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STUDY GUIDE: Calculus of a Single Variable - Block III: The
Circular Functions

PRETEST

sinbx

and lim COS3X
sin3x

1. Evaluate lim
w50 cos3x

x+0

sin(a + h) - sina

2. Evaluate lim B

h-+0

3. Pind dy/dx if y3 = sin3x + cos3x
4. Find the maximum height of the curve y = 6cosx + 8sinx

5. Find the following indefinite integrals:

a. ‘[xsin (xz)dx b. fsinzxdx (o /:c,inzx cosx dx

6. Find cosA, tanA, cotA, secA, and cscA if A = sin_l(l/Z).

1

7. Simplify sin(2sin ~0.8)

x+1

8. Find dy/dx if y = sin”t (x—l)

9. Find y if it is known that dy/dx = 1/(x°+l) and that y = 3
when x = 0.

III.iii
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STUDY GUIDE: Calculus of a Single Variable - Block III: The

Circular Functions

UNIT 1: Trigonometry Revisited

View: Lecture 3.010

Read: Supplementary Notes, Chapter VII, Sections A
and B.

Read: Thomas 5.4

Exercises:

3.1.1(L) Evaluate each of the following limits:

. . ; 2
ta)  Lim sin 5x (b) i sin 3x te) lim sin (x E 4)
0 3x %50 sin 4x — -
(d) 1§ 1l - cos x (&) 14 cos X (£) 1im cos X
X X
x~+0 x>0 mTX = =
X“’E 2
cos I )
(g) 1lim (h) 1lim x sin =
i X0
x+§ 2
Juda2 Evaluate each of the following limits:
; i 2
(a) 1 sin 2x (b) 1im sin "x fe) 1im cos 5x
%0 X %0 X x>0 COS 3%

4

x>0 |3x7 + 2 X > x+3] X

(d)  lim [}EEE—E%] (e) 1lim x(1 - cos %) (f) lim[%igiili_

os (x+Ax) - cos k}

: c
3.1.3(L) Evaluate lim [ T

Ax 0

B 2 £ e [

= g

’]







STUDY GUIDE: Calculus of a Single Variable - Block III: The
n Circular Functions
n UNIT 2: Calculus of Circular Functions
l. Read: Supplementary Notes, Chapter VII, Section C
H 2. Read: Thomas 5.5 and 7.1 as well as the "trig" part of 2.3
3. Exercises:
L - i .
3.2.1 (L) Find gL in each of the following cases:
m a. y = sin(xz) b. y = sinzx c. y = sinzx + coszx
- 1 - ; -
n d.y—m e. y = 3 sin 2x 4 cos 2x
] gx 1 1 -
3:2.2 Find Ix 0 each of the following cases:
ﬁ a. y = tan x b, y = tan(3x2 + 4)
n c. (l) y =2 sin x cos x
(2) y = sin 2x
n (3) Explain why the answers to (1) and (2) are equal.
d. y3 = sin3x + cos3x
n 3243 Let f(x) = sinzx and g(x) = —coszx. Show that f'(x)
and g'(x) are identical. What can we therefore con- *
n clude about the equality of sinzx and coszx Rz - 05X 4
3.2.4 Let the curve C be defined by y = 6 cos x + 8 sin X
where 0 g€ x 4-121 §
a. Find the maximum value of y (that is, the highest
n point of C) by computing g-;% directly.
b. Find the maximum value of y by transforming the
! equation into the form y = A sin(x + a), showing why
in this case the maximum value of y is |A| .
E TTT 21




STUDY GUIDE:

J.2:51h)

Calculus of a Single Variable - Block III: The
Circular Functions - Unit 2: Calculus of Circular
Functions

Determine each of the following integrals:

a. U(;inztcostdt b ‘];os3tsintdt

c. (Sinztcost + cos3tsint)dt a. sin 2x dx
V2 + cos 2x

Determine each of the following integrals:

a.hf;sin(xz)dx b.g[;in4xcosxdx c.h[;inzxdx
ﬁeczxdx
d. N~y
3
tan~x

3.2.7(L)

3258

Use the Mean Value Theorem to show that

|sin b - sin a|] < |b - a|
A particle moves on the curve

X = acoswt

Yy = asinwt

where a, b, and w are constants. Show that the com-

ponents of the particle's acceleration are given by:

Two ships A and B are sailing away from the point O
along routes such that the angle AOB is 120°. How
fast is the distance between them changing if at a
certain instant, OA is eight miles, OB is six miles,
ship A is sailing at the rate of 20 mi/hr, and ship B
is sailing at the rate of 30 mi/hr?

IIT 2.2
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STUDY GUIDE: Calculus of a Single Variable - Block III: The

Circular Functions

UNIT 3: The Inverse Circular Functions

View: Lecture 3.020

Read: Supplementary Notes, Chapter VII, Sections D and E
Read: Thomas 7.2 and 7.3

Exercises

3.3.1 (L)

l(—%) = A determine cos A, tan A, csc A,

a. Given that sin~
sec A, and cot A.

b. Simplify sin(2 sin T 0.8) .

|
I
|
; ; 3 -1, 5 |

a. Find sin A and tan A if A = ccs - i
(E) |

b. Simplify cos(2 sin 1(-3) .

c. Express sin 2x as a function of u if x = tanﬁlu :
. 3u3' (L)
a. Prove that if y = tan_lx then %% = ——i——f .
L+ x

b. Determine £(x) if y = f(x) and we are given that
9y = T and that when x =0, y = 3 .

e 1 & x2
3.3.4
a. By appropriate use of a reference triangle show that
J£;~in—— (x| < 1) is equal to either sin"1x + ¢
J 2
l - x

or - cos Ix + C .

b. Explain why the two answers in a. are equivalent.
. ay . - aiemdK = 1
c. Find = if y sin (E—:—T) .

FEEz351




STUDY GUIDE:

3 s

Calculus of a Single Variable - Block III: The
Circular Functions - Unit 3: The Inverse Circular
Functions

A particle moves along the x-axis with a velocity v in

feet/sec after t seconds given by vﬂ=——i——§ . We know

1+t
that the particle starts at x = 0 when t = 0, Express

x as a function of t. In particular, where is the
particle located when t = 1 ?

3.3.6 (L) A particle moves along the x-axis in such a way that

3347 (L

3.3.8 (L

b.

its acceleration is always given by a = -9x. In addition,
we know that when v = 0, x = 4 and t = 0.

Express the velocity of the particle in terms of its
displacement x. From this information, describe the
motion of the particle.

Express the displacement of the particle, x, as a function
of time (t), and sketch the graph of the function.

) C(x) and S(x) are known to be differentiable functions
of x. Moreover it is known that C'(x) = - S(x) and
S'(x) = C(x). Define h(x) = C2(x) + S2(x) . Show that

h(x) is a constant.

