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Block 3: Partial Derivatives

Pretest
1. Let w = f(x,y) = _5251_5' (x,y) # (0,0). Show that
x“ +y

lim f(x,y) depends on the path by which (x,y) approaches
(er)‘*(o :0)

(0,0).

2. Find the equation of the plane which is tangent to the surface

x? + y%2 + xyz® = 3 at (1,1,1).

3. Suppose w depends on r but not on 6, say w = h(r), and that h is a
2 2
twice-differentiable function of r. Determine i—% + 3—%, expressed
Ix 9y

in terms of r.

4. Find the equation of the curve C if C passes through the origin
and has its slope at each point (x,y) given by

dy _ -(2xe¥ + &%)
dx (xz 4 l)ey
1 oY xb
5. Given that g(y) =‘/. _TE_E"_'dx where y > b > -1, determine g'(y).
0
3.3
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Unit 1: Functions of More Than One Variable

1. Lecture 3.010
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2. Read Supplementary Notes, Chapter 4.
3. Read Thomas, Section 15.1.

4. (Optional) Read Thomas, Sections 12.10 and 12.11. (These sections
will help you feel more at home with equations of surfaces. The
idea is that just as the graphs of functions of a single variable
are curves in the xy-plane, the graphs of functions of two real
variables are surfaces in space. Except for any peace-of-mind
that you get in feeling at home with the various equations, it
should be noted that we can survive the remainder of this course
without recourse to accurate graphs just as was the case in functions

of a single real variable.)

5. Exercises:

3.1.1(L)
Define |k|| as the Minkowski metric. That is, if x = (XqpenerX )y
then [x|| = max{|xl[,...,|xn|}.

a. Show that

1. ||| > 0 for all x and |jx[| = 0 if and only if x = 0.

2. x + yll ¢ [kl + [kl

3. lxll = lal [kl

b. Compute x+y, ||, and |y|| (where we are still using the Minkowski
metric) if x = (2,4,1) and y = (4,4,5). From this conclude that
it need not be true that |x-y| < |x| |yl-
B.lie2
Mimic the proof of the corresponding l-dimensional case to prove
that if x and a belong to E" and ;;g f(x) = Ly while ;§2 g(x) = Ly
then
lim -

F,1.2

L3
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3.1.3(L)
a. Using the Minkowski metric, suppose €>0 is given; find ¢ such that
for this choice of §
0 < l(xoy) = (2,3)|| < & + |x* + y> - 31| <¢
b. Interpret the answer in (a) geometrically and explain why the same
value of 6 as in (a) would have sufficed had we used the Euclidean
metric rather than the Minkowski metric.
3.1.4(L)
Let x = {xl,xz,x3,x4} and let 1 = (1,1,1,1). Define f by
f(x) = le + 2x, + x33 + x42. Prove that f is continuous at x = 1.
< Jo 1
Let £, x and 1 be as in Exercise 3,1.4. For a given €>0, find ¢
such that
0 < |k-1]l<6s > [f(x) -5] <e .
3.1.6(L)
Let f be defined by
2 2
T
X +y
a. Is f continuous at (0,0)?
lim  lim lim  lim
b. Compute both 40 oo £(x,y)]and ' o [y+0 f(x,y)].
c. Investigate the behaviour of

lim
(x,y)+(0,0) £x:¥)

in more detail by introducing polar coordinates.

T
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T

Let f be defined by
Xx + vy

lim

. Sh that
a ow a (x,

y)+(0,0) f(x,y) depends on the path by which (x,y)
approaches (0,0).
lim .
b. Compute (x'y)+(0'0)f(x,y) if (x,y) approaches (0,0) along the

ray 6 = % .

c. Show that if (x,y) approaches (0,0) either along the x-axis or
0.

n

the y-axis then lim f£(x,y)

3.1.8(L)
Define g by
2 , if (x,y) # (0,0)
xT +y
glx,y) = 4
0 , if (x,y) = (0,0)

a. Show that g is not continuous at (0,0).

lim _ :
b. Show that (x’y}+(0'0}g{x,y) = g(0,0) if (x,y) is allowed to

approach (0,0) along either axis.

3.1.9(L)

Let the function f:E2+E be continuous. Prove that f cannot be 1-1.

Comment

The following two exercises are optional. They may be omitted
without loss of continuity to our present discussion. Their

main purpose is to supply the interested reader with a few clues
as to how analytic proofs are carried out in n-dimensional vector
spaces (with n greater than three) using the ordinary properties
of real number arithmetic.

L3 32 E@® E2 £ E® L2

£E® &3 L3 12
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£

3.1.10

Let a and b belong to E4. Prove that our definition of a = b
is an equivalence relation because of the fact that "ordinary"

equality is an equivalence relation on the set of real numbers.

3kl

Let a, b and ¢ be elements of E4. With the dot product as

defined in our supplementary notes, prove that

a+ (btc) =acb+a-c
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