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STUDY GUIDE: Calculus of a Single Variable - Block V:

L.

Transcendental Functions
PRETEST

Perform the indicated operations:

3
a. [ gy (x>0)
b. d[ln(lnx)]/dx (x>1)

& lim (1 + g)n
n-+o n

Find y as a function of x if y" - 2y' - 15y = 0 and
y(0) = 8 while y'(0) = 16.

Find the volume generated when R is revolveg about the y-axis
if R is the region bounded above by y = e™*% , below by the
x-axis, on the left by the y-axis, and on the right by the

line x = 3.

Determine sinh x if cosh x = = .

2 . 1 1 + tanh
Simplify 5 1n [T— tggh zl

Find S if y = sinh "' (tan x)

Find the equation of the line which is tangent to the curve
x = cosh y at the point [2,1n(2 - V3)].

Veldid
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STUDY GUIDE: Calculus of a Single Variable - Block V:

Transcendental Functions

UNIT 1l: Logarithms Revisited

View: Lecture 5.010 "Logarithms Without Exponents".
Read: Supplementary Notes, Chapter IX.

Read: Thomas 7.4, 7.5, 7.6, 7.7 .

Exercises:
5.1 1 (L)
a. Use the mean value theorem for 1ln x on [5,6]
to prove that %-< 1n % < % .
> Use the inequality in (a) to conclude that:

6 5 6,6
&s Using the definition that 1ln t = f % , compute

1
In 1.2 approximately by trapezoidal avproximation

with n = 2. Discuss the bounds on the size of the

error.

5edia2 (L)
a. Show that ln(x") = n lnx for any rational number, n.
b. Use logarlthmlc differentiation to compute-az

1fy=(x +l)54x + 2 #x +2x * .3s

Ca Assuming that 1n x? = nlnx is true for all real
numbers n, use logarithmic differentiation to
. dy . I %
find Ix if y X (x>0)

d. Under the same assumption as in (c), show that
d(x") n-1
—ax = DX for any real number, n.
b 75 P




STUDY GUIDE: Calculus of a Single Variable - Block V:

Transcendental Functions - Unit 1:

Revisited

5.1.3

5l 5 (1)

a.

Perform the indicated operations

a(1nVNx2 + 1)

Logarithms

a(in 2Vx2 + 1)

dx e dx
(1n x)3 dx (x>0) d cos X dx
X - 1 + sin x
d[lnéln x) 1] £. lim (1 + g)n
X n-e n

Find the area of region R if R is bounded above

X

by y = ————, below by the x-axis, on the left

x2 + 1

by the y-axis and on the right by the line x

Let R be the region which is bounded above by
on the left

— X :
y= ; below by the x-axis,
v + 1

by the y-axis, and on the right by x =

Find the volume generated when R is rotated

about the x-axis.

x-1
_ du
Show that 1ln x = f = (where x>1)

L +*
0
Use long division to show that
3
: - 2 _ o0
MR 1 -u+u I + u

Combine (a) and (b) to show:

ln x = (x - 1) - %(x - l)2 + %(x - l)3

x=-1
_ u’du
1+ u
0

g f r

» @@ §
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STUDY GUIDE:

Revisited

[5.1.5(L) (cont'd) ]

x-1 3
d. Show that ][ e

)
0

€. Combine (c¢) and (4)

that is accurate to

HeailsB Mimic the procedure
a value for 1ln 1.2 w
decimal place.

5.1.7(L)

¥

>4
a. By comparing [
1

prove that:

lim 1ln x

Koo

b. From (a) deduce that

c. Use (b) to show that

5.1.8

a. Sketch the curve y =

b, reiRX _1In2 4,4
X 2
1
nx _In 2
. If === T = =2
2
1 .
X = 37 Explain.

Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 1:

Logarithms

du
+ u

| <3 x-1*

to find a value for 1n 1.2

three decimal places.

of the previous exercise to find
hich is accurate to the 6th

X
: dat
with j- ‘/E ’
1

=0
X

lim 1n(x")

e =3 = 0 for any constant, n.

lim 1n u

u-+ n \/E'

== 0‘

1n x
X

(x>0)

it follow that x = 2? Explain.

In 2, does it follow that
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STUDY GUIDE: Calculus of a Single Variable - Block V:
Transcendental Functions

UNIT 2: The Exponential Function

1. View: Lecture 5.020
2. Read: Thomas 7.8, 7.2, 7.10

3. Exercises:

5241 Perform the indicated operations
1
d (e*) d X
= '—-5-{— b. a; [11'1 l_Lx.]
+ e
sin 2x
s e cos 2x dx
o3
X dx
% jpaﬁzdfgx €. ‘/. X 1n x
e2
522 Find the volume generated when R is revolved

about the y-axis where R is the region hounded
above by vy = e X , below by the x-axis, on the

left by the y-axis, and on the right bv x = 3.

5.2.3 (L) Find y as a function of x if

y" = 29! = 185y = 0
and y(0) = 8, v'(0) = 1¢
5ol Find y as a function of x if v(0) =1, yv'(9)
= 2 and
y" = 7y' + 12y = 0
V.2.1




STUDY GUIDE: Calculus of a Single Variable - Block V:

5.2.5 (L) Find a number c such that if x > ¢ then e¥> x

5.2.7

Transcendental Functions - Unit 2: The
Exponential Function

(To help standardize our approach, utilize the
information that 1n 2 = 0.69315.)

Find a number ¢ such that x > ¢ implies e* > %1000

and show that the minimum ¢ which works is between
8,192 and 16,384.

Assume that (1) u = e1n uand (2) Inuf = r 1n u

for any real r,

Simplify e2 in x

Let b denote any positive real number. Develop the
dbX
formula for ax -

1
Evaluate f 4xdx
0

3+h 5
lim 1 -x
Compute 5o B [ e dx
3

100
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STUDY GUIDE: Calculus of a Single Variable - Block V:
Transcendental Functions

UNIT 3: The Hyperbolic Functions

1l. View: Lecture 5.030
2. Read: Thomas 8.1, 8.2, 8.3 (skim 8.4 if desired; otherwise omit.)

3. Exercises:

LS _
a. Determine cosh x if sinh x = T%
b. Determine sinh 2x if sinh x = I%
§ i : 13
(o Determine sinh x if cosh x = 13
15 T )
N | 1 + tanh x |
a. Simplify 5-1n [1 tabk XJ
e + e >
b. Use the basic definitions cosh u = 4—~§————
u -u
and sinh u = E__E_E__ to perform the following
integrations. '
; cosh 6 d6 § X _ .
(1) [sinhe E s (i1) /e sinh 2x dx
2x
(iii) /22}:—_1 dx
e + 1
5.+3+3 Find the arclength of the segment of the curve

vy = cosh x between x = 0 and x = 1.

n—+ce

1 n
5.3.4 Use the fact that j f(x)dx = lim E %f(}.&)
0 k=1




STUDY GUIDE: Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 3: The
Hyperbolic Functions

[5.3.4 (cont'd)]

1im cosh 1 + cosh 2 +++++ cosh &
to evaluate i L =
n-o n
3.5 (L)
a. At what point does the line tangent to x2 - y2 =1,

x >0, at (xl,yl) intersect the x-axis?

b. Use (a) to describe a way of constructing sech u for
any real number u.

5.3.6 Find a construction for csch u by finding where the line

in Exercise 5.3.5(L), part (a), intersects the y-axis.

5.3.7 (L)

Il

a. Show that (cosh x + sinh x)n

for any constant n.

cosh nx + sinh nx
b. Show that (cosh x - sinh x)n = cosh nx - sinh nx.

c. Use the result of (a) and (b) to find identities for
sinh 2x and cosh 2x.

5.3.8 Use the technique of Exercise 5.3.7(L) to find identities
for sinh 3x and cosh 3x.

Ved.2
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STUDY GUIDE: Calculus of a Single Variable - Block V:

2

3.

Transcendental Functions

UNIT 4: The Inverse Hyperbolic Functions

View: Lecture 5.040
Read: Thomas 8.5, 8.6
Exercises:

5.4.1(L) Find the equation of the line which is tangent
to the curve x = cosh y at the point (2,1n(2 - V3).

5.4.2(L) Show that if x = cosh y and y < 0 then y =

In(x - Vx° - 1).
1 ln(l + V1 - x

5.4.3 Prove that sech — x = =

0 < x 1.

)where

5.4.4 (L)

b
a. Evaluate (—*——l——-— = dx
1 fxz -1 *
b
b. Compute éiﬂ (S - }() dx
1 - S |
b )
lim 1 1
5.4.5 Compute (———————-— = dx
b f 2 X
1 1+ x
5-4.6
. . sinh_lx 2
a. Simplify e - NX© 4+ 1

b, Find g% if y = sinh-l(tan x)




STUDY GUIDE: Calculus of a Single Variable - Block V:

Transcendental Functions - Unit 4: The
Inverse Hyperbolic Functions

[5.4.6 (cont'd)]

5.4.7

c.

x
Determine f(x) if f'(x) = —S——

1+ e ®

1
1 -x

Sketch the curve y = >

L
D 4
B = x2
below by the x-axis, on the left by the y-axis, and

on the right by the line x = % . Find the area of R.

Let R denote the region bounded above by y =

With R as in part (b), find the volume generated
when R is revolved about the y-axis.

Ved.2

—
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STUDY GUIDE: Calculus of a Single Variable - Block V:
Transcendental Functions

QUIZ

5.0.1 Find ¥ jf:

dx
a. y = ln2(x3 + 1) b. y = tamh_l (sin x) c. = x>0 X
x > D
5.0.2 Integrate each of the following:
- J-secz > s b b sinh Vx dx
- l + tan x : VX
L
2
C. dx
1 = xz
0
503 Let R be the region which is bounded above by
2
y =-T4’—‘— , below by the x-axis, on the left by the
x + 1
y-axis, and on the right by the line x = 1. Find
the volume generated when R is rotated above the
y-axis.
5:0Q.4 Find y as a function of x if it is known that (i)
y" - 8y' + 7y = 0, and (ii) v (0) = 0 while y'(0) = 12.

5.0Q.5 Use the fact that (cosh x + sinh x)n = cosh nx
+ sinh nx to prove that:

cosh 4x = cosh4 X + 6 cosh2 X sinh2 x + sinh4

Vellaid

X
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STUDY GUIDE: Calculus of a Single Variable

BLOCK VI: MORE INTEGRATION TECHNIQUES

Content
Unit 1, A Review of Some Basic Inverse Derivatives
Unit 2. Partial Fractions

Unit 3. 1Integration by Parts

Unit 4. Improper Integrals

VI.i







Integration Techniques

PRETEST
1. Determine f(x) if f'(x) = €oS X 3dx and £(0) = 3 .
V2 + sin x
| . <%
| 2. Determine f(x) if f'(x) = e and £(0) = 2 .

dx
3. Evaluate f(x N E=0E =3 °

4. Compute fxz cos x dx .

g -4
5. Evaluate f(x - 2) dx .

0

VI.iii

STUDY GUIDE: Calculus of a Single Variable - Block VI: More
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GUIDE: Calculus of a Single Variable - Block VI: iore

Integration Techniques

l: A Review of Some Basic Inverse Derivatives

Lecture 6.010

Thonas 9.1; 924 9.3; 9.4, 9.5

STUDY
UNIT
1l. View:
2. Read:
3. Exercises:

6.1.1

Determine f(x) if:

£' (x) = €OS X __ and £(0) = 3.
J2 + sin x
flix) = tan45x sec25x and £(0) = 1.
Determine f(x) if f'(x) = 1 ) and £(0) = 1.
(4 + x7)
1

I

Determine f(x) if f'(x) and f(%) = 0.

4x% + 4x + 17

cos x dx
Compute f T+sinx

Find the area of region R if R is bounded above by

cos X

Y = T ¥ sin xr Pelow by the x-axis, on the left by
m

the y-axis, and on the right by x = v

A particle moves along the x-axis according to the

cos t g
rule v = ———— 0 £t €7 (where t is measured

1l + sin t
in seconds and v in feet per second). What is the
displacement of the particle during this time

interval? How far (total distance) does it travel?

Computefsin4x dx.

The arch of the curve y = sinzx between x = 0 and
X = 71 1s rotated about the x=axis. Find the volume
generated.

VIal.1




STUDY GUIDE:

Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 1l: A Review of Some
Basic Inverse Derivatives

Let R be the region which is bounded above by

= = , below by the x-axis, on the left

x2 = 2% % 17
by x = 1 and on the right by x = 5. Find the area

of R.

6.1.7 (L)

a-
b.

C.

Determine f(x) if £'(x) = V1 + x> and £(0) = 0.
Check a. by differentiating your answer to a.

The region R is that which is bounded above by
y = cos X, below by the x-axis, on the left by
the y-axis, and on the right by x = %. Find the
surface area generated when R is revolved about

the x-axis.

VI.1.2

i3 E®2 2 97 ™
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STUDY GUIDE: Calculus of a Single Variable - Block VI: More

l'

2.

3'

Integration Techniques

UNIT 2: Partial Fractions

View: Lecture 6.020
Read: Thomas 9.6, 9.8
Exercise:
4
6.2.1 (L) Determine £(x) if f£'(x) = - f T (x >-1) and
£(0) = 2.
x4 dx
6.2.2 Compute ® = D (x =2) .

6.2.4

5
dx
6.2.3 (L) Evaluate U/P — < -
4 (x 1) (x = 2) (= 3)
Determine A, B, and C if o Exi;Ti 7 = % + =
&
X + 2 *

6.2.5 (L) Compute

de

dx
./x(xz + 1)
J{ dx
x(x + )%

Compute
‘/- x4 dx
(x2 + 1)2
dx
.[(x2 + 1)2 .

Compute

cos § dp
,/‘sin2e + 7 sin 6 + 12
Jf dx
e® -1 '

Use the substitution Z = tan % to computeﬂ/ﬁ

dx
1l + sin x

Compute sec x dx by transforming the integral into
one which lends itself to the technique of partial

fractions.

VIi.2.1
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STUDY GUIDE: Calculus of a Single Variable - Block VI: More

Integration Techniques

UNIT 3: Integration by Parts

View: Lecture 6.030

Read: Thomas 9.7

Exercises:

6.3.1 (L) Perform the indicated integrations:

2
a. X~ cos x dx

b. fsin Yx dx
Ch. fex sin x dx v

6.3.2 Computefsin(!n X) dx W

6 Idnd R is the region bounded above by y = coszx, below by
the x-axis, on the left by the y-axis, ana on the
right by the line x = % . Find the volume generated

when R is rotated about the y-axis.

a. Use integration by parts to show.].xn ef dx = x" e

—nfxn-lexdx.
3 x

b. Use a. to compute x~ e dx .,

c. R is the region bounded above by y = x3 ex, below by

the x-axis, on the left by the y-axis and on the right
by the line x = 1 . Find the area of R .

6.3.5 Let R be as in Exercise 6.3.4 c. Find the wvolume

generated when R is rotated about the y-axis.

a. Use parts to show .l}nn x dx = x " x - n./.fnn-l x dx .

b. Let R be the region bounded above by y = fn x, below by

the x-axis, and on the sides by the lines x = 1, x = 2.

VI.3.1




STUDY GUIDE: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 3: Integration by
Parts

[6.3.6 cont'd]
(1) Find the area of R.

(2) Find the volume generated when R is rotated about
the x-axis.

(3) Find the volume generated when R is rotated about
the y-axis.

VI.3.2
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STUDY GUIDE:

Integration Techniques

UNIT 4: Improper Integrals

View: Lecture 6.040
Read: Thomas 9.10

Exercises:

6.4.1 Discuss the convergence (or divergence) of each of the

following:

3
a. -[. (x - 2)_4 dx

0

1
b. f (x - 2)"% ax

0

3 1
C. -f (x = 2) 4 dx :

Calculus of a Single Variable - Block VI:

More

00
6.4.2 Show thatf x* dx converges if and only if r < -1 .

4

1
6.4.3 Show thatf x© dx converges if and only if r > -1 .
0

6.4.4 (L) Show tha{ t50 & E dt converges, but do not
1

evaluate the integral.

3

oo
6.4.5 Decide whetherj X dx converges
1 X

1
6.4.6 (L) Discuss the convergence off £
0

Vi.4.1




STUDY GUIDE:

Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 4: Improper Integrals

6.4.7 (L)

a.

o0

Show thatf 271 o7t q¢ converges if and only if

0
x >0 . (This integral occurs in advanced analysis

in several different contexts such as in complex
variables, differential equations and probability. It
is known as the Gamma Function and it is denoted by

co

I (x) =4{ 271 et g . 1t is beyond our scope to
0

motivate T (x) here but is does serve as an interesting
example of an improper integral.)

Use integration by parts to show that if x > 0 then
F'(x + 1) = xT'(x) .

Use b. to show how the Gamma Functions is an extension
of the concept of factorials. In particular, show
that '(n)= (n - 1)! for any positive whole number.

1

6.4.8 (L) Show that lim (1 + J + ... + 2) <2 by making

6.4.9

n-> n
appropriate use of the convergent improper integral

oo

f@z
2 -
lx

By making appropriate use of the divergent improper

O

' dx : 1 1
1ntegral‘[. 5 show that lim (1 + 5 + 3 + ... + =
1

n-—+co

VI.4.2

&3 s e

E3 E 3
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STUDY GUIDE: Calculus of a Single Variable - Block VI:

Integration Techniques

QUIZ

Find f(x) in each of the exercises 1 through 6 .

1.

£'(x) = cos_3x 3 and f£(0) = 2 .
(1 + sin 3x)

£1(%) = cosx and £(0) & 1
2
£'(x) = _3_5__:_i. and £(1) = %
x"(x - 2)
£'(x) = ——y—S08 X and £(0)=fn 3 .
sin"x - 5 sin x + 6
£'{x) = x3 cos x and f£(0) = 3 .
f'(x) = cos¥YX and £(0) = 3 .

Evaluate each of the following:
5
a. (x - 3) %dx

0
2
-2
b.ljp (x = 3) "dx
0
4 _d
2
C. '[. (x = 3) dx .
3

VI.Q.1

More
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STUDY GUIDE: Calculus of a Single Variable

Unit
Unit
Unit
Unit
Unit

Unit

BLOCK VII: INFINITE SERIES

Content

Sequences and Series
Positive Series

Absolute Convergence
Polynomial Approximations
Uniform Convergence

Uniform Convergence Applied to Power Series

VII.i
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STUDY GUIDE: Calculus of a Single Variable - Block VII:
Infinite Series

PRETEST

1. Which of the following series converge and which diverge?

In each case, explain your choice.

=] [+ + . n oo ' 2
o L BP @ L amet o )
n=2 n=1 n=1 n

2. For what values of ¢ does the series E (—Z)n(n+l)(c—l)n

n=0
converge absolutely.

3. Use the power series which represents e* to compute é correct to
three decimal places.

oo

4., For what values of x does E (5x)n converge uniformly?

n=0
1
2 3
5. Use series to compute xe dx correct to four decimal
0
places.
VII.iii
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STUDY GUIDE: Calculus of a Single Variable - Block VII:
Infinite Series
UNIT 1l: Sequences and Series
1. View: Lecture 7.010
2. Read: Supplementary Notes, Chapter X, Sections A, B, C,
and D.
3. Read: Thomas 18.1
4. Exercises:
T+1.1 (L)
a. Suppose {an} converges (i.e. lim a = L). Show that
there exist numbers m and M sUch that for every n,
m £ an < M.
. n+l
b. Define the sequence {an} by a, = (-1) . Show that
{an} diverges.
c. Use (b) to show that the converse of (a) is false.
That is, show that {an} may diverge even though there
exist numbers m and M such that m < arl < M for every n.
7.1,2(L) Prove that if lim a_ = Ll and if lim a_ = L, then
n-+oo n n->o
Ly =5
713 (L)
a. Show that if {a }converges so also does {|a |}.
b. Does {a } converge if {|an]} does? Explain.
c. Suppose lim |an| = 0. What can we conclude about
I+
lim an?
n-+co
7.1.4 Determine whether {an}converges, and, if it does,

determine the limit,

Vii.l.l




STUDY GUIDE: Calculus of a Single VAriable - Block VII:

Infinite Series - Unit 1: Sequences and Series

[7.1.4 cont'd]

_ 2n+7 _  2n+7 _ 2n"+7
R s S Yy e =1
_ B 1+ (-7
d. an = 1 + ( 1) e, ....__n...._.

7.1.5(L) Show that each of the following series diverges.

2n+7 Z (n+1)
2 =L (5
n=1

n=1

7+1.6 Tell which of the following series converge and
which diverge. 1In the event that a series converges

compute its sum.

oo oo

2 TG e Y R-2) e >
n=1

n=1 n=1

7.1.7(L) Find the common fraction whose decimal representa-
tion is given by 0.513513513... (where 513 repeats

endlessly).

Tk B Find the common fraction whose decimal representa-
tion is given by 0.51313I§... (where 13 repeats
endlessly).
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STUDY GUIDE: Calculus of a Single Variable - Block VII: Infinite

Series

UNIT 2: Positive Series

View: Lecture 7.020
Read: Thomas 18.2

Exercises:

7.2.1 (L) Determine which of the following series converge

and which diverge.

o n oo oo
I
n 2,000 »LE el
n=1 n=1 " =1 1
es] (2] 2
ds —TO0000T o E: =3
n "’ n3
=1 n=1

n=1 n=2
<0 o0
1 (n + 2)!
- :E: n fnn o ni 3P
n=2 n=0 ’
1+2:3 (L) oo

a. Suppose that E a. is a positive convergent series.
n=1

=]

Show that E an2 is also convergent.

n=1 =
b. On the other hand show that it is possible that E a,
' @ n=1
diverges even thought E an2 converges.
n=1

VII.Z2.1




STUDY GUIDE: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 2: Positive Series
1.2.4 (L)
a. Show that for any positive integer n,

1 1
n+ 1 ¥ n+ 2 ¥

- s ow +

M=

>

l\)ll—‘
o}

b. Use a. to prove the following:

Suppose {a_} is a positive non-increasing sequence

n
(that is, a; > @y »a3 > ... a, g >a, >a,.. > @y
and that a, ta, tag+a .t ...t a2n + ... diverges.
Em : %n a2 o3 :
Then = (=al + — + =~ + ...) also diverges.
n=1
=]
z : 1 ;
c. Use b. to show that R diverges.
n=2
1:2:5 Suppose {an}is a non-increasing positive sequence and
n :
that a; + 2a2 + 4a4 + 8a8 v R a2n + ... diverges.
Prove that E a. diverges.
n=1
7.2.6 (L) o
- : . ) . : n
a. Let a, be a positive series, and let L = iiﬁ ‘/an .
n=1 o
Use the comparison test to show that E a, converges
n=1
if L <1 and diverges if L > 1. &
n+ 170
b. Use a. to test the convergence of ( 3N ) .
n=1

VII.2.2
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STUDY GUIDE: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 2: Positive Series

=]
2
Te2aT Test the convergence of E (E_%‘T)n %

n=1
7.2.8 (L)

[o.4]

(=]
a. Prove that if E a, is any positive series and c is
n=1

any non-zero constant, then E a, 6 converges if and only

n=1

[+ 2]
if E ¢ a  converges.
n=1

b. Use a. to show how we may test a negative series for
convergence.

7.2.9 (L) Test the following negative series for convergence:

o] [e5]
1 1
ae E n(l - H) b. E ;In(l = _f)
n=2 n=2 2

VIL.2.3
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STUDY GUIDE: Calculus of a Single Variable - Block VII:

Infinite Series

UNIT 3: Absolute Convergence

View: Lecture 7.030
Read: Supplementary Notes, Chapter X, Section E
Read: Thomas 18.9, 18.10

Exercises:
i (_l)n+l
Tadsl Rearrange the terms of the series 3 e
n=1
so that the resulting series converges to zero.

(_l)n+l i 2
Te3:2 Let By = ———% Show that E: a, diverges even
v/n n=1
o
though E: a converges. (In particular, observe

n=1
that the result stated in Ex. 7.2.3(L), part (a),

depends on the fact that z:an is a positive series.)

oo

7.3.3(L) For what values of c does the series 2: (-2)
n=0

n

(n+l)(c-—l)n converge absolutely?

7.3:4 In each of the following find the values of c¢ for

which the series is absolutely convergent.

n n
n n (c+5) o)
a. ch b En!c o1 o= d. a

n=1 n=0 n=0 =0

[s2] (s +]
7.3.5(L) Given the series Z a, and E bn' we define
n=0 n=0

where
n=0

Ea)(Zb)toequal c
( . n=0 = n=0 =

VII.3w1




STUDY GUIDE: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 3: Absolute Convergence

[7.3.5(L) cont'd]

n -
C = kgoakbn_k (n =20,1,2,3...). Use this definition

2
oo
: ; ; : 1
t t
O write the series which is equal to (gig ﬁ?I) .

2
2 n

7:3.8 Write the series which equals < Z: (-1) ) .
n=0 vn+l

7.3.7(L)

a. Expand (n-k+1) (k+1) and complete the square to show
that

2 -

(n-k+1) (k+1) = (‘2—‘ + 1)2 - (rzi - k) < (‘21 ¥ 1)

b. Combine (a) with the answer to Ex. 7.3.6 to show that

2

o n

( 2: i:}ﬂ__) diverges.
n=0 n+l

c. From (b) deduce that the product of two convergent

series need not be a convergent series.

VII.3.2
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STUDY GUIDE:

Calculus of a Single Variable - Block VII:

Infinite

Series
UNIT 4: Polynomial Approximations
View: Lecture 7.040
Read: Supplementary Notes, Chapter X, section F
Read: Thomas 18.3, 18.4, and 18.6
Exercises:
(Pn and P when used below are defined as follows: for
a given function £, P_(x) = - Eifligl x" and P is
El ’ "n - 2: n!
k=0
defined by P(x) = lim Pn(x).)
N
7.4.1 (L)
a. Determine P, (x), P.(x), P,(x), P,(x), and P, (x) if
3 0 2 1 2 3 4
f(x) = x7 - 6%x" + 9% + 1 .
b. With f(x) as in a. determine P(x) and discuss the
accuracy with which P(x) approximates f(x) .
7.4.2 (L)
' _ x3 = 6x2 + 9% + 1 if 0 £sx £ 1
Determine P(x) if f(x) = x2 + 4, if x> 1
and discuss the accuracy with which P(x) approximates
f(x).
7.2.3 (L) For each of the following choices of f(x), determine
a. Pn(x)
b. P(x)
c. the interval of absolute convergence of P (x)

(1)
(2)
(3)
(4)

£ix)
£ix)
f(x)
£i(x)

Il

sin x

cosh x
|
T —x

6x4 + 3x2

VIiI.4.1

+ 7x = 5




STUDY GUIDE: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 4: Polynomial Approximations

7.4.4 (L) Recall that Taylor's Theorem with Remainder states
that if f and its first (n + 1) derivatives are defined
and continuous on the interval I = {x: |x - a| <R} ,

then for all x € I, we have:

n (k)
f = 3 Bl - a0k 4 r (k2
k=0
X
where Rn(x,a) = %T ./~ (x - t)n f(n+l) (t) dt §
a

a. Show that if there exists a number M such that
if(n+1) (x)[ < M for all x € I, then

M lx _ aln"‘l

By i) | < -

b. Use a. to show that for every real number, x,
oo
n=0

c. Use b. to determine é correct to three decimal places.

/o

™

a

n X

7.4.5 Show that for any real number x,

o (_.l)n x2n+l
sin x = E: (3n+ 1)T - In particular, determine

n=0

sin % correct to three decimal places.
7.4.6 (L)

a. Use division to show that

I i e = 1 =38 # x2 - x3 + ...t (—1)n x
(_1)n+l xn+1
+ l + x -
VII.4.2
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STUDY GUIDE: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 4: Polynomial Approximations

[7.4.6 (L) cont'd] i

b. Observing that Qn(l + x) = ./F T_%EE' use part a. to
0

oo n _n+l

show thatln(l + x) = 2: (_l)n i T 1f 0 £x <1

n=0

(actually the result is true if -1 < x < 1).
c. Compute /n 1.2 correct to three decimal place.

o n
d. Use b. to determine E B(_'}?lT .

n=0
7.4.7 Mimic the procedure of Exercise 7.4.6 (L) to find a

method for computing m. Namely observe that
1
T e dt
= tan 1= d/. ey
8 0 1+ t

- S
1+ t2
as the sum of a polynomial and a remainder term.

then use division or an equivalent to express

VII.4.3
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STUDY GUIDE: Calculus of a Single Variable - Block VII:

View: Lecture 7.050
Read: Supplementary Notes, Chapter X, Section G
Read: Thomas 18.7 (after Exercise 7.5.6 (L))
Exercises:
7.5.1 (L)
a. Show that {xn}converges uniformly to 0 in the interval
(0,b) where 0 < b < 1.
b. What happens in (a) if b = 1?
7 o5 uil Let b > 0. Show that {;%E] converges uniformly to
0 on [0,b].
n
7:53 Let fn(x) il where dom fn = [0,b], b > 0. Show
that {fn} converges uniformly to 1 on [0,b].
' n
T5.4 For any real x, define fn by fn(x) ol Show that
lim [lim f (x)} # lim [1lim f (x)}.
Xroo n-+w 2 n->oo X>oo 8
= nx —
?.S.S(L) Let fn(x) = 1_+"'ﬁ"£f dom fn = [O,l] .
a. Show that fn is continuous on [0,1].
b. Let f(x) = lim £ (x). Show that £ is not continuous
n-—»>c
on [0,1].
c. Does {fn} converge uniformly to £ on [0,1]? Explain
in terms of (a) and (b).
d.

Infinite Series

UNIT 5: Uniform Convergence

Show analytically that {I_%EHE] converges to 1 on

[b,1] if 0 < b < 1 but that the convergence is not
uniform in (0,1].

VII.5.1




STUDY GUIDE:

7.5.6 (L)

a.

b‘

7.5.8(L)

Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

2
X
Let £ _(x) = l—+_’"‘n3;_2_, dom £ = [0,1].

. 1 1
Show thatf lim £ (x)dx = lim f f (x)dx
0 B o ™

n-»-o n->w

Describe the curve y = fn(x) in general and y = floo(x)
in particular. Based on the curve does it seem that

{fn} converges uniformly to 0 on [0,1]? Explain.

Show analytically that {fn} does not converge uni-
formly to 0 on [0,1].

Combining (a) and (c) does it follow that {fn} converges

b
uniformly to f on [a,b] ifjﬁ lim fn(x)dx =
a

I+

b
lim f fn(x)dx? Explain.
a

N>

2
show that lim 2nxe ¥ = 0.
N>
<5 2 L
Letting fn(x) = 2nxe ' show that ‘[' lim fn(x)dx = 0.
0 noow

2
with £ (x) again equal to 2nxe ™*  show that

1
lim f f (x)dx = 1.
n
n-+co 0

2
Does {2nxe"nx } converge uniformly to 0 on [0,1]?

Explain.
n x2
Let f (x) = kz=:0 ““"—;E , dom £ = [0,b], b > 0,
(1 + x7)
and let £ = lim £ (x).
IN-+»o0 n
VII.5:2
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STUDY GUIDE:

Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

[7.5.8(L) cont'd]

a.

b.

7.5.9 (L)

Show that f is discontinuous at x = 0.

Does {fn} converge uniformly to £ on [0,1]? Explain.

sin nx

Let fn(x) = and let lim fn(x) = f,

/n n-+w

Determine f and show that {fn(x)} converges uniformly
to £f(x) on [0,b] where b > 0.

Show that fn'(x) exists for every n and that f'(x)
exists but that

lim £_'(x) # £'(x) (=[lim £ (x)] ')

oo n->c

VII.5.3
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STUDY GUIDE: Calculus of a Single Variable - Block VII: Infinite

Series

UNIT 6: Uniform Convergence Applied to Power Series

View: Lecture 7.060
Read: Supplementary Notes, Chapter X, Section H
Exercises:

7.6.1 (L) Use the Weierstrass M-test to find the values of

oo

x for which E (5x)™ converges uniformly.
n=0

7.6.2 Find the values of x for which Z converges

n=0

1
1l + x2n

uniformly.
7.6.3 (L)

oo oo
a. Show that if Z b, x" and z: e, x" converges uniformly

n=0 n=0

to the same function then bn = c_ for every n = 1,3,2,4..

n
(That is, two power series are unequal unless the coeffi-

cients are equal term by term.)

b. Write the power series which represents x sin x .

1/2

c. Use your answer in b. to compute X sin dx .

0 1,2

d. Use integration by parts to compute./n x sin x dx,

0
and compare your answer with the one obtained in c.
1/2 3
7.6.4 Use series to compute ~/‘ x e © dx correct to four

0
decimal places.

ViIi.6.l




STUDY GUIDE: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 6: Uniform Convergence Applied to
Power Series

7'6.5
a Observing that 2 s h - & find a power
- (x=2) (x=3) xX=3 x=-2"
: : 1
series which represents ®-2) (=-3) °
1
. . 1
b. Use the series in a. to compute ./- ®=2) (x=3) °
1 0
dx . .
c. Compute ./. oY 15=3) by the use of partial fractions.
¢ X
7.6.6 Define a function f by f(x) = Jr cos t2 dt, x> 0 .
0

Express f(x) as a power series.

7.6.7 Let f(x) = E a_ x® . Show that if f(x) = f(-x)
n=0

(i.e., £ is an even function) then f(x) = a, + a, x2
+a, x? 4+ . U
a4 . s a 2n - " =
7.6.8 (L)
; ; . sin x
a. Determine the power series which represents e for
x| <1 .
0.01
b. Use a. to determine ./- E%E:EEQE to three significant
0
figures.
VIT.6.2
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STUDY GUIDE: Calculus of a Single Variable - Block VII:
Infinite Series

QUIZ

1. Tell which of the following series converge and which diverge.

In each case, give a reason for your choice.

oo oo @0 l
5n+7 1 (22
(a) (b) E — (c) E e
8n- o
n=1 n=1 '" n=1 /n
[+4] 6n o0
10 2n
(d) (e)
2 2 T
n=0 n=1

2. Find the interval of convergence for each of the following

power series. (In (b) do not test the endpoints of the interval.)

n
X

@ 3 5 (b) )f: Lix (c) f: 8
n=1 n=1 o° n=1

2 n
X
n

3

3. Use the Weierstrass M-test to prove each of the following.

(a) z ﬂ# converges uniformly
n
n=1

=]
(b) If E[an| converges, then Z a  sin nx converges uniformly

n=1

(-1)"

/n

must we take if we

4, (a) How many terms of the series E:
n=1

want the sum to be within 0.01 of the exact answer?

VIT.0.1




STUDY GUIDE: Calculus of a Single Variable - Block VII:
Infinite Series - Quiz

[4. cont'd]
. = =" .
(b) How many terms of the series :Z: —>»— must we take if we
n

n=1
want the sum to be correct to within 0.017?

1
5. Use power series to compute dfz sin(tz)dt correct to within

0
0.00001.

6. Use the first four non-vanishing terms of the power series

i
expansion for —E—l—— to estimate J'lO _E_Qi__ correct to four
e (1-x) 0 e (1-x)
decimal places.
VIT.Q:2










SOLUTIONS: Calculus of a Single Variable - Block V:
I Transcendental Functions
I PRETEST
' 15 4 | 1 2
1. a. 7 ln"x + ¢ B 5 c. e
2. y = 5e°% 4 3¢73%
3. W[l= lg-
l &
5
I 4. 112-
5. X
l 6. |sec x|
l 7. x+ V3y = 2+ V3 1n(2 - V3)
I V.i
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SOLUTIONS: Calculus of a Single Variable - Block V:
Transcendental Functions

UNIT 1: Logarithms Revisited

5ol|l(L)
a. Recall that the mean value theorem says that

f(bL - g(a) = £'(e) for some ce(a,b)

provided that f is continuous on [a,b] and
differentiable in (a,b).

Now, observing that 1n % = 1In6 - 1In 5, £'(c) =

and that 1ln x is continuous and differentiable on

Q-

’

[5,6], we may invoke the mean value theorem to
obtain

In 6 - 1In5 _ 1
e == = & for some ce(5,6) (1)

Since 5 < ¢ < 6 , it follows that

U]
W
Q|+
v
o

-

hence, (1) becomes:

1 In 6 - 1n 5 1
5 - 6 - 5 <5
1 5 | .
i 3 < lIn6é - 1n 5 < 5 and since

ln 6 = 1In 5 = 1n % ’

we have: % < 1n % < % (2)
b. From (2) it follows that:
5 6
3 < 5 1n T € 1
and (3)

6 6
l<61n-§<§




SOLUTICNS:

Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 1: Logarithms
Revisited

[5.1.1(L) cont'd]

6 _ 6,5 3 6 6,6
Now 5 1n T = 1n(5) , while 6 1n 5 = ln(s)
Putting these results into (3), we obtain
1n(g-)5 < 1= ln(%)6 (4)
and since In e = 1, (4) may be written as:
(> < Ine < 1n(2)° (5)

Then since 1ln x is an increasing function, (5) implies
that:

6,5 6,6
(@7 <e< (@ (6)

A menial but straight-forward computation shows that
(2)° = 2.48732 ana (2)® = 2.984784. Putting this
into (6) yields:

2.48 < e < 2.98 (7)
1.2
LN dx
In 1.2 = d/” —
1

Thus 1n 1.2 is the area of R where

Ay \
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SOLUTIONS:

Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 1l: Logarithms
Revisited

[5.1.1(L) cont'd]

Using trapezoidal approximations for R with n = 2,

we have

10 |s
1 [T g
|
11 6
1l 6 3§
_ 1o 4101 , 110,51
T, =50+ (5[ + 307 + @1
1,21 . 115 _ 1 _oa1
= 2001 t Tg6) T 1320126 + 115) = 7353
= 0.1826 (8)

Notice that (8) is compatible with the results of (2).
The interesting point, however, is that (8) is a much
better estimate for 1n 1.2 than is the inequality

in (2) - and it was much easier to obtain (8) (only 2
trapezoids) than it was to obtain (2).

This stems from the fact that for most curves trapezoids
fill in the region rather well, rather quickly. More
objectively, recall the estimate:

b
/f(x)dx = 'I‘-—bzza f"(c)mx)2 for some (9)

*
a c £ (a,b)

*
See, for example, Thomas: pg 180




SOLUTIONS:

Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 1l: Logarithms
Revisited

[5.1.1(L) cont'd]

In our case a = 1, b = %, f(x) = %, T = 0.1826,
Ax = T%_' Then: f(x) = %-* £'ixn) = —i§~+
" _2 6 2 F 5
f"(x) = =3 i on [l,gl, =5 is maximum when x = 1
X x

. 2 . 2 -
since —3 is maximum when X is minimum. Hence, an
X
upper bound on our error is obtained from (9) by

letting ¢ = 1. We obtain:

=

E3 §£3

L 3

ts 113

P D

Ea? £ 23

|

2 S e

1
Maximum error = _—i— (2)[~£12
10
12
_ 1 _ +
= 3500 - 0.0003 (10)
The minimum error is obtianed from (9) by letting
c = % and we obtain:
-];..
Minimum error = B 2 (%)2
12 (§)3
5
I S +
= £i{gz = 0.0001 (11)
Notice that (10) and (11) tell us that our answer
in (8) is correct to three decimal places and that
the fourth place is off by less than 3 and more than
1. In other words, our answer lies between 0.1823
and 0.1824+. In any event, correct to three decimal
places.
In 1.2 = 0.182 (12)

v.l.4
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SOLUTIONS: Calculus of a Single Variable - Block V:

Transcendental Functions - Unit 1: Logarithms
Revisited

[5.1.1(L) cont'dl]

Aside from affording us a review of several major
principles of calculus in general, our hope is that
this exercise helps to establish the "realness" of
the natural logarithm in general, and the number

e in particular.