) A picture of height h is hung with its base b feet
above the eye-level of an observer who is x feet from
the wall on which the picture is hung. Let o denote
the angle of vision with which the observer sees the
picture.

Determine o as a function of x .

Where should the observer stand if o is to be maximum ?

(Diagram:

| €— % — | .)

II1 3.2

B S & &2 o=

-l G G G ==
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STUDY GUIDE: Calculus of a Single Variable - Block III: The
Circular Functions

QUIZ

1. Compute the following limits:

(&) lim 51% 4x (b) 1lim coi34x (6] it ta% dx
x=+0 % x>0 x x-0 -
sin(xz—g) tan(x+h) - tan x
X3 h-+0
2. Find ¥ if.
dx
(a) y = sin4x - cos4x (b) y = tan32x
3. (a) For what values of x will g§-= 0 if y = sin4x + cos4x

(0 g xg 2n)?

(b) Sketch the curve y = sin4x + cos4X.

4. Determine each of the following numbers:

7
tan5x seczx dx (b)dfancoszx dx.
0

(a) J;

5. A particle moves along the x~axis in such a way that at any

time t its velocity is given by

Vv = cos 2t 0§ B

WA

(t in seconds, v in ft. per sec.).
(a) What is the displacement of the particle?

(b) How far does the particle travel?

IIT.Q.1




STUDY GUIDE: Calculus of a Single Variable - Block III: The
Circular Functions - Quiz

6. Determine

c "'l 5 . . -1 5
(a) COS[Sln (—13-] (b) 51n[2 sin (-igg]
7. (a) Use the fact that y = cos Tu means u = cos y to show that
d (cos tu) _ _ -1 du
dx dx
A=u?
(b) Find g—i if y = cos_l3x2

(c] Find W 3£ y = cos Y (3x2 + 5)

(d) Evaluate f

0 /1—u2

13i1,Q:2
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STUDY GUIDE: Calculus of a Single Variable

BLOCK IV: THE DEFINITE INTEGRAL
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STUDY GUIDE: Calculus of a Single Variable - Block IV: The
Definite Integral

PRETEST

1. Using the definition of the definite integral,

n
(a) Express lim % f(g) as a definite integral.
n-roo
k=1
JE TR (T, L 2T . nm,,
(b) Evaluate {iig 3[51n atsin =/ + ... + sin —E]I.

2. Find the area of the region R if R is bounded above by

y = ——i——i, below by the x-axis, on the left by the y-axis and

1+ x
on the right by the line x =1 .

3. Let R be the "triangular" region which is bounded above by
y = cos x, below by y = sin x, on the left by the y-axis, and
on the right by the line x = % . Find the area of R.

¥
4., Let G be defined by G(x) =I§£—J—T—§-—dt, 0 £x £1 . Compute
L+ E
0

G (%) i

5. Let R be the region bounded above by y = x2 and below by y = x3 .
Find the volume generated if R is revolved about (a) the x-axis

(b) the y-axis .

6. Find the length of the segment of the curve x = L 4+ =— from
y=1toy=3.

IV.iii
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STUDY GUIDE: Calculus of a Single Variable - Block IV: The

Definite Integral

UNIT 1l: Area

View: Lecture 4.010

Read: Supplementary Notes, Chapter VIII, Section A.
Read: Thomas 5.6, 2.5, 5.7

Exercises:

5 i | Find a formula for the area of a trapezoid by decomposing

the trapezoid into two triangles.

4,1.2 (L) Let C denote the circle whose radius is 1 unit. By
circumscribing a regular hexagon about C and by inscrib-
ing a regular hexagon in C, obtain upper and lower bounds

for m™ .
4.1.3 (L) Deduce each of the following results
n n n
a. Zl (ap + by) = }:lak+ Zlbk

n
b, 2;-c = nc where c is any constant
k_

n

I
Ca [ oS- = C a
SEPI

}fE‘l k=

4:1.4 Use the results of Exercise 4.1.3 (L) to show that

5t (2k = 1) = n2 . (You may also use the fact that
k=1
n
E: K n(n2+ 1) )
k=1
Iv.1l.1




STUDY GUIDE: Calculus of a Single Variable = Block IV: The
Definite Integral - Unit 1l: Area

4.1.5 (L)

n
a. Show that 2;_(ak+l - ak) =aj -y .
K=

b. In a. let a = k2 . Then use the properties developed

in Exercise 4.1.3 (L) to obtain a new proof that

_n(n + 1)
Zlk———z-———- 5
K=
4.1.6 Let a = k3 . Mimic the procedure in Exercise 4.1.5 (L)

n
to deduce that a k2 = _nn + 1%(211 + 1) )
k=

4.1.7 (L)

a. Extend the technique of Exercise 4.1.6 to show that
n

3 _ni(n + 1)°
2, T
k=

b. With U, as in the text and our notes, compute lim U
n->w«

to find the area of the region R, where

Y (1,1)

v

c. The region R is bounded above by the line y = 1, below
by the curve y = x3, on the left by the y-axis, and on
the right by the line x = 1. Determine the area of R.

IVielae2

il I S BN S S I D IE R EE Dl s
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STUDY GUIDE: Calculus of a Single Variable - Block IV: The

Definite Integral - Unit 1l: Area

4.1.8 (L) Let R be the region bounded above by y = sin x, kelow

by the x-axis, on the left by the y-axis and on the
right by the line x = % ;

Write an expression for U, -

Determine Ay by computing lim u, - (You may use the
n-+%

Tl
identity 2 sin k6 = (cos % - cos —2—n—;—-]i 8) /2 sin -g— .)
K=

Iv.1.3
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STUDY GUIDE: Calculus of a Single Variable - Block IV: The

Definite Integral

UNIT 2: Area as a Differential Equation

View: Lecture 4.020

Read: Supplementary Notes, Chapter VIII, Section B

Read: Thomas 5.8

Exercises 1

4.2.1 (L) Computed[il - x2 dx 1in two different ways. Namely,
0

a. Describe the region whose area is the infinite sum

0[ T o? e

b. Find a function G(x) such that G' (x) = V1 - x

a. Find G(x) such that G'(x) = 416 - xz and use this to

4
to evaluate z{JlG - X dx 4

b. Describe the region whose area is denoted byJ;VlG = x2 dx

and use this information to compute 2‘fqlﬁ - x° dx
4.2.3 Let R be the region which is bounded above oy the curve
y = sin x, below by the x-axis, on the left by the
y—-axis and on the right by x = % . Find Ap using the
notion of inverse differentiation and compare your

answer with that obtained in Exercise 4.1.8 (L) .

