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Study Guide

Block 3: Partial Derivatives .

Unit 2: An Introduction to Partial Derivatives
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2. Read Thomas, Sections 15.2 and 15.3.
3. Exercises:

3..2:1 (L)

x2 + y3, compute fx{1,2).

4

a. If £(x,v)

]

b, If f(x,y)
] af
.

(1,2)

3.2

c. Find £(1,2,3,4) if £(w,x,y,2) = woxy + 292 * ®ozw.

3.2.2

3

x3y + X7+ y5, compute fxx(l,2) where fxx(1,2} means

3.2

a. Determine fw(w,x,y,z} and fww(w,x,y,z) if f(w,x,y,2) = wx'y +

3.2

Xy z + wz4. In particular, determine fww(l,2,3,4).

3z

b. Compute % it

z3xy + z5y + cos z = 1.

3.2.3(L)

Let x and y be a pair of independent variables and define u and v

by u = 2x - 3y and v = 3x - 4y.

a. Show that u and v are then also a pair of independent variables.

b. Solve the above equations and express x and y in terms of u and v.

From this compute %% and compare this with %%.

c. Express x in terms of u and y, and then compute %%. How does this
answer compare with the result in (b)?
d. Express u in terms of x and v, and then compute %&. In this case,
du _ _1 X i ?
does ik {Qi} where g 1s as in (b)?
Ju
3.2.4

Given that x and y are independent variables, define u and v by

u = x2 = y2 and v = 2xy.

a. Explain why u and y are also independent variables.

(continued on next page)
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3.2.4 continued

b. Show that (-g%}
Y %

c. Determine the value of (%%

3. 2.5(%)

From the polar coordinate relations, y = r sin 8 and x = r cos 60,

compute %% where, from now on, %% will be interpreted to mean

{%% unless otherwise specified.
X

3.2.6

Given that x and y are independent variables, assume that u and v
are functions of x and y [we usually denote this as either

u = ulx,y) and v = v(x,y), or, if we feel that misinterpretation
might arise, as u = f(x,y) and v = g(x,y)] such that u and v are

also independent variables. Assume further that we also know that
Ju

u and v are related by u2 = yzv. Determine (ay .
X

3.2.7(L)

Let S be the surface defined by the Cartesian equation z = x2 + y3
Assume that there is a plane which is tangent to S at the point
P(1,2,9). Find the equation of this plane.

3258

Assuming that the surface defined by the Cartesian equation
z = x3y2 + xs + y7 has a tangent plane at the point (1,1,3), find

the equation of this plane.

3.2.9(L)

Let the surface S have the Cartesian equation x = g(y,z).

(continued on next page)
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3.2.9(L) continued

a. Assuming that S possesses a tangent plane at the point (xo,yo,zo) ‘ l
find the equation of this plane.

b. The plane M is tangent to the surface x = eBy-z at the point l
(1,2,6). Find the equation of M.

c. Check the solution in (b) by expressing x = eBy-z in the form l
z = f(x,y).

3.2.4
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