5-1.2(1!)
n n
a. We have iln(xn) d In(x) d(x)
dx n dxz
d(x")

X

= I

X
i g e d(ln x) _ n
While dx [l’l 1n x] = n ___...__dx ! =

Since 1n(x™) and n 1ln x have the same derivative, we
may conclude that:

ln(an = n ln x + ¢
If we let x = 1 in (1), we find:
Inl = nilnl + ¢
or 0 = 0+ ¢
- ¢ =0, and (1) becomes

ln(xn) = n ln x

(1)

(2)




SOLUTIONS: Calculus of a Single Variable - Block V:

Transcendental Functions - Unit 1: Logarithms
Revisited

[5.1.2(L) cont'd]

At first glance, (2) might seem to be redundant,
since one of our properties of any logarithmic
function was f(an =n £(x). You may recall,
however, that this general property, at least as
proven in our supplementary notes, was restricted

to n being a positive integer (otherwise we

couldn't have used induction). In our present proof,
the result is valid for any rational number n, since

d(x") _ __n-1
dx

the recipe
number, n.

is wvalid for any rational

b. y= 2+ D4t v 2 Ayt e 2 4 )

—

1

2 + 3)4

y= (x2 + 1)°x* + 202 (x* + 2%
i

1
1n y = ln[(x2 +1)° xt+ 22 x* + 2x% + ¢ ]

1 1
Iny = 1In(x? + 1)° + 1n(x? + 2)2 + 1nx? + 2% + 3)4
Iny =5 In(x> + 1) + % In(x* + 2) + % In(x? + 2x% + 3)

Differentiating (1) implicitly with respect to x,
yields

dy _ o f_2x \, 1/ ax \, 1/ x> + ax
ax = 2 2\, o) 3|2 2
®x + L x + 2 x + 2x° + 3

N

(1)

Nl S BN e
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SOLUTIONS:

Calculus of a Single Variable - Block V:

Transcendental Functions - Unit 1: Logarithms
Revisited

[5.1.2(L) cont'd]

g§_= v 2le + 42x + - X ; X
x° 4+ 1 X + 2 X4 235 o+ 3
1 L
=+ D e et e e gt | SR
| x4+ 1
2x3 x3 + X
t 3 * 2 2
e X + 2% + 3
-
First of all, do not confuse x* and x". That is,

in x" the exponent is fixed while in x¥ the exponent
varies with x. The point is that as of this moment

we have a recipe for differentiating x" not x*. At
any rate if we assume that ln ¥ = m 1ln x for any real
number m, (we already know its true if m is a rational

number) we have

X
Yy = X
lIny = ln(xx) = x ln x (2)
d = 1 dy
NowgxIny = § 3ax
: d _ d dx
While EE(X T 32) = X a;{ln x) + e 1n x
= X4 lnx = 1% In x
X

Thus, from (2) we may conclude that




SOLUTIONS: Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 1l: Logarithms
Revisited

[5.1.2(L) cont'd]

i 9% - 1 # 16 %
y dx
dy _ i x
. e ™ y(1 + 1n x) , and since y = X,
%i = xx(l + 1ln x)
X
In particular, g%- + x(x)¥71 (=x¥)
d. y = x
Iny = 1n x* = n ln x
; ldy _ n
’ vy dx be
n
dy _ ny _ nx  _ n-1
: dqx X B3 nx
Thus, if we assume that 1n x' = n 1n x for all real
n -
numbers n, the recipe éé;—l = nx" 1 is now valid for

all real numbers n.

w

=

(o8]
(Ll

V]
?
R en

=

"

[\S]

+

[

Il

d 2 2
-dTln(x + ].)

= 212 nx® + 1]
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SOLUTIONS:

7

Calculus of a Single Variable - Block V:

Transcendental Functions - Unit 1: Logarithms

Revisited
cont'd]
= gl——1
x4+ 1
_ X
x2 + 1

1
d 2 [2 d 5
= 1In[x "x + 1] = &-ln[xz(xz + 1)2

1
=.E§-[1nx2+1n(x2+1)2]
1
= a%—[Z ln x + ln(x2 + l)2 ]
= % + —55——— [from (a)]
x°T + 1
= 3x2 + 2
x(x2 + 1)
Let u = 1In x. Then du = Q%
ﬁlnx)B-d—;: = fquu = %u4+c = -]4-‘-ln4x+c
Let u =1 + sin x, then du = cos x dx
cos x dx du
.[1+sinx = u Infu| + ¢
V.1l.9




SOLUTIONS: Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 1: Logarithms
Revisited

[5:1:3 cont'd]
= 1In|l + sin x| + ¢, and since 1 + sin x 2 0
= 1In(l + sin x) + c
d
— (ln x)
= gz=dx — l
e. N In(ln x)—a-dx s T TR
. _ : d In u _ 1 du _ ( 1 ) 1
(That is, let u = 1n x ; then T el il = )
£. lim (1 + l)n = e (from the supplementary notes)
n-o n
3 2 _n
Now given 1 + =1 let m = > then
2.0 - l.2m l.m,2
(1 + 5) = (1 + m) = [(1 + m) ]
. lim 2in _ lim lm lm
e _— (1 + n) =t [(1 + m) (1 + m) ]
= (e) (e) = &2
5.1.4 1
a. The area of R is given by R ax
2 dx
x- + 1
0
If we let u = x2 + 1, then du = 2xdx; u = 1 when x = 0,
and u = 2 when x = 1.
1 2 1 a 2
x dx g @4 1 du
Hence ——— 7y =5 ~
¥+ 1 1

7 % K o)

£33 £ 3 ©*»
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SOLUTIONS: Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 1: Logarithms
Revisited

[5.1.4 cont'd]
2
- A =1 -
= 5| n|u] =3 [ln 2 - 1n 1]
1
1
-—‘511‘12
b. We have that:
b
v, = w[fz(x)dx
%
a
Thus, in this case;
2 y 5
\Y = 7 ———— dx
% X" + 1
0
2 x2
= 7 3 dx
Ox + 1
Letting u = x3 + 1, we see that du = 3x2dx or xzdx
Moreover, when x = 0, u = 1 and when x = 2, u = 9.
Hence:
9 9
_ du _ 1
V., = ﬂ./. 55 ~ 3 © lolul
1 1
_ 1
37 In 9
Vielili

-




SOLUTIONS:

Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 1: Logarithms
Revisited

cont'd]

(Notice that there is no new theory in this exercise.
All that's new is that our integrals involve jz%f

which we couldn't handle before this exercise.)

5.1.5 (L) Aside from the fact that an exercise such as this

one provides us with an excellent review of several
major topics as well as drill with our new function,
ln x, there is yet another very important aspect to
this exercise. 1In its own wav, this exercise is a
forerunner of Block VII in which we shall discuss
the most important concept of power series. Since

this will be discussed in Block VII, we will not

take the time here to delve too deeply into the notion

of power series, but we would like to focus some

attention on the result that for values of x in excess

of 1, we can approximate 1ln x quite nicely by the
cubic polynomial equation
x-1%, x-13

(x = 1) 2 3

provided only that x doesn't exceed 1 by too much.

There is nothing sacred about our choice of using a
cubic equation nor in our choice of picking powers
of (x - 1). For example, had we been interested in
In x for values of X near 2, we would have proceeded
in a similar way, using powers of (x - 2), and had
we desired more accuracy we could have proceeded
beyond a third degree polynomial and taken as a high

a degree polynomial as we desired to produce the
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SOLUTIONS: Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 1: Logarithms
Revisited

[5.1.5 (L) cont'd]

accuracy we needed. At any rate, let us now proceed
with the exercise.

Il

x-1 ®¥=1
a. [ % In(l + u) = 1n(l + x = 1) - 1n(1 + 0)

0 0

Il

In x - 1n 1
= 1In x

From the integral calculus point of view, we have:
X

dt

In x = T

If we now let u =t - 1 we obtain:

x-1
_ du
In x = jr 1+ u

0

b. By long division, we have:

e
1—!
+
o

I+

il o f o
—
I
o]
+
o

- u
u
At each stage, our remainder is the next power of u

and the signs keep alternating.

V.l.13
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[5.1.5

Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 1: Logarithms
Revisited
(L) cont'd]
Thus:
1 = q = u
1l +u 1l + u
2
_ _ u
= 1 u + I+ o
3
- 2 _ _u
= 1 u + u T 4+
etc
x=-1
_ du
In x = ./. =
0
x-1 5 u3
= [l - u + u” - T F 1 du
0
x=-1 x=-1 3
_ 2 u~du
= ./- (1 - u + u)du - j{ =T
0 0
x-1 x=-1 3
R - N - _ u”du
- 2 3 u + 1
0 0
2 3
_ _ (x = 1) (x = 1) _
= (x 1 5 + 3
From (1), the difference between 1ln x and (x - 1)

Since

x-1
_(x - 1)2 % (x - 1)3 i u3du
2 3 o u+ 1 °

V.l.14
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SOLUTIONS: Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 1: Logarithms
Revisited

[5.1.5 (L) cont'dl]

0 € u<x %t and x > 1, it follows that u is positive.

Hence:
3
u 3
u + 1 4
o - o’ du < X-lu3du = 14t - _ -
u + 1 T4 B 4
0 0 0
x - 1*
Thus an upper bound for the error is S
Hence:
x - 1% 1 k-1t _ 1 _ 1
4 1024 1024 =~ 256 4

+—+‘x - ll < %

H—%(x—l(i

4

R <, since our assumption
8 % 3 L,

e. Since x = 1.2 is in the range 1 < x < % r it follows

that 1n 1.2 can be expressed with an error of less

= 2 = 3
than 0.001 by (x - 1) - - e, (x : 1)

2 3
S I t2 = O[3 =1) = ‘_1-22- n°, (1.23— 1)

V.1l.15
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Transcendental Functions - Unit 1: Logarithms
Revisited

[5.1.5 (L) cont'd]

~ (2) - 27, (2)

~ =

~ 0.2 - 0.02 +0.0027

~ 0.1827
~ 0.183
5.1.6 We have:
2 3 4
- - _x-1) (x - 1)7 _ (x = 1)
In x = (x 1) 5 + 3 y
5 n~1
% = 31J 5 _4yn _(x = 1)
+ 5 - " = +( l) n = l +R
(x - 1"
where the error R is no greater than |- —=! |
. ~ (x - 1) _ (.2)® I
if with x = 1.2, e = =
n
we want (‘i) < 1078 |
(.2)" -6 .
To solve — < 10 we can use many techniques, one
n
of which is simply to look at (052) for various n.
» i
For example, with n = 6, (';21) = % (2 x 10748 |
V.1l.16 I
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SOLUTIONS: Calculus of a Single Variable - Block V:

Transcendental Functions - Unit 1l: Logarithms
Revisited
[5.1.6 cont'dl]
- -6
= 10.6667 X 10
= 0.0000106667...
on 1 -7 + 7 +
n==17; LE- = 7(128) x 10 = 18 x 10 = 1.8 x 10
> 10-6
oh 1 -8 -8 -
n = 8; ;ﬁ' = §(256) x 10 = 32 x 10 = .32 x 10
(= .00000032)
< 107°

We must carry out our computations through %(x = 1}7 to

get the required accuracy. In other words, to 6 place

accuracy.

2 3
_ (.2 (.2)° _
+

= .2 - .02 + .0026667 -
- 0000107 + .0000018

= .2027325 - .0204107

= 0.182321

5.1l.7 (L)

Ve doa 7

4 5

(.2) (.2)° _
z Tt s

(.2)7

~

.0004 + .000064

(.2)

6

6




SOLUTIONS: Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 1l: Logarithms
Revisited

[5.1.7 (L) cont'd]

Now for t > 1, t > vt

p 4 X x _1 X
. dt at  _ 2
..]—-—E<j‘/:t——[tdt=2\/1? = 2vk - 2
1 1 i 1
ln x < 2yx - 2
In x 2vXx -2 _ _2 2
X X VX - X
.. lim 1ln x _ 0
o (1)
B
In x* = n 1ln x
lim 1n x" _ lim n ln x _ lim ln x _ .
- - - s E— = A o s = n-*0 [by (1)]
= 0 (2)
Equation (2) shows that x "gets large" faster than
In x" no matter how great n is. Part (c) says the
same thing from a different point of view. Namely,
n n .
c. In (2), let u=x . Then x = u and we obtain:
lim 1In u _ 0 (3)

u-ree n'—-
u

Thus 1ln u goes to zero more rapidly than any positive

power of u, no matter how small.

V:lsl8
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SOLUTIONS: Calculus of a Single Variable - Block V:

Transcendental Functions - Unit 1: Logarithms
Revisited

Iry 3

a. The curve y = (x > 0) is given by:

ln 2 - 3

(Figure 1)
The key steps in obtaining this result are:

y = &ZE (x50
1
& ¢ x(x) - 1n x 1 -1n x
Y 2 - 2
X X
xz(—%) - (1 - 1ln x)2x
Y" - A 3

X

-3x + 2% 1n x

4
X

= 3 (since x # 0)

¥, 1:19

(1)

(2)

(3)
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[5.1.8

Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 1: Logarithms
Revisited

cont'd]

From (1) we see that the curve passes through (1,0).

From (2) we see that y' > 0 if x < e, y' = 0 if
X =e,and y' <0 if x > e .'. x = e yields
a high point; and since y = 1nxx » the high

point is (e,X)
€3 3/2, .
From (3): 1ln x = 5 (or x = e ) yields a point
of inflection with the curve "spilling water"
for x < e3/2 and "holding water" if x > e3/2.

Moreover, when x = e3/2, y = lnxx = % e“3/2.

1n x

Finally, from the previous exercise +0

as X =+ o,

Figure 1 is the compilation of these results.

When we look at Figure 1, it is easy to see that

y = in x is not 1 - 1 if x > 1. 1In particular,

X
(see Figure 1) lncc = ln22

(In general solving for c is at best "messy". However,

in this special case:

lﬂag_ - lEEE--+ cln2 = 21lnc =+ 1n 2°

I+t happens that 2% = x2 is solved by x = 2 and x = 4.

In any event in4 _ In 2)
4 2
Inx . . 5 1
y = = is 1 - 1 when y is negative (see Figure 1).
; I: In x _
Hence, since x = 5 - i =2 1n 2 < 0 we sece that

X = % is the only such number.

V.1l.20
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SOLUTIONS: Calculus of a Single Variable - Block V:
Transcendental Functions

UNIT 2: The Exponential Function

5‘2.1
& de" _ deu_gg_ w Y du
Todx du dx dx
. 1 du _1
with u = = 5
X
1 i
; ae® _ -
Hence T = _izf

1 + eX
X
a%—ln ex = —EE- = 1
e
bie
Tigvln(ex + 1) = xe
e + 1
X X
- E%‘ln e x] - 1 - xe _ - 1
1 + e e’ + 1 e” + 1

c. let u = sin 2x

Then du = 2cos 2x dx or cos 2x dx =-g%-
[eSln 2x cos 2x dx = ]eu d_1£ = 1
2
_ % oSin 2x




SOLUTIONS: Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 2: The Exponential
Function

[5.2.1 cont'dl]

d. Let u = 3 + 4e%

Then du = 4exdx or, exdx = % du

1
. efax  _ F 1
v = T Inju| + ¢
3 + de u

1
4

|
I

In|3 + 4e®| + ¢ = + 1n(3 + 4e%) + ¢ (since 3 + 4e&¥
> 0)

x=e u = 1ln e u = 1ln e

; u
and since 1ln e

Il
o]

u=3

Il
. i
jm
w
1
et
=
3]
Il
[
o]
M| W

1n|u|

u=2

Ve o2

-
8]
»
|
=)l b
»
Il
b
|Q.|
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I
H
=
=
o
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SOLUTIONS: Calculus of a Single Variable - Block V:

[Hu22

Transcendental Functions - Unit 2: The Exponential

Function
cont'd]
3
VY = 27 f xy dx
0_
3 -x2
= 27 xe dx
0
= -Te
0
= -'.'T[e-9 = eO]
= -niy - 1]
e
= 7[l —-lgl
e
(L) We try y = ™%
Then y' = re™™
y" = r2erx
-.. Y“ = ZY' = 15y = 0 e
rzerx - 2rerx - 15erx = 0 —s
R, . 2 .
e " (r" - 2r - 15) = 0 , and since e
Va2:3

rx

<

0




SOLUTIONS: Calculus of a Single Variable - Block V:

Transcendental Functions - Unit 2: The Exponential
Function

[5:2.3 (L) ¢ont'dl

2

r*" -2r - 15 = 0 or (r = 5)(r +3) = 0
LS. r =5 or r = -3
5x -3 . i .
Therefore, e and e satisfy y" - 2y' - 15y = 0.

It can now be verified by direct computation that

5x -3x

+
c.e C2

&%
is a solution of y" - 2y' - 15y = 0 for any choice
of constants C1rCye

Letting y = cle5x + cze_3x ' (1)
It follows that
v' = 5¢ eSx - 3¢ e_3x (2)

2

When x = 0, (1) and (2) yield:

y(0) = ¢y + ¢,
(3)
y'(0) = 5c, - 3cy
Recalling that y(0) = 8 and y'(0) = 16, (3) yields:
8 = cl + c:2 ] 24 = 3cl + 3c2
le = 5c1 - 302 l6 = 5cl - 302
40 = 801
o c1 = 5
c2 = 3
Nk y = SeSx + 3e_3x
Ne2ad

™
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SOLUTIONS: Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 2: The Exponential
Function

[5.2.3 (L) cont'd]

Check: y(0) = 8
y'(0) = 25e°% - ge~3% = 16
x=0
y" = 125eSx + 2?e_3x
So YU - 2y' - 15y =
(125¢°% + 27e73%) -—2(25¢°* - 9e73%) _15(5e5% + 3¢73%) -
125¢°% - 50e°* - 75¢°% + 273X ¢ 18¢73% - 45073 =
This is the main idea behind a general technique for
solving differential equations which have constant
coefficients.
5024 Letting y = g , V' o= re™® , Y" = rzerx, we have

y" - 7y' + 12y = 0—————r-r2erx = gFeT T 4 1267F = | [————
r2 - 9r+ 12 = O0—(r =~ 8)(r=3) = D—>r = 3
or r = 4
Hence, y = cle3X + c2e4x is a solution of y" - 7y'
+ 12y = 0.
Now, .y' = 3cle3x + 4c2e4x .

Ly(0) = 1 = o + c, 3 = 3¢y + 3c, c, = -1

y'(o) = 2 = 3¢y + 4c2 2 = 3¢y + 4c,

V+24e5
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Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 2: The Exponential
Function

[5.2.4 cont'd]

5.2.5 (L)

.cl = 1 - 02 = 1 - (-1) = 2
v = 283x _ e4x
In the last section, we showed that iiﬂ 1nnx = 0
X

if n > 0. 1In essence, this meant that for sufficiently
large values of x, X" "dwarfed" 1ln x no matter how

small n was chosen, as long as it was positive.

This exercise is meant to establish the "inverse" of

the result, namely:

lim x"
X+ ¥
e

= 0 (1)
no matter how large n is!

Rather than prove (1) rigorously, we pick n = 100

and ask to show that when x is "sufficiently large"

then e® exceeds xlOO. (There is no important reason

for choosing e in this exercise other than the fact

that we are studying e in this section. In general,

if b > 1 then iiﬁ —E;- = 0.)

There are several ways of comparing e®* and XlOO.

The method we shall choose will afford us the opportunity
to gain more experience with the use of logarithms. The

fact that 1n is an increasing function implies that

X 100 100
X

e > <> 1n ex > 1n x
€> x 1ln e > 100 1n x

<> x > 100 1ln x

V.2.6
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SOLUTIONS:

[5.2.5 (L)

Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 2: The Exponential
Function

cont'd]

In other words, to find x such that e* > XlOO it

is necessary and sufficient that we find ¥ such that

x > 100 1ln x (2)

To solve (2), we have a particular application of a

more general technique which we shall now describe.

If f£f(x) and g(x) are differentiable functions and we
wish to prove that f(x) > g(x), we study v = f(x) - g(x)
If, for example, we can show that the minimum value

of £(x) - g(x) is positive the result will follow

since if the minimum value of f(x) - g(x) is positive,
f(x) - g(x) is always positive, and this is precisely
the definition that f(x) > g(x).

Of course f(x) might not always exceed g(x). What
dlf(x) - g(x)]
ax > 0 for x > xo

where xois some constant. If we can then find Xq 2 X

such that f(xl) > g(xl) then f(x) > g(x) for all
X > Xq. Pictorially:

might happen is that

0

1

h% £(x)~g(x) = h(x)

C

y = £(x)-g(x) always rises when x>x

0
and it crosses the x-axis when x=xl>x0
Hence it is above the x-axis (i.e.,
f(x)-g(x)> 0 or f£(x)> g(x))
whenever x > xl

(Figure 1)
YVieida d




SOLUTIONS: Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 2: The Exponential
Function

[5.2.5 (L) cont'd]

Fa

In any event, in our exercise we consider

y = x =100 1n x (x > 0)
— _ 100
Then y = 1 A
and y" = _LQ%
X

From (3), (4), and (5) we see that our curve passes

through (1,1), always "holds water" and rises when

x > 100 but falls when x < 100. Again, pictorially;

y A

(3)

(4)

(5)

2 3
x-100 1n x
' (100, 100-100 1ln x) = [100, 100-100(4.6)]
(Figure 2) = (100, =-360)

Notice that our curve falls quite rapidly at first
and reaches its minimum when y is a rather large
negative number. This indicates that until x gets
"sufficiently large", x is considerably less than
100 1ln x. For example when x = 10 , 100 1n 10 =
100(2.3) ~ 230. Correspondingly, when x = 10:

X = o0 &~ 23 026 < 190°

(100 _ 4,100

s s o
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SOLUTIONS: Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 2: The Exponential
Function '

[5.2.5 (L) cont'd]

That is, 10100 is very much greater than elo.

At any rate, the smallest x beyond which e* always

exceeds XlOO is X, as shown in Figure 2. To locate

Xy analytically we must solve the equation

x - 100 Inx = 0O

or Xx = 100 1n x (6)

Again, a glance at Figure 2 indicates that (6) has

two solutions, one of which is "near" x = 1.

Equation (6) is known as a transcendental equation
and one way of tackling it is through tables. For
example when

x=1.01, Inx = .01 .100Inx =1 x -1nx =1,01L-1= .01 >0

Xx =1.02, In x = .0198 .. 100 1n x 1,98 u % = I = 102 - 1.98 £ 0

< x - 100 In x =0 (i.e., vy = x - 100 1ln x crosses

the x-axis) between x = 1.01 and 1.02 etc.

For our needs, it is necessary to find the solution of
(6) for which x > 100. Again proceeding by tables:

x = 1000 1n x = 6.9078— 100 1n x = 690.78—>x - 100 1ln x > O

<~y = x - 100 1n x crosses the x-axis somewhere
between x = 100 and x = 1000.

While this estimate is guite crude, we were not
required in this exercise to find the smallest x

which worked. 1In other words, while we might like




SOLUTIONS:

[5.2.5 (L)

Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 2: The Exponential
Function

cont'd]

a better estimate, it is nonetheless correct to state:

X > 1000 —» e® > xlOO (7)
There are ways of sharpening the result in (7).
For example, we can find from the table that 1n 2 = 0.6931.
Hence, 1ln 2k =k 1In 2 = 0.6931k. Letting x = 2k
(6) assumes the form:

r

2% = 100 1n 2¥ = 100k 1n2 = 69.31x (8)

Equation (8) is easy to compute for k = 1, 2, 3,..etc.
For example:

k 2 69.31k (= 100 1n 25)

1 2 < 69.31

2 4 < 138.62

3 8 < 207.93

4 16 < 277.24

5 32 < 346.55

6 64 < 415.86

7 128 < 485.17 y 512 < 100 1n 572
8 256 < 554.48 | ..512 is a lower
9 512 < 623.79 bound on ¢ in
10 1024 > 693.10 | this problenm.

V.2.10
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SOLUTIONS: Calculus of a Single Variable - Block V:

Transcendental Functions - Unit 2: The Exponential
Function

[5.2.5 (L) cont'dl

If we wanted a better estimate we could now replace
(8) by:

3* = 100 1n 3¥ = 100k 1n 3 = 109.86x (9)
Now we know that ¢ > 512, and the first power of
3 that exceeds 512 is 36 = 729. Letting k = 6 in
(9), we obtain:

3K = 729

100 1n 3% = 100 1n 728 = (109.86)6 = 659.16

Je 729 - 100 1n 729 > 0

Hence our minimum ¢ is now given by
512 < ¢ < 729

We could continue making refinements by appropriate
use of In tables or we could use such analvtic devices
as Newton's Method, etc. However, we feel that we
need not carry this discussion further here in the
sense that our main aim was to establish the existence
of ¢ as well as to review some fundamental ideas

about exponents and logarithms.

X XlOOO

x > 1000 1n x

Pick x = 2

V.2.11




SOLUTIONS: Calculus of a Single Variable - Block V:

Transcendental Functions - Unit 2: The Exponential
Function

[5.2.6 cont'dl

2% 5> 1000 1n 25 = 1000 k 1n 2 = 693.15k

k

k 2 693.15k

10 1024 < 6931.5

5 | 2048 < 7624.65

12 4096 < 8317.80

13 8192 < 9010.95

14 16,384 > 9704.10

. e16,384 5 16,3841000

Check:

16,384 16,384

e ' R

Le16’384>16,3841000

(16,384)1000 - (214)1000 = 214,000
e® - xlOOO is an increasing function when x > 16,384
(In fact x - 1000 In x = g(x)— g'(x) =1 - 1030
g'(x) > 0 when x > 1000). Hence we may choose c =
16,384.

Hu2sll Note: we have not proved that 1ln x* = r 1n x for all

real numbers. We have proved the result for any
rational number r. The point is that once we know
1n x* = r 1n x when r is rational, we define 1n x* =

r 1In x for all real numbers.

V.2.12
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SOLUTIONS: Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 2: The Exponential
Functions

[5.2.7 cont'dl

2 1ln x In x2 .
d. e o = X
x

b. bx _ eln b _ X 1In b

am®) _dae* ™P) _ | x 1nb d(x 1n b)
dx dx dx
X

= @ Binp = (P )in b= ®%1n b

X
C f4xdx = feln4 dx = fex In 4 dx

_ lnl4 X 1In 4 ¥ 1@
2,4
_ 1nl4 eln 4 % @
_ 4"
=fna tc
il =1
. 1¥ay = AF _at 20 g3 3
.. 1n 4 1n 4 In 4  1n 4 1n 4
0 x=0
5.2.8 = 2 2
Recall that if G(t) = e ® dx then G'(t) = e © .
0
Hence ’
3+h 3+h 3
1 D . ¢ —x2 -x2
7 e dx = 5 e dx - e dx
3 0 0
1
= E—[G(B + RYy = G(3)]
_G(3 + h) - G(3)
= h
V.2.13




SOLUTIONS: Calculus of a Single Variable - Block V:

Transcendental Functions - Unit 2: The Exponential
Function

[5.2.8 cont'd]

lim | G(3 + h) - G(3)
h-+0 h

G'(3)

But G'(t) = e

3+h 2
. 1im 1 -X
Lt h+0 H I e dx

3
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SOLUTIONS:
5.3.1
d.
bl
C.

Calculus of a Single Variable - Block V:
Transcendental Functions
UNIT 3: The Hyperbolic Functions
Our basic identity is cosh2 X - sinh2 x = 1. Since
sinh x = ") we have:
12 )
2 . 25 _ 2 25 _ 169
cosh”™ x a1 = 1 or cosh® x =1 + 13d — T4
‘. cosh x = |62 _ 13
e 144 12
(Notice that cosh x = —%% is excluded since cosh x > 1
for all x.)
Here we use the identity (which we shall derive as
an exercise in Exercise 5.3.7(L), but which is stated
in the text)
sinh 2x = 2sinh x cosh x
sinh x = 2 —» cosh x =13 [by part (a)]
' 12 12 P
g _ 5, (13, _ 65
sinh 2x = 2(T§)(12) =55
2 - -
We have cosh”™ x - sinh® x = 1.

Hence, sinh2 X = cosh2 x -1

Since cosh x = 17 r we obtain
e 0 e = N = 189 _ _ 25
sinh® x = ( 2) 1 = 122 1= 144
25

. sinh x = =

I
I+

13 (but now we cannot disregard
the minus sign.)
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SOLUTIONS: Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 3:

Functions

[5.3.1 cont'd]

Pictorially,
A

y = sinh x

sinh x is 1-1

The Hyperbolic

2 D

Lt 3

2

E 3

t 2

I
5032
a. tanh x = sinh x
cosh x
eX
=% 1l + tanh x =1 +
eX
l - tanh x =1 -
. 1l + tanh x . 2e
et 1l - tanh x X

1 - tanh x

Finally,

E % £33 ¢ 2

Ea

) 1n[l+tanh x] = 15 B8
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SOLUTIONS: Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 3: The Hyperbolic
Functions

[65.3.2 cont'd]

e + e ¢
b. cosh u = — sinh u + cosh u = eu etc.
and P —
e - 7Y -
sinh u = 5 cosh u = sinh u = e L
1 6 )
. (i) cosh 6 46 _ 3 [e” +e 7] de
. & sinh 6 + cosh 6 ~ ee
1 ee + eﬁe 1 ee e-6
=gl = \® =3 ] 55 |*
e Le e
& % [1 + e_ze]dﬁ = %-[8 - %—e_ze‘]+ c
or, since e—'28 = cosh 26 - sinh 26,
cosh 6 48

_8 .1 o

X -x
(ii) e* sinh 2x dx = e* [Eg—e]dx
=%f{e2"‘-1) dx
=%[%e2x-x]+c
=1 2x _x
=7 g e
X 1
X -X e + =3¢ 2X
(iii) We observe that =——& _ - e _ e +1
2 2 X
2e
bie 1
while ef - ¥ = = EY.: e2x = 4
2 2 X
2e
V.3.3




SOLUTIONS: Calculus of a Single Variable - Block V:
' Transcendental Functions - Unit 3: The Hyperbolic
Functions

[5.3.2 cont'd]

Hence:
$E _ 1 o | 6™ - 117
X, T 2% z 9%
e + 1 (e + 1) /2e
_ sinh x
= —_—— dx
cosh x

Letting v = cosh x, dv = sinh x dx, we obtain:

2x

-1 sinh x dx dv
S dx = —_— = — = 1n|v| + ¢
e2x + 1 cosh x v
= 1ln|cosh x| + ¢
= 1In(cosh x) + ¢ (since cosh x > 0 for all x)
5.3.3 ‘Y y = cosh x

- 37
I
1
= N dy, 2
S l+(dx) dx
0
Now y = cosh x 4>§§-= sinh x + 1 + (%%)2 =1 + sinh2 X

But cosh2 X - sinh2 Xx =1=-=1 + sinh2 X = cosh2 X

ol ,l-l- (%}2 = Jl+sinh2x = \]coshzx = cosh x

Vied.aid
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SOLUTIONS: Calculus of a Single Variable - Block V: )
Transcendental Functions - Unit 3: The Hyperbolic
Functions

[5.3.3 cont'dl]

1
S s = cosh x dx = sinh 1 - sinh 0 = sinh 1
0 1 -1 @ = L
2 2
_ e2 - 1
2e
Generalization
*y y = cosh x
=
i
Xq xl
_ dy, 2 _ _—
s = \jl + (Hﬁ) dx = cosh x dx = sinh xl
0 0
Sl _ 1
xl 2xl
= e . B -1
2 xl

In other words, the arc length of y = cosh x between

0 and x, is simply sinh x

1 1:*

5:3.:4 Here we are merely applying the first fundamental

theorem of integral calculus to a "new" function.

Namely, if we let f(x) = cosh x, we have:




SOLUTIONS: Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 3: The Hyperbolic
Functions

[5.3:4 cont'd]

1 n
cosh x dx = iiﬁ E %—cosh (%)
0 k=1
1 2 n
. 1im cosh = + cosh = -+ + cosh =
T noow n
1 1
But cosh x dx = sinh x = sinh 1 - sinh 0 = sinh 1
0 0
_ e2 =_1
- 2e
Hence:
1im cosh % + cosh % +++++ cosh %
n-ce n

5.3.5 (L) The main (perhaps, only) reascon for callinag this a
learning exercise is so that we can emphasize the
fact that we can construct the hyperbolic functions
geometrically, just as we can the circular functions.
To be sure, circles "behave more nicely" than hyperbolas,
but this is hardly the important part.

L
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SOLUTIONS: Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 3: The Hyperbolic
Functions

[5.3.5 (L) cont'd]

2 2

Our line L passes through (xl,yl) on x° -y~ = 1;
(hence, xlz - ylz = 1). Moreover, x - y2 =1 —p
s oy OF dy _ x
2x 2y e 0 or s v
X
. m =i}': =_l
.. L dx Yq
X=Xq
. Y=Yy
Thus, the equation of L is given by
Y"Yl X]_
Xx-x "Ly
1 1
o.o (Y = y:L)Yl = (X = xl)xl (1)

To find where the line L intersects the x-axis, we
merely set y = 0 in (1) and solve for x. (Notice how
the theory is exactly the same as it was in Block

I, the only difference being that we can now handle

more classes of functions.)

s (0 = yy)yy = (x = %)%
2 _ B 2
Yi TX¥X 7%

X 2 . y

or X = 1 = 1

1
. 2 2 :
and since X" -y = 1, we obtain:
V.3.7




SOLUTIONS:

[5:3:5 (L)

Calculus of a Single Variable - Block V:

Transcendental Functions - Unit 3: The Hyperbolic
Functions

cont'd]

(An interesting aside is that since X 2 1 €2)
shows us that the x-intercept of L must lie between

0 and 1. In other words, the line tangent to the
2

curve x2 -y =1, x>0, at any point intersects the

x-axis to the right of the y-axis.)

x = cosh u :
If we recall that { v = sinh u is the parametric
2 2 _ L 1l o
form of x v® =1, we see that i~ e e sech u.
In other words:
2 2
‘Y XxXT-y =1,

Hence, sech u 1is precisely the length of 0Q.

(2)

x>0

-l e b e
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SOLUTIONS:

J. csch u .

Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 3: The Hyperbolic
Functions

Here we repeat the procedure of Exercise 5.3.5(L),

through equation (1) of our solution. That is,
(y - y)yy = (x - %)%

We now find the y-intercept of L by letting x = 0
in (1) and solving for y. Thus,

(y = yl)yl = (—xl)xl

2 2
YY) -¥Y ™%

< Y =% -y Tl

W y = —% , (With respect to the
1

diagrams in Exercise 5.3.5 (L), (o,-% ) is the point
1
we labeled R)

Now, since Y1 is sinh u, —% is =-csch u. Thus the
il
y—-intercept of the tangent line is the negative of

csch u. Pictorially,

Ay

J/,AP(COSh u, sinh u)
u

(1)




SOLUTIONS:

Calculus of a Single Variable - Block V:

Transcendental Functions - Unit 3: The Hyperbolic

Functions

[5.3.6 cont'd]

5:3:7 (L)

(If u is negative the result still holds. Notice

that the minus sign simply tells us that the y-
intercept is on the opposite side of the x-axis
P.)

[In our lecture, we pointed out the resemblance

x2 + y2 = 1 and xz - y2 = 1 in terms of complex

numbers. The result mentioned in this exercise

has as its analog, in the complex numbers, DeMoivre's

Theorem. Namely:
. v n . .
(cos x + i sin x)° = cos nx + i sin nx

In general,

u -u u -u
e 4+ e e = @ _ _u
2 il = e

cosh u + sinh u =

from

of

(1)

This is the fundamental building block in this exercise.

For example,

From (1) cosh x + sinh x = &>

. n
. (cosh x + sinh x)n = ™

I

But letting u nx in (1), we have:

nx .
e = cosh nx + sinh nx

V.3.10

(2)

(3)
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SOLUTIONS:

[5.3.7 (L)

Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 3: The Hyperbolic
Functions -

cont'dl
Substituting (3) for (2) yields:

" H n .
(cosh x + sinh x) = cosh nx + sinh nx

We repeat the procedure in (a) as follows: Let

u=-x in (1). Then:

cosh (-x) + sinh (-x) = a (24)

Since cosh x = cosh (-x) (i.e., cosh x is an even

function)
and sinh (-x) = =-sinh x (i.e., sinh x is an odd
function), (4) becomes
; -%
cosh x - sinh x = e
Whereupon:
(cosh x - sinh x)® = (e %) = ™ (5)
If we now let u = -nx in (1), we obtain cosh (-nx)
+ sinh (-nx) = e ™ or:

-nx

cosh nx - sinh nx (6)

Substituting (6) into (5),

. n .
(cosh x - sinh x) = cosh nx = sinh nx




SOLUTIONS:

[5.3.7 (L)

Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 3: The Hyperbolic
Functions

cont'd]
With n = 2, (a) yields
(cosh x + sinh x)2 = cosh 2x + sinh 2x (7)
while (b) yields
(cosh x - sinh x)2 = cosh 2x - sinh 2x (8)

Adding (7) and (8) yields:

2 cosh 2x = (cosh x + sinh x)2 + (cosh x - sinh x)2

= 2 cosh2 X + 2 sinh2 X

i cosh 2x = cosh2 X + sinh2 x (Notice that this
isn't quite the same as
the corresponding cir-

cular function identity.)

Similarly, subtracting (8) from (7) yields:

2 sinh 2x = (cosh x + sinh x)2 - (cosh x - sinh x)2

= 4 sinh x cosh x

.. sinh 2x = 2 sinh % cosh x

From the previous exercise we have:

(cosh x + sinh x)3

cosh 3x + sinh 3x

cosh3 x + 3 cosh2 X sinh x

+ 3 cosh x sinh2 x + sinh3 X

vV.3.12

(1)
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SOLUTIONS: Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 3: The Hyperbolic
Functions

[5.3.8 cont'd]
and:

cosh 3x - sinh 3x = (cosh x - sinh x)3

= cosh3 x - 3 cosh2 X sinh x

2 3 (2)
+ 3 cosh x sinh® x - sinh” x

Adding (1) and (2):

2 cosh 3x 2 cosh3 X + 6 cosh x sinh2 b'e

or

cosh3 X + 3 cosh x sinh2 X

cosh 3x
Similarly, subtracting (2) from (1):

2 sinh 3x 6 cosh2 X sinh x + 2 sinh3 X

Il

or:

sinh 3x 3 cosh2 X sinh x + sinh3 X

Il

V.3,:l3
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SOLUTIONS:

S de1 (L)

Calculus of a Single Variable - Block V:
Transcendental Functions

UNIT 4: The Inverse Hyperbolic Functions

A major aim of this exercise is to emphasize the
difference between y = cosh T x and x = cosh v (see

diagrams at the end of this solution).

1

For example (2,1n[2-V3]) doesn't belong to y cosh™
even though it does belong to x = cosh y. The reason
is that y = cosh_l x was defined to be x = cosh y

where y > 0. However, 1n(2 -V3) < 1ln 1 .. 1n(2 - V3)

< 0

To find-%% in this case, we mimic the procedure
used in the lecture to find gﬁ when y = cosh™! x.