4.2.4 Let K be the "triangular" region which is bounded above
by vy = cos x, below by y = sin x, on the left by the
y-axis, and on the right by x = % . Find the area of R.
4.2.5 (L)

a. Show that if f(x) is continuous and non-increasing on

[a,b] then:

Iv.2.1




STUDY GUIDE:

4.2.5 (L

c. With R as above, compute L, .
d. Use a. and c. to compute U, .
e. Based on c. and d. is % a "reasonable" estimate for Ap ?
f. Find the area of R exactly by finding a function G such
that:
G'(x) = —E— .
l + x
4.2.6 (L)

a. Let f£f(x) be a continuous function. Express

1.1 n 1 & .k

lim =[£(3) + ... + £(2)] = lim = 21 £(3)
n n n n n
n+e n-+o
k—
as a definite integral.
b. Use a. to compute lim L{sin X % gin 2n + ... + sin El]
n n n n
n-+roo
4.2.7
) 6 6

Fifid Tis 17+ 2 ?+ sse 4 N .

Calculus of a Single Variable - Block IV: The
Definite Integral - Unit 2: Area as a Differential
Equation

)
U -1 = L1f(@) - £(b)I(b - a)
n n n
Let R be the region which is bounded above by y = ——L—-E
1+ x

below by the x-axis, on the left by the y-axis and on
the right by x = 1. Sketch R making use of y' and y".

N+ n

(Observe that if we "let n = =" we get on E—form which is

indeterminate in the same sense that % is indeterminate.)

v.2.2

Il S S Nl Il EE s
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STUDY GUIDE: Calculus of a Single Variable - Block IV:
Differentiation

UNIT 3: The Second Fundamental Theorem of Integral Calculus

1. Read: Supplementary Notes; Chapter VIII; Section C
2. Read: Thomas 5.9, 5.11, 5.12
3. Exercises:

4.3.1(L) The function G(x) has the following properties.

It is defined for all x > 1, G(1) = 0 and
G'(x) = i
e §

a. Interpret G(x) as an area.

b. By computing L4 and U4 on [1,2] show that
0.6 < G(2) < 0.8 .

y du
4.3.2(L) Let x and y be defined by x = |y| < 1
5 fo V1 - u?
Show that 3—5’- = -y .
dx

X P £

4.3.3 Let G be defined bv G(x) = —5-&“—2 dt
' 0 1+t

1

0 < x < 1, Compute G'(g).

4.3.4(L) Determine f(x) from the following set of
conditions:

(1) The curve y = f(x) passes through the origin.

(2) It exists only in the first quadrant and is
continuous.

(3) The area of the region which is bounded above
by y = f(x), below by the x-axis, on the left
by the y-axis and on the right by the line
X = t is always equal to f3{t) [=[f(t)]3].

IvV.3.1




STUDY GUIDE: Calculus of a Single Variable - Block IV:
Differentiation - Unit 3 - Second Theorem

2

X 3
4.3.5 Let H(x) = §iﬂ—1% dt . Determine H'(x).
0 1 + t
4
t sin x dx
4.3.6 Compute G'(t) if G(t) = === .
2 1+ x

4.3.7(L) Let f be continuous on [2,bh] and let G'=f.
Then, by the mean value theorem, there exists
ce (a,b) such that G(b) - G(a) = (b - a)G'(c) .

a. Apply this result to show that if f is continuous

on [a,b] there exists cel[a,b] such that

b
f f(x)dx = (b - a)f(c).

a
b. Referring to (a) find c if f(x) = x2.
é. What is the average value of x2 on the interval [1,7]?

4.3.8(L) Let f be continuous on [a,b] and define G on
X
[a,b] by G(x) = f(t)dt. Use the definition of
a
G' (i.e. the delta method) together with the fact

X
that / f(t)dt = £(c) [x - xl] for some c between x
X

L
1
and x to prove that G' = £,
4.3.9 %
lim x2 *
a. Evaluate = £it)dt where f is

X>X X — X

1 1 Xy

continuous in a neighborhood of x = x

xr2 T + t

. x
b. Evaluate M | 24 [ cos’t at
xX-2 53 ST

Iv.3.2
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STUDY GUIDE: Calculus of a Single Variable - Block IV:

l.

2.

Differentiation

UNIT 4: Some Simple Applications of the Definite Integral

Read Thomas 6.1, 6.2, 6.3
Exercises:
4.4.1(L)
a. Sketch the curve y = 12x (x—l)2 -
b. Find the area of R if R is the region bounded above
by v = 12x (x-l)z, below by the x-axis, on the left
by the y-axis, and on the right by the line x = 1.
c. Find the area of the region which is enclosed between
the two curves y = 12x (x--l)2 and y = % X.
4.4.2(L) Find the area of the region which is bounded above
by the curve x = 12y (y-1)2, below by the x-axis, on
the left by the y-axis, and on the right by the line
x = 30
4.4.3 Find the area of the region R which is enclosed
between the curves y = x3 ani v = 7x - 6
4.4.4 A particle travels along the x-axis according to the
rule v=1=t>-7t+6 0<tc< 2. Find the total
distance travelled by the particle. What is the
displacement of the particle during this time interval?
4.4.5 The area of the region R which is enclosed between
y = x2 and y = 4 is divided into two regions of equal
area by the line y = c. Determine the value of c.
4.4.6
a. Find the area of the region R which is enclosed

between the y-axis and the curve x = y2 (y-3)

Iv.4.1
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4.4.7

Calculus of a Single Variable - Block IV:
Differentiation - Unit 4 - Definite Integral

Find the area of R if R is the region bounded
a9

(y-3)
where 0 < y < 2, below by the x-axis, on the left
by x = -4 and on the right by the y-axis.

above by the single-valued curve x = y
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STUDY GUIDE:

Calculus of a Single Variable - Block IV:

Differentiation

UNIT 5: Volume

View: Lecture 4.030

Read: Thomas 6.4

Exercises:

4.5.1

The base of a solid is the circular disc

x2 + y2 = 9. Every cross-section of this
solid made by a plane perpendicular to the
Xx-axis is a square having a chord of the
circle as one of its sides. Find the volume

of this solid.

4.5.2 Let R be the region bounded above by y = x2
and below by y = x3.
ﬂ a. Find the volume generated when R is revolved
about the x-axis.
u b. Find the volume generated when R is revolved
about the y-axis.
4.5.3 Let R be the region contained between
n y = 4x - x2 - 3 and the x-axis. Find the
volume of the solid generated when
n a. R is revolved about the x-axis
b. R is revolved about the y-axis
4.5.4(L) The circle centered at (b,0) with radius
E equal to r (b > r) is revolved about the y-axis.
What is the volume of the resulting solid?
c IV<5.1
- e —



STUDY GUIDE: Calculus of a Single Variable - Block IV:
Differentiation - Unit 5 - Volume

4.5.5(L) The curve y = f(x) 0 < X £ a has the

property that if it is revolved about the x-axis
the volume of the resulting solid is.a5 for each
a > 0. Determine f(x).

