matter how close to each other P and Q might be.)

Thus, we should begin to feel that while much of the theory for
functions of n-tuples is a generalization of the results for the
l-dimensional case, there are enough new "wrinkles" when n>1 to
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3.1.9(L) continued

remind us to be on guard. Among other things, there are infinitely
many continuous functions f:El+E which are 1-1 (namely those
whose graphs are either monotonically rising or monotonically

falling).

3.1.10

By now, we hope that it is virtually self-evident to you that n=4
was chosen simply for concreteness and that our approach extends

verbatim to any value of n.

To prove that "=" is an equivalence relation we must show that

(1) a = a for each 3;E4

(2) a=b-+b=a, aandb in gt

(3) a=bandb=c>a=c

As for (1), we have a = (al,az,a3,a4} where ajray,ag,a, are all
real numbers. By the properties of equality for real numbers, we
know that

al - al, a, = a,, a3 = a3, and a4 = a4.

Hence, by definition of vector (n-tuple) equality, we have

(al;az.a3,a4) = (al:azra3ra4)
or
a=a

which establishes the validity of (1).

(Notice how (1) was established for E4 by virtue of the corresponding

property of equality for real numbers).
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3.1.10 continued

As for (2), let a = {al,az,a3,a4) and b = (bl,

by definition, a = b means
a, = bl' a, = bz, az = b3, and a, = b4

But, for real numbers, equality is symmetric.
conclude that

b1 = ay, b2 = a,, b3 = ay, and b4 = a,
whence, by definition,
(by,by,b3,by) = (a;,ay,a3,2,)

or
b=a

which establishes the validity of (2).

b2,b3,b4). Then,

Hence, we may

Finally, to establish the wvalidity of (3), we let

Then, from a = b we conclude that
a; = bl‘ a, = b2' aj = b3 and a, = b4,

while from b = ¢ we conclude that

17 b2 = Cy, b3 = C3, and b4 = C,

a = (al,az,a3,a4), b = (bl’bZ'bB'bé) and ¢ = (cl,cz,c3,c4).

(1)

(2)

Since for real numbers, a = b and b = c+a = ¢, we may conclude

from (1) and (2) that

il Cl Thal L

C3 4
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3.1.10 continued

Hence

g raprdgrily) = 18,40, 05,Cq)
or

a=c¢c .

Notice how this proof augments our remark in the supplementary
notes that the fact that = is an equivalence relation on E4 is
induced by the fact that vectors may be viewed as n-tuples,

each of whose components is real, and equality is an equivalence

relation on the real numbers.

3.1.11

(Note: The technique used in this specific exercise is the one
used whenever we decide to view vectors in terms of their com-

ponents) .

We have, by definition of the arithmetic of E?, that

[

b+ ¢ {bl,bz,b3,b4} + {cl,c2,03,04)

(bl + C b, + Cyy b3 + Cq, b4 + c4)

Hence, by our definition of dot product

a + (bte) = (a;,ay,ag,a,) + (bytcy,bytc,,bytcy,bytc,)

Il

al(bl+cl) + a, {b2+cz) + a, (b3+c3) + a4{b4+c4) (1)

Since the ak's, bk's and ck's (k=1,2,3,4) are numbers, we know

that (1) may be rewritten as

b, + a

a; by 11 + azbz + a,c, + a3b3 + a;Cy + a4b4 + a4c4 ;
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3.1.11 continued

which, in turn, is

(alb1 + a2b2 + a3b3 - a4b4)+(alcl + a,c, + a3c3 + a4c4) =

a®h tasg

which proves the required result.

Again, notice how we effectively reduce the study of g to four
separate studies of El (i.e., the four components of any vector
[n-tuple] in E4L That is, the vector result is induced by the
corresponding scalar result.
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