By way of review, we have

X = cosh y y <0
. dx _ .
. dy = sinh Y
. %g.= S .
. X sinh y

Now, cosh2 ¥ sinh2 y

1 implies that

sinh y = # Vcosh2 =4

and since x = cosh y, sinh y = isz -1

However, sinh y and y have the same sign

.’. Since y < 0, sinh y < 0 and hence the plus sign

doesn't apply (in the lecture, since y > 0, the minus
. ; . . / 2

sign was discarded) .. sinh y = - yx~ - 1




SOLUTIONS:

[5.4.1 (L)

Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 4: The Inverse
Hyperbolic Functions

cont'd]
and:
aY -1
dx % = I
dy _ -1
dx - V3
x=2
R 4 _xlftg =930 - ;%r is the equation of the

desired line.
Simplified:

VIi(y-1n2-vV3) = -(x - 2)
or
x +V3y = 2 + V3 1n(2 - V3)

It is most important to see that we would obtain
the incorrect answer had we used y = cosh_l x. For
not only is the given point not on y = cc:sh_l x, but
the "recipe" %% = +————l——-also doesn't apply.

% = 1
Another way of seeing this is to observe that x =
cosh y means y = icosh_l X and the minus sign is
used when y is negative while the plus sign is used

when y is positive.

V.4.2
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SOLUTIONS:

Hyperbolic Functions

[5.4.1 (L) cont'd]

by

Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 4:

The Inverse

(0,1)
-
y = cosh x £1:40)
‘ Yy
=cosh_lx
(2, 1In(2+V3) L////f’f’;'y
\ ¢ -
(1,0)
N
Y
ks Y
(2, 1n(2-/3)) \“~‘.
=1
y = —cosh "x
5.4.2 (L) TIf we look at x = cosh vy, we find
by
x=cosh y
i

(1,0)

(Figure 1)
V.4.3

X

cosh y




SOLUTIONS:

[5.4.2 (L)

Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 4: The Inverse
Hyperbolic Functions

cont'd]

and this shows that for x > 1 we have a double

valued function y = # cosh_l X

Now the formula
cosh_l x = In(x + sz - 1)

was derived on the basis that cosh_l x> 0. The
point is that if x = cosh y, then

& = oY 4 1
X i e— or 2x = et + ey

or:

2 In(x * X< -1 (1)

s
Il

Equation (1) represents two curves. Namely,
1n(x + Vx% -1 ) (2)

and y = ln(x - 'sz -1 ) (3)

L
I

Correlating (2) and (3) with Figure 1 (since
% + ‘#xz -1>x - Vvx© - 1) it appears that:
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SOLUTIONS:

[5.4.2 (L)

Calculus of a Single Variable - Block V:

Transcendental Functions - Unit 4:
Hyperbolic Functions

cont'd]

The Inverse

In(x + /xz-l)

y:

As a final check, the lower branch of x =

P -
X = cosh y
y = 1n (x - /x%-1)
cosh y, by

symmetry, should also be given by:

y:

Observe that:

-ln(x + *in - 1)

-1ln (x + sz - 1)

iIn(x + Vx% - 1)—l

1[ ]
=

1n [ > s 1
(x + J;E -1)(x - vx© - 1)

J




SOLUTIONS: Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 4: The Inverse
Hyperbolic Functions

[5.4.2 (L) cont'd]

Il
=
=]

»

I

S
b

I

=

X = sech y = Cosh v y >0
(l-scoshy<°°—r-l—> e A or0<x<1)
17 cosh y o h
. _ e + 7Y "1 2 2eY
hg BF 2 - T~ 2y
e + = %Y +1
oy

]
(S]
1+
(S

1
>
"

(S

2x
1% Vvl - x2
X

y = and since y > 0:

1n (l : V1 - )
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SOLUTIONS: Calculus of a Single Variable - Block V:

Transcendental Functions - Unit 4: The Inverse
Hyperbolic Functions

[5.4.3 cont'd]

Alternate Method

We already know that c:c:ash—l u = ln(u + u2 = 1)y

u > 1. Now

sech“l X = cosh

1

b4
. -1 _ -1 I 1 1,2 1
.« Sech X = cosh = 1n [§-+ (;) -1 ] = >

*
Note that, just as in the previous exercise,

1 [1 + V1 - x }_ i X ]
=Ln = 1n >
x L # 'Vl = ar

[ xi = V1o %2 ]
(1 + Vl-—x%(l— Vl-—x)
e T, (AL = NL = xz)]

. 1 - (1 - xz)

N

i 2

i 1-x

8 X

**Let y = sech™! Th 1
et y = sec Xe en sech y = x = EBEE—;
. _ 11

.« cosh y = &

b

e Vo= cosh

V.4.7




SOLUTIONS: Calculus of a Single Variable - Block V:

Transcendental Functions - Unit 4:
Hyperbolic Functions

The Inverse

5.4.4 (L)
b
a ( L = i) dx =
2 X
1 xT =1
b b
5 dx _
2 X
1 VX -1 1
b b
-1 _ -1 -1
cosh X - 1In x = cosh b - cosh 1l -1nb + 1n 1
1 1
cosh L b - in b (since cosh™ 1 = 1n 1 = 0)
; . lim -1
b. The major problem here is that [ (cosh © b - 1n b)
has the indeterminate form = — » . What we do here

is rewrite cosh™® b as a natural logarithm.

In particular,

cosh X b = 1n(b + V2 - 1)

1 b -1nb

« « cosh

b
b

1n [ 1 + {1 12
b

ln[b+V2-l

Il

In(l + 1) =

]
)

1n

In(b + Vb™ - 1) - 1Inb

i - lim / 1.
% [cosh b - 1n b] ol [ln(l + 1 - 1—)5)]

2

F?2 ww
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SOLUTIONS:

[5.4.4 (L)

Transcendental Functions - Unit 4:

Hyperbolic Functions

Now

cont'd]

sinh-l

sinh > u

1

sinh =~ b

1

sinh & 1

x—-

bh -

1n

1n

1n 2

=
—
o
b
Il

b - sinh ~ 1
+ Vvu© + 1)
+ Vb2 + 1)

+ V2)

= Inl e Y5® + 1) = dn b = Ainid = v

2

Calculus of a Single Variable - Block V:

The Inverse

b

1n [ 1 + 1

+ L

b

2

l]— In(l + V2)

] - 1n(l + V2)




SOLUTIONS: Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 4: The Inverse
Hyperbolic Functions
[5.4.5 cont'd]
b
. lim ( it 1) limI— ( 1)
o § - - -] dx = w 1INl + [1 + = - 1n(1 + V2)
b~ ; fl-!-x? X b* g b2
= 1n 2 - 1n(1 + V2)
_ 2
_ln(1+\/'.’2)
5.4.6
a. sinh-l x = In(x + \/xz + 1)
‘ sinh“l X _ e1n(x + \/xz + 1)
= x + sz + 1
|
. e51nh X _ /x2 1 2 @
b Lo =1
. y = sinh (tan x)
. -1 _dy 1 du
Now y = sinh "4 & =g
dx 1 + u2 dx
Letting u = tan x, we have:
%§= it > sec? x (1)
Jl + tan” x

But sec2 *x = tan2 X = 1—»1 + tan2 X = se02 X

ol

dy _ _1 2 o -
g - g 8ec” x sec x (2)

.10
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=
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SOLUTIONS: Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 4: The Inverse
Hyperbolic Functions

[5.4.6 cont'd]

However, in (1) %% must be non-negative (since sec2 X

andvl + tan2 x are)

oo T = sec x|
X
Ce f(x) = e—dxx_
V1 + e
Let u = g sJ., du = ¥ dx, 1 + e2x =1 + (ex)2 =1 + u2
X
e” dx du P
- = —F———=~ = Slnh u + c
V1 + er f\/l + u2
= sinh—l ) + ¢ (since u = &%)
5.:457
a. y = —1——2— —¥ curve is symmetric with respect to
1-x y-axis since f(x) = f(-x)
.. We need only concentrate on x > 0
Also denominator equals 0 when x =1 .,*, x =1 is
forbidden.
(1 - x%) S g -ax) ,
v = 2x2 - x22(>0ifx>0)
(1 - x%) (1 - x7)

v.4.11




SOLUTIONS: Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 4: The Inverse
Hyperbolic Functions

[5.4.7 cont'd]

(1 - x%2% 2 - 2%[2(1 - x2) (-2 ]
(1 - x2)4

yll =

_ 20 =21 - %3 + 4x?)

(1 - x2)4
_2(1 + 3x%) >0 if |x| <1
1 - x%)3 <0 if |x| > 1
)y

X
Em—
x51
b.
R
X
1 1
2 2
A_ = dx = tanh-'1 X
R 1 - x2
0 0
Ved,l2

- N e

-l eTE BN e

- e e

F3 ED
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S OLUTIONS: Calculus of a Single Variable - Block V:
Transcendental Functions - Unit 4: The Inverse
Hyperbolic Functions

[5.4.7 cont'd]

1
1l + =
B -11 -1 .1 2 1 1
= tanh 73 tanh = 0 = 5 1n S = -5 1n [l -
2
3
=1 2| -1 -
=3 1n i =3 In 3 = 0.5493
2
Ca ‘ 1
y Fra—
S
.-/
I X
1
2
L
2
V. = 21 Xy d
= ™ Xy dx
¥ g
2
_ X
il 1l - x2 =
0
1
2
=1 -In(1 - x2}
0
=7 [-1ln(1l - %)]
= T=n 37 = 2 =
=7 [-1n 4] T 1ln 3 = 0.9022

Videl3
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SOLUTIONS: Calculus of a Single Variable - Block V:

Transcendental Functions

QUIZ

y = lnz(x3 + 1) means :

y = [1n(x3 + 1)] .

2 ln(x3 + 1) a}%—[ln(x3 + 1)]

I

2
= 2 In(x> + 1) [—3-3!?‘—]

x* +1
2
=—=%% i+ 1
X7 + 1

If y = tanh™ T u then

el
i
'_I

or:

< - (__1__) Lo}
dx 1 - u2 dx

In (b), u = sin x; hence:

7

[ L > J cos x
1 - o
sin‘ x

_ 1
= — cos x
cos” x

= gec X%

£
|

V.G.1




SOLUTIONS: Calculus of a Single Variable - Block V:
Transcendental Functions - Quiz |

[5:.0.1 cont'd]

iy y=xSlnx——§lny=sin'xlnx
1 dy _ .. d(ln x) d(sin x)
vy ax - sin x-————dx + 1n x—-—-—-dx
% -%% w SALE & Yy X COs X

Y [-§i§—§-+ 1n x coOs x‘]

fhe

sin x| sin x
3Z [——+lnxcos x:l

a. Letu=1+ tan x

Then du = sec2 x dx

E3

Therefore:

sec? x dx _ du
1 + tan x u

in |u| + ¢

I

ln |1 + tan x| + ¢

1
b. Let u = V¥ (= x2)
1

1,72 _ dx

Then du = 5 b dx or 2 da = VR

Therefore:

V.G.2
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SOLUTIONS: Calculus of a Single Variable - Block V:
Transcendental Functions - Quiz

[5.0.2 cont'd]

[

sinh VX dx

(0,0

VX

Il

[ simn v &
= f (sinh u) (2 du)
= 2 J-sinh u du
= 2 cosh u + c

= 2 cosh VX + c

> = tanh tu +c if |u] <1
u
1
2
5 = tr:mh_1 514
1 >4 0
= tanh™?! % - tanh ™" b
-1 1
= tanh 5 (= 0.5493)
_ 4x2
y_
1+x
R
- X
{1,0)
V.Q'B




SOLUTIONS: Calculus of a Single Variable - Block V:
Transcendental Functions - Quiz

[5.0.3 cont'd]

1
vV = 27 Xy dx
0
1
2
= 27 x —2X dx
x4 + 1
0
1
3
= 2m —E— ax
=) x + 1
. _ .4 _ 3
Letting u = x° + 1, we have: du = 4x
2 2
o N = 2 f¥§‘= 2mln |ul = 2% ‘In 2
u=1 1
5.0.4 We let y = ™%
Then: vy' = re™® , YY" o= r2 et
Therefore:
y" - 8y' + 7y =0
r2 ars e gre™® + 7eT¥ = 0
e (2 - 8r +7) =0
2 -8r+7=0
(r = 7)(r - 1) =0
r=1o0rr=17
Hence:

V.0Q.4
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SOLUTIONS:: Calculus of a Single Variable - Block V:

[5.0Q0.4

Transcendental Functions - Quiz

cont'd]
y = e® and y = e?X are solutions of
y" -8y' + 7y =0
X 7 . .
Therefore y = Cle + Cze is also a solution
From y = c;e¥ + c,e’™ it follows that
y' = Clex + 7Cze?x
From (1), the fact that y(0) = 0 implies that
0 = Cl + C2
While from (2), we have
L} —
y'(0) =¢C; + c,
Hence y'(0) = 12 implies
12 = Cl + 702
Solving (3) and (4) simultaneously yields
C2 = 2 ; Cl = =2
and putting this into (1) yields
y = _2ex - 2e7x _ 2(e?x _ ex)
We have:

(cosh x + sinh x)4 = cosh 4x + sinh 4x

V.Q.5

(1)

(2)

(3)

(4)




SOLUTIONS: Calculus of a Single Variable - Block V:
Transcendental Functions - Quiz

[5.0.5 cont'd]

(cosh x - sinh x)4

= cosh 4x - sinh 4x [since sinh (-u)
= -gsinh u]
.. (cosh x + sinh x)4 + (cosh x - sinh x)4 = 2 cosh 4x

(cosh x + sinh x)4 + (cosh x - sinh x)4
2

.« cosh 4x =

*
and using the binomial theorem we obtain:

souk A = 2 cosh4 x + 12 cosh2 X sinh2 X + 2 sinh4 X
_ 4 2 .2 . . 4
cosh 4x = cosh™ x + 6 cosh” x sinh® x + sinh  x
*ta + b))% = a? + 4a% + 62?2 + 4ap3 + bt

cosh4x + 4cosh3x sinhx + 6cosh2x sinhzx

+ 4coshx sinh3x + sinh4x

(cosh x + sinh x)4

cosh4x - 4cosh3x sinhx + 6cosh2x sinhzx

I

(cosh x - sinh x)4

- 4coshx sinh3x - sinh4x

V.Q.6
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SOLUTIONS: Calculus of a Single Variable - Block VI:
Integration Techniques

PRETEST

1. 2/2 + sin x + 3 - 22 .

2 % x? - % x>+ % x% - x + n [x + 1| + 2 .
i 1 1

3. Fin|x-1]-tn |x = 2| +54n [x =3] +c.
| 2

4, x°“ sin x + 2x cos x - 2 sin x + c .

3
5. m;./.(x - 2)”% ax is a divergent improper integral.
0
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SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques

UNIT 1l: A Review of Some Basic Inverse Derivatives

6l
(a) Essentially, we want the family o08 & Oz .
/2 ¥ sin x
Observing that d(2 + sin x) = cos x dx, we make the substitution

u =2+ sin x J.du = cos x dx. Hence,

cos x dx _ du _ fu-l/Z du .
/2 ¥ sin x /ua

n+1l

-1/2 n _u
Butfu duhastheformfu du—m—--kc (n #-1)

.%./lfi/z du = Zul/2 + c, and since u = 2 + sin x

cos x dx = 2/2 + s1n X + c

V2 + sin x

s E(x) = 2/2 + sin x + c. Now, since £(0) = 3, it follows
that 3 = £(0) = 22 + ¢ s.c = 3 - 2/2, and since c is a
constant:

f(x) 2/2 ¥ sin X + 3 - 2/2 ”

5 sec25x dx we make the substitution

u = tan 5x. Then du = 5 sec2 5x dx, or sec2 5x dx = ldu

5

.'.ftan45xsec25xdx=fu4%du=%'-fu4du=%u5+c

nf(x)

(b) Since d(tan 5x)

|I--'

1l

tan55x + C

(3]

5

Il

~E(0) c, and since f£(0) = 1 it follows that ¢ = 1

Sof(x) = %g tan55x + 1 ¥

VI wldied




SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 1l: A Review of Some
Basic Inverse Derivatives

6sls2

We have f(x) =./i__£§LTT§" and this should suggest (circular)
(4 + x7)

trigonometric substitution, based on the reference triangle

4 + x2
x
5
2
- = E
stan B >
ssee’e a0 = L diy dx = 2 Secce &b .
Moreover sec § = —E—%—E—, or V4 + x% = 2 sec 8

S+ x9)2 = (Vi + x5HY = 16 sects

2

. dx _f2 sec” g de _ 1 de  _ 1 2

f T 2 ‘af 2.~ g o8 & 48
(4 + x7) 16 sec ™6 sec™ 9

%_‘/'(l-!-cgs 28) d8=%—6—f(l+cos 29) ds

=1 (o4

3 sin 28) + c -

ol

From our reference triangle, it follows that

g8 = t.am_l

N X

X ) ( 2 } = 4x >

Vﬁ + x2 JE_+ x2 4+ x

sin 26 = 2 sin 6 cosf = 2(

% f___g.}_{___z——z = i——[tan_l -}2(- + ___2_}(____2__] + c
(4 + x7) (4 + x7)
s E(x) = !'—E[tamml % o X ] + ¢
@ + %2
VI 1.2
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SOLUTIONS: Calculus of a Single Variable - Block VI:

More

Integration Techniques - Unit 1: A Review of Some

Basic Inverse Derivatives

[6.1.2 cont'd]

£ £(0) = 1200 + 0] + ¢ = ¢ fc =1 since £(0) = 1
SE(x) = %g(tan-l % + -—-35—5—) + 1 .
(4 + x7)
6.1.3
Here we wantf > dx .
4x” + 4x + 17
Since 4x2 + 4x + 1 = (2x + 1)2, this should suggest the idea of
completing the square: namely,
f dx _ f dx _ f dx
4x° + 4x + 17 (4x* + 4x + 1) + 16 (2x + 1)% + 16

If we now let u = 2x + 1, du = 2dx or dx = —

f dx =_l.f__du_
2x + 1)° +16 2 J u® + 16

This, in turn, suggests the reference triangle

Vu? + 16

u
5
4
and, hence, the substitution
_—
tan 6 = 7
2
4 sec”™8 df = du
Vu2 + 16 2 2
secfH = ——— Ju” + 16 = 16 sec 8

VI.l.3




SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 1: A Review of Some
Basic Inverse Derivatives

[6.1.3 cont'd]

2
.._fzdu =f4secgd8=%-fde=%e+c=%—tan-l%-+c
u” + 16 l6 sec §
.'.% —-i-—-gp—-—'=-]8;tan-l%+ c
u” + 16
= % tan - igﬁzi—il + ¢ (since u = 2x + 1)
o f (%) =f 5 ax =-]8;tan_l (g-}—{-f—i) + c
4x° + 4x + 17
sardy ik =1 I S 3, __mW PO |
uf{i) —-gtan l+C—§ (z) + C ..C-—-f(z—) ™ -.C-—-B-é-
; 3
since f(f) =0
. -1 -1 o T
» E(%) = 5 tan T (2x : 1) 35 .
6.1.4
(a) Since d(l1 + sin x) = cos x dx, we have:
cos x dx d(l + sin x) _ In(l + sin %) + ¢
1l + sin x 1l + sin x

(actually, In |l + sin x] + ¢, but since 1 + sin x 2 0
for all x we may omit the absolute value signs).

T m
2 cos x dx g 7 T
(b) A_ = = ln(l + sin x)] = fn(l + sin =)
R / 1l + sin x 0 2
- fn(l + sin 0)
= fn 2 - fn 1
= fn 2 .

VIi.l.4
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SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 1l: A Review of Some
Basic Inverse Derivatives

[6.1.4 cont'd]

(c) The displacement is given by

m T

_ cos t dt _ . _ _
Ax —f TT'STD'—t fn(l + sin t) |0 = fn 1 ﬂn 1
0

That is, the particle is at the same point when t = 71 seconds as
it was when t = 0. (The reason, at least in part, is that
1l + sin t is positive, in fact 1 + sin t 2 1 for t € [0,7T] but

cos t is negative when % <t < m,)

Now, since v changes sign (the particle reverses its direction)

when t = ;, we find that the total distance is given by:

m

2 cos x dx @ cos x dx
‘ 1l + sin xl | 1l + sin xl

m

[fn(l + sin t) | | + |[fn(1 + sin t)
0

Ny — 3

/n 2 - fn 1| + [fn 1 - fn 2|

[fn 2 = 0| + [0 = fn 2| =Ln 2 + fn 2

2 fn2=14fn2°“=4n4s .

6-1-5

. 4 . ; -
(a) wWe want./”51n x dx. Observing that 51n2x = l———93§—3§

-

we have:

VI:li5




SOLUTIONS: Calculus of a Single Variable - Block VI:

Integration Techniques - Unit 1: A Review of Some

Basic Inverse Derivatives

[6.1.5 cont'd]

fsin4x dx

f (sinzx)2 dx = f(l o= SOS 2x)2 dx

-i-‘-f(l— 2 cos 2x + c052 2x) dx

We next recall that cos?2x = - cgs 4x

o fsin4x dx

%f(1—2c052x+[l+c254x1)dx

_ 1 2 - 4 cos 2x + 1 + cos 4x,
= 1) 2 } g

= %f(3-4cos2x+cos4x) dx

= % [3x - 2 sin 2x + % sin 4x] + c¢
= é% - % sin 2x + %5 sin 4x + c "
b} ¥ y = sinzx
IO 5 > %
T 2.2 L
Ve =T (sin"x) dx='rrfsinxdx
] ;
. 3k 1, 1, o
S from part (a), Yy w(—§ - Z Ssin 2x + 33 sin 4x) |
3ﬂ2 *=0
=78
VE: L6

More
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SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 1: A Review of Some

Basic Inverse Derivatives

5
Ag =“/" . dx
1 X~ = 2x + 17
5
=./' dx
4 %* - 2% + 1 + 16

5
=./' dx
2
1 1) + 16

Letu=x -1 .

u = 0 when x
Then du = dx and

u = 4 when x

4
S Ap = f g ga
g W+ 16

As shown in Exercise 6.1.3,

du 1 =1 u
* = o an =
fu2+16 2 4
4
1 . -1l u
..AR—Ztan Z“|
=0
= %(tan_ll - tan_10)
= 2(F - 0)
=
- 16 :
6.1.7 (L)

(Notice that our denomima-

tor is never non-positive.

In fact, (x - 1)2 + 16 > 16
for all x.)

We have refrained from "learning exercises" in this unit if

only because what we are doing is a review. However, the subtlety

VI.L.7




SOLUTIONS: Calculus of a Single Variable - Block VI:; More

Integration Techniques - Unit 1: A Review of Some
Basic Inverse Derivatives

[6.1.7 (L) cont'd]

of hyperbolic substitution may still be great enough to warrant

one more "slow motion" approach.
The main idea is as follows:
When we see~/-Vl + x2 dx we are rather easily tempted to form

the reference triangle

In fact we have used this triangle in other exercises in this unit.
At any rate the triangle leads to:

(1) tan 6 = x, from which sec28 dg = dx

(2) sec 8§ V1 + x2
/ 3
-'-f 1+ x2 dx fsec 6 (sec28 de) =fsec B ds .

Now for the moment (this will change in the next units) we cannot
. 3 *
handle sec™ 6 des *.

Now with the preceeding as background, we come to the main
idea of part (a) of this exercise.

(a) In our (circular) trigonometric substitution we made
the substitution x = tan 6. Structurally, tan 8 is governed by
the identity

sec28 - tan28 = 1 &

R fsec % do = fsecze sec6 do =f(tan28 + 1) sec6 46 =ftan28 secoH d6

- _/;ece de etc.The point is that the text handles sec df by
a "trick" which is far from self-evident. In the next unit we shall

develop a general technique for solving fsece d6 and other integrals.

VI.1l.8
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SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 1l: A Review of Some

Basic Inverse Derivatives

[6.1.7 (L) cont'd]

This is structurally equivalent (that is, in the form of the

difference of two squares) to the hyperbolic identity

cosh28 = sinh28 =1 . .

In other words tan 6 is to the circular identity what sinh 6 is

to the hyperbolic identity.

With this motivation, we now let sinh 6 = x. Then:

cosh 6 = dx and ¢l - xz = V& + sinhze = cosh 6

-"fl+x2dx

I

f(cosh 6) (cosh 6) do = fcoshze dé

=f1+305h£6rd6

sinb~tx .

i+ 52

= % + % sinh 26 + ¢ where 6

More explicitly, we have sinh 8 = x, cosh 8

sinh 26 = 2 sinh © cosh 6 = 2xVl + x2

L xVl + x2

; P [ _ .
Since f£(0) = > sinh "0 + 0 + ¢, ¢ = £(0) = 0 since £(0) =0
/ 2
s £(x) = & sinh™ix + XML ¥ X .
2 2
(b) Q_[i sinh_lx - ile + x2]
dx -2 2
VI.1.9




SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit l: A Review of Some

Basic Inverse Derivatives

[6.1.7 (L) cont'd]

gi[sinh_lx + x(1 + x2)l/2]

|
Sl ol

d e o=1 1d
a;(Slnh x) + 5 a;[x(l + X
1

2)1/2

|
M| =

]

il 1

1 + x2

1 x2 V1 xz
2Vl + x 2Vl + x

1+ x% + (V1 + x%)2
2Vl + x

2(1 + x2)

V1 + x°
= V1 + x2

I
M| =

+ E[x'[%{l + x2) 2‘}2x + (1 + x2)l/2]

(While this is simply an exercise in differentiation, it is

important to notice that, while our techniques for integration

may be sophisticated, the fact remains that once we obtain an

answer we can always check its correctness by differentiating

it. In this regard, notice how "complicated" a function we must
g P

construct just to get one whose derivative is V1 + x° .)

(c) As usual, the surface area is given by

b b
S=f2ny dx=f2'ny\/l+ 5% ax .
3
a a
= = '=If.--gz=—' .g‘xz
In our case y cos X, a 0, b 55 dx sin x; (dx)
m
-'-S=21TICOSX 1 + sin“x dx .
0
Vel lO

Ed &3

i3 3
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SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 1l: A Review of Some

Basic Inverse Derivatives

[6.1.7 (L) cont'd]

In theory our problem is solved. All we need is a technique
for evaluating the definite integral. An obvious substitution is
0

u = 0 when x
to let u = sin x; then, du = cos x dx and

u = 1 when x %

1
.'.S=21rf\/l+u2 du ”
0

From part (a{/~Vl + u2 du %(sinh—lu + uvg + u2)

1
Zv[%(sinh—lu + uVvl + uz)]|
0

rizish™r1 # 1V1 4 1% = 0]

)

.S

1 + /2] .

T[sinh

(If we wish, we may recall that sinh-lx = In(x + sz + 1 3)

oS =1nlfn(l + V/2) + /2] (= 7.2)

VI.1l.1l1
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SOLUTIONS: Calculus of a Single Variable - Block VI: lore
Integration Techniques

UNIT 2: Partial Fractions

6.2.1 (L)

The main aim of this exercise is to give us experience in
reducing quotients of polynomials by long division until the

remainder has a degree less than that of the divisor. 1In this

case:
4
X
x4 + x3
- x> X + 1
E - 3 - x> +x-1
- - X
2
X
B o
-x -1
4
5x ﬁ T = x3 = xz o R B 1 T
. [ xtax 3 _ .2 1
--fx+1=f(x-x +x - 1+ —40) ax
= % x4 = % x3 + % X=X+ 4n |x + 1| +cC
, _ 1.4 _1.3 _ 1 _
LE(x) = 7 x 3 X+ 3 X x + In |x + 1| + ¢
£f(0) = c foc = 2 since £(0) = 2
. _ 1 4 1: 3 1
Sf(x) = 3% - 3%x +35x-x+In |x + 1| + 2 .
6.2.2
X - x*
(x = L {x=21 2 _ 3% 42
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SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 2: Partial Fractions

[6.2.2 cont'd]

Since the degree of the numerator exceeds that of the denominator,

we proceed by long division to obtain:

x4 = 3x3 + 2x2
3= = 2x2 ¥ = 3x
3x3 = 9x2 + b6x x2 + 3x + 7
7x2 = %
7x% - 21x + 14
15x - 14
x* _ .2 15x - 14

S TE=-O e OE =)

4
. X~ dx _ 2 15x - 14
(1)

1 3 3 .2 15x - 14
-j*xl+§x +'?x+f(x_l)(x_2)dx @

Il

. . 15x - 14
All that is now left is to handled/ﬁ(x =T = 2) dx .
To this end,

15x - 14 A B "

F-D&x-2) x-1Vtx-3 . (2 (2)

*This is why it is crucial that our numerator has a lower degree

than our
tions we

2

Ax + Bx +

denominator. Otherwise, in setting up our partial frac-
would have to allow endless possibilities such as

C

X =-

terms like

a sum in which the numerator had a greater degree than the denominator.

ete. In other words, we do not have to worry about

AxZ + Bx + C

Xx - 1

1

occurring since such a term would lead to

VI.2.2
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SOLUTIONS: Calculus of a Single Variable - Block VI: More

Integration Techniques - Unit 2: Partial Fractions

[6.2.2 cont'd]

Equation (2) leads to:

15x - 14 _ A(x - 2) + B(x-1) _ (A + B)x + (-2A - B)

1

(x - 1)(x - 2) ~ (3 = 1) =2)

Equating numerators in (3), we obtain:
15x - 14= (A + B)x + (-2A - B),
and equating coefficients in (4) yields:

A+ B =15
-2A - B = =14

Adding equals to equals, (5) yields:
A+ (-2A) + B + (-B) = 15 + (-14); or
A=-1

s B = 16
Putting these results in (2):

15x - 14 _ _-1_, _16
(x - 1) (x - 2) x - 1 X - 2

. 15x - 14  _
S mem ey s k-1 16 Mm x -2 +C

Finally putting (6) into (1) yields:

x4 dx

(x = 1) (x - 2)

3 2

= % X~ o+ % X

vI.2.3

(x — 1¥{x — 2)

(3)

(5)

(6)

+ 7x = 4n |x - 1| + 16 In |x - 2| *+ C




SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 2: Partial Fractions

6.2.3 (L)

The reason for calling this a "learning exercise" is so that
we may emphasize a computational device that simplifies our search

for the undetermined coefficients.

Let us first observe that we can solve this problem, without

"tricks," in the usual way. Namely,

il _ A B C
O e - T Y 2 V3 (1)
. 1 _ A(x=2) (x-3) + B(x-1) (x=3) + C(x~-1) (x-2)
**(x-1) (x-2) (x=3) ~ (x2-1) (x=2) (x=3)
Ax2 - 5Ax + 6A + sz - 4Bx + 3B + Cx2 - 3Cx + 2C

(x-1) (x-2) (x-3)

(A + B + C)x% + (~5A - 4B - 3C)x + (6A + 3B + 2C)
(x-1) (x-2) (x-3)

i

S 1=0x2 +0x + 15 (A+B+C)x2 + (-5 -4B - 3C)x + (6A + 3B + 2C)

and equating coefficients yields the system of equations

A+B+C=0
-5A-4B-3C=0 (2)
6A+3B+2C=1 .

The system (2) can be solved, for example, by:

A+B+C=0 A+B+C=0 A+B+C=0 5 B s %,
~5A-4B-3C=0 b ~ B+2C=0 b ~ B+2C=0 B = omil
6A+3B+2C=1 | -3(-2C)-4C=1 A= %

. il e For 1 T
R e R AN TR A R = L e

EM

E3 £E%® =@

Nl A Nl B e EE T

(a
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SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 2: Partial Fractions

[62.3 (L) cont'd]

o dx = .!'. d—.—-x - _d}i + ..].'_ —...-.—-dx = ifn Ix—ll
f(x-l) (x=2) (x=-3) 2fx—l fx—Z 2 x-3 2

- In |x-2| + %fn |x-3| + c .

5

ff.(x—l)(xgg)(x-3) = (% fn |x-1| - fn |x-2| + % In |x—3[[4
4

I

(34n 4 - fn 3 + % tn 2) - (% fn 3 - fn 2 + % in 1)

o 4 3 3
—-51114——2—-![134"2-!1‘12
or, since % in 4 = In 4t/2 = yn 2;
5
ax _ _ 3 3
_/.(x—l)(x-Z)(x-jT = £n 2 5 n 3+ 5 In2
4
_ 5 _ 3

Admittedly, the procedure is cumbersome. An alternative
method for determining A, B, and C in (1) is by a judicious use of
limits. For example, since

1 A B C
x-1) (x-2) (x-3)  x-1 " %2 ' %3 (1)

VIe245




SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 2: Partial Fractions

[6.2.3 (L) cont'd]

we can make A "stand alone" by multiplying both sides of (1) by
(x=1) to obtain:

(x-1) - B(x-1) . C(x-1)
®1 (x-2) (x=3) 27 %2t %= - (2)

To guard against x - 1 being 0, we simply let x-+1 in (2). That is,

. (x-1) ; x-1 ; x=1
lim [ = —57] = A + B lim (=) + C lim (=)
ey (x=1) (x=2) (x~-3) — xX=2 = x=-2
: 1
or lim =A+0+0
sl (x-2) (x=3)

1

°oF ==y A

. 1 A B c
Similarly, Y= = “ =1 T =2 ¥ =3

(x=2) _ A(x=2) C(x-2)
x-1) (x=2) (x-3) - (x-1) T B * %3
and letting x — 2, yields,
o 1 ~ 1 N
B=lm oy e=3y = Z=D (2= ~ I(-D = '

X+2

etc.

VI.2.6
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SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 2: Partial Fractions

6.2.4
2x + 1 _ A 4 B + Q (1)
x(x-1) (x+2) X X-1 x+2

To solve for A, multiply both sides of (1) by x (x # 0) to
obtain:

2% ¥ 1 X X
(X"l) (X+2) = A + B(}—{-:-]—:) + C(;{TZ—) . (2}

In (2) take the limit as x-0

= A + B(0) + C(0)

To find B, multiply both sides of (1) by x-1 (x # 1) to

obtain

2x + 1
X(x +

= A(§§£)+ B + c(%}%) ; (3)

Letting x*1 in (3), yields

%=A(O) + B+ C(0)

- — 3 —
. B = 103y 1
Finally, to find C multiply both sides of (1) by x+2 (x # -2)

to obtain

2x + 1 _ , x+2 x+2
D - A tBGSD +tC (4)
; 5 : 2(-2) + 1 _
Letting x+-2 in (4), yields D o v i R A(0) + B(0) + C
il = -4 + 1 = _E = --_‘]:
] (=2) (-3). 6 2

VT2




SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 2: Partial Fractions

6.2.5 (L)
(a) We want to use partial fractions to "decompose" ;
To this end, we write x(x" + 1)
1 A Bx + C
2 = xt=3 . (1)
x(x” + 1) x“ + 1

(The key point here is that since x2 + 1 has degree 2, our
numerator can be as much as degree 1, and the general first degree
polynomial has the form Bx + C.)

At any rate, (1) yields:

1 - A(x2 + 1) + x(Bx + C) _ (A + B)x2 + Cx + A
2

- 2 2 (2)
X(x® + 1) x(x"™ + 1) x(x" + 1)

And comparing coefficients of the numerators in (2), we obtain

A+ B =20 o A =1
C =0 - B = =1
A=1 CcC =20 "

Putting these results into (1) yields

—_t =1l __x
x(x™ + 1) * x2 + 1
:./' dx ==./”g§ _J{ x dx
Xx(x" + 1) % x2 + 1
= 4n |x| - % mx?+1) +c .

- 5 . We might be

(b) Now we want to "decompose" —m———
x(x + 1)

tempted to write

_____i__§.= A, __Eﬂ_i_% (3)
x(x + 1) X (x + 1)
just as we did in part (a).
VI.2.8
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SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 2: Partial Fractions

[6.2.5 (L) cont'd]

The key point here is that a denominator like (x + 1}2 comes
from denominators like (x + lJ2 and also (x + 1). Thus, if we wish
we can simplify (3) by writing

1 A
X

x(x + l)2

B c
o ’ (4)

+
(x + 1)°2

X
The major simplification in (4) is that when we have a power of a
polynomial in the denominator we need only concern ourselves with
the degree of the polynomial (not the power). (In this case the
power is 2, the degree of x + 1 is 1.) The reason is that then
when we put everything over a common denominator the proper degree

comes into the numerator.

These remarks are concerned only with options for computation.
Both (3) and (4) yield the same result. For example, from (3) it
follows that
A(x + 1)% + x(Bx + C)

1=
= 2 2
or: 1= Ax  + 2Ax + A + Bx™ + Cx
2 (5)

J
Hi

(A + B)x + (2A + C)x + A
A+ B=0]|8sNA=1
2A+ C=0¢% B = -1

A=l C='—2 -

.J

Putting these results into (3) yields:

1 1 x 2 .
=z - - (6)

%l + 1)°2 b 4 1) x4+ 1% (x4 1)°

From (6), it follows that
f dx =fg_x__f x dx _zf dx
x(x + 1)2 % (x + 1}2 (x + 1)2

VI.2.9




SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 2: Partial Fractions

[6.2.5 (L) cont'd]

=/Qx__f£1_:ﬁdu_2f__<_i§__
X 2 2
u (X‘l’l)

fn {x]-/g%+fu_2du+xf_l+c

3.
= In |x| - fn |x + 1| - g i T +C=1Inx-In
1
|x + 1| + 55 +C . (7)

Had we elected to use (4), we could have solved for A and C by

the technique in Exercises 6.2.3 and 6.2.4 . Namely,
1 2=%+xfl+ S —if x # 0
x(x + 1) (x + 1)
————£—~—§-= A + [x E T+ & 2] X .
(x + 1) (x + 1)
Letting x — 0, yields,
——-i-—-?:'A'F(B'I‘C)O
(0 + 1)

A = 1 which agrees with our previous result.

To find C we multiply both sides of (4) by (x + 1)2 to obtain:

ﬁ(x+1)2+B(x+l)+C

1_
X

and letting x — -1, yields,

=1 =C .

VI.2.10
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SOLUTIONS: Calculus of 21 Single Variable - Block VI: More
Integration Technigues - Unit 2: Partial Fractions

[6.2.5 (L) cont'd]

(Here, C doesn't seem to check with our previous value of C, but we
must note that the C here is not the same as the C in (3). In parti-
cular, C in (3) is the constant term in our numerator when the denomi-

nator is (x + 1)2 and no term has denominator x + 1. To correlate
this with (4), write ——— + € = B(x + 1) ¥ C o Bxd (B 3 C)
(x + 1) (x + 1) (x + 1)

Thus B + C is in (4) what C is in (3).)
In any event,

1
x(x + 1)2

= B -1
== i (8)

X I (x + 1)2

(It is interesting to note that we cannot find B in (8) by

multiplying by x + 1 . For if we do get

1 _x + 1 0y
= + B =

x(x + 1) X X 1

and if we now let x —— 1 we get an indeterminate " - «" form.)