IV.5.2
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STUDY GUIDE:

Calculus of a Single Variable - Block IV:

Differentiation

UNIT 6: Arc Length and Approximations

View: Lecture 4.040

Read: Thomas 6.6, 6.7, and skim 5.10, 6.5

Exercises:

4.6.1(L)

4.6.2(L)

4.6.3(L)

4.6.4(L)

Find the length of the segment of the curve

3
=y . 1 - _
X £ + e from y 1l toy 3

Find the length of the segment of the curve

y2 = x3 from y = -1 to y = 8.

Let L denote the length of the segment of

the curve y = sin x from x = 0 to x = % 4

Express L exactly as a definite integral.

Use trapezoidal approximations with n = 3

to estimate L from the answer to (a).

Divide the segment y = sin x, 0 < x < %
at x = % and x = % to estimate L directly.

Given the straight line y = mx + b, express
As in the form As = Ax + aAxX. Then show that
@ is not an infinitesimal except in one special

case, and describe that special case.

IV.6.1




STUDY GUIDE:

4.6.5

4.6.6(L)

4.6.7

Calculus of a Single Variable - Block IV:

Differentiation - Unit 6 - Arcs and Approximations

A particle moves in the xy-plane in such a way
that its position at any time t is given by:

2

X = £

w

{2t + 1)5

W N+

¥

Find the distance travelled by the particle
during the time from t = 2 to t = 6.

The curve described by the parametric equations:
x =t + 1
2
y =-%— + k

from t = 0 to t = 4 is rotated about the y-axis.
Find the surface area that is generated.

The segment of the curve described in Exercise

4.6.1(L) is rotated about the y-axis. Find the

surface area which is generated.

IvV.6.2
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STUDY GUIDE:

Calculus of a Single Variable - Block IV:
Differentiation

NUIZ
%
. du
For 0 € x £ 1, define g by g(x) = _[ g
: u + 1
0
.
a. Evaluate g (5)

b. Compute
B0 u6 + 1

x+h
lim 3 -[ du
h
X
Let R denote the region which is bounded above by

vy = 4x - x2 and below by the x-axis.
a. Find the area of R.

b. Find the volume generated when R is rotated about
the x-axis.

(0 Find the volume generated when R is rotated about
the y-axis.

The base of a certain solid is the circle x2 + y2 = 4,

Each plane section of the solid cut out by a plane

perpendicular to the x-axis is a square with one

edge of the square in the base of the solid. Find the

volume of the solid.

3 1
C is the curve y = % x% - % %2 where 0 ¢ X < 4 .
a. Find the length of C.
b. Find the surface area generated when C is

rotated about the y-axis.

IV ieiDd




STUDY GUIDE: Calculus of a Single Variable - Block IV:
Differentiation - Quiz

5 Let f be defined by
sin x . T
_"x—-,lf'O(X-ﬂ-z-
f(x)=

1 3 x =10
a. Show that f is continuous on [0,1]
b. Let R be the region bounded above by y = f(x)
[where £ is as in (a)], below by the x-axis, on
the left by the y-axis and on the right by x = % %

Use trapezoidal approximations with n = 3 to
estimate the area of R.

IV.Q.2










SOLUTIONS: Calculus of a Single Variable - Block III:
I Circular Functions
I PRETEST
l 1. (a) 2 (b) 1
l 2. cos a
3 sin x cos x(sin X - cos X)
' 2
' ¥
4. 10
5. (a) —%cos x2 + c (b) % - %sin 2x + © (c)
l V3
24
l 7- _2?
8. 1
I X + X
l 9. y = arc tan x + 3
l ITTI.1L

The

%sin3x + c
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SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions

UNIT 1: Trigonometry Revisited

eds LAL)

The major purpose of this exercise, aside from supplying
a drill on trigonometry, is to show that the limit theorems we

learned earlier remain intact. What i1s new is that we can now

handle a wider variety of choices for f£(x). In other words,
lim f£(x) = L means the same as it did before, but now, for
x+a

example, we can examine f(x) = sin x. In any event, let us
proceed.,

(a) We notice that our major theorem is of the form

lim Eﬁ%—%—L = 1, where our parentheses indicate that the name
()20
of the variable is not important but that it be the same in each

case. For example, we could say that:

Y sin 5x
5x

5x-+0

sin 5x

So, our first task is to try to bring into the

. 5x
expression lim Eigiéi. To this end we multiply by 1 in the form
x>0
%ﬁ-where lim insures that x # 0. That is, if x # 0, then
x-+0

sin 5x _ ,sin 5x 5x
— (__5;——) (§;). Therefore,

1ipm Sin 5x  _ Y E81151x5x) (%ﬂ

x>0 3x x-+0

and since the limit of a product is still the product of the

limits, we have:

) 6 55e S (B




SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions = Unit 1l: Trigonometry Revisited

[3.1.1(L) cont'd]

i %ﬁ & | 0.4 5’3-’5& 1410 %’i (1)
x>0 x+0 X x+0 %

In (1), it is clear from our previous work with limits that

lim 3% = 2,
x+0
We should also "suspect" that lim 5&%;25 = 1. We know that
; x-+0
lim §£%§§§ = 1, and we sense that 5x approaches zero if and only
5x~+0

if x approaches zero.¥

At any rate, putting these results into (1) yields:

. sin 5x _ 5 _
lim T = (l) (i) =

x-+0

wj,m

(2)

*We do not have to rely on our suspicions. For example,
once we suspect that lim Eigiéi
x-+0
the epsilon-delta method to substantiate our claim. In this
case, we must show that given ¢ > 0, we can find § > 0 such that

= 1, we can appeal directly to

0 < [x] < § - ]532—25-- l| < £. Since lim Sin 5X _ 1, we know

5x 5x

5x-+0

that for the given choice of ¢, we can find 61 such that

sin 5x ; _
0 < |5x| < 61 N |——§§—— - 1] < ¢. Then since |5x| = 5|x| we can

5l sin 5x
divide by 5, and we have that 0 < |x| < = |——§§—— - 1| < g4
8

If we now choose § = T%* our proof is complete, Notice, again,

how intuition and rigor are combined in a mathematical demonstra-
tion. We use our intuition to form the conjecture and rigor to
substantiate the truth of the conjecture. (Without the conjec-
ture, we wouldn't even know what we wanted to provel!l)

+IL.1:.2
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SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 1l: Trigonometry Revisited

[3.l.1(L) cont'd]

What (2) says from a more intuitive point of view (and once
the correct result is proved it is safe to talk about an intui-
tive interpretation) is that for small values of x, sin 5x
sin 5x ,, iy DK ;
———— "behaves like" =—. Obvi-

3x 3x
ously, we can generalize the result of part (a) by observing
that:

"behaves like" 5x and, hence,

. sin mx
lim ——
nx

D =2 (n#0) (3)
X

To obtain (3), we need only imitate our earlier procedure:

sin mx _ sin mx mx

nx mx nx (x # 0)
. limSinme g, [isin me, (m_xa
nx
s = x50 x-+0
= | lim 823 WX g4y DX
x-+0 x-+0 nx
_ m
= O
= I
Tl

(Notice that x is a number, and if we view it as an angle

we are using radians. Had x been in degrees, the result would
be lim 82L X7 - T pop 1.)
x-+0 180

III.1.3




SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 1l: Trigonometry Revisited

[3.1.1(L) cont'd]

(b) Using the same hints as in part (a), we elect to rewrite

sin 5x sin 5x hx 4x 3
A5 Iz (——gi—-) (I;) (EIH—Z;) (x # 0). That is, we use
algebraic manipulation to introduce the form E-]Z-l%—T(—l-whe:rever
we can. Then:
. sin 5x ; sin 5x, ,5x 4x
lim —=——— = lim E—) (=) (—--——-ﬂ
x50 sin 4x 50 5x 4x’ 'sin 4x

“ o |
Lim S132% Lim 3% Lim 2%
x>0 x+0 x>0

(L)% () (1)*

Il

|
=

*In our previous footnote we proved specifically that

lim §i§;§§-= 1. The proof is easily modified to show that if

x>0

m# 0, lim Ei%iﬁi = 1, All we have to do is replace 5 by m in
x+0

the earlier proof.

**This illustrates our contention that all limit theorems
remain intact. For example, we proved earlier that if 1lim f (x)

X+a
and L # 0 then lim f(lx) = 1. If we take this result with £(x) =
X+a
EE%—iE} a =0 and L = 1 we see that lim gin 4% 1l implies that
X 4x
x-+0
: 4x _ : ; i S 4x
}];-J;gl S—im = ] since 1in this case f(X) = S and f = 1.

I1T.1.4
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SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 1l: Trigonometry Revisited

[3.1.1(L) contd']

(Note: If we are not careful, it looks as if we are "cancelling"

sin from numerator and denominator to obtain:

. sin 5x _ . 5x 5
lim '_4 = lim '4— = '4"'
x>0 Sin 4x x>0 4%
sin 5x _ 5x sin 5x

It is not true that

sin 4x  4x° b

sin 5x

o Ay can be approximated rather well

: 5x
1i§ e In other words,

by 2% in sufficiently small neighborhoods of x = 0.)
(c) Here the limit is a somewhat different form from what
we are used to. In particular, we are more familiar with the

form 1lim than with 1lim in dealing with §£%~§—l.
()0 ()2

invoke the result that x approaches c¢ if and only if (x - c)

So we first

approaches 0. With this in mind, we may write:

; 2 i 2
T 51n(: = 24) - lim 31?ix_ 5)4)
x+2 x - 20

This, in turn, suggests the change of variable (substitution)

u=x -2, In this event, x = u + 2, x2 = u2 + 4u + 4,

xz - 4 = u2 + 4u. Thus:

lim sin(x2 - 4) _ lim sin(u2 + 4u)
X2 X =2 u->0 9

(4)

From (4) we may either proceed rigorously and write:

IIT.1.5

It is only true that lim Ay s



SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 1l: Trigonometry Revisited

[3.1.1(L) cont'd]

sin(u2 + 4u) _ sin(u2 + 4u) u2 + 4;]
= etc.
5y 2 u -I

u- + 4u

[where we shall explain "etc." in more detail in Exercise 3.1.3(L).]

Or we may now fairly safely take the more intuitive path and
notice that for small values of u, sin(u2 + 4u) "behaves like"

. 2 2
u2 + 4u. Thus, 51n(uu + 4u) w u- + 4u

turn "behaves like" u + 4 which, in turn, approaches 4 as u

"behaves like and this in

approaches 0.

In either case, we arrive at

. 2
i sin(x” - 4) _ 4

. X - 2

(In fact, we could have appealed to the intuitive approach sooner
2

and said that "near" x = 2, sin(x2 - 4) "behaved like" x° - 4,
hence
; 2 2
1im sin(x® - 4) _ Yo X" 4'
X - 2 - 2
X2 X2
. x2 - 4
but we already know that lim —5 = 4,)
X>2

(d) Here we see a good example of how we may need a know-
ledge of some trigonometric identities to reduce an unfamiliar
form to a more familiar form. In this case we would like, if

(1 - €08 X) i +o0 a form which allows

possible, to transform lim

x+0 g
us to utilize our knowledge about Ei%—%—L.
IIT:1:6
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SOLUTIONS:

[3.1.1(L) cont'd]

Calculus of a Single Variable - Block III: The
Circular Functions - Unit 1:

Trigonometry Revisited

Well, suppose we recall that 1 - coszx = sinzx. This

would motivate us to write:

1l - cos x

We must be

- COSs X

lim B W lim (l
x>0 x+0

1l + cos x
} T os = 1+ cos x #0
But near 0,
cos x # - 1.
So we are on
safe ground

] sure that
)

-COSX

x+0

= 1lim |-
x(1 + cos x)

here.

= 1im Sln X
0 l;c(l ¥ cos x)

O sin x sin x
= 1im E x 17 cos xﬂ

x*0
- [%im sin
x+0 x
= (1) (0)*
=0

*Again notice our reliance on

That is:
. sin x
iig [i + cos ;]

IIT. 1.7

x>0 c _[

the "o0ld" limit theorems.

lim(sin x) lim(sin x)

_ x>0 _ x>0
~ 1im(l + cos x) 1im 1 + 1im cos X
x=+0 x-+0 x-+0
0
T4 1




SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 1: Trigonometry Revisited

[3.1.1(L) cont'd]

(e) Here we observe that for values of x near 0, cos X

"behaves like" 1 while %—grows without bound. That is, for

small values of x, £o58 % grows without bound. That is,
lim 99;—5 = o, (Another way of saying this, is to observe
x+0

lim —>—_ = 0.)

x>0 COS X

One aim of this exercise is to emphasize the basic differ-

sin x cos X

ence between S and near 0. Unless the limit takes on

the form 0/0, we need no great ingenuity to find the limit.

() 1im EB8X

X+= 2

In this case we get a 0/0 form. One approach is to let

u=x - g-whereupon X = % + u. Then
™ T
cos (5 + u) cos (= + u)
lim €92 X - 14m ﬁ = 1lim 2
T X = = T m u-+0
X3 2 2Tty
But since cos(% + u) = cos % cos u - sin % sin u = -sin u, we see
lim 95 X _ 1inm [?51n ﬁ] -
il - u-+0 v
X-ri' 2
I1IT.1.8
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SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 1l: Trigonometry Revisited

[3.1.1(L) cont'd]

(g) At first glance, this seems to be just like part (f),
but the basic difference here is that now our numerator no longer

"approaches" 0, it is exactly 0. Thus:
cos %
lim ~ lim = 1lim 0 = 0
T X = = m X = m
X5 2 X5 2 X5

The major point here is to observe that 0/0 is indeterminate
in the sense that the quotient of two small non-zero numbers is
indeterminate. However, 0 divided by a small non-zero number is

always 0.

(h) Here, we invoke the idea that lim f (x) is equivalent

X>w
to lim £(3). If we apply this to (h) with £(x) = x sin =, we
x-+0 X
obtain
1 _ 1 1 _ 1 sin x
f(EJ = g sin _I_ = 7 sin x ~
x
o lim£() = lip 8LE -
x>0 x>0 ®
. : _ : 1 > L1
.. lim f(x) = 1lim f(g) + lim x sin = = 1
X+ x>0 X+ %

(Graphically, this means that the curve y = X sin %-has

the line y = 1 as an asymptote for large values of x.)

I11.1.9




SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit l1l: Trigonometry Revisited l
1.2 .
(2) 1im BRDZE o g4 (IO 2%, 2%,
x+0 x+0 x x l
x>0 x x>0 =
= (1) (2) l
= 2 l
P . g
b) 1im ST 440 EM, _— {]
X X
x~+0 x-+0 l
= [[j_m B X lim sin x I
X
x>0 x-0
= [1][0] I
= 0 l
lim cos 5x I
. cos 5x _ x>0 _ cos 0 _ 1 _
(c) iilg cos 3x  lim cos 3Xx  cos 0 1 . l
x-+0
III.1.10 l
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SOLUTIONS: Calculus of a Single Variable - Block III: The

Circular Functions - Unit 1l: Trigonometry Revisited

[3.1.2 cont'd]

; in 3x ; sin 3x
(@) 1im |38 = 1lim
0 |[3xF + 2 %0 |3 +§§o

[ &3 3 1 i

T
_ . Fﬁin 3x 3x

x+0 Ix- £ 2
= lim (213 1in (X

x+0 x+*0 3x° + 2
= (1) (0)
= 0

(@) THii #(1 - cos L) lim L (1 - cos x)
3¢ X
X0 x>0

1l - cos x

= lim

x>0 ‘x
= 0 (why?)
121 1 o [y B




SOLUTIONS: Calculus of a Single Variable - Block III: The

Circular Functions - Unit 1l: Trigonometry Revisited

[3.1.2 cont'd]

sin(x - 3)

£ 1 sin(x - 3) _ ’
(£) 2 22 -3 x_%ig X - 3) (x + 3)
= 113 GT%EE'%T (where u = x - 3)
u-+
_ 2 sin u 1
= Illigl e O =)
= |1im 82U} faim o o
>0 u w0 Y + 6
= 1l
= 1
6

3.1.3 (1s)

The main aim of this exercise is to motivate the use of
limits in calculus. Recalling that f'(x) is defined by

lim f(X+ﬁxi = f(X). We observe that 1lim cos(x+ﬂxi =GOS %
x>0 % Ax+0 %
is f'(x) where f(x) = cos X.

Thus in this exercise we are being asked to find f'(x) if

f(x) = cos x. This seems to anticipate the next unit. Indeed,

it does, and we shall do more of this then; however, it is

B 181 A O
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SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit l: Trigonometry Revisited

[3.1.3(L) cont'd]

imperative to understand how in a subject as logical as mathe-
matics we can on our own derive large amounts of material once a

few "new" things are known.

In this exercise, if we were asked to find f' (x) for

f(x) = cos x, we could by definition write:

- f(x+ax) - f(x)

. . .
£frx) = 1 o

x-+0

(1)

Equation (1) is always true. All we do now is let f(x) =

cos X to obtain

Ax+0 *

and (2) brings us to the present exercise.

Using the indicated identities, we obtain:

: cos (x+Ax) - cos x| _ ; coS X cOS AX=-sin X sin AX-cos X
lim X = lim 7
Ax~>0 % Ax—+0 <

Il

e [Fos X(cos Ax-1l) - sin X sin &%]

Ax—+0 Bx
= lim | -cos X l:EQE_éi -sin x sin Ax
Ax Ax
AX~>0

-cos X lim (L:E%E—EEJ -sin x
Ax~+0 X

T 51Ex&x (3)
Ax=+0

1 T A




SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 1l: Trigonometry Revisited

[3.1.3(L) cont'd]

Equation (3) now supplies us with a motivation for solving

problems such as those in Exercises 3,1.1 and 3.1.2. 1In fact,

from 3.1.1(d) we see that 1lim {l = gis Ax) = 0, while our basic
Ax~>0
limit tells us that 1lim Eiggéi = 1.

Ax~>0

Putting these results into (3), we obtain:

lim [%os(x+&x£ . %] = (- cos x)(0) - sin x(1)
Ax~+0 ®
= - sin X
In other words, if f(x) = cos x, then f'(x) = - sin x.

Notice, above all, that we did not, in truth, have to study
the next unit to obtain the results of that unit. Often in this
course we will be able to derive new results by applying "old"

ideas to "new" concepts.

TII.l.3d4



Il BN Ew B BN PE BE oa PE Bn BE S BE B BE BEm PE BE e

SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions

UNIT 2: Calculus of Circular Functions

3.2.1 (L)

(a) y = sin(xz)

d(sin u)

We know that e = cos u . Hence, we may view this
exercise as
y = sin u
u = x2

and invoke the chain rule.
. d dy du
That is, 3% = F§ &

cos u(2x)

Il

I

2xX cos(xz)

The major learning value of this example is to reinforce

certain principles which have already been emphasized.

(1) The notion that the derivative of sin is cos is a loose

paraphrase of Q_%%E}_L = cos () . It certainly does not mean
; 2 . 2
that A BN ) . cos(xz) . Rather: g sin{x ) . cos(xz} .
dx d(xz)

This, in turn, suggests the chain rule, and

(2) we wish to emphasize that the concept of the chain rule
depends on the general notion of functions. All that happened in

the block is that we learned more about those specific functions

known as the trigonometric functions. In any event, once we know
that ddil?( ) - cos( ) , the "same, 0ld" chain rule allows us to
conclude

d sin u _d sin u du _ u
dx du dx ~ °°% ¥ 3x

where u is any differentiable function of x.

J1L.2..1




SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 2: Calculus of Circular
Functions

[3.2:1 (L) cont'd]

(b) v = sinzx

This means the same as y = (sin x)z. Again we may invoke the

chain rule to write

sin x

o
Il

We then obtain:
ﬂ:gl‘_i.‘izzucosx
dx
and recalling that u = sin x, we obtain

dy _ :
- o 2 sin X Ccos X

(which can, of course, also be written as %¥ = sin 2xif we remember

the identity sin 2x = 2 sin X cos X).
It is worthwhile comparing parts (a) and (b) and observing
the difference between sinzx and sin x2.