To find B in (8) we can pick any value for x, except 0 or -1,
and solve for B. For example, it is convenient to let x = =2 in
(8) to obtain:

1 _1 ,_ B ___ 1
L= g AY* =+ A LT oo 4 1)~
or _._._._:I.'_._.i..—-----%—B—__..J_'._j
(=2) (-1) (-1)
A .
w -3=-3-EB-1
0.0B=_l.
VI.2.11




SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 2: Partial Fractions

[6.2.5 (L) cont'd]

<. Equation (4) becomes

1 _ i 1 _ 1
x(x + 1)2 x x + 1 (x + 1)2
whereupon
“/” dx ='/’g§ _ dx _d/” dx
x(x + 1)2 % x + 1 (x + 1)2
— 1
= In |x| = 4n |x + 1] + =y ¥ 16
which checks with (7) .
6.2.6
B
(a) We first want to decompose ——55————§ a
(x* + 1)

This requires long-division, since the numerator and denominator
have the same degree. An alternative to long-division is:

x* _ X! LI e e v 1 - 2Ef 41
(x2 + 1}2 x4 -+ 2x2 + 1 x4 + 2x2 + 1
_ x4 + 2x2 + 1 2x2 + 1
= g 7 = &5 =l
X + 2x° + 1 X + 2x7 + 1
2
— _ (2x + 1

x4 + 2x° + 1

- x4dx
f Lo S fdx -f a - (1)
(™ + 1) (x + l)

2x2 ¥ -1

Thus to complete this exercise we must decompose s B
(x™ + 1)

To this end:

VI.2.12
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SOLUTIONS: Calculus of a Single Variable - Block VI:
Partial Fractions

Integration Techniques - Unit 2:

[6.2.6 cont'd]

2x2 + 1 Ax + B Cx + D
2 z =3 2 ¥ g e
(x° + 1) (x“ + 1) x° + 1
_ (Ax + B) +(Cx + D) (x> + 1)
(=® & 1)°%
L a2 _ 3 2 _ .3 2
Q2" + 13 AXx + B+ Cx™ +Dx" +Cx+D=S Cx™ +Dx"+(A+C)x+ (B + D)
HsC=0,D=2,A+C=0, B+D=1
LA =0, B==-1, C=20, D= 2; and putting this into (2) yields
2x> +1 _ -1 PR
(x2 - 1)2 (x2 + 1)2 x2 + 1
SFrom (1)
x4dx dx dx
‘/‘ 7 7 = 9 +~/ﬂ_:2 7 " 2d/P'§"
(x° + 1) (x® + 1) x~ + 1
From Exercise 6.1.2/——-2—61—}{-—-—-5 = %‘—(tan-lx + —-—x-——é-} +C
(x™ + 1) 1l + x
We also know that
zdx = tan Ix + C
x° + 1
2% P | x ],
0.0-/-—-—-2-———-—2"=X+§(tan x+--—-—-~—-§)—2tan X G
(x° + 1) 1+ x
=X = 5 tan_lx + X > + C ”
2(1 + x7)
VI.2.13
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SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 2: Partial Fractions

[6.2.6 cont'd]

(b) The key here is how we don't do this problem. Namely,

we have already seen (Exercise 6.1.2) that

f“‘z‘éx—"f=%‘tan_lx+—x—'z) L
X
The point is that we cannot use partial fractions since ~—%—————§
(x™ + 1)
is already decomposed.
1 Ax + B Cx + D

Namely, if = + .
x? + 1% x*+ 1% %% +1

We need only let B =1 and A = C =D = 0 which is what we started
with!

6.2.7

Here, we must make preliminary substitutions before we can use

partial fractions.

(a) Let u = sin 6; then, du = cos 6 d8

(1)
f cos 6 d6 =/ du ___/’ aii
sin®g + 7 sin 8 + 12 w? + 7u + 12 @+ 4 (u+ 3)
L _ A B
NoWle‘:(u+4)(u+3)“u+4+u+3 :
u + 4, _ 1.
R At Bl " g3 3
4 4 _ il
A+B(u_+—3_._| =
u=-4 u=-4
..IA=_l .
VI.2.14
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SOLUTIONS: Calculus of a Single Variable - Block VI:

More

Integration Techniques - Unit 2: Partial Fractions

[6.2.7 cont'd]

similarly, =iy J = A(ﬁ—%—%}_] + B
u=-3 u=-3
B=1
3 L _ 1 _ 1
"o+ ) u+ 3) u + 3 u + 4

du _ du _ du _ _
‘/}u.+ ) (u + 3) _-/~£~:_§ -/Pd i R Al ]

In(sinf + 3)

Putting this into (1) yields

cgse de = fn(sin g + 3) - In(s
sin“e + 7sin 6 + 12

(b) Here, we let u = ex-l, or, e = u+ 1.

= % = 2 = ._...Q..L_l_
Then du = e"dx = (u + 1)dx dx T
_-,f dx =/ du
ex - 1 u(u + 1)
Now, if 1 = B + B we obtain Au + A + Bu =
LS a(u + 1) u u + 1’ =
A =1
l.l A - l, B = _l
» l l l

du _ du _ du
J/.u(u - 1) “J/.fﬁ ./ru + 1

VI.2.15

In |u + 4| + C

- In(sin® + 4) + C

in 5 + 4) + C .

1 &A+B=20,




SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 2: Partial Fractions

[6.2.7 cont'd]

= |u| -4n |u+ 1| +C
= In |e =1 = In e® % ¢
-'.f.ﬁ__:ﬂn Iex—ll —X+C X
X
e -1
6‘2-8
./ )
Letting 2z = tan % 1+ Z - 7
2
Then: 1
d2=%secz-§-dx=—(1+z)dx
. 2dz
Oodx=————-——2—
1l + Z
sin x = 2 sin ; cos ; = 2( Z ) ( 1 ) = 27 5
Vi+ 22 V14 g2 1+z
2 2
S 4 s m Lo B s = l+3z ; 27 _ (2 + 1%
1+ 2 1l + 2 1+ 2
f dx =/ _ [ _2dz
1l + sin x (Z " l) —- 1)2
l + 7
e 2
N - i
-—2_+c .
1 + tanz
vVIi.2.1l6

Gl S TS ow oW Ue Ul P B e

Gl s O e o oD e e om




2 &m &

rs &3

@m aE s

3

as .

€8s ©13

m s =S

€3

£

SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques = Unit 2:

[6.2.8 cont'd]

The key here is that Z = tan . reduces a rational function

2

Partial Fractions

of sin x and cos x into a rational function of x.

6.2.9
X
2
dz = % sec?x dx Ll
1
= (1 + z?)ax
. oo DO
1 + Z
cos x = cos” § - sin® ¥ = (—2—)? - (—£—)?
V1 + 22 V1 4+ 22
1 - z?
l + Z
ssec x = =X 22
- Z
1 + 22 24z az
fsecxdx=f( 5) 2=2f .
= & 1 + 2 1 - 7
% 1 & B
How 1 - g2 T+ = T gFftrog-a=A2+ B+ Bz
i = — - o l
.'A+B"1IB—A_'0 ..A-—B=-2_
1 : 1 1
:. =—( + -)
i = ZZ 2'1 + 2 1 3
VI.2.1l7




SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 2: Partial Fractions l
[6.2.9 cont'd] l
f-—‘i@-—_§=%zn(1+z)-%sn(1-2) .

1 -2

.':[s-ecx.dx=1n |1 + Z| -4n |1 -2Z| +C l
== X i
_ .. (1 + tan x/2, l
VIi2.18 '
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SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques

UNIT 3: Integration by Parts

6+3als (L)

(a) Given x2 cos x dx, we observe that two differentiations
2

would "get rid of" x~. Thus we might be led to integrate by parts
twice. For example:
= At -
let U =X dvl = cos X dx
fuldvl=ulvl—fvldul
dul = 2x dx vy = sin x

.'.fx2cosxdx=x25inx-2/xsinxdx . (1)

Now, we can "reduce"J/ﬁx sin x dx by letting

u2 = ¥ dv2 = sin x dx
.'.du2 = dx vy, = -cos X
.‘.fxsinxdx=-xcosx+fcosxdx
= -X cos X + sin x + C . (2)

Putting (2) into (1) yields:
2 R S .
x" cos x dx = x sin X + 2xXx cos X - 2 sin x + C 3

(b) There may be several approaches in an exercise such as

this. We shall explore a few. For one thing, while we may not

be able to integrate sin /X, we can certainly differentiate it.
Thus, given j-sin YX dx* we might be tempted to integrate by parts

and let u = sin /X%, dv = dx .

*We hope that by this time there is no need for this warning, but

d cos/x

just in case - observe that | sin /X dx # -cos /X since o

&/ x

= =-sin /—}E (——d-—) .

X

VI.3.1




SOLUTIONS: Calculus of a Single Variable - Block VI: More

Integration Techniques - Unit 3: Integration by
Parts

[6.3.1 (L) cont'd]

d(/x) cos VX
dx

Then du = cos VX = and v = X

2%
::/;in YX dx = x sin VX - x(cos Vx) dx
2 /x
=xsin/§-%f\/§cos/§dx . (3)

The trouble is that f/E cos Vx dx seems no easier than
sin /X dx. This is all part of the nature of techniques of inte-

gration. Namely, changing the form of an integral is no guarantee

of success. We often must resort to more than a single substitution.

In any event f& cos VX dx seems to suggest a substitution such as
ax_ _ ax
2/x v

f/'icosfidx=fwcosw (2w dw)
waz cos w dw " (4)

Putting (4) into (3), we obtain:

w = VX, whereupon dw = or dx = 2w dw . Then:

fsin/?dx=xsin/§-fwzcoswdw,wherew=/3€ i (5)

Now, not only does‘fw2 cos w dw tend itself to integration by

parts, but it is precisely the problem we solved in part a. That is:

fwzcoswdw=wzsinw+2wcosw—2sinw+c %

Thus (5) becomes:

VI-3.2

FE2

Gy BN s e

E3

[ I

| |

€3 &3 €3

i3 §3 3 €9

L




i

3

L

3

5 0N 6

E3

.

en e

_

€

[ e |

SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 3: Integration by
Parts

[6.3.1 (L) cont'd]

fsin Vx dx

and since w = VX,

. 2
X sinvx = W

fsin&dx=xsin/§-xsin/§-2/3?cos/?€+2sin/§+c

or:

fsin/?dx=-2/§cos/§+2sin/§'+c i (6)

Well, it was a lot of work, but we were at least fortunate
that we got an answer. Could we, however, have proce=ded differ-

ently and still obtained an answer?

For example, in the expression | sin ¥x dx one might be
immediately wary of sin ¥YX and be tempted to remove the square root
with the preliminary substitution w = VX (notice that in our first
approach to this problew we ultimately made this substitution). If

we let w = Yx, then,as before, dx = 2w dw and we find:

J,sin/de=fsinw(2wdw)=2fwsinwdw . (7)

In one step, we can handle w sin w dw. In fact we have taken care

of this also in part a. Although we used an x instead of a w,
fwsinwdw=—wcosw+sinw+cl

and putting this into (7) yields:
.];in /X dx = 2[-w cos w + sin w + C;], and since

w =vVx, sin VX dx = -2/X cos VX + 2 sin ¥YX + C (where C = 2Cy).
(8)

VI.3I3

sinw -2 wcosw+ 2 sinw + C



SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 3: Integration by
Parts

[6.3.1 (L) cont'd]

Observe that (6) and (8) are identical, as they should be.
What is very important to observe is that there are often several
logical approaches at our command. In certain cases, one approach
will be more advantageous than the others. In some cases, no
approach will be helpful. For this reason we learn as many tech-

nigues as we can.

(c¢) We observe that e® remains e® whether we integrate it or
differentiate it. As for sin x, after either two integrations or
two differentiations this becomes -sin x. Thus, we might again
be tempted to integrate by parts twice. For example, we might
let u = e and dv = sin x dx, whereupon du = e* dx, v = =-cos X
(similar results will be obtained in this case if we let u = sin x

and dv = e® dx but this will not be pursued further here). We then

) X X
fexsn.nxdx=-e cosx+fe cos x dx . (9)

: ia : X
cos x dx in a similar way, letting u = e~ and

have

We now handle eX

dv = cos x dx. " Then du = &% dx, v = sin x, and

erx cos x dx = e* sin x —-/‘ex sin x dx i (10)

Substituting (10) into (9) yields

. . X .
fex 31nxdx=—ex cosx-i-ex s:.nx-fe sin x dx i
(11)

We now have the required integral in two places in (11), so

we may combine terms to obtain:

VI.3.4
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SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 3: Integration by
Parts

[6.3.1 (L) cont'd]

X . X X .
2fe sin x dx = - cos X + e sin X

X, .
or fex sin % ax = €.l8in x2— cos X) , ¢ (12)

(where as usual we "tack on" the arbitrary constant in order to
obtain the family of solutions).

6.3:2

Approach #1

cos (/n x)
X

-'-fsin(fn x)dx = x sin(/n x) - fcos(fn x) dx . i

Let u = sin(/n X), dv =dx . Then: du = dx, Vv =X

We then handle fcos(ﬁn x) dx in the same way, letting

-sin(/n x)

u=cos(/n x) and dv = dx . Then du = = dx, v = x .
Therefore
fcos(ﬁn x) dx = x cos(/n x) + fsin(ﬁn x) dx (+C) . (2)

Putting (2) into (1), we obtain
fsin(ﬁn x) dx = x sin(/n x) - x cos(fn x) - fsin(fn x) dx + C
e 2 fsin(ﬁn x) dx = x sin(/n x) - x cos(fn x) + C

fsin(@n x) dx =

x[sin(fn x) - cos(fn x)] + C . (3)

N

VI 355




SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 3: Integration by
Parts

[6.3.2 cont'd]

Approach #2

Let w = [n x or x = ew. Then dx = ew dw

.".J'sin(fn x) dx =fsin w(e? dw) =few sin w dw : (4)

Now, by Exercise 6.3.1 (L) part c¢. (foresight, again) we have

W .
few sinwdw=e(51nw cos w) +C (5)

2

and since w = /n x (or x = ew), we may combine (4) and (5) to

obtain

.[;in(fn 55 R o= x[sin(/n x% - cos(/n x)] 4+ ¢ ) (6)

Clearly, (3) and (6) agree!

6.3.3 Y N
We have: = coszx
Y
> X
m
2
i3 T
2 2 2
Vy - 2mxy dx = Zij. X cos"x dx . (1)
0 0

To handle.j.x coszx dx*, it is wise to let u = x, dv = coszx dx

_ 1 + cos 2x dx
= 5 .

*Notice thatnf X coszx dx may "look like" j-xz cos x dx (Exercise 6.3.1 a.)e
g the exponent makes the integrals of very different types.

Yet, switchi
vI.3.6
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SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 3: Integration by
Parts

[6.3.3 cont'd]

i i
+ 'a-Sln 2x

N ¢

Then du = dx and v = % (L + cos 2x) dx =

e | x coszx dx = 53 + 1 X sin 2x - (-}E - 1 sin 2x)dx
' 2 2 I )
g §E-+ 1 X sin 2x - 1 x2 + 1 c 2x + C
7 71 X~ 7 g OB %
= 53 + X 4 sin 2x + 1 cos 2x + C (2)
4 4 8 :

Putting (2) into (1) yields:

2 = 2
_ X 1 ; i 3 2 _ 1
Vy = Zn(-z + 7 x sin 2x + F cos 2x |0 = Zﬂ[(%g +0+ 3 cosm)
- (0 +0 + % cos 0)]
2 2 2
= oL _dy = o _ L, _om(n” - 4)
= 2“[(16 §) (8)] = 2“[16 4] = 3 .
6.3.4
(a) Given wH dx, we "reduce" X" by letting u = xn,
dv = e* dx . Then du = nx™ T dx, v = e* .

fn
e
orfxn X dx = x" ex—n‘fxn"l e ax " L)

X

(b) To "reduce" x3 e” dx we use (1) with n = 3. Then

fxBexdx=x3ex~3fx2exdx . (2)

We then “reduce“-l.x2 e® ax by using (1) with n = 2 . Thus:

VI.B.?




SOLUTIONS: Calculus of a Single Variable - Block VI: More

Integration Techniques - Unit 3: Integration by
Parts

[6.3.4 cont'd]

J-xzexdx=x2ex—2fxexdx . (3)

Putting (3) into (2) yields

fxBexdx=x3ex—3x2ex+6fxexdx - (4)

We then “reduce"f x e dx by using (1) with n =1 . Thus

fxexdx=xex—j;xdx

=xe-*+cC . (5)

Putting (5) into (4) yields:

fx3exdx=x3ex—3x2ex+6xex-6ex+c " (6)
(c) 1
_ 3 X
AR—f x~ e dx
0
From (6) we have:
3 x 2 X X xl
AR=(xe—3xe+6xe—6e
0

o e~ 3 ¥ 6o~ 6e) = (0 ~ 0+ 0 = 6e )]

[(=2e)-(-6)]

Il

6 - 2e T 0.56 .

VII 3.8
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SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 3: Integration by

Parts
6.3.5
3 x
y = x e
y
0 X 1

1 1
v, =f 2rxy dx = 2 fx(x3 e*) ax

0 0

= 27 x4 e® dax (1)

Now, from Exercise 6.3.4 a. fx4 e* ax = x4 e® - 4];:3 e® ax

and from our solution to Exercise 6.3.4 b.,
fxBexdx=x3ex—3x2ex+6xex—6ex+c . (3)
Combining (2) and (3) yields:

fx4 e dx=x"1 e” = 4x3 e® + l2x2 e® - 24x & + 24ex+c,

whereupon (1) becomes

4 x 3 x 2 K X X 1
Vy = 21 (x" e = 4x7 e + 1l2x" e = 24x e” + 24e
0
= 2m[(e - 4e + 1l2e - 24e + 24e) - 24]
= 27[%e - 24] X 2.8 A
6.3.6
(a) Let u = n"x (= [/n x1™), du = dx ;

VI.3.9




SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 3: Integration by
Parts

[6.3.6 cont'd]

Yy
]
a3
"
ol
»
Il

n-1
X [nnx—fx[w] dx

X

=xfnnx-nffnn-lxdx . (1)

(b) y

1 2 o
(1) A_ = ‘[.fn x dx //

/n x dx may be obtained by letting n = 1 in (1) . Then

——

[nxdx=x[nx—f["n°xdx
= x /n x —‘}Fdx
=x fnx -x+C (2)

(2 fmn 2 -2)-(1/m 1 - 1)

2
Nh, = X /n x - x h

2/mh2-2+1

2 /n2-1=20.4

(2)
V. =1 fnzx dx
X

I

VI.3.10
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SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 3: Integration by
Parts

[6.3.6 cont'd]

Letting n = 2 in (1) yields

fﬂhn2x=x£n2x-2fﬂnxdx

and from (2),u[.fn X dx = x fn x - x + C

.’.ffnzx xfnzx-Zx!nx+2x+C .

5 2
mx n” x - 2x In X + 2Xx
* 1

(2 % 2 -4 fn 2 + 4) - 2]

Thus, V

Il

= m2(fn 2)% - 4 gn 2 + 2]*

2nlen? 3 - 2 gn 2 + 1]

27(4n 2 - 1)2 .

2 2
(3) Vy = 27 xy dx = 2q X In x dx

1 1

Perhaps the simplest way to simplify-[-x In x is to let

u=4£4n x, dv = x dx

then,

2

dx 2
X

M| =

du =

fxfnxdx=%x2Enx-%—fxdx=%x22nx-zlrx2+C

r V=

*Note: Do not confuse [In b? with (fn b)n . ¢n b? = n( £n b)

# (In b)™ unless n =0 or 1 .

VI.3.11




SOLUTIONS: Calculus of a Single Variable - Block VI: More I
Integration Techniques - Unit 3: Integration by
Parts .
[6.3.6 cont'd]
(v, = 2n[E x% mox - L x2[2
.o Y E I 1 l
- . L
= 27{(2 ¢n 2 - 1) ~ ("-_4-).] l
- 5 3
= 271[2 4n 2 - z-] '
=T2-‘.[_'3.z_n2—3]::4 .
VI.3.12 '
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SOLUTIONS:

Hence

(Had we not noticed that (x - 2)_4

(a)

o/

Calculus of a Single Variable - Block VI: More
Integration Technigques
UNIT 4: Improper Integrals
-4 1 I - .
(x - 2) (= 4) is infinite when x = 2 .
(x = 2)
2-h 3
-4 ; -4 -4
(x = 2) dx llm+ (x = 2) dx + (x - 2) dx
h>0"LJg 2+h

have obtained

h~0

lim
h-+0

- {—%(h)':*}]]

2-h 3
lim+[ —%(x - 2y3 | + (-%(x - 25 ‘ J
0

N [ =300 77 - [=3(-2)771 + .33 - 2)7

2+h

3

. 1 1 1 1
lim, {—= = 55 - 5 + —=!
ot 33 24 3 303
. 2 9
lim, {—=} - = (1)
h+0+ 3h3 24
5 (2)

was infini

X 3
.[. (x = 2)"2 gx = -%(x - 352 | .= -3 -1
0

which is the second term in (1).)

VI.4.1

te at x = 2, we would




SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 4: Improper Integrals

[6.4.1 cont'd]

B 1
Pictorially, Y Yy = (5 = 2)4
— No matter how we "squeeze,"
the height increases "too
rapidly."

|
/
-
'//. x
3
1
(b) f (x - 27lax = dx -7 | = (Fa- 27 - do- 27
0 0
_ 11
=371
o
24 :

Here, we did not have to worry about an improper integral,

4

since (x - 2) ° is finite (in fact, continuous) on the given closed

1
interval [0,1]. That is, .f. (x - 2)-4 dx is the area of R, where

0
S
x - 2)%
75/
1
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SOLUTIONS:

Calculus of a Single Variable - Block VI:

Integration Techniques - Unit 4:

[6.4.1 cont'd]

(c) Again,

1

2%

(x = 2)

3 3 3 1
f e~ 3] Yax lim_'_[f x = 3y 2 de
2 h=0"1Jin

(Notice here thatf (x - 2)
a

= lim

- 3 3
+ 2 x-2? }
h-+0

+
= 2+h

-

a 4
= lim =(3 = 2)
h+0+1|:3

3
. 4 4 .12 4
= lim - h = = .
Lim, [ 373 J 3

3

3
i

4 ; i
is infinite when x

4
= 3(2 + h = 2)

More
Improper Integrals

= 2. Hence:

FST™)

|

dx is imaginary unless a > 2 .)

In this case, the height stays under control as we put the

sgueeze on.

dx suggests two cases.

Namely r

-1
r _ dx _
J[x dx "./-_Q = fn [x] + ¢C
b b
lim 98 . lim fIn | x| I =
b0 1 L b+ 1 b+

,:[. xF dx diverges when r = -1 .
iE

VI.4.3

-1l or ¥ # -1 .

limﬁnb:«n




SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 4: Improper Integrals

[6.4.2 cont'd]

Case 2: r # -1

= r - 1 r+l
If r # -1 then‘[.x dx = ot

oo b b
S xF odx = lim x* dx = lim 1 xr+l

l b+ l jo el r+1 1

; 1 r+l
= 1lim | —— (b - 1) . (1)
hise [ r + 1 ]

r+l

In (1) if r +1 >0 (i.e., r > =1) then b > © as b + » ,

Hence,J‘lxr dx = » if r >1 . Combining this with Case 1, we have
1L

[e4]

,[ xT dx diverges if r > -1 .

1
. r+l 1 .
On the other hand, if r + 1 <0 then b + = (that 1is,
br+l = _l 777 and -(1l+r) is positive if 1+4r is negative) as b » «.
b
That is, r+l < 0 implies lim br+l = 0 . Putting this into (1) we
see: s
s +]
r <=1-» x* dx = = = = which is a finite, positive num-
r + 1 l-1r d
1 ©
ber. That is, ,[ x¥ dx converges if r < -1 .
1
6.4.3
Just as before we must consider the two cases r = -1 , r # -1 .

VIi.4.4
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SOLUTIONS: Calculus

Integration Techniques - Unit 4:

[6.4.3 cont'd]

il
-"f x* dx diverges

0

r # -1
1

Case 2:

Thenf xr dx =
0

Now, as h = Q, hr+l

That is, if r > -1 :

.
fxrdx=lim [
0

1
. r
.:[. X~ dx converges
0

Oon the other hand, if r + 1 <0 then as h » 0, h

+0if r + 1 >0

of a Single Variable - Block VI:

I
8

lim [=fn h] = =fn 0 = =(-)
h+0

I

when r ~1 .

. : )5 ; X r+l
llm+ X dx = llm+ S
h

5—
b

h-0 h-+0

; 1 r+1l
lim, [=== (1L - h )] .
h+0+ r+l

(1.8, r > =1) &

1 r+1
—— (1L = h )]
h+0+ r+l
.
r+1l

Thus, from (1) we see:

VIi.4.5

More
Improper Integrals

r+l

f ﬁ.‘i:limf X _ 1im, (dn 1 - £n h]
X + X +
0 h-+0 h h-0

(1)




SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 4: Improper Integrals

[6.4.3 cont'd]

1

1
If r <—1,f x¥ dx = lim [=—= (1 - K¥t1)] = ==
0

ho0 r+1 )1 = r+1

1
& o€ -l'i[ x% dx diverges .
0

6.4.4 (L)

In a way, this is what improper integrals of the second kind
are "all about." That is, we often do not care what the wvalue

of the integral is but are only interested in whether the integral

converges.
n
For this particular example, recall that lim t -0 . Therefore,
tr>o e n
given a constant k, we can find a number M such that t > M-+ EE <k .
e
For the sake of convenience, we might think of k as being 1. Then
n
for "sufficiently large" t, EE <1or t" < et .
o
With n = 50 this leads to
[+ M oo
f 20 7t at =f £20 &7t at +f 29 e tar . (1)
1 5 M

Now, there is no problem with.‘fM £°0 7t gt. At worst, it is a

1
large but finite number which we may call A.

o
As foij- t50 e_t dt, we chose M so that for t > M t50 < et
M
o o o
.‘-f t50 e-t dt ff ete_t dt =J. dt = = .
M M M
VI.4.6
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SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 4: Improper Integrals

[6.4.4 (L) cont'd]

(o]

Of course, just becausef t50 e_t dt <j dt we do not have
M M

L2 o]
any conclusive evidence as to the convergence of‘[.t5O e-t dt.
M

The point is that we can improve our approach as follows. We

o0
know thatJ. g—% converges. With this in mind, we rewritef t50 e-t dt

M t
asj.tw2 t52 e“t dt.
. : 52 t .
The idea is that for large t, t < e  just as before. Suppose
t > My implies that t52 < et . We then have
o Ml 0
f £20 &7t at =f £20 &7t gt +f £20 &7t gt (2)
1 1 Ml
Al -

If we now write:

t
Ml Ml Ml Ml
- -k l -
t o Ml
1

Putting this into (2), we obtain

oo
-[.tSO e_t dt < Al + %— = a finite number.
1

1

VI.4.7




SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 4: Improper Integrals

[6.4.4 (L) cont'd]

=]
Hence,-[ t50 et dt converges, even without our knowing
1

the value of the integral.

oo

The key is that when investigating-[l f(t) dt we need only
i

@
examine‘f f(t) dt for "large" M, for no matter how large M is
M

M
‘[ f(t) dt is finite if f(t) is. 1In essence, then, the convergence
1

off f(t) dt is determined by the behavior off f(t) dt for
a M

=]

arbitrarily large values of M.

Pictorially,
¥ A
AR is finite no matter how large M is.

Does the curve approach the
x-axis fast enough?

{“‘a{ = f(x)

R \“e1dtr i Wl 5 &
1 M

The convergence or divergence of the integral depends on
b
lim f(x) dx .
b«
M

VIi.4.8
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SOLUTIONS: Calculus of a Single Variable -
Integration Techniques - Unit 4:

6.4.5

o

We are givenf ﬂn3x dx "
1 X

Block VI: More
Improper Integrals

We already know from our study of logarithms that lim ﬂnxx =0

In particular, there exists a number M such

Therefore, for x > M ﬂnjx = (ﬁnxx) ig <
X

X

Nl

Hence:

e b
f Qn X gx = limrj‘ /n x dx
1 xz b+°°_l x3

I

o

1
M .,
2 /n x dx + Tim dx
x3 b x2
1 M

b
o0
fgu-i-@i <A + lim l:—;];— |]whereA=f
1 X bie M

1
(»]
A gﬂ_fjgi <A + lim [-% -(-%)] = A + % =
1 hid b
. fn X dx
iy '—'—'—"g'— converges .
1 X

VI.4.9

- M b
limf ﬁnx3dx+f {n
brel ® M
M b
- Sy | g
M

X0

that x 2 M >

a finite number




SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 4: Improper Integrals

6.4.6 (L)

Here we have what could be called the inverse of Exercise
6.4.4 . The idea is that for large values of t, et "overides"
t" . on the other hand, when t is near 0, e-t is finite (indeed,

it's near 1) but t" can become large if n is negative. In other

1
e g

0

words

is an improper integral of the first kind if n is negative.

Thus, what we must do here is look at

1 1
f 2%t at = 1lim f fet g . (1)
h~+0

0 h

1
Now:[ the”t dt, just as in the previous exercise, is not
h
too pleasant to evaluate. However, we can get upper and lower

bounds for the integral without too much difficulty if we note

that 0 <h <t <1 » e0 < eh < et < e1 or 1 < eh < et <e
1 1 1

Ml > — > — > = .
R et e

In other words

Thus,

: 1 1
lim é;[ t? dt < limtf et at ¢ lim, £ ar .
h-+0 h h=>0 » h~0 (2)

VI.4.10
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SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 4: Improper Integrals

[6.4.6 (L) cont'd]

Therefore, it is sufficient for us to study

1
lim+f £ at .
h>0"Jp

1 1.
- : B i e 4 at _
If n = -1 then 11m+f £ dE o= llm+f T =
h h

h-+0

n+0

h
1 1
. ; n -t . 2l n *
since 11m+ f t e dt = 11m+ = f t dt
h

h~+0 h-+0

1
Sno= =1 - f tne-'t dt diverges.
0

1
.‘.lim_l_ % f £ dt = » and from (2) it follows that lim

the behavior of

lim_ (fn |t|
h+0

lim, [(n 1 -

h-+0

+

lim, [0 + In

neot

[ |

*For those of us who are still uncomfortable working with the symbol

3
©, notice that what we are really saying is that é--[. t-l dt in-
1
h
creases without bound as h approaches 0. Then, since é t & dg =

r1a

r

1 1

1

J

without bound as h approaches 0 .

h

vIi.4.1ll

"1t dt, it follows thaﬁj- t le”t at must also increase




SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 4: Improper Integrals

[6.4.6 (L) cont'd]

1 n+1l 1
t 1 n+1l
— n = — S a— —
If n # -1 then t dt ST o [1 h ]
h h
dfﬂ
. n 1 . n+l
& ddm t  dt = —— [1 - 1lim, (h ) i A 3
h+o+ n+1l h+0+ (3)
If n + 1 > 0 then lim h™?1 = 0, but if n + 1 <0 lim n"*"!

= «, Putting this into (3),

[
Ol

1
lim P gt =L if n+ 1> 0; i.e. ifn > -1
h 0+ n+1l £ te *

Thus if n > -1, (2) yields:

1
1 & n -t i
e (n+l) f tie dt < o33
0

1
; . n -t
and in partlcular'JF te dt converges.
0

N

1 1 1
If n < -1 then é- f tn dt = j 1:n dt = «» and since f tne—t dt

0
is "squeezed between" these two integrals, it follows that

1
J- t"e”t 4t diverges.
0
In summary,

1
J( t"e”t at is an improper integral of the first
0

kind which converges if n > -1 but diverges if n < -1 .

VI.4.12
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SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 4: Improper Integrals

6.4.7 (L)

(a) Noticing that x is being treated as a constant* (t is
the variable of integration) we may break up the given integral

into two parts, each of which has already studied. Namely,

==} l o0
f 27l o7t gt = f 2L g F g +f 2L o7t gt . (1)
0 1

0

oo

Now, in Exercise 6.4.4 we saw that‘[' t" et at converges for all n.

1
(Actually, we worked with n = 50, but this is of little consequence;
n
the key was that lim EE = 0 for any n.) In particular, then, with
£t e

x - 1 playing the role of n we see that

(o]

f XL o7t g¢ converges for all x . (2)
i

1
x-1 -t ; 4 ;
As for t e dt, we saw in the last exercise that
0

1
n -t F A
.[' t7 e dt converges if and only if n > -1 .
0

*As an aside, notice that this exercise gives us still another way
of defining a function as an integral. Previously, the variable
occurred in the limits of integration. Namely,

X
f(x) =.j. g(t) dt . In this exercise the limits of integration

a
do not depend on x, but x appears as part of the integrand. 1In

b
other words, we have the form: f£(x) =./- g(x,t) dt where x is

a

fixed, once chosen, and t is the variable of integration.

VI.4.13




SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integtation Techniques - Unit 4: Improper Integrals

[6.4.7 (L) cont'd]

If we now let n = x - 1 we obtain that:
1 (3)
x=-1 -t ; ; ;
£ e dt convergesif and only if x - 1 > -1 (i.e., x > 0)
0
Putting the results of (2) and (3) into (1) we have

o0

‘[' tx-l e b at converges if and only if x > 0 .
0

(b) We let u = et ana av = £¥ 1 at where x > 0 .

Then du = et qu and v = % t* . Integration by parts then yields
o0 =] e}
¥ letae =2t ¢ l ¥ = d[ tX et ar . (4)
0 0

1 -t .x , o B 1 -t .x .
Now lim — e t© = 0 (since lim — = 0) and - e t = 01if x > 0

¥ £ X

trw t+0 e =0

Hence, (4) becomes:

o0

T (x) =f £X71 o7t g¢ = -}{-f X &7t at " (5)
0 0

o0
Notice now thatf £* e-t dt is TI'(x + 1) .

0

Namely, 20
P(L D) =f O e
0

I'([x + 11) =f glx + 11-1 =t 44 =f tfeta .
0

0
Putting this into (5) yields
I(x) = = I'(x + 1)
X
or F'(x + 1) = x T'(x) N

VI.4.14
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SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 4: Improper Integrals

[6.4.7 (L) cont'd]

(o] 00 (=+]

(c) T(1) ==f el &7t ae =f etat=-et| =-L_(1) =1
0 0

By (b) r(2) = 1r(1)

]
'_l

[(3) = 2r(2) = 2

r(4) = 3I(3)

Il

Ix 2 = 31

I'(5) = 4T'(3) = 4x 3x 2 = 4!
r(e) = 5Ir(4) = 5x 4! = 5!
Proceeding inductively;
r'(n) = (n = 1)! (6)

In this sense, the gamma-function, among other things, extends

the structure of factorials for all positive real numbers. In

other words, for x real we mimick (6) and define x! = T'(x + 1)
=ftxe-tdt.
0

6.4.8 (L)

Here we see an interesting connection between infinite sums

and improper integrals. To begin with, let us find the relationship

VI.4.15




SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Unit 4: Improper Integrals

[6.4.8 (L) cont'd]

- n
between lim 22 lﬁ-(= 1+ % + % + ... ) and lim Q% 3
n+e ,— k n-e x
k=1
If we sketch y = —% (x » 1), we find
X
b
1
(k,=%)
3 ) X
(k,0)
In other words 1 + % + % + ... represents the length of the

line segments connecting (k,0) and k, li)‘ The length of these
k

segments is also the area of a rectangle having the same height

and base of 1 unit.

In other words % + é *owgy * % is represented by the region
shaded below:
A
1
Yy =3
X

¢

VI.4.16
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SOLUTIONS: Calculus of a Single Variable - Block VI:

Integration Techniques - Unit 4:

[6.4.8 (L) cont'd]

k
and this is clearly less that f d—g (why

Improper Integrals

1 b4
& Idm (% + % - +—1§) < lim (1 - =
k> k koo
I . | 1 . 1 1
..I+g+-l.+7+.ll -Sl ‘.l+71-+ +.- _7
n n
6.4.9
1
Y =3
1
3‘..- l
1
7% »
/’_,_2_/ /;/J///A
i 2 3 k k+1
k+1 k+1
1+ % oo+ % > 9% = fox | = dn(k + 1)
1 1
. 3 B .
LHilim (1. + 5% .40 # 2) 2 lim Ik + 1) = »
koo k>

i M

Solim (1 0+ >t ...+ %) diverges (even though the terms in

k+w

the sum approach 0 as a limit.)

VI.4.17
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SOLUTIONS: Calculus of a Single Variable - Block VI:

Integration Techniques
QUIZ

1. Let u=1+ sin 3x . Then du = 3 cos 3x dx

La
cos 3x dx _ 3 R _ 1 -3

: S 3 @ 3 Y du
(1L + sin 3x) u

. - 1 -2
=3 lzu +¢Gl
=—-%-+C
6u
- . 5+ C
6(1l + sin 3x)
£(x) = Z s+C .
6(1L + sin 3x)
Since f£(0) = 2, (1) becomes:
-1
2 = £(0) = 5 + C, or:
6(1L + sin 0)
2=-%+cC
C = E%, and (1) becomes:
£(x) = L P32,

6(1 + sin 3x)_2

VI QL

More

(1)




SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Quiz

2. We have:

cos2x = L = gos 2X (1)
2 2
4 _ (1L + cos 2x)” _ 1 + 2 cos 2x + cos” 2x
Cos X = 7 = 7 . (2)
Now using the same reasoning that led to (1),
cog” px = =t oS dx (3)
Substituting (3) into (2):
1l + cos 4x
L + 2 cos 2% + 2 ) 2 + 4 cos 2x + 1 + cos 4x
4
cos4x = % (3 + 4 cos 2x + cos 4x) . (4)
From (4),
4 i 1 ? 0 -
cos X dx = 3 (3 + 4 cos 2x + cos 4x) dx = 3 [3x + 2 sin 2x + 7 sin 4x]
+ C
3% i 1 .
= == + i 5
£ix) 5 + Z sin 2x + Vi sin 4x C (5)

Since £(0) = 1, equation (5) leads to
l1=f£f(0) =0+0+0+C
C = 1, whereupon (5) becomes

f(x) = é% = % sin 2x + %5 sin 4x + 1 .

VI.Q.2
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SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Quiz

3.
2
x° =1 = & B c
R T
x3(x - 2) 3 x2 x3 X - 2
¥ 3
= Ax“(x - 2) + Bx(x = 2) + C(x - 2) + Dx
x3(x - 2)
3 2
= (A + D)x” + (=2A + B)X" + (-2B + C)x - 2C
xg(x - 2)
5
a.0A+D=0
-2A + B =1
-2B+ C =0
-2C = -1 .
p
; _ . g 1 _ 1
Since -2C = -1, C = 3 . Since C = ol =2B ¥+ €= 08 % =2B + 5
_ . - - _ _ 1 _ — S
B = 7 . Since B = I 2A + B =1 » =-2A + 7= 1l » -2A = 7 -
A= -% . Finally since A + D=0, A = —% + D = % .
Putting this information into (1) yields:
x4 -1 3 1 1 3 (x® - 1) dx
= + # + - , Whereupon
x3(x - 2) 8% 4x2 2x3 8 (x 2) _I-XB(X - 2)
= - % bn |x| - I% . S % In |x - 2] + C
4x
] | S A 3 G
& E(x) = -7 In|x| I = e o In |x - 2| +C
4x
. —_— ~1_1,.3 . s 5L
sE() =-xIn 1] -3-3+3kn |1 +Cc=5+-F5+C=3

&C = 4, whereupon (2) becomes

3 i§ 1 3
f(x) = "'8"' Qn |X| - E}—{ - ;‘}—(E + Eﬂn ]X - 2! + 4 .
VI.Q.3
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SOLUTIONS: Calculus of a Single Variable = Block VI: More
Integration Techniques - Quiz

4, Let u = sin x.

Then cos x dx = du _ du (1)
fsinzx-Ssinx+6 u? = Su + 6 (u = 3)(u - 2} .

Now

1 - A B

M- W= - u-3 " ua-3

Au - 2A + Bu - 3B
(u - 3) (u = 2)

_ (A + B)u + (-2A - 3B)
B (u = 3)(u - 2)

S.A = =B
2=-2A - 3B =1 ~»-2A+ 3A =1->A=1~+B=-1
. 1 . &% ¥
== " g=3 " 5=32 (2)

Putting (2) into (1):

cos x dx _ du _ du _ = e =

X — 5 sin x + 6

and since u = sin x, we have:
f(x) = dn |sin x - 3| - In |sin x - 2| + C (3)

#£(0) =ln3 >/n3=£0) =4n|-3] =dn [-2] +C=¢n3 - (n2

+C=’in + C

Vi.Q.4
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SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques = Quiz

[4. cont'd]
sC = 0, and (3) becomes

f(x) = In(3 - sin X) - fn(z - sin x)

(We don't need the absolute value signs since both 3 - sin x and

2 - sin x are positive since -1 ¢sin x <1 .)