(c) y = sinzx + coszx

The fact that we know that the derivative of a sum equals the

sum of the derivatives allows us to write

. 2 2 i 2 2
%1 _ d(sin"x + cos"x) _ d(sin"x) & d (cos“x) (1)

X dx dx dx :

(Again, these theorems were proven for differentiable functions in

general and they do not have to be proven again for the trigono-

metric functions.)

IIT.2.2
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SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 2: Calculus of Circular
Functions

[3.2.1 (L) cont'd]

4 (i %)

From (b), we know that Ix

= 2 sin x cos x. Hence,
(1) becomes

2
d(cos“x)
—ax (2)

2 vl
We may compute 9£g§§_§L in the same way as we handled QLE%%_EL .

= 2 sin x cos x +

95

Namely, we let |}y, = u2 (ox ¥y = coszx)

u = cos X

d(coszx) _ dyl dyl du

— = & — = - ] S h.
Then e % == = 2u(=sin x) (where we assume that
we already know
d cos x _ .
= 2 cos x(-sin x) dx - sin X )
= -2 sin X cos X
Putting this result into (2), we see that
dy 2 sin X cos X - 2 sin X cos X
dx
or
dy = o
dx
The answer seems to indicate that we went through a lot of
work for "nothing." In fact, since §§ Z 0 it means that y is a

constant. With this as a hint we might now reexamine this problem
and observe that sinzx + coszx = 1 (that is, sinzx + coszx is
nothing more than a'"hard way"of writing 1). Therefore, we could

have written

Bl e FPa S Pm b pE e,

r

y = sinzx + coszx —_
y=1—
dy _
dx 0
TIT 23




SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 2: Calculus of Circular
Functions

[3.2.1 (L) cont'dl

and we see once again, the difference between an equation and an
identity.

@ y = —

cos X

Here, since we know how to differentiate cos x, we invoke the

quotient rule to obtain:

d(1l) _ d
dy _ °° ¥ 5x (1) 3z (w08 &) on %) (0) = 1(-8in %)
dax 2 2
(cos x) cos " x
_ sin x
coszx

We could also have obtained this result by writing

- i -1
Y * e (cos x)
-‘.g-% = =1 (cos x)_z S?(COS x) = -(cos x)—z ("Siﬂ %) = 2:: : .

Quite in general, there will often be several ways to solving the
same problem.

The major learning experience of this exercise is to emphasize
the fact that, since the remaining trig functions are obtained from
our knowledge of the sine and cosine functions, we can derive many

results this way without recourse to memory. For example, this
d(sec x)

exercise is precisely how we would compute 5 . Namely:
y = sec X —j
_ 1 d(sec x) _ sin X
Y = Zos x dx - 2
cos"x
I11.2.4
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SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 2: Calculus of Circular

Functions

[3.2.1 (L) cont'd]

If we wish to invoke some basic trigonometric identities, we

can write:

51n2x = (—L ) (8iB Xy - gec x tan x .
cos X' 'cos X
cos X
Hence: Qlﬂ%%_ﬁl = sec x tan x, where the advantage, if any, of

this form is that the entire expression can be written "on one line"

without fractions or exponents.

(e) y = 3 sin 2x - 4 cos 2x

We have:
%; sin 2x = d(g%gx?x) d(gi) = 2 cos 2x
%; cos 2x = d(g?gx%x) déix) = =2 sin 2x
G%§ = 3(2 cos 2x) - 4(-2 sin 2x)

6 cos 2x + 8 sin 2x

Aside from getting the answer, we would like to use this

exercise to motivate a rather clever use of trigonometric identities.

_ . where not both
Suppose we have f(x) = A sin mx + B cos mx {; and B avs b.

*» The "trick" is that we multiply and divide byJAz + B2 .

2 2 A

Then f(x) = YA™ + B [————
JA + B

sin mx + cos mx] s

i e
VaZ + B2

The point is that & and — suggest the right
4A2 e B§ JAE - BE

triangle:

III.2.5




SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 2: Calculus of Circular

Functions
IR T |
" g
[3.2.1 (L) cont'd] N M\L
'3’4103
¥
bZ 5 e B cos B = ,_...A
S A2 + B2
A ¥
& sin B = -

B ’-2——2
A™ + B
Hence f(x) =JA2 + B2 [cos B sin mx + sin B cos mx]

=JA2 - B2 sin(mx + B)

(since sin(mx + B) = sin mx cos B + cos mx sin B) i

In our particular exercise, A = 3, B = -4, and m = 2. Thus,
y = 3 sin 2x - 4 cos 2x
3 ... _ 4

5[§ sin 2x z cos 2x]

; 4
sin B = —g

5 sin(2x + B) where 3 <€§::]4
cos B +§

5 cos (2x + B)[%Q(Zx + B)]

I

Il

10 cos(2x + B)

10[cos 2x cos B - sin 2x sin B]

10 [cos 2x(%) - sin 2x(-%)]

6 cos 2x + 8 sin 2x which agrees with our previously-

obtained answer).
Our main point is that sin(2x + B) might look more suggestive than

3 sin 2x - 4 cos 2Xx >

ITI.2.6
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SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 2: Calculus of Circular

I S 0 B em D Pn BN BN BEm B B W e

Il A m Em Bm

Functions
3.2.2
s _ sin x
(a) y = tan x = TR
dy d(%%%—%) cos X Qlﬁ%%_ﬁl, - sin x g; (cos x)
e 3x dx - 2
cos X
(cos x) (cos x) - sin x (-sin Xx)
2
cos " x

coszx + sinzx

coszx
. |
coszx
= seczx
(b) y = tan(3x2 + 4)
2 2
gy = 4 tan(3x” + 4) A(3x” + 4)
¥ = 2 dx
d((3x° + 4)
z I
2

[sec2(3x2 + 4)]16%

= 6Xx sec2(3x2 + 4) or > 6§
cos“ (3x° + 4)
(c) (l) y = 2 sin X cos X
ay _ . d cos x _ d sin x
Sy 2[sin x ax + x cos x|

2[(sin x) (=sin x) + (cos x) (cos x)]

I11.2,7




SOLUTIONS:

Calculus of a Single Variable - Block III: The
Circular Functions - Unit 2: Calculus of Circular
Functions

[3.2.2 cont'd]

(2)

(3)

2

[coszx - sinzx]

y = sin 2x

dy =

dax

d(sin 2x) d4d(x)
d(2x) X
= 2 cos 2X%

2 2
Since cos 2Xx = CcOS X

d(sin 2x)

;2
- sin"x we see that

_ d(2 sin x cos X)

dx

= dx

This is as it should be since sin 2x = 2 sin X cos X

(@)

3
y

= sin3x + cos3x

By implicit differentiation,

m_). = d(sj_n x)3

dx dx

3y2 %% =3 sinzx a

2 dy _ .:i.2
y" % = sin"x cos

dy _ sin x cos x (

a 3
+ a;(cos X)

(sin x) 2 _ d(cos X)
cos T Y CoB & ax

X - coszx sin x

sin x = cos X)

dx 2
y
d_ sinzx = d(uz) u = sin x
dx dx f
2u %E = 2 sin X cos X
X
I11.2.8
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SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 2: Calculus of Circular
Functions

[3.2.3 cont'd]

d 2. _ d cos x, _ _ ;

3x Cos x = 2 cos X (———a§—~) = 2 sin X cos X
ol o 2 _ .