5. We integratej‘x3 cos X dx by parts. Namely, let u = x3,

dv = cos X dx. Then du = 3x2 dx while v = sin x

fudv = uv - fvdu, we have:
fxa cosxdx=x3 sinx—f3x2 sin x dx . (1)

We next integrate.j~3x2 sin x dx by parts, letting u = 3x2 and

. Since

dv = sin dx. Then du = 6x dx while v = -cos x. Therefore:

f?;xz sinxdx=—3x2 cosx+f6xcosxdx . (2)

Putting (2) into (1) yields:

(3)
3 _ .3 . 2
X" cos X dx = X~ sin x + 3x° cos x - 6x cos x dx

We next integrate 6x cos x dx by parts, letting u = 6x and

dv = cos dx. Then du = 6 dx while v = sin x. Therefore:

(4)
f6xcosxdx=6xsinx-f6sinxdx=6xsinx+6005x+cl

Putting (4) into (3) yields:

3 22 ;
.jpx cos X dx = X~ sin x + 3x2 COosS X - 6X sin X - 6 cos X + c,

or

VI.Q.5




SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Quiz

[5. cont'd]
RN 2 .
f(x) = x7 sin X + 3x” cos x - 6x sin x - 6 cos X + C (5)
~E(0) = -6 + C
SE(0) = 3 =2C =9, and putting this in (5) yields
.3 . 2 .
f(x) = x7 sin x + 3x” cos X - 6Xx sin x - 6 cos x + 9
1
6. Let w =/Vx = xl/z . Then dw = %x 2 dx = 1 dx = d 2/X dw
2/ X

= dx, and since VX = w :

2w dw = dx

o fcox Yx dx = fcos w(2w dw) = wa cos w dw . (1)

We now integrate w cos w dw by parts. letting u = w and

dv = cos w dw. Therefore du = dw and v = sin w. Hence:

fwcoswdw=wsinw—fsinwdw . ' (2)

Substituting (2) into (1) yields:

fcos Yx dx

2wsinw—2fsinwdw

2w sin w + 2 cos w + C

%X sin/ X + 2 cos vVx + C

LE(X) = 22X siny/X + 2 cos ¥x + C (3)
sE(0) = 2 cos 0+ C =2 +C
of(0) = 3+ C =1, and (3) becomes:

VI.Q.6
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SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Techniques - Quiz

[6. cont'd]
f£(x) = /X sin /X + 2 cos /x + 1 .

2

5
7. (a) Since (x - 3)7% = » (= %) when x = 3, ‘[- e = 3) 7% dx

0

is an improper integral. That is:

5 3=h 5
(x = 3)72 ax = lim l:f (x - 3)72% ax + f (% - 3)"2 ax
h>0t

0 0 3+h

Il

G 3+h
3-h 5
i -1 -1
[Ty [
0 3+h

3-h
Now -1 - l = ...._._.:...l_..._..-..-— - -1 = -1 - L = l'. - L (2)
X - 3 (3 = h)-3 0 - 3 -h k| h 3

while

_ =1 _ -1 L (—1) ) P |
T 5 =3 (3 + h)-3 2 h 2 R
3+h s (

Substituting (2) and (3) into (1) yields:

5
~ R 11 _1
f (x = 3) dx = k];f(r)l"' lil—l- F- 5+
0

=

; 2 5 5
= lim + - = o - =
} h-0t i € 8

VIi.Q.7




SOLUTIONS: Calculus of a Single Variable - Block VI: More
Integration Technigques - Quiz

[7. cont'd]

5
That is,d[l(x - 3)-2 dx is a divergent improper integral.
0

5
Note that ,[- (x - 3)_2 dx = =(x - 3)-l
0

0

2

(x = 3) “ is not continuous on [0,5]. In other words,

5
J[} (x - 3)-2 dx = :% is incorrect.
0

(b) Since f(x) = (x - 3)_2 = ———l——wf, we see that f is
(x = 3) :
discontinuous only if x = 3 . Hence f is continuous on [0,2] and

we may therefore, write:

2 2
f (== 3)7% dx = =(z = 3)5"7L | - i .
0 0

Oo—N

_ -1 =1
—(2_3) (0_3)
- B o X
= 1 3.
_ 2
'i -
_d
(c¢) If f(x) (x = 3) 2 1 , then f is discontinuous
Jx -3

Dol

4
at x = 3 . HenceJr ( x - 3) dx is an improper integral. Thus:
3

VIi.Q.8

does not apply since

s £ 2 2
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[7. cont'd]

1
fq(x—B)fdx=lim
h-0*

3

= lim
h*ot

= lim
h+0

= 1lim
h>ot
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SOLUTIONS: Calculus of a Single Variable - Block VI:
Integration Techniques - Quiz

4 1
f (x - 3) 2 dx

4
Y x - 3 | J
3+h -

21 - 2/3 ¥ h - 3 J

-

=2 -2 1lim vh

h>ot
=2 - 2(0)
= 2 i
VI.Q.9
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series

PRETEST

1. (a) Diverges; ..nth term doesn't go to 0.

(b) Converges; ratio test.

(c) Converges; comparison with Z%
n
1 3

4. |x| < c <

&
H -

0.1189

VII.i
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series

UNIT 1l: Sequences and Series

7.1.1(L)

(a) This is a "rehash" of our discussion of boundedness.
That is, we wish to reemphasize that every convergent sequence is
bounded. Recall that when we have a finite number of terms, we
can systematically determine the least and the greatest members
by comparing the members in pairs until all have been tested.
This system fails, of course, in the infinite case because we

cannot test all pairs.

The procedure in the infinite case, then, is to pick a
neighborhood of the limit L, say (L-¢, L+te). Since all terms
beyond the Nth are in this neighborhood, our quest for upper and
lower bounds is now limited to the finite set of numbers:

a L-g, L+e.

l’ L aN’

In more detail, we choose any €>0. Since the symbol € may
still strike you as being too abstract, let, for example, e€=1.
We then have

L-1 L L+1

.
&

Since lim a =1L, we have that there exists an integer N
n-+w

such that |an—L| < 1if n > N [that is, n > N ~» ane(L-l, L+l)].

At most a lie outside (L-1, L+1)

l,r LR aN

FAAASAAA Ao S A
L-1 L L+1

VIL:ls1




SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 1: Sequences and Series

[7.1.1(L) cont'd]

We now look at the N+2 numbers:
ays eeey ag, L-1, Ll

We may then let

m = min {al, L-1, L+1}

and

M = max {a ees, @ L-1, L+1}

1! N’

(The key is that {al, eenr Ay, L-1, L+l} is a finite set, and for

finite sets we can determine the least and greatest members
quite directly.)

Then for each n:

Again, pictorially,

b and

-

i ]

L-1 L+1 \
m is the member of the M appears
sequence {al, ceer @y, L-1, L+1} furthest to

which appears furthest to the to the right

left

(b) Here we see what might seem like a peculiarity about

our definition of limit. Observe that our sequence is given by
1+1 2+1

a; = (-1) =1y @y = (-1) = -1 etc. That is:

VI
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 1l: Sequences and Series

[7.1.1(L) cont'd]

{an} =f1l;, =1; 1; =lp aieea}

It might appear that both 1 and -1 are limits of this sequence.
The fact is, however, that according to our definition of limit,
neither 1 nor -1 is the limit*. We will demonstrate this fact
pictorially. Suppose that we believed 1 was the limit. All we
need do is choose a neighborhood of 1 that does not include -1.

For example:

= b i cooasiteday
hd \C A ar o ov o v Sl 4V & & av v A |

-1 l-¢€ 1 1+€

Now by definition if lim a, =1 then beyond a certain term
n-+oo

each a would have to lie in (l-€, 1l+€) but this is impossible

since no matter how far out we go we find terms a, = -1 and
-1 ¢ (l-e, 1l+e). That is:

P P AP IR 2 A
r A S A S SR 4 v S S A |

i l-€ e 1+e

4
I A4~
I~
L.

It is false that all but a
finite number of terms are
in (l-e, l4e) because

ays 84, 8y gy Ayqr see
a,. 7 «e.. are all

"clustered" at -1.

Similarly, it is easy to show that -1 can't be the limit

either. Namely,

*This concept is generalized in the next exercise. What
we shall show there is that a sequence cannot possess two or
more limits.

VIi.1.3




SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 1: Sequences and Series

[7.1.1(L) cont'd]

al, a3, a5, ... are all

"clustered" here, outside of

[ PSRNy I W AP PPN, | \-
A O ST A A S A S o . 2
-1l-e -1 -1+e 1

Finally, if K is different from 1 or -1, it can't be the
limit of our sequence, since in this case we can always find an
e-neighborhood of K such that no a, is in this neighborhood.

Again, pictorially,

Case 1l: K < =1

Case 2: =1 <K < 1

Case 3: K > 1

Putting all this together we have:

For any number L, it is false that

= (-n™*

lim a_ = L, where a, rn=1,2,3,...

Inr« n

VII.1l.4
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 1l: Sequences and Series

[7.1.1(L) cont'd]

In this case, we say that {an} diverges by oscillation,
That is, it oscillates between -1 and 1. Accordingly, we never
reach the stage where every remaining term stays in the same
small neighborhood.

For those who might like to pursue this discussion further,

we call -1 and 1 limit points (or cluster points) of the seguence.

A limit point is merely a limit of an appropriate sub-
sequence of the given sequence. In our case, notice that

1l = 1lim a

on-1 while -1 = lim asrn® In plainer language, the sub-
N-—+co

N
sequence which consists of the odd numbered terms is {1,1,1,1,...}

which clearly has 1 as a limit etc.

To generalize what we have shown in (b), we point out that
if a sequence has more than one limit point it diverges (by
oscillation), since infinitely many members of the sequence
cluster about each limit point. More formally, the sequence {an}

converges if and only if it has exactly one limit point.

(c) Here we need only observe that for each n, -1 ¢ a_ < 1.

~
n
Thus, {an} is bounded but does not converge.

7.1.2 (L)

At first glance, it might seem that this exercise makes much
ado about nothing, After all, we could, for example, argue that

we learned in elementary geometry that things equal to the same

thing are equal to each other. Thus, if lim a =1L, and also
n-+oo
lim a_ = LZ' isn't it therefore obvious that Ll = Lz? The subtle
N>
point here is that it is not a priori obvious that lim a is
-0
VII.1:5




SOLUTIONS: Calculus of a Single Variable - Block VII:

Infinite Series - Unit 1:

[7.1.2(L) cont'd]

Sequences and Series

single-valued. That is, there might be more than one number that

satisfies the criterion for being a limit of the sequence. In

terms of the previous exercise, notice that one might have expected

that both 1 and -1 were limits of the sequence 1,-1,1,-1,.....

This exercise is asking us to show that this cannot happen -

that if there is a limit of a sequence,

context, we showed with respect to the

it is unique. In this

sequence 1,-1,1,-1,...

that neither 1 nor -1 was the limit but that each was a limit

(cluster) point.

At any rate, with this as motivation to show you that this

exercise is more than an illustration of how an analytic proof is

used to prove an "obvious" result, we proceed with the solution

of this exercise.

One "neat" way of establishing the result is by the indirect

proof. Namely, we will show that the assumption Ll # L

to a contradiction.

The pictorial proof is as follows.

2 leads

Assume Ll # L2. Without loss of generality, we may assume

L, > L,. Then,

2 1

(If Ll > L2,

simply reverse
2 the subscripts
in the diagram.)

We now choose an e-neighborhood of Ll which does not intersect

the e-neighborhood of L2.
is less than half the distance between

VII.1l.6

For example, € may be any number which

Ll and L2. Thus,

Fa3a F 3

e =

1

£ [

€3

E? ©£23

B |

L

€3 3

E3 ©73
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit l: Sequences and Series

[7:1,2 (L) cont'd)

Ll-e _Ll+€
Ll L2—€ L2 L2+e
Since lim a, = Ll, at most a finite number of an's can lie
n-re
outside (Ll-s, Ll+€). Hence, in particular, at most a finite

number of an's lie inside (Lz—a, L2+e). Thus, L, cannot (by

definition) be the limit, contrary to the given information. That

is:
If all but a Then it is false
finite number that all an's
L]
Of &y T Are beyond a certain
in here term are in here
¥ ¥
| ) Py Losst Lok 4t g \
N T r T rry NSl
Ly by
L2 # Ll-* lim a_ # Ly
n*e
Note that our proof hinged on the assumption that Ll # L2.
8% o Ll = L2 then the distance between Ll and L2 is 0 and in this
case € would be 0. In other words, we would not be able to find
non-intersecting neighborhoods of Ll and L.

At this point, we would like to emphasize that pictorial
proofs are more intuitive than the analytic proofs but that the

analytic proofs exist. In fact, in many cases, the analytic proof

VII.Ll.7




SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 1: Sequences and Series

[7.1.2(L) cont'd]

is an appropriate translation of the pictorial proof. For

instance, in this exercise we may proceed as follows.

The analytic counterpart of "the distance between Ll and
L," is |L; - sz (= |L, - Ly|). We may then say
Assume L, # L, then |L; - L,| > 0
Let € = £]L - L,|*. Hence € > 0
25k 24"

Since lim a = L, there exists a number N; such that
no>ow

n>N + |L-al] <e

Since lim a, " L2, there exists a number N2 such that
n-+ow

n>N,>la -L)J| <e€

© @ ®@ & 6O

la, - L] < ¢
B RN L o—a] + |an - L2| < e +e =2 =
[Ll - L2|
But |L1 - anl + la - L2| > |(Ll -a) + (a -L)l=
[Ll - L2|

Comparing @ and we have lLl - L2| > |Ll - L2|
which is the desired contradiction

©

*Actually e could be any number such that 0 < g < %JLl - L

In terms of what's happening, pictorially, we merely want to

guarantee that the e-neighborhoods of L. and L, will not intersect.

1 2

VII.1.8

Let N = max {Nl,Nz}. Then n > N + |Ll - an| < € and

2l

) S U e e =

. |

i S S s e e

L

=
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 1l: Sequences and Series

[7.1.2 (L) cont'd]

Again, relating our analytic statements to pictures, we have:

aa BN &h @5 S Bh A S BE E e

m Oam ea

M M

n > Nl -+ n > Nz #
a_ is a is
n n
in here in here
¥ ¥
{ \ [ h Y
A" 7 \ I
Ll—e Ll Ll+e LZ—E L2 L2+€
(step (3) ) (step (3) )
¥
(step @ )
n >N = max{Nl,N2)+
a_ 1is in both
;/n \
Ll—E Ll Ll+€ I_.2—E L2 L2+€

So, pictorially, the contradiction given by step C’ translates

into "the same point must be in two different places at the same

time."

7.1.3(L)

(a) There are two ways that we may establish this result.
One way would use the fact that we knew specifically the limit to
which {an} converged while the other way would use the Cauchy

criterion.

For example, suppose we know that lim a = L. It is then

n-"m
reasonable to suspect that lim |a_| = |L|.
n-+oo o
vVIii.1l.9




SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 1l: Sequences and Series

[7.1.3(L) cont'd]

To verify our conjecture, we must show that given £ > 0 we
can find N such that

n>N > |an| - |L|| < € (1)
The key lies in the fact that
*
lay| = |L]| < |a, - L (2)

Namely, we now observe that for our given € we can find N
such that n > N » |a - L| < e (since {a_} converges to L).
Hence, from (2), n > N » ‘|an| - |L|| < e; and (1) is

established.

If we use the Cauchy criterion, we have the following.

Given g > 0 there exists N such that n, m > N -

|an - am| < g (3)
However||an| - |amI’ € ]an - am[; hence, from (3) we have
n, m>N ||an| - |am[| < g,

f.{lan]} converges by the Cauchy criterion. (Notice

that we did not have to know what value lim an had to use this
=0
technique.) H

*Recall that we proved as a property of absolute values that

la - b| > ||a| - |b||. BAn easy way to remember the result is
that if a and b have opposite signs then a - b adds the magnitudes
of a and b while |a| - |b| always involves a subtraction since
|a] and |b| are non-negative. For example, if a = 5 and b = -3
then |a - b| = |5 - (-3)| = 8 while |a| - [b| =5 - |-3] =
5 -3=2,

VII.1l.10
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 1l: Sequences and Series

[7: 13 (&%) conerd]

(b) The fact that {an} need not converge merely because
{[an]} does may be verified from Exercise 7.1.1(L), part (b).

Namely, if A = (—lJn+l then we have seen that {an} diverged by
oscillation. On the other hand, if a = (—l)n+l, then |an| -
|(—l)n+l| = |+1| = 1 and lim |a_| = 1.

- I—+co n

Thus, {an} diverges while {|an|} converges,

Again, aside from providing drill in the use of the defini-
tion of limits, this exercise emphasizes, hopefully, the differ-
ence between boundedness and convergence. That is, convergence
is "stronger than" boundedness in the sense that convergent

sequences are bounded but bounded sequences need not converge.

(c) Since lim |an[ = 0, given € > 0 we can find N such that
N->co
n>N->|la| -0| <e. But 1|an| - 0| = lan[! = |anl = la, - 0|

.n >N~ |a - 0] < e

"lima_ =0
" ¥l
n->o

Thus, in this particular case, the convergence of {]anl}

guarantees the convergence of {an}.

Tsdad

(We assume in this exercise that we already know that

lim % = 0 and that the limit of a sum equals the sum of the
n-—+ow

limits, etc.)

VIE.1.11




SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 1: Sequences and Series

[7.1.4 cont'd]

2+ 1] Lim2+7 lim X
(a) 1lim [ggjg] = lim 2 w TR Lides i 2+0_2
n+o e |5 - = lim 5 - 6 lim~ 2 -0 5
n n-«e N> n
2+ L 2lim£+7limi2-
; 2n+7 g n n+e n+® n
(by lim [ ] = lim =
nve [5n2-6] e |5 - -73 5 -6 lim =
n n*® n
. ; 1 1 e, 1
but 1lim = 1lim (— « =) = (llm —)(llm —) = (0)(0) =0
© lim Zn;?] _ 2;0)_ ;(g)w) _ g= 0
n+e | 5n -6
2 2+ 5
. 2n“ + 7| _ n = 2 _ o .
(c) 1lim [“33:6‘] lim 5 | =5=°or {an} diverges.
n-rowo n-+o© S a
n 2
n
2n2 i
(That is, e T increases without bound as n gets arbitrarily
large.)
1 +1=2, if n is even
(@ 1+ (-1)" =
l-1=0, if n is odd

. {an]’ = {0,2,0,2,0,2,...}

f,{an} diverges by oscillation (0 and 2 are limit points)

Vil.l.12
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SOLUTIONS: Calculus of a Single Variable - Block VII:

Infinite Series - Unit 1l: Sequences and Series

[7.1.4 cont'd]

n n n
(e) lim [I_LLZU—] = lim [J:+ (=1} ] = limt+1im &L 04+ 0=0
n n n n n
n-+w n--co n-co n-+ow
(-1)"
(The convergence of = is an example of Ex. 7.1.3(L), part (c).)

7.1,5(L)
The main aim here 1is to make sure that we are not con-

(a)

o0
fusing lim a, with 2: a- Namely, in part (a) of Ex. 7.1.4, we
n-+o© n=1

E13

1 a

Il P PE BE S E|E e

|

saw that

lim
n-+o«

2n+7 _
5n-6

=2
5

(=]
Loosely speaking, this means that in the sum 2 %%;%-the
n=1
terms "behave like" % when n is sufficiently large. That is,
letting n = 1,2,3, etc. we have
[==]
2n+7 _ 2+7 2(2)+7 | 2(3)+7 [ 2(4)+7 % 2(100)+7
5n-6 5=~6 5(2)-6 5(3)-6 5(4)-6 e 5(100) -6 e
=1
vy 3 Dhog 28 4 15 207
= -9 + i + 5 +l4+...+m....
h .
These terms begin to
resemble %
o0
" 2 : 2n+‘? 207 L1} 2I'l l12 n
. . n_6f\, 9+.l.+m'+[§+av-+ g +‘_.] = W

Vii.l.1l3
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- Unit 1: Sequences and Series

Infinite Series

[7.1.5(L) cont'd]

oo

2: a_ diverges.
n=1 0

More formally, we are reinforcing the idea that lim a, # 0~

N>

(b) Here the danger is confusing "lim a  #0~ > a,

diverges" with "lim a =0
I->co

o
that Z a may diverge eve
n=1

In this example, it is

lim a
IN—>co

On the other hand, since fn

o0

n=1 n=1

In this case, our kth

n—»oo

> 2: a, converges",

n though lim a, = 0.

n=1

The key point is

n-co
clear that
= lim En(n—;:—l) =fn1l=0
-
(2%3) = In(n+l) - fn n, we have

E a = i ﬂn(-n—;—l) = ; [fn(n+l) - 4n n]

partial sum is given by

K
s, = r; [Mn(n+l) - fn n)

and this is the "telescopin

k
(i.e., 2. [fn(n+l) - fn n]
n=1

+ [In k - In(k-1)

g sum" fn(k+l) - fn 1

= In(k+1)

= [in 2 - fn1l] + [n 3 - fn 2] + ...

] + [In(k+l) - fn k])

VIi.1.1l%
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 1: Sequences and Series

[7.1.5(L) cont'd]

Il
8

. }E: m(2L) = 1im s, = lim (4n(k+D)] = o,
n=1 n k

k2o ke

:E: En(Eﬁi) diverges

n=1

even though lim [.En (rﬂ)] = 0.

n-—r< a

(a) Here we have a geometric series, namely

22} %o 4 (B) + one

In this type of example recall that we compute s, and

the ratio is 2 here). We obtain ’
=5t @) o B
0= (B ) G
N R
= 3- ()

ViIIal, 15

> :
=S since
n ( &



SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 1l: Sequences and Series

[T+1:6 cont"d]

‘—I
}_l.
=]
0]
Il
N
I
w
=
}-l
8
—_—
(RIEN
——
Il
N
1
o
I
[N

=
||tV18
'_l
—
W N
S—
=
1
[a]
[
=
1]
1
38 ]

(b) Here we have a telescoping sum. Namely,

K
L A O DN . O 8 P T 1
Sk = :E:(n n+1) = (1 2) + (3 3)'*(? Z) Teeo¥ (E
n=1
lims, =1-1lim > =1-0=1
k K+1

(c) The sequence {an} where a, = (—l)n+l diverges by

oscillation. (Recall that { (-1)™*!} = {1,-1,1,-1,...}.) 1In

o0

particular, lim (—1)n+l # 0., Hence, 2: (—l)n+1 diverges.
N> n= l

(In fact our sequence of partial sums here is

s, = 1

s, = 1+ (-1) =0

s3 = 8, +1=1

Sq = 83 % (-=1) =1+ (-1) =0

ViX.).l1l6
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SOLUTIONS:
Infinite Series - Unit 1:

[7.1.6 cont'd]

In other words {sn} =(,0,1,0,1,0,...} which diverges by

oscillation.)

7.1.7(L)

This is another illustration of geometric series but in a

somewhat disguised form. For example,

3 -6

0.513513513... 513(10 ° + 10

513(1 + 1073

513 | —A—
|- 10

_ .513
.999

999 111 ~ 37

An alternative method which mimics our usual approach for

geometric series is:

Let
N:= 05135135135
Hence,
1000 N = 513.513513513....
Subtracting (1) from (2) yields
999 N = 513.0000...
N = g%% = l% (A quick check, by long division,

verifies that 19
0,513513513., «...s)

VII.1l.17
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 1l: Sequences and Series

1018

Again let

N = 0.5131313...

Since the repeating part is 13, we observe, for example, that

1000 N = 513,131313...

while
10 N = 5.131313...
B _ 508 _ 254
990N—508 orN——W———‘m
"Alternatively,
N =0.5131313... = 0.5 + .013 + .00013 + .0000013 +
=%+ 13(10°3 + 10 + 1077 + ...
- % + .013[1 + 1072 +107% + ...]
ok g A3 1
2 1000 1 - :Lo'2
=1, 13 [_1_
T2 1000 [.99
-1, 13 _ 508
T2 990 90
VII.1l.18
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SOLUTIONS: Calculus of a Single variable - Block VII: Infintie
Series

UNIT 2: Positive Series

T1.2.1 (L)

(a) This exercise affords us an excellent illustration of

what we mean when we say that convergence depends on the "tail end"

of the series. That is, if we look at the first "few" terms of

[ o]

n
Z 1000 , we obtain

n!
n=1
1000 " 1,000,000 " 1,0005000,000 & 1,000,020,000,000 i
11! 21! ! 1 AR

It appears that our terms are quite large and that they get
even larger as n increases. Yet, this is not really the case - as

the ratio test will show.

n
To apply the ratio test we let By = 103? , whence a
an+1 _ 1000™*1 1000 _ (1000)®*! ni
THen = = (m+1)! = nbf ~ n
L (n+1) ! (1000)
_ oogy™  ny
(lOOO)n (n+1)!
1000
o Y (1)
qh+l
If we now let p = lim = (1) tells us that p = 0 .
n-oo n
2 n
Since p <1 we have, by the ratio test, that il%ggl_

n=1
converges.

*Recall that (n+1)!
n! n!

(n+l1) (n) (n-1) ... (2) (1) = (n+l) (n!). Hence

1
(n+1)! (n+l)n!  n+l :

VII.2.1

_ 1000™7
n+l = (n+l)!




SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 2: Positive Series

[7.2.1 (L) cont'd]

We would now like to make the following observations:

(1) Equation (1) shows us that the terms in our series

ah * 1 1000
increase as long as n is less than 1,000 . That is, =
a, n
. ay * 1 1000
indicates that C > A i—5 -‘Ei:__ > 1 &« e 9 l «<——= n g 999
1000"

Thus, the first 999 terms in have the property that

n+l
n=1
they are not only large but also that each term exceeds the one(s)

that came before. After this, the terms decrease in size (even
though the terms will remain large for quite some time) rapidly

enough so that the series converges. In other words

oo

(1000)™

=1 converges but the sum to which it converges is quite

n=1

enormous.

(2) From another point of view, what we are saying is that,

for large values of n, n! "dwarfs" 1000™. That is, since the con-

n
vergence onan implies that lim a_ = 0, we have that lim ——-—10?1? = O,

but more to the point the limit approaches 0 fast enough so that
n
2:£&2%$l— converges. (Recall that lim a, = 0 is not sufficient
- n-—-o

to guarantee that 2: a, converges.)
n=1

(3) 1000 was chosen for dramatic appeal. Aside from that,

any number would work as well. That is, the ratio test will

n
show that E gT converges for any real number b.
n=1

VIE;242
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 2: Positive Series

[7.2.1 (L) cont'd]

The magnitide of the sum is affected by the choice of b, but not

the fact that the series converges.

(b) Since (n + 1)!= (n + 1)n!, it is quite natural to think
of the ratio test for any series that involves factorials. In

this case, we have

n! _ (n + 1)!
n (n+1) (L)

(remember that in forming

a 1 We replace n by n+l wherever n appears in an).
h+l (n+1) ! n!
Hence —— = n+i 5 —_
n (n+1) n

(n+1) ! n"
n+l

(n+1) n! .
_ (+l)r . n"
n! (n+l)n+l
.
= (n+l)
(n+l)n+l
_ n
(n+1)"
= (77 . (1)
Using (1), we have:
n
p= lim (=2-) 5 (2)
n-co n+l
VIL. 2,3




SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 2: Positive Series

[7.2.1 (L) cont'd]

At first glance, we might be tempted to conclude from (2)
[++]
that p = 1, arguing tnat H%T -1l as n > ® and that 1 =1 . We
hasten to caution against this approach.
In fact, we chose this problem to re-emphasize a previous
result. Namely,

lim (1 + =)" =@ " (3)

n—+w«

(We derived this result in our supplementary notes during the

discussion of the natural logarithm.)
In any event, (3) can be incorporated into (2) as follows:

Dividing numerator and denominator by n, shows us that

n__ 1
n+l 1 +'1
n
(B0 ( 1 . k£ _ 1
n+1 1 1l,n IR - -
1+ = (1 + ) (1 + 2
Hence:
3 . l
lim B = Lim| —r—
ey [ BT | T | @ e T
lim 1
- n+W i
lim [(1 + %)n]
n-rc
=1
e
and since e = 2.7+, % <1l
- 2 - L < 1
&sFrom (2), p =g . )
1
~.By the ratio test E Eﬁ converges.
n
n=0
VII.2.4
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 2: Positive Series

[7.2.1 (L) cont'd]

oo

(c) The most general result concerning z l? is obtained

n=1
from the integral test (see the note at the end of this example).
o 0
Namely, we compare f }; f . Since
n— x 1
1 -p+1 .
_p p+1 X p + C, if p# 1
./3: dx =
iIn x+ Cif p=1

two cases are suggested.

Case 1l:
p=1

Then: E L5=§-i»andj’x_pdx=_/.x_]‘dx=./'§§-=!nm—.€n.'L
n=1 " n=1 1 1 1

Since f% diverges so does E % i
n=1

I

In other words, from Case 1 we conclude z l?—diverges if p =
n=1 n
Case 2:
p#1
b b
-pP _ 1 -P+1 R ! =fFL _ 1 1
Then f X dx = = X = :p_'*‘-]_-— [b l} = I—_—p [—'—'—p_l
1 1 2

VITLe2s




SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 2: Positive Series

[7.2.1 (L) cont'd]

-P . [ 3 1
.‘.fx dx = lim 'T“(—"__"l)]
-+ b | 1~p B° 1
1 [ 1
1= 1 14 p#™t

b-H:n

The key now lies in the fact that if p > 1, 1lim b*™1 = ® or
b=+
1 =0
lim p*71
b>w

s -p 1 _ . g ¥ SO
e p > 1 - f % dx = T8 [0 l] = and since -1 is a
1 o
finite (positive) number,.lﬂsz dx converges if p > 1 .
1
i
/ Hence, the integral test tells us that if »> 1, E =

o

n=1
converges.

Oon the other hand, if p < 1, then 1lim b”~! = 0 since we then
b—fm
get a "large" number to a negative power, meaning that the denom-

inator is large. At any rate, then, if o <1, equation (1) yields

-p 1
d/.x dx = 15 [ - 1] = e .
1

o2]

Hence E l? diverges if p <1 .

n=1 R

Putting the results of Case 1 and Case 2 together, we have:

oo

E i; converges if p > 1, and diverges if »p <1 .

n=1

In particular, since 3 > 1, E l§ converges
n
n=1

VII.2.6
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 2: Positive Series

[7.2.1 (L) cont'd]

Note:

This exercise offers us a good illustration of when the ratio

test is inconclusive. Namely, if we were to apply the ratio test to

E :Lg we would have:
I

a. = = a £
= R, -
n n3 n+1l (n+l)3
- dn+l _ n3 (2)
n (n+l)3

a 3

But lim 2L - lim.———E—§ = 1 . Notice that (—%I 351 as
n-w n n-»ew (n+l) X

n » « the difficulty in part (b) stemmed from the fact that our

exponent was not a constant but rather n itself.)

a a
Notice from (2) that n+l 1 for each n; yet lim n+l _ L
n n-o n
n+l

<1 for each n. Since p = 1, the

That is, » = 1 even though
n

ratio test fails.

In fact, if we use the ratio test for E —%, we would obtain

a

g+l = nil’ whence p again equals 1 even though nﬁl < 1 for each n.
n
= 2N 3
In other words, 2 = diverges and Z =3 converges, yet o =1
n
n=1 n=1
in both cases. This offers conclusive proof that p = 1 allows us

to make no definite conclusion concerning Converge:ince.

(d) The main aim of this part is to emphasize the meaning of

p > 1 in the result of (c). Namely, 1.000001 > 1; hence,

nl.OOOéOL converges by part (c). Yet n and nl'000001 seem

n=
VII.2.7
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Series - Unit 2: Positive Series

[7.2.1 (L) cont'd]

"pretty much" equal for "reasonable" values of n. The point, however,

is that for sufficiently large values of n, nt+000001 is much larger

than n*; and convergence depends on what is happening for sufficiently"

large values of n.

(e) Here we have a good place to apply the comparison test.

The integral test is awkward because it is at best difficult to

; ; .2
evaluate.lpgia-é—gi . The ratio is awkward because of lim E&E_éﬂill
X n=+w sin'n

The key beh%nd the comparison test is that sinzn <1l for all
sin“n 1

n, hence 0 § == <=3 -
n n

Since, from part (c), E ;lg converges, it follows from the
n

comparison test that

© D
sin n
2, o
n
n=1
also converges.
7.2.2
_2n + 7 . _ 2 :?:
(a) Let a, = e Then iiﬂ a, = 3 # 0 . Hence a,
) n=1
(= 22_1_1) diverges since lim a_ # 0 . In other words, since
3n + 2 El fim, B
n=

the n'th term does not get arbitrarily small in magnitude, the series

diverges.

*For example, let m = 1010,000,000,000 oo ' 1.000001
_ ,1410,000,000,000,1.000001 et
= (10 )
_ 1010,000010,000
- 110,000 ;,10,000,000,000
= 1010,000 ,
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Calculus of a Single Variable - Block VII: Infinite
Series - Unit 2: Positive Series

[7.2.2 cont'd]

(b)
make

1
in n
forn > 0

(We start with n = 2 since fn 1 = 0 and this would
infinite.) The key here lies in the fact that fn n <n

. Since Inn <n, it follows that:

1 N A
in n n )
= 1 C 1
Then since E E-dlverges so also does T
n=2 n=2
=]
(c) We compare -——L——-with f—-—gl{— Letting u = In X
P n fn n X fn x ° g 4
n=2 2
dx _
where == du, we see that
oo oo
f_...__g_’i= dU _ gp o - n(fn 2) = » .
xfn x u
2 in 2
%2 [22]
Since ——95--diver es, the integral test tells us that S
X In x ge=i g n fn n
2 n=2
also diverges.
|
(d) We use the ratio test with a_ = lE_i_%l; . Then,
n! 3
& _f{n + 3)1
n+1 (e 4 13 3n-l-l
Therefore,
h#l _ _ (n 4+ 3)!  , (n+2)!
%n (n + 1)! 3n+l nt 3
- (n+ 3)! n! Bn
@+ 1)1 3T (4 2)1
VII.2.9
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[7.2.2 cont'd]

(n + 3) () (3

= l(n + 3)
“ 3'n ¥ 1
qh+1 1 n + 3 1
sep= 11im =-3-11m(n+l)=-5<1 .
n-oo n n-+rco

: = !

Since p <1, E i%Ti—élé converges by the ratio test.
3

n=1

1:2:3 (L)

(a) This exercise, hopefully, will show us how the comparison
test often comes up in theoretical applications, and at the same
time it will teach us how to get a feeling for what convergence
means. The main intuitive idea is that if a converges, the

n=1
terms a_, themselves must approach zero "fast enough." Then, since

the square of a positive number which is less than 1 is less than
the number itself, it follows that if the an's approach zero suffi-

ciently fast, then so also do the anz's .

More mathematically, we argue as follows:

o0

Since lim a = 0 (since E a converges) , it follows that we can

find N such that n > N implies 0 < a < 1 . If we now multiply
our inequality through by a,, we obtain:
0 sa? <a (1)
¥ S n ’
VII.2.10
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite

Series - Unit 2: Positive Series

[7.2.3 (L) cont'd]

o0

Then since z a, converges, equation (1) allows us to conclude,

n=1 o
by the comparison test, that E an2 also converges. (Notice

n=1
here a more general use of the comparison test. Namely we have

that an2 <a, for n > N rather than for all n. In other words,

we are again emphasizing that convergence depends only on what

is happening "sufficiently far out" in the series.)

(b) Here we wish to emphasize, as usual, the delicacy of
our various results, and how important it is to remember the

proper "order" of our information.

In particular, recall that we have already seen that %
1 1,2

diverges while E 'lf converges. Noting that = = (ﬁ) we see that

n

n

l o0

if we let 8y = R E a, is a positive divergent series while
n=1

oo

2
E a = converges.

n=1

Thus, the convergence,of 5 ,an2 need not imply the convergence

of a_.*
n

From a more intuitive point of view, what we are saying is
that since an2 + 0 more rapidly than does a . the fact that an2

goes to zero "fast enough" is no guarantee that a  does. Thus

D 2,2

I

may converge while E a, doesn't.

*Certainly E a, may converge if:z an2 does. For example, 2 LE
n

converges and so does E ;3 . The point is that it is not an
n

inescapable conclusion that E a, converges merely because E a
converges.
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[7.2.3 (L) cont'd]

Notice that by understanding what is happening, we not only
get a hint as to how to set up formal proofs, but we also find
that we do not have to rely on memory to keep the subtleties

straightened out.

7.2.4 (L)

The main part of this learning exercise is part (b). Part (a)
simply presents a computational observation that is essential in
proving part (b), while part (c) is simply a specific illustration
of the result proved in part (k). From a learning point of view,
what we want to emphasize is that our three tests for positive
series (comparison, ratio, and integral) which are stressed in
the text are by no means the only available tests. Rather, they
are the most common (perhaps because they are the most elementary and
least computational). There are many other tests, not described
in our course, which are employed in more subtle series. All we
wish to do in this exercise is give some inkling as to how other
tests are proved and to present the reminder that other tests are

often useful in more advanced examples.

1 1 1
(a) Ml taz Y-t
consists of n terms (namel . i L ), each of which
t Yr I"H‘i' n+_2-.r LRI n+£ ’

is at least as great as %ﬁ (since %H has the greatest denominator

of our n fractions).

Hence,
E%T + H%f + .00+ 2i »Lén + %H + oeee + %H , . (1)
n terms
But, %H + ...+ %ﬁ = n(%ﬁ) = % - (2)
n térms
ViI.2.12
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Series - Unit 2: Positive Series

[7.2.4 (L) cont'd]

Combining (1) and (2) we have that

> % ) (3)

o =
5

1 i
Ll Tarz toeee t

(By the way, (3) offers us another proof that % diverges.
n=1
Namely, we group the terms in our series as follows:

1 1,1 1 S I (. 1,1 1 1 1
Lrar @3+ + Ergry+ *Grpr*ratnts
1 1 3 1 1 1
+ = 4+ =+ =) + ... + ( + t cee ¥ —m—) + ...
14 ~ 15 ' 16 D41 oty o A L o0

and each of the sets of parentheses represents a number at least
as great as %—by (3). In other words we can keep adding on "at
least 7" as many times as we desire just by continuing the process
long enough. Notice that the number of terms we must take to get
"at least %ﬂ increases quite drastically as we get out further in
the series.)

(b) Here we will use (a) to construct another test for con-
vergence (divergence). Notice that the given information says
more than that a, diverges. Rather we are told that a rather

n=
"thin" sub-series is enough to conclude that the series diverges.

That is, we need only look at the sum:

a2 + a4 + a8 + a16 + a32 + a64 + e
to determine that

al + a2 + a3 + a

diverges.

VIL.2.13
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[7.2.4 (L) cont'd]

The conclusion that we wish to arrive at is that under such
"spectacular" conditions, dividing each term by its position in

the sequence (and for terms way out in the sequence this makes a
4100
100
not enough of a reduction to make the resulting series converge.

big difference; for example, a,90 is replaced by etc.) is

In other words, under the conditions of this exercise, we

are asklng to show that not only does a,  diverge but so also
does E — e

Our proof proceeds as follows:

We group the terms of
a a a
2 3 4
al+“"'2—+-§+-—4+ " s
to form
a a a a a a a
2 3 4 5 6 7 8
a; + —5 + (-.§ + _I) + (‘§ W i e _g) = JERE. (5)

Notice that (5) is modelled after the format of (4). Now,

since ay > a, we nave:

a a a a4 1 a 1z
(3+) >3+ =3G+7 >33 . (6)
Since a; 2 0, 5 5
(85 & —2) % — (6')
1 2 T 2 -
Similarly, ag > ag > a5 » ag >
a a a a
5 6 7 8 ) [ TR (R TR
tgptgt gt g *agizrgrqgryg 2 g8 ¢

(6")
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[7.2.4 (L) cont'd]

Putting (6), (6') and (6") into (5), we obtain:
a a a a a a a a a
2 . %3 _ R B 5.% % . %
ag+t —+—3+...= (al + 2) + ( 3+ 4) 4 (_§ tZt =+ 8) +
a a a
2 4 8
Fom b g i
That is:
= % 1 1 O
E -5 > E(a2 + ay + ag + ce. ) = > E azk 5 (7)
n=1 k=1
In any event, since a, +a, +ag + ... diverges so does
1
-é—(a2 +a, +ag+t ... ), and the result follows.
(c) To apply (b) here we observe that E E’%ﬁ_ﬁ has the form
a
E : n . 1 : . 1 1
— 1if a_ = . in which case a = = — ¥
n n /n n 2k o 2k k ¢gn 2
= 1 = L
Hence by (b) E R R diverges as soon as = ]
5 =2 i k=2
: 1 _ 1 1
diverges. But E i 2 " 75 3 E % -
k=2 k=2
Since . & diverges, so does 1 vy Therefore
K il mn 2 K °
k=2 k=2
- S diverges
n fnn G

n=2
While we obtained the same result in Exercise 7.2.2 (c), our
aim here was to apply a new test even though we already knew the

correct answer.
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[7.2.4 (L) cont'd]

As a final aside, let's make sure it's clear that the

+ + = e
3.4 a

8

divergence of Z a, is not enough to guarantee that a,
n=1

also diverges.

o0

For example, let a, = % . Then, as we know z a, diverges;

n=l
but in this case

which is the convergent geometric series (%) =1

T2

Actually this is essentially a rewording of 7.2.4 (L), part

(a). Our aim here is to help you reinforce the ideas of that
exercise.

Our procedure is to write:
a1 + a2 + a3 + a4 + see =
a; + a, + (a3 - a4) + (a5 + ag + ag + as) = (1)

Now since aj; > a

4!
(a3 -+ a4) 5 2a4 (2)
and since ag > ag 3 a; » ag,

+ a, + a

Il

(aS - ag + a, + aBJ > a, + a

8 4a . (3)

8
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[7.2.5 cont'd]

Putting (2) and (3) into (1), we have

aq -+ a, + as + a, TN a; - a, + 2a4 + 4a8 +
(4)
|
Then since a; > 5 (4) becomes
= 1
a >3 a3 +a, + 2a4 + 4aB £ e
n=1
o0
e 2 a, > 2, + 2a2 + 4a4 -+ BaB C A (5)
n=

fes]

From (5) we conclude that 2 E a, diverges since we compare
n=1

it with the given divergent series a + 4a

[e2]
Je E a, diverges.

+ 8a + L

+ 2a 4 8

A 2

7246 (L)

(a) This test is known as the root test and has application
where our other tests fail (see part (b)). Aside from its practical
value, we include it as an exercise because its proof closely paral-
lels the proof of the ratio test and, as a result, we have another

opportunity to "practice" the proof.

The key idea is as follows:

If L <1, we can choose ¢ > 0 such that L + ¢ < 1 . That is:
¢ e -
L-¢ L IL+€ 1
VIZ.Z2:17
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[7.2.6 (L) cont'd]

Hence by definition of lim nJan = L, we have that for the given
n-+o

€ we can find N such that

n>N+n‘/a§<L+€

That is

n >N ~» an < (L + &)

But since E(L +¢e)? is a geometric series with positive
2]

ratio L + € < 1, 2: (L + €)™ converges. Hence, by the compari-
n=N+1

son test E a, also converges. Finally since adding on a

finite number of finite terms does not affect convergence, it
(4]
follows that Z a, converges.
n=1
On the other hand, if L > 1 we choose € > 0 so that

L

LB

- N e o e

E b e

E® EB3 €12
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[7.2.6 (L) cont'd]

. # _
Then, there exists N such that n > N » {an > L e > 1

son >N ->a > (L - e) > 1, and now 2 :an diverges (by the com-
parison test) since (L - )8 diverges.

n+l It . . , n+l
= fuburtboery n = it
(b) Here a, (3n and it follows immediately that /an

3n
- a4 n+l, . 1
..llm nf‘ an = llm (3T) = § < 1 i
n-co n-=+w

© n
Hence, from (a), E (%%i) converges (since L = % < 1)

n=1

Notice that the ratio test here would have yielded:

- (n+l n 5 i n+2 ntl o= (n+2)n+l
n 3n 4 n+1 3(n+1) 3n+l(n+ljn+l
. 2n+l _ (n+2)* [3”(11)“
e I T S
(n+2)n+l nn
3 (n+l)2n+l
a

in which case, determining lim
n-+« n

can be a bit messy.

In other words, (b) is an extreme illustration of how the
root test can be much more palatable than the ratio test.

Telad

We use the root test to obtain:

VII.2.19
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Series - Unit 2: Positive Series
[7.2.7 cont'd]
2
n b
h 7 (n+1)
n n2 n n2 % n »
« I = d e = e
2 /an (n+l (n+1) (n+l)
Y N S (see, e.g., solution of Exercise 7.2.1 (L),
1 ° part (b))
(1 + =)
n
L = lim {}an= 1 n=-if<l
nre lim (1 + %)
n-+m
. (—E—) converges
e n+l *
n=1
T:28 (L)
(a) If Ean converges, let S, = a; e
E ;a =8 = lim s_ .
n fve B
Then

Now let tn = cCcay; t*t .. + can i

)

I

E:can lim tn = lim c(al + Las ¥ a,

-+

Infinite

a_ . Then

E e e e

-y e e

Bl S e e

R 0 e e

E®» &3 12

n-—oo n-+oo n-—>o
= cS
¢ § :can converges.
VII.2.20
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[7.2.8 (L) cont'd]

If E ;an diverges, then § :an = «, That is, a positive seri

either converges or else diverges to infinity.

If we again let t, = ca; +

... + ca_ we have:
1 n

E ca, 6 = lim tn = 1lim c(al + ... + an) = ¢ lim (al + ee. + an)
n--o n-—+o n-+ow
n=1
Since li& (al + ... t aﬁ = ®, C %&g (al s anJ =1,
depending on whether ¢ <0 or ¢ > 0. (If ¢ = 0, c(al + c.. + an)

for all n; whenceE :can =: Qi)

(b) The key
as a corollary of

n; then -a_ 2> 0 .
n

but Z (-1) (-a_)
n=1

idea, now, is that we can study negative series
positive series. Namely suppose a < 0 for all
Using (a) with ¢ = -1 we have that

-a converges «—— E '(-1)(—an) converges
n=1

DI

n=1

Thus we may determine the convergenfe of the negative series

z :an by studying the positive series

For example,

-a -
n

since E li converges so also does E :-55, etc.
n n

In the next block we will consider the situation of a series

which is neither positive nor negative. That is, we will conside

series, some of whose terms are positive and some negative.

vVIiI.2.21
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite

Series - Unit 2: Positive Series
7.2.9 (L)
. 1 1 !
Since 1 - = % 1, both n(l - H) and n(l - —?) are

n
examples of negative series. The main aim of this exercise is to

emphasize that despite the number of tests for convergence at our
disposal, we must often actually compute the limit of the sequence

of partial sums in order to see whether the series converges. At

any rate,
(a) X 1, U nel
D md - =
n=2 n=2
= [fn(n=1) - £n n]
n=2

but this is a telescoping sum. Namely,

[e2]

Z tn(1-3)

n=2

[fn 1 - 2&n 2] + [fn 2 - fn 3] + [fn 3 - fn 4] + ...

(That is, let s, = [fn 1 - 4n 2] + ... + [fn(n-1) - £n n] then
everything except fn 1 and -fn n "cancel" since each term appears

twice but with opposite signs. Therefore:

sn = fn 1l - fnn
=0-4Inn
= —jnn
S lim s = lim [=4n n] = == )
n-rw n n—+o
VII.2.22
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 2: Positive Series

[7.2.9 (L) cont'd]

In other words, even though lim [&n(l - %)] = 0 the convergence

n-—+o
(2]

is not "rapid enough" to cause z En(l-—%} to converge.
n=2

(b) Here we must be a bit more careful in keeping track of
terms than we were in (a), but the idea is basically the same.
Namely,

00 20 2
1 n - 1
in(l-=) = n (——=—)
M S R M e
n=2 n=
- Z (tn(n® - 1) - fn n?]
n=2

=Z [fn(n + 1) (n - 1) - 2 gn n]

n=2
=E'{£n(n+ 1) + gn(n - 1) - 2 4n n}
n=2 (1)

The computational key behind simplifying (1) lies in the
observation that except for the first term and the last two terms

k
in the partial sum E {fn(n + 1) + 4n(n - 1) - 2 £n n} all other

n=2
terms are completely cancelled. (For example, &n 4 occurs when we

loock at fn(n + 1) with n = 3 ., It also occurs when we look at
In(n = 1) with n =5 . On the other hand with n = 4 we obtain

-2 In 4 which cancels our two fn 4's .)

VIii.,2.23
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[7.2.9 (L) cont'd]

In more detail,

i{!n(n + 1) + In(n - 1)
n=

More generally,
K

:E:'{!n(n + 1) + fn(n -

n=2

Hence,

I

Calculus of a Single Variable - Block VII:

2: Positive

- 2 fn n} =

1) - 2 in n}

= :?: {fn(n +

1im [!n(l +

k+>o
0 ~dn 2

- !ﬂ 2 -

VII.2.24

Infinite
Series '

40T+ 41 - 2 gn 2
+ 4n7 + In 2 - 241 3
+ in5 4+ In3 - 2417 4
+ Ln6 4 4n T - 24T 5
+0n 7 + 4n5 - 247 6
+In 8 + dn6 - 2 fn 7

n 8 = €n 7 - &n 2

n(k + 1) - &n k - fn 2

= m®&h) - an 2

= in(l + %) - on 2

1) + tn(n - 1) = 2 £4n n}

3) - tn 2}

L
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[7.2.9 (L) cont'd]

Thus E In(1l - lf) converges.
n

(The more alert among us may be a bit dismayed at first glance about

our results. Namely 1 - % <l - 12, yet E In(l - —) diverges

while E :En(l - ——) converges. ThlS does not contradict the com-
n
parison test, since fn(l-H) and fn(l - lf) are both negative.
n
In other words the fact that n(l = %) <fn(l - éf) means that

n
the magnitude of fn(l - i7) is less than that of fn(l - %). In
n

other words, for negative numbers, the smaller the magnitude the

larger the number., In still other words, £n(l - —7) is closer

to zero than is In(l - —) .)
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series

UNIT 3: Absolute Convergence

, B_l)n+l]2

a " = =

n
(v/a) 2

o Bl o

But we already know that E:%—diverges.

E an2 diverges.
o (—l)n+l

on the other hand 2,
n=1 yn

whose terms are non-increasing in magnitude, and the terms tend

is an alternating series

to 0 in the limit. Thus, in line with our theorem concerning
e (_l)n+l ©
alternating series, 2, —{ =

n_l

n=1

Therefore z:anz diverges while E:an converges. According
to Ex. 7.2.3, this couldn't happen if Z:an were a positive

series.

Va3 s {Li)

Our purpose here is to indicate how we use the tests for
positive series to test a non-positive series for absolute

convergence.
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Infinite Series - Unit 3: Absolute Convergence

[7.3.3 (L) cont'd]

In our present example we note that E: (-2)n(n+l)(c-1)n
n=0
need not be a positive series. For example if ¢ > 1 then each

factor is positive except (-2)™ which alternates in sign. 1In
other words, if c¢ > 1, E:(~2)n(n+l)(c-l)n is an alternating

series.
In any event, to study the absolute convergence of

E: (-2)n(n+l)(c-l)n we study the convergence of the positive
n=0

oo

series ), | (-2)™(n+1) (c-1)"
n=0

Now,

| (=2)% (n+1) (c-1)"| = | (-2)7] [n+1] | (c-1)P|

]

2™ (n+1) |c-1|"

oo
Hence, we must investigate for what values of c, ‘Z:Zn(n+l)|c—1|n
n=0
converges. The most natural test is the ratio test. We have
a, = 2" (n+1) [c-1|"
a = 2n+l(n+2)]c—l|n+l
n+l
+
%o+ _ 2™ (ne2) o1 ™ | 2(m42) [c-1]
. * o +
2 2%(n+1) |c-1|® il
‘= lim n*L _ lim[}(aig)lc-lﬂ = 2|c-1] 1im B2 - 3lc-1] (1)
" nse Oy e n+1l e n+l
VII.3.2
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 3:

[7.3.3(L) cont'd]

Absolute Convergence

But for convergence we must have p < 1. (We must check

the case p = 1 separately since the ratio test fails if p = 1.)

Letting p < 1 in (1) yields

2|e-1| <1

. I
..|C—l| < 3

-1 1
..-§-< c-1 < 5

Hence
o0
n=0

Checking the "end points" c

p = 1) we find

(=]

> 12" @) 3 - 1

=0

and c

N =

1l

VII.3.3

EE: l(-Z)n(n+l)(c—l)n] converges when % 2. e% %

= % (which corresponds to

sy L »
> Tm @

n=0

i (-2 D] )
n=0

i(lﬁml)
n=0
Z”: (n+1)

n=0
o0




SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 3: Absolute Convergence

[7.3.3(L) cont'd]
.'.:E:](-Z)n(n+l)(c-l)n] diverges when c = %
n=0

Similarly when c = %, we obtain

o) o n L2 n
D1 @) (D7 = Y2 ) G- = )12 ) )
n=0 n=0 n=0

o n 0o
YD @] = 3D m|
n=0 n=0

I
5
+
e

,',:E:|(—2)n(n+l)(c—l)n| diverges when c = %

n=0

f.:i:|(-2)n(n+l)(c-l)n| converges <+ %-< c < %
n=0

.'.Z(-Z)n(nﬂ) (c-1)" converges absolutely ++ %— & g & -g-
n=0

VII.3.4
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 3: Absolute Convergence

7.3.4

(a) We study the convergence of E: [ncn[
n=1

oo 20 o2
Now : Z|ncn| = Z|n| |cn| = En|c{n
n=1 n

n=1 =1

We then invoke the ratio test with B = n|c|n, a =

n+l
(n+l)lc[n+l. Then:
Cn+l _ (n+l)]c]n+l _ n+l,
a n T n el
n n|c|
qn+l n+1
o = lim = Lim (BL)|c| = |
N> an n-+oo 1

p<l++|c|<l

p =1+ |c| =1
p> 1< |c|] >1
o0 converges if |c| < 1
n
2 nlel
=1 diverges if |c| > 1
The doubtful case (p = 1) occurs when |cl = 1. In this case
o o
Zn|c|n = Zn = w
n=1 n=1
= converges if |c| < 1
2nlel”
n=1 diverges if |c| > 1

VII.3.5




SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 3: Absolute Convergence

[7.3.4 cont'd]

oo
Hence 2, nc” converges absolutely <- |e] <1« -] < ¢ <
n=1

(b) We look at 2. |ntc™| = X nt|c|®
n=0 n=0
Elhak

n!lc|n, a4y = (ntl)!

Then: a
n

Lo
Il

n+l
lim 2*1 = lim [‘n+1“J°IL ] = lim [(n+1)]|c]|]
n-+ow© n n-rew nllcl n+o

p=xif c #0

0 if c =0

©
1l

p < 1l+rc=20

. z:n!cn converges absolutely <> ¢ = 0

Note:
; — n 52
If ¢ = 0, obviously Zanc = 0 for any finite numbers
n=0
e L TR What we have seen in this example is that z:ancn =

only if ¢ = 0. 1In other words, in this problem an(=n!) grew so
rapidly that it dwarfed c™ for large n no matter how small in
magnitude ¢ was (as long as c # 0). More specifically, in this
exercise we are reaffirming that n! goes to infinity more rapidly

than does cn.

n n+1l
= |et5] _ |e+5]|
el et %n n+l ° Then a ., = T n+2

VII.3.6

€E? 3% E® DO

EE e

Gl A e B e

[

E3 £§3 €73

Bl = 55

E 3




E 1

B Ea

Bl BE .

- .

ra ena

1

r1

SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 3: Absolute Convergence

[7.3.4 cont'd]

o = lim 2 - 4n (g}%) lc+5| = |c+5]
n>® “n n-+

n
|c+5] < 1 » Z: lets]™ converges

n+1
=0
B c+5 1 1 1_ .
B D IR P T I S DI T
n=0 n=0 n=0 n=1

" E (g+i) converges absolutely <+ |c+5| < 1

Removing absolute value signs we have:

n
i%;gl—-converges absolutely <> -1 < c+5 < 1
n=0 “r -6 < c < -4
Note:
1f ¢ = -6, then E: C+5> 2:( , which converges. 1In
other words §:£§$%l— converges when ¢ = -6 but not absolutely.
n n+l
. c c
(d) Letting an — lﬁé—, an+1 - m+1) 1 we have
n+l
p = lim le] nl_ - 1im lEl =0

n-w (n+l)!|c]n .

VII.3.7




SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 3: Absolute Convergence

[7.3.4 cont'd]

p =0 < 1 for every c

n

lO

— converges for all real numbers, c, that is, for

s/
I
o
=]

-0 < C <

Note:

In a way, this is the converse of (b). Namely, our denom-
inator grows so fast that it can't be "undone" by our numerator,

no matter how large (but finite, of course) c is.

7.3.5(L)

Actually, the major learning experience of this exercise
involves the given information - that is, the concept of how one
multiplies series. 1In line with our theme that operations for
infinite sets are adapted from the corresponding operations with
finite sets, we get a hint of how to define the product of two
series by looking at how we take the product of two finite sums -

say

(a. + a +...+am}(b0+b + bi + et b)) (1)

0 3 R 1 2 k

Now we know that the product consists of a sum of terms each of
which consists of two factors, one from each set of parentheses.
A convenient way of making sure that we get all the terms is to
keep track of the subscripts. For example, the only way that the

sum of the subscripts of an a and a b can be 0 is if each subscript

is 0. That is, we must have aObO. On the other hand, there are

two ways that the sum of the subscripts can be 1, namely aob1 and

albO' Reasoning in this way, the product in (1) may be written as
VII,.3.8
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 3: Absolute Convergence

[7.3.5(L) cont'd]

a.b. + (aob + a bo) + (aob2 + alb

0°0 1 1 +azby) + ...

1

This idea is particularly convenient when we think of multiplying

polynomials. In other words,

m k
(ao + a;x + ,.. Tt a x )(b0 + blx i 2 bkx )

is equal to

2
aObO + (aObl + albo)x + (aob2 - albl + azbo)x + s

(where in each term the sum of the subscripts equals the exponent).

This "coding" system gives us a very quick way to write down any
particular term in the product. For example, the coefficient of

x6 in the product of the two polynomials would be
(aob6 + alb5 + a2b4 + a3b3 + a4b2 + aSbl + aGbO),

provided, of course, that we keep in mind the fact that if, for
example, our first polynomial is only of degree 4, then ag and

a,. will be zero.

6
With this as background, notice that our definition of the

product of two series (and this type of product is more specifi-

cally called the Cauchy product) is precisely the analog of what

we did in the finite case. That is, we define the product of

[o+] =e]
Z‘ a_ and Z b to be
n=0 * n=0 °

(aobo) + (aobl - albo) + (aob2 + albl + azbo) B raie

where the nth term is the sum of those terms, the sum of whose

subscripts is n.

VII.3.9




SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 3: Absolute Convergence

[7.3.5(L) cont'd]

That is, if c, denotes the nth term in the product, then

Co = 3Py
cy = aobl + alb0
c:n = aobn + albn—l + awe F A b0

While it might not look like it, this is exactly the same
n

thing as saying that c_ = £§% ab ..

fix n and let k vary from 0 to n, we have from the definition

In other words, if we

of the sigma-notation
n
E akbn—k = aobn + albn—l S T akbn-k + ... + anb0

k=0

We are now ready to tackle this exercise. Namely,

2
~ 1Y N 3 2\ 1
z n+l E n+l 2 : n+1
n=0 n=0 n=0
. - e ) 3 1
In this case we have (ég%an) (éé%bn) with a, = bn = 3T

VII.3.1l0
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SOLUTIONS: Calculus of a Single'Variable - Block VII:
Infinite Series - Unit 3: Absolute Convergence

[7.3.5(L) cont'd]

%*

= (1) (&=1)
Therefore, akbn—k (k+l ]

n n

~ 1 _1 .1 1 1
B = 2 TDET S emrte ety B
k=0 k=0
For example
b i)
S = Y wED o=k - L
k=0
1 1
_ 1 B 1,1 _
€q. Z R+1) (I=k+1) = Z (k+l) om i Al Sall
k=0 k=0
2 2
- 1 - 1 1,1 .1_11
=Y WO eRD - ) Whow S 3T ItITn
k=0 k=0
3 3
_ I _ 1 ,1,1.1_5
€3 = ) WD) 3-kFD) E (k+1) ix) ztststr %

P
I
o

Hence, according to our definition,

~ 1 _ 1,1 : S | B 11 . 5
(ZI-H_]:) —(l+-2-+§~+..)(l+§+§+..)—1+ tIptE t ...

n
1
* EE% (k+1) (n-k+1) SRR

1

ﬁ""_'—_——i- since n is

*Recall that b ——T-ls read as b( ) =

a dummy variable etc.

VII.3.1ll




SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 3: Absolute Convergence

[7.3.5(L) cont'd]

If we prefer the completely abstract }E-notation we write

our answer as .
The nth term in the
series is a sum of
n+l numbers; n=0,1,2,...

(Z”: H}T)Z - icn - z‘”: (zn: &+1) (i—k+l))

n=0 n=0 \ k=0

Clearly, the product of two series is more complicated than
the sum. We must also beware, in terms of our discussion of
absolute convergence, that if we change the order of the terms in
our product we may change the product. Of course, this problem
doesn't exist when we deal with finite sums. In other words, the
Cauchy product is but one of many ways to define the product of

two series,

In fact in Exercises 7.3.6 and 7.3.7 we shall illustrate
the perhaps surprising result that the product of two convergent

series need not be a convergent series.

7.3.6
n
Here a = b = (_El_
Yn+l
_ (-n* ]
kT e K Kk
* L F o, = AT (-1)"
ek kK'n-k 3T /AkFT /RFD (akFD)
b = L)
B /n-k+1 J
n n n
. = (-1)
.c_ = :E: a, b = z:
n k ' n-k ;
Foaerk & /TR (k1)

VII.3.12
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 3: Absolute Convergence

[7:3:6 cont'd]

(-1)"

i

=
1l
o

=0 k=0

=]

k=0 v (k+1) (n-k+1)

n=0

(-1 = 3 -
= Ecn, where c_ = Z
vn+1 v (k+1) (n-k+1)

=l-(L+_l_)+(_l_+ 1 +L)-

V2 V2

/3 V2/2 V3

(_£-+ 1,1 +-l—) + ... +

V& V3V/2 V2/3 V2

+ (-7

rvjn

+aoo

/2—+4/§_+3“\/g+3
6 3

I
'...I

7.3.7(L)

To get a proper overview of this exercise, what we are going

Il

(=1)"
k=0 vV (k+1) (n=k+1)

to do is show that if c_ =

-+

/(k+l)(n-k+l)

then lim c, # 0.

n-+cc

This, in turn, will mean that E:c diverges. But E:cn is

the square of the convergent series E:

n=0 vn+1l

alternating series which meets the necessary criteria for conver-

(-1)"

(since this is an

gence). Thus, we will have proved that the product of two

VIL.3.13




SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 3: Absolute Convergence

[7.3.7(L) cont'd]

convergent series (note that the square of a convergent series

is a product of two convergent series) can be a divergent series*.

At any rate,

o= e S e d g o B = e K2 % m w T

Il

(@) (k+1) (n-k+1)

—(k2 - kn) + n+l

2 2
= -(k? - kn + 2;-— )+ ol
= =(k? - kn + nz) + n? + n+l
n 2 n #
.. (k+1) (n=k+1l) = =-(k - 7) + (-2- + 1)
% 2 & 2
('2- + 1) - (k - 2—) _ (1)

2
and since (k - %) > 0 (since its the square of a real number), it

follows that

& 2 5 2 n 2

F+1) - k-3 ¢ G+1) (2)

Combining (1) and (2), we obtain

2 2 2
(k+1) (n-k+1) = (g- +1) - (k - g_) < (% + 1)

*While we will not prove it here, there is yet another
interesting property of absolute convergence. Namely, if at least
one of the two series is absolutely convergent then the T{Cauchy)
product will also be a convergent series. Note that in our

@ n
example, 2: (-1) is conditionally convergent.
n=0 yn+I

viI.3.14
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SOLUTIONS: Calculus of a Single Variable - Block VII:

Infinite Series - Unit 3: Absolute Convergence

[7.3.7(L) cont'd]

(b)

1

f: -n" L
G = or |c | =
&t /D) (nk+ 1) n k; /TR+1) (

Now from (a)

2
(k+1) (n-k+1) § (3 + 1)

LY/ (KD § 3+ 1= 2%2-

1 5 12
/R+D) (n=k+1)  D*2

Putting (4) into (3), we have

n 1 n o, , &
|Cn| - E z Z n+2 ~ n+2 E
k=0 vV (k+1) (n-k+1) k=0 k=0
; 2 _ 2
,_|cn| > 5 (1L + ... +1) = fo(n+l)
n+l times
Lo . 2(n+l) . n+l
colim e | » lim 2220 = 2 lim (%) =
s n' ~ e DF2 o n+2
since lim |c_| 2> 2, it follows that lim c_ # O.
n-row = n-»o B
2
' o (_l)n w '
since 2: = E:c%land lim ¢ # 0, we have tha
n+l n-co
n=0 n=0
hence, Z (=1) , diverges.
n=0 ot

VII.3.15

n-k+1)

1

Finally,

t ficn;

n=0

(3)

(4)




SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 3: Absolute Convergence

[7.3.7(L) cont'd]

(c) This just reinforces the remarks in our overview. Namely,

Z‘” (-1)" E‘” (1§ . o
;::f_ =T represents the product of two (condition-
n+ n

n=0 n=0

ally) convergent series - which is, itself, divergent.

VIL.3.16
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SOLUTIONS: Calculus of a Single Var
Series

UNIT 4: Polynomial Appr

iable - Block VII: Infinite

oximations

7.4.1 (L)

(a) We have seen that the cond

Pn(n)(O) = £M™) (0) lead to:
n (k)
P, (x) = 2: fi—Tﬁin-xk = £(0) +

k=0

In this problem:
f(x) = x3 w 6x2 +9x + 1
f'(x) = 3x2 - 12% + 9
f"(x) = 6x - 12
f"'(x) = 6
£(4) (x) =0

itions Pn(O) = £(0), Pn'(O) = f

n 2 ma 3
gro)x + 0L x , ET(R) x
(n) n
+ ... + £ nfO) x
SE(0) =1
£1(0) = 9
£" (0) = =12
gur (0) = 6
£4) 0) = 0

'(0),

Therefore:
P (x) = £(0) =1
Pl(x) = £(0) + £'(0)x = 1 + 9x
£7(0) x2 2
chx) = £(0) + £'(0)x + ———51—-—-= 1 + 9% - 6%
f“(O) 2 flll (0) 3 2
Pylx) = £(0) + £'(0)x + =57+ sT—— = L+ 9x - 6x” + x
"o 3 (4) 4
P (x) = £(0) + ... + @ XD E O X g 4 ox - 6x® 4+ x°
(since £ (0) = 0)
VII.4.1




SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 4: Polynomial Approximations

[7.4.1 (L) cont'd]

(b) Continuing as we did in (a), we see that £™ (0) = 0 for

f(n)(x) =

n > 4 since, in particular, 0 for n > 4 .

Thus, for n > 4,

P (x) =1+ 9x - 6x° + x> .

(This is precisely what happened in (a) with n = 4.)

In any event, since 1 + 9x - 6x2 + x3 does not depend on n,

if follows that
P(x) = 1im P_(x) = 1 + 9% - 6x% + x5 = £(x)
n-ro R
In this case P(x) is a perfect approximation for f(x) since
P(x) = f(x) .

A key observation is that in the event f(x) is a polynomial

P(x) will always equal f(x). To see this, let f(x) = a, + a;x
n

+ ... + akxk + oo +ax . Then f(k) (x) = k! a, + ®(zas) 5 That

is, each time we differentiate another term drops out so that the

k'th derivatives begin with the coefficient a, - In any case, f(k)(O)
= k! a, + 0: we) = ki ay . Hence,
f(k) (0) _ .
k! k *

In this sense, then, P(x) is a generalization of the polynomial

concept. That is, if f(x) is already a polynomial, then it is its

Own power series.

7.4.2 (L)

Observing that B (x) is determined by the behaviour of £, f',

TRy, f(n) at x = 0 we see that Py (x) turns out to be exactly the
same as in Exercise 7.4.1 (L) . In other words the fact that

VII.4.2
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 4: Polynomial Approximations

[7.4.2 (L) cont'd]

f(x) x2 + 4 does not apply unless x > 1, and for x = 0,
f(x)

Exercise 7.4.1 (L) .

I

x3 - 6x2 + 9% + 1 - -which is exactly what f(x) was in

Again, as before, we find that

P(x) = lim Pn(x) = x3 - 6x2

N0

+ 9% + 1 .

In this case P(x) = f(x) provided that 0 €% €L« FEXRS L

then P(x) = x3 - 6x2 + 9% + 1 while f(x) = x2 + 4 .

The key point here is that f(x) must be smooth for our
curve-fitting technique to work and, in this exercise, f(x) is

continuous but not smooth (differentiable) at x = 1. Pictorially,

= f(x)
2
= x, + 4
25
not "smooth" here
= x3 - 6x2 + 9x + 1 = P(x)
VET 4003




SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 4: Polynomial Approximations

7.4.3 (L)
(1)
£(x) = sin x £ (x) = sin x
£'(x) = cos x £05) (x) = cos x
£"(x) = -sin x £(6) (x) = -sin x
f"' (x) = -cos x f(7)(x) = =-cos X

In other words the derivatives of sin x repeat the cycle

sin x, cos x, -sin x, -cos x .

More specifically,
£(x) = £ (x) = £ (%) = ... = £4") () = sin x

£'(x) f(s)(x) = f(g)(x) = .. = f(4n+l)(x) = CcOoSs X

I

£(x) = £8) (x) = 10 (x) = (.. = £ () = gin x

gni(x) = £ (x) = £ (5) = ... = £4043) 4y = _cos x

I

Then since sin 0 = 0 and cos 0 l, we have:

f(n)(0)=0 if n is even 0, if n is even
(n) sa = f(_mﬂ = I'J?i if n=1,5,9,13,

£ (0)=1 if n=1,5,9,...,4n+1 §*°n n! 17 ...4n+l
- '%T if n=3,7,11,15

£ (0)=-1 if n=3,7,11,...,4n+3 ) . 41143

-
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SOLUTIONS: Calculus of a Single Variable = Block VII: Infinite
Series - Unit 4: Polynomial Approximations

[7.4.3 (L) cont'd]

(a)

Po(x) = f£(0) =0
Pl(x) = f£(0) + £'(0)x =0 + (1)x = x
these are equal
"
P,y(x) = £(0) + £ (0)x +E30% 0 + x + 0x® = x
_ ; £"(0) 2 £"'(0) 3 _ (-1)x3 —
P3(x)-f(0J+f(0)x+—-—2-T—- +—TI-—X3-X+——-§-£—'— )
= 3 - e
= 31 these are
equal
' 3 (4) 3
% £"'(0) x f (0) 4 _ X
+ox? = x - X
3! L
In other words, if n is odd:
3 5 7 n
> 4 X X X
Pn(X)=X"§T+5-T-7T+...iﬁT (l)
while if n is even, Pn(x) = Pn_l(x) " (That is, as shown above,
(n)
E——Hégl x™ = 0 when n is even.) Again, utilizing (--l)k as a sign

alternater and recognizing that the odd numbers have the form 2n + 1,

n=20,1, 2, «.., (1) becomes

no_pyk 2K+l
Pon+l (X)) = z: GRID T | and By g () =Py (X)) .
k=0
VII.4.5




SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 4: Polynomial Approximations

[7.4.3 (L) cont'd]

. &, (-1)k 2K+l
(b) P(x) = 1lim Pn(xJ = lim P2n+l(x) = lim 2: RV
N—>co -+ >0
k=0
o n _2n+l L
= Z (_gn ﬁ 7y7 (recalling that Z a,
n=0 n=0
is an abbreviation for
n
lim a, )
k
n>® ¥=0
2n+1
(6} We look i | (-1)" 520+l i | (-1 [x] "
c e look at = =
¥ 1)1
2n+1
© [x]
E (2n + 1)! °
n=0
Ix|2n+l
We now use the ratio test with a, ® 7
2(n+l)+1 2n+3
| x| | x|
:.a = =
n+1l [2(n+l)+1] ! (2n + 3)!
a3 Ix|2n+3 (2n+1) ! Ix|2n+3 |
«p = 1im 2L = 14n = lim (2n+1) L
’ nve 2n  pow | (2n+3)! |x|?PHL| nse | |x|?P*l (2n+3) (2n+2) (2n+1) !

Il

2
| x| %2 .
lim T = =— = 0, for any finite x .

n-+w

~P(x) converges absolutely for any (finite) real number x .
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 4: Polynomial Approximations

[7.4.3. (L) cont'd]

(2) f(x) = coshx f"(x) = coshx

f'(x) = sinhx f"'(x) = sinhx , etc.

Since sinh 0 0 and cosh 0 = 1, we have:

f(n)(O) =1 if n is even in} %T if n is even
. I - (0) _ :
w8 = Tmr T
£ 0y = 0 if n is odd 0 if n is odd
2
x2 x4 x2n
(a) ..Pzn(x) =1 + ] -+ T + e oF GoT
P2n+l(x) = PZn(x)
o in
(b) P(x) = lim Pn(x) = 2 a7
>0
n=0
o x2n |x|2n
(c) We look at Z il Z a7 and we use the
n=0 =0
2n 2(n+l 2n+2
ti test with _|X| _|K| )-lxl
ratio test with a, = oyt . Thus a ) = ZEEnyTT ~ @)
a |X|2n+2(2n}l
. : n+1 :
P = lim & = lim|— >n
n»e “n n+e| (2n+2)! |x|

o i
=Um rsrEen |5 ¢

n-»co

..P(x) converges absolutely for all real x .
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 4: Polynomial Approximations

[7.4.3 (L) cont'd]

(3) £(x) = =5 = 1-x""
£1(x) = -1(1 - x) 2(-1)" = (1 - x)72
£"(x) = =2(1 - x)73(-1) = 2(1 - %) 73
£'0(x) = =31(1 - x) "4 (-1) = 31 (1 - )¢
5 5

£ () = =411 = 072 (=1) = 4102 - %)™

We now see (either inductively or otherwise) that

£™) (%) = n1(1 - x)~ 0+

£ gy =i - 00" a1y =a

(n)
LE_L0) Bl 1 for each n

n! nl!
So(a)
n (k) n
f 0 k k
P (x) = l()x =2x
=0 k=0
S 14+ x4+ X2+ e XD

*Lest we have forgotten, we are using the chain rule here, Namely,

ST au-ntagrisa-n X g n?ddex
= (-1) (1 - x) "% (-1)
VII.4.8
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 4: Polynomial Approximations
[7.4.3 (L) cont'd]
(b) P(x) = lim P (x) 25
Lim Z
n n+l
(c) We look at :E: Then a, = [x| | x|
n=0
By the ratio test:
+
T ke
P = lim —— = lim — = lim [x| = [x]
n--oo n n-+oo ixT n-=+ow
WP <l x| < 1 .

oo
Moreover if |x| = 1 then :E:

[=+}
= 2: 1 =1+1+1+4 oo
n=0

;. P(x) converges absolutely<—|x| <1 .

(4) Hopefully, this is a review of the ideas contained in

exercise 7.2.1 (L) . Namely,

If £f(x) is the polynomial 6x4 + 3x2 + 7x - 5 then:

(a) Po(x) = =5

Pl(x) = 7x - 5

Pz(x) = 3x2 + 7x = 5

Py(x) = 0x> + 3x° + 7x - 5 = 3x° + 7x - 5

Pq(x) = Gx4 + 3x2 + 7x = 5

Pn(x) = 6x4 -+ 3x2 + 7x = 5 n > 4
VII.4.9
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 4: Polynomial Approximations

[7.4.3 (L) cont'd]

(b) P(x) = lim P_(x) = 6x¥ + 3x2 + 7x - 5

N
(c) Actually, the question of convergence is essentially
irrelevant here, since, as we mentioned in our introduction to
infinite sequences and series, convergence is replaced by the

more elementary notion of "last term" when we deal with finite
collections.

In other words, P(x) in this case automatically converges
for all x, since P is a recipe that determines the number P(x)
in a finite number of arithmetic steps.

7.4.4 (L)

In a manner of speaking, this is the first exercise that gets
to the crux of the matter from a pragmatic point of view. That is,
up to now, we have considered, primarily, how to compute Pn(xJ and
P(x) for a given function f(x) although Exercise 7.4.1 (L), part (b),
and Exercise 7.4.2 (L) mentioned (or at least introduced) a more

complex problem that we shall now discuss in more detail.

From a practical point of view, once we have computed P (x)
and know the interval for which P(x) is absolutely convergent, we
are then interested in finding for what interval P(x) is actually
equal to f£(x). It is in this context that Exercise 7.4.2 (L)

emphasizes in a rather elementary way the difference between Pn(x)

converging to P(x) and P(x) converging to f(x). For example, in
terms of Exercise 7.4.2 (L), we saw that P(x) was exactly x3 - 6x2

+ 9x + 1 for every real number, x, but that P(x) equalled f(x) only
when 0 £x <1 .

In summary, then, one crucial question is whether the sequence
of polynomial approximations converges to a limit function at all.

A more crucual gquestion, from an applied point of view especially,

VII.4.10
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 4: Polynomial Approximations

[7.4.4 (L) cont'd]

is whether the limit function, even assuming that it does exist,

actually represents the given function f(x) .

In fact, it is precisely for this reason that one must com=
to grips with Taylor's Theorem with remainder which tells us the

error we get if we replace f(x) by Pn(x} .

n ek g K
More specifically, since f(x) = 2: o (x - a)" + Rn(x,a)
and Pn(xJ = Z T—(x_a) , it follows that:
k=0
P(x) (= 1lim P_(x)) = f(x) <— lim R_(x,a) = 0 .
n-—-cw n n-—+co 2
The point is that: (1) in the given form, Rn(x,a) is often

difficult to compute exactly, and (2) in many cases all we really
need to know, once P(x) = f(x), is when_]Rn(x,a)I is less than

a certain prescribed amount. At any rate, this is what the
present exercise is concerned with; namely, finding bounds for
Rn(x,aj &

*Actually, our treatment up to now has considered the special case
a=0 . In other words, the more general definition of Pn(xJ allows

for the degree of contact to be treated at points other than x = 0 .

_ . _ & £y K
If we let x = a, we obtain P_(x) = 2: -—ET———ix-—a). Our spe-
k=0

cial case arises by virtue of the fact that we can label the point
of contact as the origin (though, of course, f(x) must also be
changed if we change the location of the coordinate axes). The
point is that while, in theory, proofs remain unaltered by choosing
x = 0 rather than x = a, there are times when it is more convenient
to pick a # 0, expecially in such cases where f(x) or some of its
derivatives are not defined at x = 0, for example, if f(x) = fn x .

VII.4.11




SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 4: Polynomial Approximations

[7.4.4 (L) cont'd]

(a) We will utilize the following two properties of the definite
integral:
b b (that is, if a < b;
(1) If £(t) dt | .sf [£(t) | at if b € a, then
a a

[jb'f(t) dt| <j-[
a b

£ (t)] at .)

(2) If |g(t)| <M for all t e [a,b], then:

b b
f lg(t) | [£(£)| at <M f |[£(t) | at (a <b) .
a a
P E-
Since I = {: |x - a| <R} (pictorially, fe— )

there are two cases to consider.

Case 1l: x 3 a %

Then: [R (x,a)| = ‘%T f (x - £)% (@) (4 dt |
a X
- L f (x = )" £ ()| ae
a
X
S%T f |x - ¢|" [f(nﬂ') (t)| a4t (by (1) above)
a
X
<& |x = £|™ dt  (by (2) above)
a

Now since x > a and t is between a and x, we have

a £t €£x, whence [x - t|] = x - t

VIT.4.12
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 4: Polynomial Approximations

[7.4.4 (L) cont'd]

Hence (1) leads to:

X
n+l
IR, (x,a) | < 57 f (x - &) at = &4 [‘(xn'fi ‘ (2)
a

o]

t=a

(Observe that we are integrating with respect to t not x, which

accounts for the introduction of the minus sign in (2).)

M sl s x)n+l . s a)n+l M (g = a)n-!-l
R, (x,a)| < 77 [ n + 1 - ’ n + 1 T |9t w71

n+1l
- a|

Ml - a)n+l M Ix
; (x,a)| ¢« nln+ 1)  ~(m+ 1! :
1Ry |

Case 2: x ¢ a

In this case since t is between x and a, we have x <t ¢ a,
whence x - t < 0

S |x - t] =t - x, and:
X
IR (x,a)| = | f(x - )" £ (4 g
a
a
<37 1x - £|® 1 £@*) ()| ae
X
a a t=a
n+1l
M n M n i (t-X)
car flx-etae=g f -0 dt=ﬁT[ T
X X t=x
+1 n+1l
« M_(a-x)n _ _ M(a - x)
“|Ry(xs2) | < [ n o+ 1 0]“ M + 1)! :

VII.4.13




SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series = Unit 4: Polynomial Approximations

[7.4.4 (L) cont'd]

Finally, since x <a, (a - x) = |x - a|, and we obtain:

M Ix _ a|n+l

IRy (2) | <€y .

Combining our two cases, we have

M [X _ a]n+l

(n+1) !

x eI~ |R (xa)] <

(b) Using (a) we can now proceed as follows:

We have:
2 n
X X X _
e =14+ x + 37 + .ae + i + Rn(x,O), where Rn(x,O)
X
=i—1f(x—t)netdt i (3)
0
Now if I = {x: |x| < r} we have that for any x € I: ]ex| <ef =M
and we may apply part (a) to obtain
e’ 3 n
0

Again, mimicking the procedure in (a) of using two cases (x < 0 or

x 2 0), we obtain:

er|x|n+l
IR, (x,0) | ¢ ————
(n + 1)!
n+1
and since lim le = 0 (this is our earlier result that
* —— (n+ 1)1
n! "dwarfs" xn), we see that lim Rn(x,O) = 0 if -r <x <r , but since
n-—sce
r was an arbitrary real number, lim Rn(x,OJ = 0 for all real x .
n-sow
VII.4.1l4
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 4: Polynomial Approximations

[7.4.4 (L) cont'd]

Hence, from (3), we have

2 n
lim ¥ = lim (1 + x + %T * eaw *F §T) + lim Rn(x,O)
n-rc -+ " n: n-+co
X = 5
sl = :z: = (+0) 5 (4)
n=0

(Notice that (b) generalizes in terms of (a). Namely, the condition
that lim Rn(x,a) = 0 is guaranteed once [f(n+l}(t)J < M for every

I -rco
t between a and x.)

As a final note to (b), let us again emphasize that without
(a) we could still conclude that if f£(x) = e*, then P(x)

= 2,
n=0

indeed equals f(x) .

»

n
- . The "new," information allows us to deduce that P(x)

o]

(c) From (b), letting x = -1 we have:
-1 _w— (="
2 B 2: n!
n=0
1 1 1 1 1 1 1 1
=or I tar ot st ter T 7T
n
+ .. + Gl M 5
n!
n
_ 1 1 ! (-1)
=57~ 37 v IT toeee + S5 + eee (1)

We would like to determine how many terms in (1) are necessary
if we wish é(= e_l) to be correct to three decimal places.

VII.4.15
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Series - Unit 4: Polynomial Approximations "
-
[7.4.4 (L) cont'd] B
-
Since (1) is a convergent alternating series the error we ”
n |
obtain by truncating the series at (n') cannot exceed the magni- -
n+l :
(-1) -
tude of the term, W . L
That is:
-
7 o N VI g =17 1 »
e -1 R ¥ R nl STn ¥ 1)1 -
. -
Now 1f n = 7 then (n + 1)! = 8! = 1:2:3+4:5:6+7-8 = 40,320 , 3
1 _ 1 _ “+
and therefore, —(m)-T = m = 0.00002 -
That is, the maximum error we can have if we approximate e
4 ;4 1 1 1 1 1 . + 3 1 2 .
é—byz—!-——3-1-+-a—!-ﬁ+-§-!———7—,?150.00002 . Thus—z——!——-j-!—+~4—! H
4 1 1 -
T + & 9T is at least accurate to three decimal places as an

; . 1
approximation for il

Carrying out the remaining details, we have:

ol e

1 1 i 1 1 1 _
2T 3T P TsTYteT T 7T T
"
1 _1,1 _ 1 _ 1 _ 1 _ 2520 - 840 + 210 - 42 + 7 - 1 -
2 6 24 120 720 5040 5040
|
_ 1854 _ 103 a
~ 5040 280
i N
= 0.36785 -
Since we stopped after a negative term, our approximation is ﬂ

! +
less than the correct answer by an amount not in excess of 0.00027 .
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 4: Polynomial Approximations

[7.4.4 (L) cont'd]

In other words

0.367857 < £ < 0.36785" + 0.00002"

|+

0.367857 < £ < 0.367877 (&) ) (2)

o+

Equation (2) gives us an even sharper result than we were

looking for.

Namely, (2) tells us that rounded off to 4 decimal places,
1

- 0.3679 .
Pictorial summary: 2 3
“y=P., (x) =l+x+X+%_
YU g IR
x2
V1 y=P2 (%) =l+X+—2

y=Pl(x)=l+x

y=P0(x)=l

> X

An n increases y = Pn(x) "fits" y = e® better over a longer

interval.

*Note that in addition to truncation errors, which arise from our
"chopping off" a series after a finite number of terms, there is

also a rounding-off error which occurs when we replace common fractions

by their decimzal equivalents.
VII.4.1l7




SOLUTIONS: Calculus of a Single Variable = Block VII: Infinite
series - Unit 4: Polynomial Approximations

7.4.5

Since |f(n)(x)| <1 for all n and x if f(x) = sin x, the

condition of Exercise 7.4.4 (L) part (a) applies and we can con-

2 (-1)" x2n+l
clude from exercise 7.4.3 (1) that P(x) = 2: s o -
verges to f(x) = sin x for all real x. =0
In other words:
3 5 7 n _2n+l
Now L oo = L B0 o dB/2FY 1 = =1 _ = 0.0002% . Thus
2’ 51 120 32(120) 3840 ¢ :

3
it is possible that % - (123) is correct to 3 decimal places as

an approximation for sin % .

What we are sure of is that

3
(1) % - ilé%L— is less than sin > and
3
(2) % - ilé%l—-+ 0.0002% is greater than sin %
In any event, we find
1. (/23 1. 1 _1_ 1_23_ 5. gt
2 3T ~ 2 8(31)y 2 ~ 48 T 18 *
0.4791% < sin 3 < 0.4791% + 0.0002"
0.4791% < sin 3 < 0.4793"
cesin % = 0.479 to 3 decimal places.
VII.4.18
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 4: Polynomial Approximations

[7.4.5 cont'd]

(Note: if you decide to check this result by using trig tables, etc.
notice that in terms of angular measure sin % means sin % radian not
sin %“, in accordance with our discussion concerning the fact that

X is a pure number in the expression sin x .)

Again pictorially:

Y
y = Py (x)=x
3 i 4 - y X
0 1 y=sin x
3

y=P3(x)=x—§T
y = P3(x) approximates y = sin x very well if 0 ¢ x <1 .

7.4.6 (L)

One of our aims of this exercise is to introduce alternative
methods for determining Rn(x,a) . In this case f(x) is the guotient
of two polynomials, and as a result we can express f(x) as a poly-

nomial plus a remainder term simply by the operation of division.
Namely,

(Step 1) 1 1+ x
l + x
X
-X
Wl _x
T+ x 1 + x
VII.4.1l9
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Series - Unit 4: Polynomial Approximations

[7.4.6 (L) cont'd]

(Step 2) 1 {1+ x
s Ll =-x
- X
2
- X - %
x:
2
. 1 _ . X
il e 1 S
(Step 3) 1 1+ x
1l + x 1 - x + x2
- X
- X - X
X
X + x3
3
- X
3
. . _ 2 _ X
1+ x 1 X+ x 1 + x

Part (a) now follows by induction. The key is that

n+l _n+1
| I _ 2 _ .3 _1yn n (=1) X
s i&: X + x X7+ ... +(=1)"x + S
(1)
n+l xn+l
is exact as long as we retain (-1) TS which in this case is
Rn(x,O). (In fact if we apply the technique of Exercise 7.4.3 to
£(x) = 75— we find that B_(x) = 1 - x + x> = x> + ... + (-1)™x",
and therefore, from (1)
n+l _n+l
1 = P (%) # (=1) X
1l + x n 1l + x
n+l _n+l
. 1 _ (=1) X B
1T F x B, (x) = T + x = R, (x,0).)
VII.4.20
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Series - Unit 4: Polynomial Approximations

[7.4.6 (L) cont'd]

dt

(b)
X ' X
it + %) = ]._%t—t=fl:l—t+t2-t3+'“+(—“ntn
0 0
n+l _n+l
¢ 421 £ ]dt
t + 1
n n+l ¥ * n+l, n+l
e BB T = et e R B l+f("l) .2
2 3 4 n+ 1 t + 1
0 0
+1
-y - L2 ,1 3 _ 1 4 (-1 X"
= X 5 X + 3 X 7 X + ... + ) - Rn(x,O)
(2)
X
where (&,0) = -/ﬂ (_l)n+l g dt
Ry (X, t + 1 4
0
Now if x > 0, then
X X X
n+l n+2
t n+1l _ 1 n+2 _ X
R0 | < f Fogar e [ ™ ar e lae = hT o
0 0 0
sx €1+ 1im |Rn(x,0)| =0 : (3)
n-—+w©
Combining (2) and (3), we see that
S0 €£x g1
2 (#13P <P+l
ﬂn(l+x)=z 7 ; (4)
=0
VII.4.21
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Series - Unit 4: Polynomial Approximations

[7.4.6 (L) cont'd]

(Again, we could use the technique of Exercise 7.4.3 with

f(x) = {n(l + x) to show that P(x) = z: ] .)
=0
(c) We use (4) with x = .2 = %
dnifl 4 3 = fn 1.2 =2 - £(£)2 + 1l 3 11,4, 11,5
5 : 25 3'5 1's 55
1 .J.'.. -— }_— <+ l - 1 + l
5 0 * 375 ~ 2500 @ 15,625

= 0.2 - 0.02000 + 0.00267 - 0.00040 + 0.00006"
= 0.18227 with error < 0.00006

i.e., 0.18227 < (n 1.2 < 0.182337

In fact, we thus see that to four places

fn 1.2 = 0.1823
(d) Letting x = 1 in (4),
L+ 1) = 2= S Hifi%i
=0
NPT T

In other words the conditional convergent series 1 - % + %

- % + ..., which we have seen can have any sum under a suitable
rearrangement of terms, converges to {n 2 if the terms are added

in the given order.
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 4: Polynomial Approximations

7.4.7
While we could use division on __iu_§' it is easier to recall
1+t
that we already know that
n+l n+l
1 _ _ 2 _ .3 BT < T < (=1} u
T 1 u + u U 4+ wee ¥ [=1)7 0w + I+ a i

(1)

Since u symbolically denotes any real number, we may replace
u by t2 in (1) to obtain:

n+l  2n+2
i i S S O L R s M
1L+t 1+t
1
2T = tant 1= f O
0 1L+ t

1
f(l B O )l e W 1
0

3
. (-lJn+1 £ 2n+2
7
0 1+t (2)
Now :
1 1 . 2n+2 1 1
L il Sl t 2n+2 _ 1 2n+3
3 ¢ J = £ J I gt
1+t 1+t
0 0 0 0
L n+l, 2n+2
P (=1) t 1
- 3 dt| € 33753
; 1+ t
: (_l)n+l t2n+2 dt
s lim f > =0 i (3)
n-+o 0 O Ll =
VII.4.23
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[7.4.7 cont'd]

Using the result of (3) in (2) we have

1 |
%= lim f (L-t%+ ...+ (=)™ £20) gt
n-+e
or:
- 2n+1
T o= 34 L3, 1.5 _ X7 -1)? ¢ .
) Illiﬁ_t i RS oaas % Soglerey
0
~ & . i & (e} .
‘Iﬁf_}_l il 7+"'+2n+l] .

1
Il
1N
Mf-‘b
Sl
[
+ |~
=]
—
Al AN S Ll e

n=0
_ow— (-1)"4
=) wFT |
n=0

4 4 4 4 4 (-1) "4
=4—-§+§—7-+-9—-T—+-..+§'n_’ri'+'l'

E 3

(This is an impractical way to compute 7 since the nth term

approaches 0 rather slowly, although rapidly enough to insure con-

vergence. One tries to find other series for 7 in which the error

term approaches 0 more rapidly. A short discussion of this idea

occurs in Thomas 18.6 .)
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series

Unit 5: Uniform Convergence

7.5.1(L)

Our aim here is to show in computational detail the differ-

ence between pointwise convergence and uniform convergence.

(a) If |x| < 1 we have already seen that lim x" = 0. Hence

n+e.

{x"} converges pointwise to 0 if 0 < x < b < 1, That is,

lim x" = 0 for each x € (0,b); b < 1. (1)

INn-—>oo

The computational aspects of pointwise convergence become
clearer if we use the quantitative e-definition of limit, Namely,

if we apply this definition to (1), we obtain:
For a given x ¢ (0,b) and a given € > 0, we can find N such

that

n

n>N-> ¥ -0] <e (2)

The key point is that the N in (2) appears to depend on both ¢
and x. In other words, from (1) it would appear that while the
required N exists for each choice of €, N will vary with x.

Now if we investigate (2) in more detail we find:

(1) |xn - 0] = ]xnl - [x‘n. Hence,
- 0| < e e |x| <€ (3)
(ii) In handling inequalities (or even equalities) in which

the "unknown" appears only as an exponent (in our problem, x and €

are assumed to be given quantities; hence, n is the "unknown"),

VII.5.1




SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

[7.5.1 (L) cont"d)

it is wise to invoke the logarithmic properties that (a) log ot =

r log u and (b) u < v » log u < log v (that is, log is a monotonic
increasing function). Notice that these logarithmic properties
are true for any base, although we will usually use base e if only

because most of our formulas are geared to it.

At any rate, if we apply these considerations to (3), we

obtain
|x|™ < € «> log|x|™ < log ¢
+* n log |x| < log € (4)
Since 0 < x < b < 1, it follows that |x| = x; hence, (4)
becomes
n
|x]” < € +> n log x < log € (5)

In (5), we now divide through by log x to obtain

|x|n < g +> n > log €
log x

(6)

Notice that in (6) we reversed the direction of the inequality
when we divided through by log x in (5). The reason is that since
0 < x <1, log x is negative, and we already know that dividing
(or multiplying) both sides of an inequality by a negative number
reverses the inequality.

Equation (6) also gives us a hint as to why we made b < 1.

. log ¢ ; i

Namely, since log 1 = 0, Iag—E-would be infinite when b = 1.
Indeed, this will be the crucial point in part (b) of this problem.
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

[7.5.1(L) cont'd]

Also, notice that we excluded 0 from our domain. Obviously

On = 0 for all n and hence x = 0 causes us no trouble, except
that we can't take the log of 0. If, however, we accept the notion
that log 0 = lim+ log x = ==, l%%—% = 0 and then (6) merely says

x>0
that if n > 0, 0™ < ¢ which is certainly true.

Let us return to the crux of our problem, From (6) we now
know that

log ¢

n
g = then X < € where 0 < X < b < 1

If n >

In line with our earlier remarks, it thus seems clear that

N (= log E) depends on both x and €.
log x

What we want is an expression for N which depends on €& but
not x. For example, we would prefer, if we could, to express N

in terms of € and b, since b is a fixed number in this exercise.

Before developing this point further it might be wise to

call attention to the fact that since 0 < x < 1, fn x is negative.

8 i is trivially fulfilled by any whole number,

As a result n >

ig i would be negative
and thus exceeded by any whole number. Thus, the only "inter-

n, if In € is positive since in this case

esting" case occurs if fn € is negative and this occurs if
0 < g < 1. Notice that 0 < € < 1 is a very realistic condition
in practical problems since we are almost always interested in

"small" values of €.

So, without loss of generality, we may assume that both fn €
and £n x are negative and hence that 0 < € < 1 and 0 < x < 1,
Thus,

VII.S5.3




SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

[7.9.1(L) cont'd]

log € _ -|log ¢| _ |log g (7)
log x = -[log x| [log x|

Then since 0 < x < b < 1 we have, since the log is a monoton-
ically increasing function, that fn x < fn b. Notice again, how-
ever, that both fn x and fn b are negative (since both x and b

are between 0 and 1). Therefore, |4n x| is greater than | In b |

(that is, fn x has a greater magnitude than fn b). This, in turn,
implies that

|log e| _ |log €] (8)
|log x| llog b[

Combining (7) and (8) with (6) we see that

llog EI |log el 5 log €

log b| ]log x log x & ]x

" < e (9)

Since ligg ﬁl is independent of x, we have found the required

From (9) we see that we can find, for a given €, an N, which

works for all x € (0,b) at once. Namely we TiCR N, to be any

integer which is at least as great as igg E . The key is that b
is defined independently of x; hence, 'iog E, depends on € but

not x.

Thus {x"} converges uniformly to 0 in the interval (0,b)

where b < 1.

(b) Up to now, one might not see the key step behind uniform
convergence, since in (a) we saw that both types of convergence
were present. The key difference comes when we look at (6) as

x » 1
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

[7.5.1(L) cont'd]

log €
log x
is no longer bounded away from 0. That is, the crucial step in
> |log b| # 0 and hence that

= a finite number.

Namely as x -+ 1, |log x| »= 0, hence »», Now log X

establishing (a) was that |log x
log € log €
log x log b

Our claim now is that if b = 1 and 0 < x < b = 1 then the

choice of N such that n > Nl > X0 < € depends on x as well as €.

One way of seeing this is that from (6) or (7), if we choose

x near 1 then for a given e we must have

n >

log €
log x

if

log & and we see that as x> 1, N, > =, That
log x 1,

is, for a given ¢, Nl increases without bound as x - 1. This

We now let Nl —

clearly means that N. depends on X.

X
To see this from a more quantitative point of view, let us
find N if € = e-~12 and x = 1 - 10_15. In this case fn € = =12
while fn x % —10_15*
In € -12 _ 15
=% _10_15 = 12 x 10 (10)

*We could look this up in_the tables if the tables were "deli-
cate" enough. (Namely 1 - 10715 = 0.999999999999999 and it would
take comprehensive tables to include this,) On the other hand, we
can put our knowledge of series to work to see that

x2 x3 x"
.&n(l—XJ=—(X+—2—-+T+...+?+.-.)r _l(‘X(l (l)
Hence, with x = 10"15, (i) shows that fn(l - 10'15) = =107%° is
good to about 30 decimal places. (Notice that we picked base e

here to utilize the series for {n x.)
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

[7.5.1(L) cont'd]

From (10) we see that Nl must be at least as great as

12 x 1015.

However, if we let Nl = 12 x 1015 all we can say for sure

is that if n > Ny then x" < € provided 0 < x < 1 - 10—15.

If x > 1 - 10_15 but still less that 1 then we will need a

larger N if x" is to be less than €.

For example, if € = e-12 and x = 1 - 10_20 then 12 & 4 =
fn x _1020
20

12 x 10 (=N) .

In summary then, {x"} converges uniformly to 0 on (0,b] if
b < 1. If, however, b = 1 then {x"}still converges pointwise to

0 on (0,b] but no longer uniformly.

Pictorially,
Yy
A
For a given £, all curves
y = x* are in the shaded
(a) . In €
region as soon as n > n b

o
~

But if we now let b = 1, we see that for values of x near 1,

our curves escape the shaded region.
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

[7.5.1(L) cont'd]

)y
(b) i§
Pt
NN\ ){\
5 J > X
1=b

To tie this exercise in with our discussion in the supple-
mentary notes, let us observe that in this exercise we showed
explicitly that {x"} did not converge uniformly on [0,1]
(although it does on [0,b] if b < 1). 1In the notes, we showed

3 n ' . . .
that while each x was continuous on [0,1], lim x" was discontin-
n--c

uous at x = 1. This, as we later proved, could not happen if {x }
converged uniformly on [0,1]. Thus, in the notes we proved
indirectly (implicitly) that {x"} did not converge uniformly

on [0,1].

Tsdel

It should be clear that for a fixed real number x,
. 1 i 1
lim —— = —/—'= = = 0,

now Xt XF® @

Thus {E%H} converges pointwise to 0 for all real x. This,

in turn, means that for a fixed x and a given € > 0, we can find
N such that

n>N+‘§%—O<€ (1)
NIL.5.7




SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

[7.5.2 cont'd]

- 0| we see

If we now work on |———
X+n

1 _ 1 _ 1 _ 1 *
|x+n 0’ - ’x+n' © [xtn] ~ x+n (2)
From (2) we see that
1. 1
[x+n] < ¢ 7 % © €
but
1
x—+r-1-<g+->x+n>s—
PR TR~ é - x (3)

From (3) we see that if we choose N to be any integer which

1
exceeds = = x** then

1
n)N+|m—0 < € (4)
*This is why we let dom fn = [0,b]. Namely, since n is always

a positive integer, |x+n| will equal x+n as long as x is also posi-
tive. If x is negative we can still invoke such results as

|x+n| ¢ |[x| + |n| = || + n, but the arithmetic becomes a bit more
obscure. In essence, the restriction that x > 0 does not alter
the general theory, but it does simplify the arithmetic.

**Tt is assumed that N denotes an integer, but é - X need not

be an integer. A common abbreviation is to let [u] denote the
greatest whole number which doesn't exceed u (see discussion of
The Greatest Integer Function, Thomas 1.6). We can then let

N = é - x| and since N < % - x < N+1 (since N is the greatest

integer which doesn't exceed é - x) it follows that

n >N-+n 3 N+l > % - X.
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

[7.5.2 cont'd]

Thus we have constructed the N required in (1), but, at the

moment, N depends on both x and €.

However, the fact that x is positive means that é - X < é;
hence,
1 1 1
If n > = thenn > = - x, whereupon |— - 0| < ¢
€ € X+n

We may now let Nl = [%] (i.e., Nl is the greatest integer

which does not exceed L),
€

A
X+n

.n >N, > n >N -+ - < g (5)

1

Finally, since [%] depends only on €, not X, (5) tells us that

liiﬁl converges uniformly to 0 on [0,b]. Pictorially,
Y
A
y = £_(x) Eolx) = o
n n n+x
1 i
(O :H)
(b, 535)
i 'n+
: B
0 b i

For simplicity, let ¢ = =. Then, for n > N, we have

Z| =

VII.5.9




SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

[7.5.2 cont'd]

Tk

%=§' A : //////// > X
( 5 i

Y fn(x) if n >N
T'ei5 w3
- _n _ RE
If fn (X) = ;:-+—n—, then fn (X) =

L% 1
n

: L 1 7. 1 1
iiﬂfn(x)"ii2[§_+l]_o+1 r-1
n

Hence, [E%H] converges to 1 for all real numbers xXx. Let

us now construct N for a given e,

n -X
< £ —_— = T er—
y and x+n 1 x+n

= n
We want ‘X_'l‘ﬁ. 1

-X
xX+n

< £

. . We want ‘

Since we are given that x is non-negative, we have that

[-x| = x while |x+n| = x+n. Hence,
-x| _ _x
x+n x+n
VII.5.10
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

[7.5.3 cont'd]

Substituting (2) into (1), we have

m‘(
xin , 1
X €
"y X+n > g
n > g - x = x(% - l) (3)

(Again we may assume 0 < € < 1; otherwise, (3) holds trivially.

Then, as soon as 0 < & < 1, é > 1 and (é - l) is also positive.)

If we let N = [x(é - l[l, we see that

n
Xx+n

n >N > ’ - < € (4)

To show that [igﬁl converges uniformly to 1 on [0,b] we
must be able to show that we can find Ny which doesn't depend on
x so that (4) holds when N is replaced by Nl'
To this end, we observe that since 0 < X £ b, x(é—— l) <

s(2 - 1) ‘
(2 - )] < [o(2 - )]

Letting N; = [b(g = l)].. we have that n > N1+ n >N(= [x(% - l)])
Hence

n >N, > n >N =+

VII.5.L1




SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

17:5+3 cont'd]

But Nl doesn't depend on x and our proof is complete.

(Note a rather important difference in the result of this
exercise compared with the previous one. 1In the previous exer-
cise, we could let Nl - [EJ and this not only was independent of
X, but it was also independent of x being bounded. In this
exercise, however, Nl = [?(é - l)], and, clearly, Nl increases
without bound as b increases without bound. 1In other words, now
uniform convergence depends on x being bounded. We shall exploit
this in the next exercise.)

7:95v4
. n
) = o
Iimf () = 1
nre O
lim | 1im fn(x) = lim [1] =1 (1)
X+ n-+eo K+

On the other hand,

. _ 3 n _ n _n _
lim £_(x) = lim [n+x] =:lo= B
X>o0 X-+0o

lim |[lim f_(x)| = 1lim [0] = 0 (2)
n->w X 5 n-—-w

The result follows from comparing (1) and (2).

(Notice our observation in the previous exercise that the

uniform convergence depends on x being bounded. 1In this exercise

we let x»= which meant that x was allowed to increase without bound.)
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

7.5.5(L)

nx .
1—_:11—}{ will be

continuous provided 1 + nx # 0. But 1 + nx > 1 since both n and x

(a) Since nx and 1 + nx are both continuous,

are non-negative (n because it is a whole number and x because it

is [0,1]). In particular, for all x under consideration 1 + nx # 0.
. - TLAE ' .
L If £ (%) T+ nx' fnp is continuous on [0,1]
(b) If x =0 nx O =6
' 1 + nx i
: nx . _ ; _
lim +———=1im 0 = 0 if x = 0 (1)
I n-+cw

If x # 0 then

4 nx i X : X
lim =—————— = 1im = lim [ ]
I 1l + nx B [% & x] — 0 + x

= lim X = 1lim 1* = 1 (2)
-+ X n-—-+w

Combining (1) and (2) we see that

0, if x = 0

= i = i _._nx =
£(x) = iiﬁ fn(x) iig 1l + nx
l, if 0 s x g 1
.. £(x) is not continuous on [0,1]. In particular, f is

discontinuous at x = 0.

*The statement §-= 1l requires that x # 0, otherwise we have

the indeterminate % form. This, hopefully, motivates why when we

nx

compu te lim m

n-+roo

, we look at x = 0 as a special case.
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

[7.5.5(L) cont'd]

(c) We have proven that if {fn} converges uniformly to £ on

[a,b] and each fn is continuous on [a,b], then f must also be

continuous on [a,b]. In our problem we saw in (a) that each fn
was continuous on [0,1]. We saw in (b), however, that £ was not
continuous on [0,1]. Hence {fn} does not converge uniformly to

f on [0,1] (otherwise f would also have been continuous on [0,1]).

(d) Part (c) offers an indirect proof that convergence was

not uniform on [0,1]. In part (d) we would again like to emphasize

the more direct computational approach.

Since x = 0 is the "bad" point, we shall, for the moment,

disregard it and look at

nx
T+ nx Where 0 < b ¢ xg 1

nx

For any x g [b;l] lim i—m =

oo

This means that for any € > 0 we can find N such that

nx

T +nx 1

n > N - < £

As in previous problems, we now examine

nx
|1—+E' %
Well
nx nx-1 - nx -1 B | -1] " 1
1 + nx 1 + nx I + nx| [T + nx] T I ¥ nx
(since x > 0)
VII.5.14
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

[7.5.5(L) cont'd]

nx -1 1!
I + nx <€ T Fnx < F¢
«> 1 + nx > £
1>
+> nNX > = =1
1 /1 )
++n>§(-e—-—l (3)

If we examine (3) we see that as long as 0 < b s xgl

bounded. Namely % > = g |

e

1 is
" x

. 1/1 1/1 nx
A 5 - S(E'— l) - n 2> ;(E - l) ™ |I_:_H§ -1 < g

and since %—(é—— l) does not depend on x, the convergence is
uniform,
That is, {I_%Eﬁf} converges uniformly to 1 on [b,l] where

b ; 0. The key comes in when we look at (3) as x - 0'. 1In this
case ;-increases without bound which indicates that "close" to 0,
N depends on x.

7.5.6 (L)
r n2x
(a) lim f (x) = 1lim | —=—
n-co B n»e | 1 + n3x2
i X
e n
= lim T 5
n+o | = + x
3
[y
- 0
0 + x

= 0 (unless x = 0, since then we have %)

VIL.5.15




SOLUTIONS: Calculus of a Single Variable - Block VII:
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[7.5.6 (L) cont'd]

l +n"x

lim fn(x) = 0 for all real x

In-+oo

1 1
¢ f lim fn(x)dx =f 0 dx =0 (1)
0 0

n-es

On the other hand,

1
1 1
f £ (x)dx ___f n2x Ay = In(l + n3x2) l
5 & 0 1 + ndx? 2n s
in(l + nd)
2n
i 3
limf £ (x)dx = lim [‘n(l v8 )] (2)
n 2n
n-+ow*(Q n-+w

Equation (2) brings us to grips with an important computational

n(l + n3)
2n

issue. Notice that lim

- w -
] is of the form ";ﬂ if we
Il

replace n by ». In many respects E-is the same as %, (for example,
£ then = = L b g) and so — is also
0’ o 0" 0 0 o0

called an indeterminate form.

if one thinks of « =

To be sure, there are shrewd ways of trying to guess

3
lim [ln(12; B )]. One technigue might be to say that for large
n-ew

values of n, In(l + n3) A In n3 = 3f0n n
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

[7.5.6 (L) cont'd]

tn(l +n°) 3 4nn_ g(m n
Zn ¥ Tom 2

), but we already know that

lim =——— =0
n

n-+w

3
We guess that lim [}n(12+ L )] =0
- n->co n

We shall prove this result more rigorously as a note at the end
of this exercise. For the time being, assume that it's true.
Then, from (2),

1 3
1im f £ (x)ax = lim [.e_n(12+ L )] =0 (3)
n-+ee 0 n->ow n

Comparing (1) and (3), we have

1 1
f lim £ (x)dx = lim f f (x)dx
0 B g 2

n-—+o n-—+wo
(b) Let
y = £ (x) = ——3— (4)

Then

£ 1 (x)= (1 + anE)nz - nzx(2n3x}

y' = 3
n
(l + n3x2)
22 _ 5.2
i 3,2)° ©
1 +n"x
VIL5.17
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L

[7.5.6 (L) cont'd]

From (4) we observe that

(i) fn(O) = 0 for every n

(ii) fn(x) 20 > x>0 (i.e., fn(x) is positive when x is
In fact

positive, negative when x is negative).

(iid) fn(x) = -fn(x) (i.e., fn is an odd function)

From (5) we see that

(iv) £_'(0) = n®

Combining this with (i) means that each curve y

passes through (0,0) but the slope at (0,0) increases without

bound as n does.

(v) fn'(x) = 0 <~ n2 - nsx2 =0
2 1
I r X =
;?
_3
++x=i%=in2
n2
3
If x=+n 2 then
_3 5
n2(+n 2) n

More specifically,

3
"2, _ /A _ _ -/&
£ = £ (n?% =22
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

[7.5.6(L) cont'd]

3
(n f, %?) is a high point

(-n 2, :gi) is a low point

Putting this together we have

Yy
A
3
( 2 /ﬁ)
n ’ T
y = £ (x)
\"-—X
i.. a
_ i n _
n =100 - n —m,T—S
VII.5.19
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[7.5.6(L) cont'd]

Y = £yg0(x)

3
As n gets large n ¢ gets close to 0 while %? gets large.
That is, the high point of y = fn(x) occurs closer to the y=-axis
and higher and h%gher up as n»w, For example, if n = 10lOO then
n? = l(lg)lool 2 = 1071%0 (vhich is 0 to 149 decimal place
accuracy) while %§-= lgig =5 x 1049 (which is rather huge).
2

This leads us to suspect that {fn} does not converge uniformly
to 0 on [0,1],

Moreover, as fn(x) becomes more complicated algebraically,
it becomes more difficult to find N explicitly for a given € > 0.
As a result it is a valuable tool to be able to sketch the curves
y = fn(x) and then get a pictorial insight as to what is actually

happening.

(c) In order that we do not have to take too much on faith, we
have chosen an example for which it is still possible, without
too much difficulty, to find N for a given €.
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

[7.5.6 (L) cont'd]

Namely we want

2
n ' x = Bl e w
1 +n™x
2
N X < ¢ since x is positive
l + n"x
1 + n3x2 1
5 S = (6)
>
n"x
Since nzx > x (remember n2 =1,4,9,16, and x > 0), we deduce
from (6) that
1l + n3x2 1 . 1 + n3x2 1
= i 3 £ ££ % 3 =
n"x
3.2 3.2
(i.e. 18 : = > L ¥ 0K since n2 > 1)
n"x
3 2
Now L+ax > & +«+ 1 + n3x2 W =
X >
<—+n3x2>£-l
£
frmd B s e
£eX 2
X
«+n > ¥ JL _ 1
EX ;7
i 1 2 n2x
That is: n > e = x" - e < g
l + n"x
NVIT.5.+21




SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

[7.5.6 (L) cont'd]

We then see that as x » 0, ¥ é% - xz + o and thus that uniform

convergence is lost as x » 0.

(d) This is a major learning point of this exercise. Namely,

we have proven that if {fn} converges uniformly to £ on [a,b], then

b b
limf fn(x)dx =f lim fn(x)dx. We did not prove the converse.
d

n-+oo a n-roo

b b
That is, we did not show that if limf fn(x) =f lim £_(x)dx
IN—+w*g a I+ R
then {fn} converges uniformly to £ on [a,b].

Now, from this exercise, we see why we did not prove the

converse. Namely, the converse is false!

In particular, in this exercise we showed explicitly a case

wherein

1 1
(1) limf f (x)dx =f lim £ (x)dx
0 n 0 n

N-»oo oo

but

(2) {fn} did not converge uniformly to £ on [0,1]

A NOTE ON 0/0-TYPE FORMS

2 2
X" - a

b Rl |

When we dealt with such forms as lim Sin X or 1lim

x+0 X-+a
we were fortunate in that we had relatively simple devices at our

r

disposal to compute these 0/0-type indeterminate forms,

The main problem is that there are many transcendental
functions that take on the 0/0 form but for which there are no

obvious straight-forward techniques for computing the limit.
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

[7.5.6 (L) cont'dl

One device that is sometimes used is series. For example,

suppose we wish to compute lim Eﬁgg—i . We have already seen

x-+0
that sinh X may be represented by the power series:

X3 XS
X ap Flgp ¥ wwes
Hence
sinh x x2 x4
—x Ctta st

(To be on safer ground, what we should do is say that

3 5 2n+1l
X X
37 ¢ BT e [+ By ld)

sinh x = x +
2n+1)!

where lim Rn(x,O) = 0, We would then conclude that

sinh x _ 1+ §i o + x2n i Rn(x,O)
X 3! e (2n+1)! X
Rn(x,O)
and then show that lim ———g———-is also equal to 0 whereupon
Il=-co
lim 3283 X o

x+0

We may talk more about the series approach in the next unit.
At this time, what we would prefer to do is to introduce a rather
powerful tool for evaluating 0/0 forms. The technique we have in

mind is known as

l'Hopital's Rule
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

[7.5.6(L) cont'd]

(For a more thorough treatment, read Thomas 18.7.)

What 1'Hopital's Rule says is:
£4{E)

Suppose f(a) = a) = 0 and that lim exists,
PP (a) g(a) a o W X Then
lim E%E% exists, and, in particular
r r r
X+a €
. £(E) ’ £'(t)*
lim = lim
xog 9(E) xha 9 CE)

For example, if we were to use this rule to compute lim EE%?_E,
we would have f£(t) = sinh t, g(t) = t, and a = 0, &0
Then
v V() . cosh t
lim = lim ——— = cosh 0 =1
g+0 9 (8) g L
Therefore,
. sinh t . £(t)
lim ———— (= lim ) = 1.
t»0 °© g0 9(F)

The proof of this result is a refinement of the mean value
theorem. In other words, l'Hopital's Rule could have been intro-
duced as early as Block II, but perhaps it fits better in the
context of Block VII,.

Section 18.7 in Thomas supplies the details of the proof of
1'Hopital's Rule in an elementary manner, and as a result we will

not reproduce the proof here.

1
*Note the form ET%%%ﬁ It is not the derivative of g%%%-but

rather the quotient of the derivatives of f£(t) and g(t).
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

[7.5.6(L) cont'd]

Instead we will talk about a subtlety that is not discussed
in as much detail in the text but which is essential in our present

consideration. Notice that in our problem we are dealing with lim
n+m

rather than lim. This is much more crucial than just a change in
¥ 0o

symbolism. Namely, n denotes a whole number (i.e., n =1,2,3,...)
while x denotes any real number. In the technical jargon, n is

called a discrete variable, while x is a continuous variable.

The key point is that the proof of 1l'Hopital's Rule uses

differential calculus, and differential calculus applies to

continuous variables - not to discrete variables., (This will be

illustrated by an example at the end of this note.) We "bail out"

of this dilemma by observing that if 1lim f(x) = L then lim f£(n) = L,

praga n--ce
also. This means, in essence, that we may view n as if it were a

continuous variable when we compute lim £ (n).
n-+o

To see why, perhaps a picture is most helpful. Suppose

lim £(x) = L. Then, graphically, we might have

oo

y = L

/ \/(;+m, y - L)

S X

(Figure 1)
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Infinite Series - Unit 5: Uniform Convergence

[7.5.6 (L) cont'd]

Notice, next, that the points (n,f(n)) are a subset of the

points which make up the curve y = f(x).

Namely,

/17:\///‘-‘_”""
A1 £ (n)

j i l i L !

123456 7809101112 s

(Figure 2)

From Figure 2 it should be clear that as n»+«, £(n) - L.

Note
The converse is not true, That is, if lim £(n) = L it need
n-o
not be true that lim f(x) = L. As a simple example consider
- pia)
f(x) = sin mnx

Then lim £ (x) doesn't exist since the values of £ (x) continuously

N

oscillate between -1 and 1, On the other hand, for any whole

number n, £(n) = sin nn = 0. Hence lim £(n) = 0., Pictorially,
n-o
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

[7.5.6/(L) conttdl

sin TXx

]
o™ |

= X

0 \1 2 3 4 5
y lim sin tn = 0
n-—+o

At any rate, then, if we treat n as a continuous variable

and it turns out that lim £(n) = L, then it will also turn out
>
that lim f(n) = L, if n is viewed as a discrete variable. This
n-+o

is what justifies our use of 1l'Hopital's Rule in our present

exercise.

o]

There is an "interesting" proof that 2 = 1 by means of cal-

culus if we confuse a discrete variable with a continuous variable.

Namely,
l2 = 1 (i.e., one 1)
22 = 2 4+ 2 (i.e., two 2's)
32 =3 +3+3 (i.e., three 3's)

VL5 d?




SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

[7.5.6 (L) cont'd]

In general, then,

X = X +x+ ... + X% (1)
[N J
L

X times

If we now differentiate both sides of (1), we obtain

2%

Il
'_l

* 1 oae ¥l
L )
~—

x times

or
2x = X (2)

Since x need not be 0, we may cancel x from both sides of

equation (2) to obtain
2 =1 (3)
How could we have arrived at such a ridiculous conclusion

(unless you believe 2 = 1)? The answer lies in the fact that

equation (1) is only true if x is a whole number*, More

symbolically, (1) should have been written

n =n+ ... +n
T P |
n times
*That is we can add 1,2,3,4,5,... etc. terms but we cannot

form, for example, the sum of 5 terms. That is, to say “2 means
add 7 to itself 7 times is a bit absurd. The notion that multi-
plication is repeated addition applies only to whole numbers.
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SOLUTICNS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

[7.5.6 (L) ccnt'dl

Equation (3) offers us direct proof that the rules of
differentiation cannot be applied to discrete variables since our
application of differentiation here led to the absurdity that
2 =1, (More structurally, the concept of derivative required
that we could make the difference between Xy and Xq + Ax as small
as we wished. If, however, the domain of our function consists
of whole numbers, either Ax = 0 or else it is at least 1 since
this is the minimum difference between two unequal whole numbers.)

T8 7
-nx2 2nx @
Notice that lim 2nxe = lim i and this is an —- form,
oo
N+ N> & nx

which, hopefully, suggests L'Hopital's Rule. (To use l'Hopital's
2

; -nx ; 0 )
Rule on lim 2nxe we must have either a ] form or a = form
Il—»co

and that is why we write 2nxe * as ———iu)
nx

e

Remembering that we are treating n as the variable and x as
a constant, we obtain

2 *

; -nx  _ .. 2nx _ . 2x T 2 R I SR
lim 2nxe = lim gy lim s B lim i 0
Nn-+co n+o Nnx nre 2 nx n--o nx

e X e xe

—nx2
lim 2nxe = 0 (1)
N-+co

*This result requires that x # 0 since we cancelled x from
numerator and denominator. If, however, x = 0 it is clear that
2

the result still holds since 2nxe "* then equals 0.

VII.5.29




SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

[7:5.7 cont'd]

Another way of anticipating the result (1), is to observe
2

that e ¥ goes to 0 "faster than" 2nx goes to infinity. That is,

lim ne " = 0, from which a few computational steps allow us to
n->o 2
conclude that lim 2nxe ¥ = o,

n-+w

(b) By (a), lim fn(xJ =0

n+00
1 1
" f lim fn(x)dx =f 0dx =0 (2)
0 noe 0
1
1 1 2
(c) f £ (x)dx =f 2nxe ¥ dx = - X
0 0 0
= - " - (—e_o) = e M +1=1- j;
e
+ 1
limff(x)dx=lim(l—»-——)=l-0=l (3)
n Il
n-+oeo 0 n-eo e
(d) Comparing (2) and (3) we see that
1 1
lim f (x)dx #f lim £ (x)dx (4)
n n
n+w Q 0 n-ow

But (4) cannot happen if {fn} converges uniformly to £ on [0,1].

Therefore, {fn} does not converge uniformly to f on [0,1]

because (4) does happen! i.e. 2nxe ¥ I does not converge
uniformly to 0 on [0,1].
VII.5.30
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

7.5.8(L)

(a) Actually, this is a learning exercise at this stage only
in the sense that we want to illustrate our concluding remarks in
Chapter X, Section G of the supplementary notes concerning the fact

that a series is a sequence of partial sums.

We have

£ (x)

™

_ 2 1 1 ! 1
- 21+ -t - stk ———— ) (1)

(L + x2) (1 + x2) (1 + x2)

The sum in parentheses in (1) is a geometric progression

with ratio ——ja-z-and since x2 2 0, —-JL—E-é 1 with equality
I + x 1l +.x
holding <> x = 0.
If we let, say, s_ =1 + ———L—_-+ ana F ————2;———-we see
n 1 + xz 2. B
(1 + x7)

that (and this is the same technique we used earlier to evaluate

geometric series)

1 _ 1 1 1
1+25“_(1+2)+ 2 2 T 2 0+l
® X (1 + x7) (1 + x7)
1 1
5. = s =1 -
n 2 "n n+1l
1 + x (1 + sz
1 . 1
(l - 1 + x2)511 =1 , DFl
(L + x7)
ViEL 53]




SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

[7.5.8(L) cont'dl

p 4 _ _ 1
L+ 22 By ™2 5 Btl
(L + x7)
(2)
s—-—z——l“‘zl- 5 (x # 0)
n ", 2 n+1 ~
(L Fx")
Putting (2) into (1) we have
f(x)_XZS(x}=21+x21_ 1
n - n x x? 2 n+1l
(1 # )
_ 2 |
= (1 + x7) (l - ; n+1) x#0
(1 + x7)
; 2
1lim £ (x) = 1 + x~ if x # 0
n-+o &
n 02
while lig fn(0)1= 2: ______E_E = 0, or iig £ (x) =0, if x = 0.
" k=0 (1 + 0%)
Letting f(x) = lim fn(x), we see that
n-—-o
2 .
1+ x" if x # 0
f(x) =
0 if x=0
1im £(x) = lim (1 + x2) = 1 # £(0)
x+0 x+0
f is not continuous at x = 0. (3)
VII.5.32
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

[7.5.8(L) cont'd]

2
(b) Since ———E————E is the quotient of two continuous
(1 + %2
; 2 }{2 i G
functions and 1 + x~ #¥ 0 for every x, % 1S also continuous.
(1 + x°)
Then, since any finite sum of continuous functions is continuous,

n 2
it follows that £ (x) = E: ————5———E-is continuous.
& 2

k=0 (1 + x")

Hence {fn} cannot converge uniformly to £ on any interval
which includes x = 0, for if it did £ would also have to be contin-
uous at x = 0, but from (3) we see that this isn't true! 1In other

words, an infinite sum of continuous functions need not be

continuous.
7.5.9(L)
(a) For a given X, we may compute lim Sin DX +o5 be 0 since
oo /ﬁ
-l g sinnx g1 = .S.in_n}f.g_l:—rg.
vn vn

To show uniform convergence we must exhibit for € > 0, a

number N, which depends on e but not x, such that

n> N o |SinDX|
/n
Now, since 1559—551-5 L it follows that |SIRBX|. o jf
/n /n yn
i<f—:. Buti<s++/ﬁ>-l—orn>—]é.
y/n /n € €
Letting N = [J%} , we see that
£
n>N+n>L2->3—;-<g+ S8 hix g
€ /n
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[7.5.9(L) cont'd]

2

Since [3;] doesn't depend on x,
€

converges uniformly to 0

yn

lsin nx

(b) 1im fn(x) =0

n-—+o
d[lim fn(x)]
: ' neo do
l f = B e ==
[nig n(X)] dx dx 0 (1)
on the other hand, f_(x) = 510 DX implies that
n
fn'(x) = 0. COB NX _ & cos nx (2)
/n
lim £ '(x) = lim vn cos nx = «» (since cos nx = 1 when x = 0,
n-+o = n-+w
2n, 471.... we see that vn cos(n 2k 1) = yn+x as n-+«)
lim £_'(x) # [1im £ (x)J' (3)
n n
n-+o n->oo

since, in any event, lim fn'(x) is not identically 0.
n-+ow

Thus, we have an example wherein
(1) {fn} converges uniformly to f
(2) fn' and f' exist
but

(3) 1lim fn' # £

n->oo
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Unit 5: Uniform Convergence

[7.5.9 (L) cont'd]

This does not contradict our theorem about differentiability

since lim fn' = f' was only guaranteed if {fn'} itself is a
n-+oo

uniformly convergent sequence. Clearly, however, {/n cos nx} is
not uniformly convergent since it isn't even pointwise convergent;

for example, lim /n cos 2m n = lim /n = «,
n-—+o n-—+w
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series

UNIT 6: Uniform Convergence Applied to Power Series

7.6.1 (L)

Recall that a fundamental result is that if the interval

oo

\ In: .
(radius) of convergence of Z a, X is R, then

n=0

(1) E a, x' converges absolutely if |x|] <R
n=0
= n
(2) 2: a X converges uniformly if |x| < X; <R
n=0
(3) 2: a, x1 diverges if ‘x| > R .
n=0

Thus, from a purely mechanical point of view, we need only
determine R to solve this problem. To this end, the ratio test

serves nicely.

n n+1l
Let a = |5% |, I | 5x| .
a
Then —2¥L = [5%x] = 5 |x|
a
n
a
Jdep= lim s I 5 |x]
I -+co n

Sp< 1l e——5 |x| <1

e——+]x| < % . (1)

From (1), we have that R = é. (Notice that up to this point
we are reviewing the procedure used in Unit 4 of this Block.)
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 6: Uniform Convergence Applied to
Power Series

[7.6.1 (L) cont'd]

oo

Thus, from (2) above :E: (5x)™ converges uniformly if [x|< c <
~0 (2)
Diagramatically:
(1) choose c E(D,% .
Pl g i i & TERCTINTT.
RN SCansasasss- —
_,.5.. C ?5.

(2) Then z: (5x) ™ converges uniformly if x e[-c,c] .

n=0

Notice, however, that we specifically requested use of the
Weierstass M-test to find the answer. One reason for this, is
that the proof of the fundamental result makes use of this test.
(In other words, by using the M-test, we reinforce the proof of
the fundamental result.) Another reason is that it is not always
convenient to depend on the ratio test to find R; hence, the M-test

gives us an alternative approach.

(e ]
At any rate, to use the M-test here we observe that E: b"
n=0

converges if |b| < 1 and diverges if |b| > 1 .

[eo]

Hence Z (5%)™ converges uniformly, by the M-test, if and

n=0
only if:

|5x]n < [b]n where b < 1 g (3)
But (3) holds e——*|5x| <b, b <1

«—5|x| ¢<b, b <1
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 6: Uniform Convergence Applied to
Power Series

[7.6.1 (L) cont'd]

HJxlé'g'rb <1l
— |x|<ec, c < % (c = ?) . (4)

A comparison of (2) and (4) show that the two methods yield
the same result.

1.6.2

Ek—l)n converges & L <1
2 g 2

e-—+x2 > 1

«—|x| > 1 . (1)

Thus, if b is any number such that |b| > 1, we see that

(s o]

o oo n
E E where Z (—-]2“-) is a positive convergent
n= n=0 =0 b

series.

Therefore, by the M-test:

2: -——ALTT— is uniformly convergent if 1 < |b| < |x| .
F=n 1 + x°°
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 6: Uniform Convergence Applied to
Power Series

[7.6.2 cont'd]

(By the ratio test tecnniques we would have

a, = 1 B = z .Qn (since x2n > 0)
|1+ x™7| 1+ x
B S §
:.an+l _ 1l + x2n _ x2n+2 x2 .
a - 2n+2 i
n 1 + x m + 1
Now lim —i_ = 0 — x| > 1
2n+2
n+e x
a 0+ lf
n—+® n 0+ 1 X
hps L
-n ad 2
X
2
and £ <1 e—x" > 1
— x| > 1 (2)

and clearly (1) and (2) agree .)

7.6.3 (L)

In this exercise, we wish to emphasize the power of series

in handling certain problems. We shall both review certain basic

principles and apply them is rather simple situations (we use sim-

ple cases so as not to obscure the theory; in later exercises we
gradually let the cases become computationally more complex).
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 6: Uniform Convergence Applied to
Power Series

[7.6.3 (L) cont'd]

(a) Now in part (a) we are emphasizing that portion of our
discussion in the notes in which we showed that if a series con-
verged to a given function uniformly, then its coefficients had

to behave in a rather special way. Recall that we snowed that if

oo

2: a, xD converged uniformly to f(x), then

n=0

(n)
f 0
a = __ETl_l . (1)

fee] o0
Hence, if both 2: b, x" and 2: c, x"' converge to the same
n=0

n=0
function, (1) allows us to conclude that for each n, bn =1 - since,

. . £ (0)
in particular, each is equal to =R s
n!

In other words, if:{:an x" converges uniformly to f(x), then

it is the only series which does.

£®) (9)
(b) We could let f(x) = X sin x and then compute e, S

to obtain the desired series. If we do this, we obtain

8
f(x) = x sin x
f'(x) = X cos X + sin X
f"(x) = -x sin X + cos X + cos X = 2 CcOs X = X sin X - (1)
f"'(x) -2 sin X - sin x - x cos x = =3 sin X = X COS X
f(4)(x) = -3 cos X + X sin X - cos X = -4 cos x + X sin X

.
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 6: Uniform Convergence Applied to
Power Series

[7.6.3 (L) cont'd]

SE(0) = 0 i ao =0 ]
£'(0) =0 a; = 0
" _ = EV(Q) (2)
£7(0) = 2 4 ~vgr =1 -
£y = 0 aj = 0
(4)
(4 f 0 -4 1.
£ 0) = -4 R Tt k| |
; 2 x4
SH X sin x = x° - FT e (3)

The trouble is deriving (3) is that the formula for obtaining

(1) (hence, also (2)) may seem non-simple.

A powerful alternative way is to recall that within its
interval of uniform convergence a power series behaves like a
polynomial. Amongother things:

oo

oo}
n : n
B E a X converges uniformly for |x| < Ry and Z: bn X
n=0

o0 Wn=0
¥ n n
converges uniformly for |x| < R2 ” Then(z : a x ) (2 : bn X )

n=0 n=0

converges uniformly for |x| < min {Rl’RZ} ; where

g oo (]
n n\ _ n B
(Eanx)( bnx)-—E:cnx,cn-—(a0b0+albn_l+...+anb0J.
n=0

n=0 n=0

Applying this idea to the present exercise; x is already a
uniformly convergent series which represents x for all real x .

2 3

(That is, x= 0+ 1 x + 0 x“ + 0 x~ ..., and from (a) the series

representation is unique.) 2
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite

Series - Unit 6: Uniform Convergence Applied
Power Series

[7.6.3 (L) cont'd]

to

3 5 7
On the other hand, x - %T * %T - %T + ... converges uniformly

to sin x for all real x .

B X3 XS X7 (_l)n X21‘1.-i-l
X sin x = X{x_w*‘—-'—--?T'{’ ...+—(2n+1~)—' +-a.)
= %% - ﬂi.+ x° _ x° + G 12" +
41 51 7! 2 2 (2n + 1)! o

(4)

Notice that (3) agrees with (4), as far as we developed (3),

but (4) was much easier to obtain. Also observe that (4) is valid

for all real x since it is the product of two uniformly convergent

series each of which is wvalid for all real x .

1/2 1/2

0 n _2n+2
(c) f X sin x dx f 12 ('Ei'r)l +xl)! dx

0 0 n=0

-+

172 4 n _2n+2
= 22 = B g + 1) X
3! e (2n +
0

1) 1!

(3)

Now the crucial point is that for uniformly convergent series

we may interchange the order of integration and summation.

(5) may be written as:

1/2 _ o0 1/2 (_l)n X2n+2
f x51nxdx=z f G dx
0 n=0 0
1/2
| e1ym x2n t 3 ’
Z (2n + 3)(2n + 1)!
n=0 0
_ (; 3 _ x° + x7 _ x9
=\3* 5(31)  7(51)  9(7N

VII.6.7
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite

Series - Unit 6: Uniform Convergence Applied to
Power Series

[7.6.3 (L) cont'd]

Therefore, from (6),

3 5
1,1
33 - 23 G
1/2
underestimates ./~ X sin x dx by no more than
° 7
73 G
Now,
L7 - iddy =L - L. . 13
3'2 527 \31' = 22 ~ 960 - 960 _ 320

CIE T DL SO |
while =(z) (1) = 197520

Hence,
172
3%% < ./- X sin x dx < 3%3 + 107%320 . (7)
0
Since ——=tr== = 0.000009 < 0.00001 and ==2 = 0.04062, (7)
1NCe 107,520 ' : 320 . ’
becomes:
1/2
0.04062 < ‘/. X sin x dx g 0.04063 . (8)
0
From (8)
1/2
-/F X sin dx = 0.0406 correct to 4 decimal place
0
accuracy. (9)
VII.6.8
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite

Series - Unit 6: Uniform Convergence Applied to
Power Series

[7.6.3 (L) cont'd]

(d) It happens that by integration by parts we can evaluate

1/2
f X sin x dx directly.
0
By way of review:
u = x dv = sin x dx
du = dx vV = =cos X
1/2 1/2 1/2
f X sin x dx = uv l —f v du
0 x=0 0
1/2 1/2
= =X cos X l + sin x ’
x=0 0
= -% cos % + sin % i

. ; .
From the tables (recalling again that sin % means sin x

radian, etc.)

sin 7 = .4794
cos 3 = .8776
o % cos % = ,4388
Msin 3 - 2 cos = = .0406 : (10)

VIiI.6.9
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite -
Series - Unit 6: Uniform Convergence Applied to -
Power Series
-
-
[7.6.3 (L) cont'd]
il
-
A comparison of (10) and (9) vividly illustrates the power
of our series techniques. To be sure, (10) was easier to obtain E
than (9) (that is, integration by parts was easier then series),
but in many cases (see, for example, the next exercise) we have |
no alternative for the series approach. The reason we chose _
1/2 ]
./n X sin x dx was so that we could check the accuracy of our i
0
result by another method. "
-
T+b.4 =
[
The basic difference between this exercise and the previous
one is that in this example there is no convenient way of determin- F
I
ing-lpx e™™ dx by our usual techniques of integration. =
e
What we do is begin with:
u u? 3 2 a
e=l+u+2—l+%|—+...+g—,+... ,|u|<°° -
| |
3 6 9 3n )
. 3 X X n x
--ex=l—x +'2T"§T+...+(—1J n!+-.. ’|X|<°0
™
=
7 10 n _3n+l
3 _ 4 X X (-1) x
.._xe-x X = X +2-'.-_'_3!+'..+ nl + e . |x| < -
-
1/2 _x3 172 (—1)“ 3+l -
0 0 n=0
L
-
o0 172 (-1)" x3n+l
= 2: == idx by uniform convergence g
n=0 0 :
VII.6.10 E
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SOLUTIONS: Calculus of a Single Variable - Block VII:

Series - Unit 6: Uniform Convergence Applied to

Power Series

[7.6.4 cont'd]

1/2

>

n=0 0

1/2
(=138 3nt+2

(3n+2) (n!)

Infinite

3n+2
. % (3n+2) (n!)
8 55 2821 23
_1_ 1 .1 1
=% 10 * T8 " 135,168
1 _ +
Tﬁgjigg = 0.000007
s From (1)
1 1 1

3~ Te0 T 7096

1
more than m .

is greater than f x e

—x3 dx by no

5(2)° - 2

— +
27 *5 2

12

_ 5(512) - 128 + 5 _

Now

-:.I'-.— l + l :-.J:--

8 160 4096 23
: 1/2
2437 1

20,480 135,168
0

5(4096)

3
*“f 2 &% ax ¢ 24317

s 20,480

VII.6.1l1




SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 6: Uniform Convergence Applied to
Power Series

[7.6.4 cont'd]

5%3%%5 = 0.11890"

1 _ e g
135,168 0.000007 < 0.00001 .

-~ From (2) we see that
1/2

is correct to at least the given number of decimal places.

7.6.5

1 N U . .
(a) (X-Z) (x-3) T X=3 x=2 (by partial fractions) (1)

Now, one way of getting a power series for E%_ is by letting

a
I I = 1
f(x) = =y - (x-a) £(0) = -3
£'(x) = -(x-a) 2 £1(0) = -
a
£%(x) = 2(x-a) > £ (0) = -2 53
a
| £" 1 (x) = —3(!(:‘:—:':1)"4 £"'(0) = =3! iz
£M (%) = (-1)® ni(x-a) " (0H1) £™) (0) = -ni i+1
a
R A () -n!
n 7l n! an+l
fodo s XY B oy E x? + ) |x| < |a| (by ratio test)
ol Z L - = -3 e “ae ’ a 4
a a a
n=0
VII.6.12
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SOLUTIONS:

Infinite
Uniform Convergence Applied to

Calculus of a Single Variable - Block VII:
Series - Unit 6:
Power Series

[7:6:5 contVd]l

n
. =X
while Z —h3T converges absolutely for [x| < 2.

both

1 o n 1 co xn
. sy a4 —_— = -
T x=3 T Z 3N+l x=2 Z ontl
n=0 n=0
.1 1l _ - X & KR (2)
" x=3 x=-2 Z n+1 Z n+l
n=0 3 n=0

il ;
Now 2: ;E?T converges absolutely for [x| < 3 (ratio test)
n=0

oo

Hence, for |x| < 2,
n=0 2

series converge absolutely. Thus, for |[x| < 2 the series

behave like polynomials.

That is, from (2):

A | A -x" e X
=3 " %2~ ), oo+l 7 >, o+l

= = 1 1 n
B 2: {2n+l 3n+l) = [=] = & 43
n=0
Combining (3) and (1):
1 - 1 1 n
(x=2) (x-3) Z (2n+1 S+l )x x| <2 (4)
n=0
_ (1 _ 1 1 _ 1 1 1 2 .
‘('2' ?)*(I 9)"*(’8‘ 27)x
1 1 n
+ R +( n+l n+l)}h + ] L
d n+1 ’ n+l IX! <2,
o i 5 19 2 3 2 n
=zt 3gxt 51Xt o-ee t ( 6n+l ) X 4+ ... J
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite -
Series - Unit 6: Uniform Convergence Applied to -
Power Series
P
[7.6.5 cont'd] -
»
-
(Again notice that it is easier to obtain (4) as we did than
to have to compute ~f——(i)-—(ﬂ where f(x) = 1 :
P n! (x=2Xx-3) °’
(b) We have P
[,
1
- 1 n
: f T - f Z ( I 3n+l) x'pdx . g
0 n=0 (5)
o 1. 1 "
( But the radius of convergence for Z (2n+l = 3n+L) x" is at -
n=0 -
least 2. In particular, then, the series converges uniformly on o
[0,1] . Since the convergence _is uniform we may interchange the
order of integration and summation in (5) to obtain E
. 1
1 1 n
= - x dx : 6 -
f (x—2> ey el B f<2n+l 3n+l) (6) il
n=0 0
1l i A .
- . a+. -
% ©o n+1l n+i = 3
- dx _ 2 3
(x-2) (x=3) Z: n + 1 -
0 n=0 0 -
L
1 1 |
~ o 2n+1 3n+l
B E n+1l |
n=0 -
-
-
_ i 3n+l _ 2n-i-l
n+l
foweer (n+l) 6 t
+
Sl,5 , lo, 65, 2l N S S
6 72 648 5184 38,880 L) 6n+1 F
")
VII.6.1l4 F
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 6: Uniform Convergence Applied to
Power Series

[7.6.5 cont'd]

~ 0.1667
0.0694
0.0293
0.0125
0.0054
0.2833 ~0.28 (7)

1
1 1
f (x-3 - x—2) dx
0

1
(c) f dx
(x=-2) (x-3)
0

1
= In |x = 3| = [n |x - 2|
0
= (ﬂn 2 =-{n1) - (dn 3 = (n 2)
= 2-0-1{( 3+ ¢n2
=2 /m2-/{n3-= In 22 -/n 3
=/l 4 - to 3
= 1.3863 - 1.0986 (from the tables)
= 0.2877 . (8)

(7) and (8) are sufficiently compatable to see that the series
technique works. We should notice, however, that since all terms
in our series are positive, we cannot bound our error by the mag-

nitude of the next term, as we can with alternating series.

VII.6.1l5




SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite

Series - Unit 6: Uniform Convergence Applied to
Power Series

T 6B
Since
2 4 6 n _2n
_ _u u’ _u (=1)" x
cos u = 1 STYAT “Ff * vov ¥ Zn7T P wrew |&] € = 3
it follows that
4 8 12 n ,4n
2 _ t A t (-1) =
COSt-l-iT+IT-zT+-..+W+.-- |t|<00
X X
4 8 12 n ,4n
. 2 _ __t__ t _E (-1) t
.fCOSt dt—f(l 2I+E-!- 'ﬂ'}' ...+—-—-—Tin)—!-+ ...)dt
0 0

and since the series converges uniformly,

X
5 9 13 n , 4n+l
2 . _ _t t -t (-1) ¢t
-/.cos t7 dt = G: 5121) + 3(4T) 13(6T) F o F (@n+1) (2n) 1 + ...)
0
. §i . x9 ) xl3 . N (_l)n x4n+l N
10 216 9360 e (4n+1) (2n) ! e
_ (_l)n x4n+l (13
(4n+1) (2n) ! *
n=0
(Aside: x
2

cos t~ dt is called the Fresnel cosine integral and occurs

0
prominently in the theory of diffraction. The point is that there
is no elementary function (or finite combination of such functions),

f(t) for which f'(t) = cos t2. Equation (1) holds for all real x and
thus gives us a satisfactory way of computing the integral.)

VII.6.16

S—

S R B Sh G S D R N S o b em e

- oy o8 om m




p

]

AN 0O Ta e

3

SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 6: Uniform Convergence Applied to
Power Series

7.6.7
Let f(x) = Z anxn . Then f(-x) = Z an(—x)n = E (-l)nanxn .
n=0 n=0 n=0
Lf(x) = £(-x) «—
2: anxn = 2: (—l)nanxn : (1)

n=0 n=0
sBy the result of Exercise 7.6.3 (a), equation (1) implies that:

_ n
a, = (=1) ay . (2)

Equation (2) is a truism when n is even since then all it says

. n
i = (= . N
s a (-1)"a a

When n is odd, however, we have

a = -a_ or 2a_ =20
n n n

:.an = 0 when n is odd.

In other words

4 6

_ 2
f(x)—a0 + a.x~ + a,x + AEX" wenn

2
Thus, if f(x) is an even function, the power series which
represents it contains only even powers of x. This is another

reason for the choice of the name "even" function.

(A similar type of result holds for odd functions of courses;
namely, :E:anxn represents an odd function, i.e., f(x) = -f(-x), if

and only if a = 0 when n is even.)

VII.6.17




SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 6: Uniform Convergence Applied to
Power Series

7.6.8 (L)

If at first glance this exercise seems as if it belongs in
Unit 3 of this Block, it is because in a certain sense it does belong
there. At least, that much is true about part (a).

The main ideas are these:

(1) The product of two convergent series is convergent if at

least one of the series is absolutely convergent.

(2) The product is uniformly convergent if each of the factors
is.

Now, to compute the product, we don't need (2). If, however,
we wish to integrate the product term by term (as we do in part (b))
then (2) is important. That is, unless the series is uniformly con-

vergent, we are on dangerous ground if we reverse the order of summa-

tion and integration.

The point is that part (a) is a pre-computation for part (b).

In terms of a real-life approach the idea is that there is no ele-
sin x

mentary function f for which f'(x) = Tz * Thus, to compute
o sin x = (=1)R g0l
f T — dx we observe that sin x = Z Gn 7 1) v x| < o
0 a n=0
. 1 n
while y—=— = 2: x » [&] % 1
n=0
:.sin X _ 2 (—l)n x2n+l = o
1 - x Z (2n + 1)! Z
n=0 n=0
0.01 0.01
; 0 2n+1 ®©
. sin x _ (-l)n X n
f l_xdx—f (Z(2n+l}l )(Ex) -
0 0 =0 n=0 (1)
VII.6.1l8
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 6: Uniform Convergence Applied to
Power Series

[7.6.8 (L) cont'd]

Part (a) allows us to simplify the integrand on the right hand
side of (1) into a single series, whereupon, by uniform convergence

we may integrate term-by-term.
In more detail:
(a) We have:
=2 n i = n
n
(Eanx)(anx —chx
n=0 n=0 n=0

*

where ch = Oh -+ albn 1 + ... + anb0

*If this recipe still seems "unnatural," notice that this is indeed
the way we "pick off" coefficients in the usual product of two poly-
nomials. For example, if we have:

x2 + a x3 + a x4)(b + b,x + b x2 + b x3 + b x4)
1 2 3 4 0 i 2 3 4
and we wish to compute the coeff1c1ents of x® in the product we argue
something like this:

(a + a.x + a

Since we add exponents when we multiply, an %% term occurs if
and only if we multiply (1) an xo by an x6, or (2) an xl by an x5,

or (3) an x2 by an x4, or (4) an x3 by an x3 . (That is, if we want
the sum of two whole numbers to equal 6, the pairs must be 0 and 6,
1l and 5, 2 and 4, or 3 and 3). In our problem, there happen to be

no x5 or x6 terms (i.e., their coefficients are 0), but quick inspec-
tion shows us that the required terms are (azxz){b4x4), (a4x4)(b2x2),

3 3 i . 6
(a3x )(bzx ) and their sum yields (a2b4 + a3b3 + a4b2)x .
Generalized, then, the x" term comes from

[(ag) (b x™) + (bg) (a x™) ] + [(ayx) (b ¥™ 1) + (a,_; ¥ Hmx] + .

etac,

n=-1

VII 6449




SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite

Series - Unit 6: Uniform Convergence Applied to
Power Series

Frs >3

[7.6.8 (L) cont'd]

-
and in our case:
n i
a, =0, a = {-1) b, =1
2n r "2n+1 (2n+1) ! ’ “n
fe = (aObn + albn_l + sew F anbo) -
cn=ao+al+...+an (s:.nceb0=bl=b2=...=l) E
= a; + aj + ag + ... (since ag = a, = Ay = een = 0) E
O TRy T Ay TRy b aie ® @5, 5 E
c2n+l - al + a3 + a5 P wew P a2n+l
:.cl = al =1
By =iay = 1
_ =1 - L _3
3 =a +az=1l=-37r=¢
_ 5
c4—al+a3-—§
_ =1 - 1 l1_,_1,_1 _ 101 ~*
cg =23 tazt+tag=l-37+57=1-%+ 135 = 130

S Ssin x (I—%—;) = x + x2 + g x~ + % X'+ 1y Xt e, |x}< 1

: 1 1 1 L ey >
*Notice that 1 - 3TtsT -5t .. = sin 1 "iig C, # 0 .
This, among other things, should remind us why the restriction
| x| < 1 must apply. Namely, if x > 1, cnxn clearly diverges.
n=
VII.6.20
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SOLUTIONS: Calculus of a Single Variable - Block VII: Infinite
Series - Unit 6: Uniform Convergence Applied to
Power Series

[7.6.8 (L) cont'd]

| ¢

(B |

i

[

3 D8

FEs

S N M e

(b) Now using (2), we obtain:
0.01 0.01
f %j-—il—id){:f (x+x2+%x3+%x4+%x:’+. ) dx
0 0
0.01 0.01 0.01 0.01
=f xdx+f xzdx+%f x3dx+-g-f x4dx
0 0 0 0
+ ... (by uniform convergence)
0.01 0.01 0.01 0.01
= % x2 + % x3 + f% x4 + % xs + se
0 0 0 0

+ 4+ + Ul

%(0.0001) + %(0.000001) i 7%(0.00000001) + é(o.ooooooooon

+ .

0.00005
0.00000033...
0.000000002...
0.000000000016...
0.0000503

VII.6.21
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series

QUIZ
1. (a) 1lim %Ei% = g-# 0. Therefore the series diverges because
n--owo n-

its nth term does not approach 0.

(b) By the integral test 2: —%;converges «+ p >1. 1In

n=1 1

=

this case, = =. Hence, the series diverges.,

[ 3%

(c) Here, we have an alternating series in which the terms
monotonically decrease in magnitude and approach 0 as a limit.
This is enough to guarantee that the series converges. (From (b),
however, we see that it does not converge absolutely; hence, to be

precise, the series is conditionally convergent.)

1°8 168 (1)
(d) Using the ratio test with &g T =mpor Ve have a 41 = L

a 6 (n+l) 6n+6 6

+1 10 n! 10 n! 10

Therefore, L = ( ) = > =
- (n+1)! 106n (n+l)!106n n+l
a 6 6

p=lim 2L o 34 20 =1 =

n-+o n nso O

. p(l

The series converges by the ratio test.

(e) By the integral test we compare the series with

[=2]

./. 2x2 dx. But Jﬁ 2xd§ = £n(l+x2) = fn® - fn2 = «
1 1i+x 1 1+x 'l

. The series diverges by the integral test.

VII.O.L




SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Quiz

n
2. (a) We use the ratio test with an = L%%—

|x|n+l

an+l n+1
a +1 n+1l
n+l _ |x| n - [ n | x|
ay n+1l | ln n+l
X
a
. i n+l ; n
C.p = lim = lim (———) |x] = |x]
£ - -~ n+l

Soe<ler x| <1

< n
- %;—converges absolutely if |x| < 1 and diverges if |x| > 1.
n=1
Now, we need only test the case Ix| =1-1i.,e., x =1 and x = -1.

[==] n [=+]
For x = 1, we get E -J—'E— = %—which diverges (Zn-% with p = l).
n=1 n=1

n
But if x = -1, the series becomes :E: i:%l— which converges since
n=1
it meets the requirements for an alternating convergent series.

© N
i s %T converges +* -1 & x < 1
n=1
n n+1
(b) Let &y = Eilﬁl—u Then 347 = (n+l)!l§ll
n (n+1)
VII.Q.2
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Quiz
[2. cont'd]
Sn+l _ (n+l)!|x]n+l] n”  _ (n+1)|x|n"
an (n+l)n+l n![x|n (n+1)n+l
n
n 1
= (_n+1) || = T\ | x|
(2 +3)
n
a
p = lim ntl . L x|
* a e
n->oo n

e p<l<—+é-|x|<l++|x|<e

0 n

. n'x

" z: nn
n=1

|xl > e

n
e 30
-, Youly
n

converges absolutely if |x| < e and diverges if

I
i converges absolutely if -e < x < e

2 +1
©) a =Dlx® Lo (n+1) % x| "
n n ' "n+l n+l
3 3
. %n+l _ (n+1)2|x|n+l] [ 30 ] _ (n+l)2 £1x|
a, 3n+1 n2|x|n n 3
a
; n+1l 1
= 1i = 3Ix|
N-»oco n

VII.Q.3




SOLUTTONS: Calculus of a Single Variable - Block VII:
Infinite Series - Quiz

[2. cont'd]
| o n21’1
P converges absolutely if ]x| < 3 and diverges if
= 3

n=1

|xl > 3
We next test X = 3 and x = -3

= nzxn - n23n d 2

When x = 3: - - n- which diverges to «,
SEr-yiioy
n=1 n=1 n=1

w© 2. n e 2 n o0
n-x n-(-3) n_2 . ;

When x = -3: = —_t =7 = (-1) "'n” which diverges to + =,
E: 3n 30 2: T
n=1 n=1 =1

- nzxn
z: o~ converges <« -3 < x< 3
3
n=1
|
3 (a) We have, since |sin u| ¢ 1 for all u,
sin nx < i (l)
g
n? "

But 2: —%—converges
n
n=1
By applying the M-test to (1), we have

[==]
sin nx i £
E orm
——;2——-converges uni ly
n=1

VII.Q.4

E B 0 ABF D S B B S e P BE B e e



S | @

e

E B9 s a e &

& &E Ea

E3

SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Quiz

[3. cont'd]

(b) (This is a generalization of part (a). In particular,

1 L] ke l
part (a) was (b) with a = ;7.)

la, sin nx| = |a_| [sin nx| < |a (2)

nl

But we are given that :E:|an| converges. Hence, we may apply the

n=1
M-test to (2), and obtain the desired result,

4, (a) Since we have a convergent alternating series, the
error cannot exceed the magnitude of the next term., Thus we are
interested in determining n such that L 0.01.
yn
Now,
1 1 _ 2 _
—< 0,01l «+ yn > = 100 «» n > (100)" = 10,000
/A 0.01
9,999 (_l)n
2: -———— gives the sum of the series to the desired
n=1 /n

accuracy. Notice that it takes many terms since the terms are

not getting small very rapidly.

(b) The theory is the same as in (a), but now we want

—%—< 0.01. But

n
1 2
»2-< 0.0l «»n” > 100 «»> n > 10
n
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Infinite Series - Quiz

[4. cont'd]

§:~———7— gives us the sum to the desired degree of accuracy.

Notice now that not many terms are needed, since the terms are

decreasing quite rapidly.

In other words, to within 0.01, ‘2: -—l%—-ls given by
n=1
K 1 1 1 1 1 1 1
ttT-st ot awterET
3 5 7 n 2n+l
. _ _u u- _u (-1)7 u
5 sin u = u 3T + BT T e F (2nF1) 1 * paie |u| < =
sin t2 - t2 = Ei + Eig - Eii + (_l)n t4n+2 + |t| < o
3! 5! 7! e (2n+1)! e
s (—l)n t4n+2 |tl<°°
(2n+I) T '
n=0

sin dt

h
TS
rt
(]
I
h
N -
[
— =
N~
o
+
=
~
s}
+
3]
[N}
r’.

© % (-1)" t4n+2 .
= Z f oot (by uniform convergence)
n=0 0
1
) o (1) t4n+3 2
(4n+3) (2n+1)!
=( 0
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SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Quiz

[5. cont'd]

[+s]

- Z (-n"
24043 (4143) (2n+1) !

n=0

_ 1 1 . 1
83) 7y 2Mays:
11 1

24 ~ 5376 T 2,703,360

1
1 2 . 2 1 1 1
5376*ﬁ[. sin(t)dt < 37 - 5376 * 77703360
0

1
223 2 i 2 223 1
5376 .sf sin(t )dt$_3'73'+ﬂ0_3,_%'0'
0

3 j;

N

sin(tz)dt = 0.04148

1 -x[{ 1
6. —L _=e (___)
ex(l-x) 1-x
o n _n
-X -1
=) S x| <a
n=0
£ - n
1—_;{=ZX |Xl<l
n=0

VII.Q.7




SOLUTIONS: Calculus of a Single Variable - Block VII:
Infinite Series - Quiz
[6. cont'd]
-x 1 = n -
e l—_;chx where c, = (aobn+...+anb0),and
n=0
k
o (=1)
a = gr—r P =1
- o _ 1 1 1
- Cp = (ag * ey B l=1 ¥ g tay
i.e.
c0 = aobo = 1
cy = aObl + albo = a0 + al =1-1=0
¢, = a,b, + a,b, + a.b, = a, + a, + a, = J; = l
2 072 171 270 0 1 2 2! 2
cy = aob3 + alb2 + azbl + a3b0 = ao-+al-ka24-a3=
_ _ ) e o i
Gy = Wy TRy BT Sy® Sy
-x{ 1 ) 1 12 1.3 7 .4
e — = =1+ = - =X - =X + [x] <1
(1 X ex(l-x) 2 3 24
1 i |
10 dx _ 1.3 4 5 10
f ™ —X+B'x -T'z—x _mx + -
0 e (1-x) 0
1 1 I 7

10 * %000 ~ 120,000 ~ 12,000,000

0.10000
0.000167
0,000008

0.100159 % 0.1002

1+ 1
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