"dx( cos“x) = 2 sin X cos X

By the corollary to the mean value theorem all we can conclude
is that

sinzx = -coszx + c (1)

We cannot conclude that sinzx = —coszx. All we can conclude is

that the two functions differ by at most a constant.

1, then sinzx = —coszx +: L

If we now recall that sinzx + coszx

and this is compatible with (1) merely by letting C = 1 .

In terms of integrals, what this says is that

sinx + C

j’2 sin x cos x dx 1

and

2
-cos"x + C,

IZ sin x cos x dx

We must not conclude that sinzx - —coszx since C is just a

generic name for an arbitrary constant.

It would have been better to write:

I2 sin x cos x dx = sinzx + Cl (2)
]} sin X cos x dx = -coszx + C2 (3)
We could then write:
ETTI.2.9




SOLUTIONS: Calculus of a Single Variable - Block III: The

Circular Functions - Unit 2: Calculus of Circular

Functions

[3.2.3 cont'd]

sinzx - Cl

I2sinxcosxdx

=1 - coszx + Cl

= -coszx + (1 + C

- "COSZX + C2

thus showing that (2) and (3) are compatible if C, = 1+ €

(a) y =6 cos x + 8 sin x (0 € x € %

-6 sin x + 8 cos X

£
i

sin x _ 8 _
VeI s - 6 S EEE T

sl
Il
W

3
(Figure 1)

Now the above reference triangle shows that if tan x = %

(0 € x £ %) then sin x = % and cos X = % . Thus (1) becomes:

e s ogd o 18, 32

Hence Yiiag — 10 .

I11.2.10
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SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 2: Calculus of Circular
Functions

[3.2.4 cont'd]

_ 6 8
(b) y = 10[10 cos X + 0 sin x]

10[% cos x + % sin x]

10[sin o cos x + cos a sin x] where ‘ﬂgii:] 3

10 sin(o + x)

e
Il

but -1< sin(a + x) ¢ 1 implies that -10 < y < 10 and y___ =

and occurs when o + x = % oY X = % - o + The fact that x =

is seen at once from the fact that Figure 1 and Figure 2 can be

combined as
4££%::] k

3

3.2.5 (L)

(a) The "trick" here hinges on the fact that d(sin t) =
cos t dt. Thus:

.];inz t cos t dt = j.sinzt d(sin t) ;

and our last integral is of the form Jr( )zd( ) which is %( )3 + C .

Hence,

Isinzt cos t dt = Isinzt d(sin t) = %— sin3t + C §
Quite in general, for n # -1 ,
stinnt cos t dt = j'sinnt d(sin t) = E%I sinn+lt + C .

IIL.2.1]1
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SOLUTIONS: Calculus of a Single Variable - Block III: The

Circular Functions - Unit 2: Calculus of Circular

Functions

[3.2.5 (L) cont'd]

Notice that while ]sinnt dt may seem simpler than

‘I;innt cos t dt, the factor cos t is what allows us to transform

the integral into the form u” du by letting u = sin t.
(Notice also that if one is tempted to say sinzt dt =
a quick check shows this to be incorrect. Namely:

a A 3

; _ :.2,d(sin t)
32[3 sin“t] = sin"t———ms—

., 2
at = gin t cos t

not sinzt.)

(b) Here we let u = cos t, whereupon du = -sin t dt.
j;osat sin t dt = j'u3(~du)

= = J-uB du

= -% u4 + €
= -% cos4t+vC
¥ 1
U— .
Again, the substitution y = cos t allows us to transform
Icosnt sin t dt (n # -1)
into:
f—un du "
Whence:
n cosn+1 t
_[cos t sin t dt = s i + C (n # -1) .
ITL.2.12
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SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 2: Calculus of Circular

Functions

[3.2.5 (L) cont'd]

(c) Here we invoke the fact that the integral of a sum is

the sum of the integrals. Hence,

J'(sinzt cos t + cos3t sin t)dt = jpsinzt cos t dt + j-cos3t sin t dt

and this, in turn, from (a) and (b) yields

3 1 4

3 i
-gSlﬂt"ECOSt

‘[(sinzt cos t + cos”t sin t)dt

=

3 1
t + Cl) + (-I cos t + C2J,

(Actually: = (% sin

and C2 are arbitrary constants, so also is C1 + C2 =

(d) Here we again observe that d(2 + cos 2x)
and this should tempt us to try the substitution

u =2 + cos 2x

+ C -

but, since C
Co)

-2 sin 2x dx

du = =2 sin 2x dx or sin 2x dx = -% du .
Hence:
1
sin 2xax _ [2 1 [ 172 4,
V2 + cos 2x ul:z 2
- -%[Zul/2 + Cyl

= -y2 + cos 2x + C

(Notice here that we did not let u = v2 + cos 2x, rather we let

u= 2 + cos 2x.)

ITT::2:13
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SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 2: Calculus of Circular

‘Functions
3:2.6
(a) We know that fsin( )d( ) = -cos( ) + C since d[—g?'s)(_-)]
= sin( ). Hence, fsin(szd(sz = =CoSs (xz) + C
|
| fsin(xz) [2x dx] = -cos (x%) + C

| oy 2 fx sin(xz)dx = -cos(xz) + C
.'.fx sin(xz)dx = -—';‘- cos (x2) + C

(b) Here, we let u = sin x then du = cos x dx. Hence:

fsin4xcosxdx=ju du=3-u + C
1
5

I

(Another method is:

.5]; sinsx + C

fsin4x d(sin x)
:.Isin4x cos x dx = %— sinSx + C
(c) The answer to (b) rules out the possibility that
fsinzx dx = % sin3x + @ .

Here, we must invoke the identity sinzx =1 = 9—-%-2—2—1-(— . Then

fsinz xdx f cgs 2x dx

%fg - cos 2x) dx

I

I11.2.14
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SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 2: Calculus of Circular

Functions

[3.2.6 cont'd]

[x - % sin 2x] + C

) S om o om e
l
N[ =

_ % _ siz 2X | &
(Check: %;[x - Ei%"gii = % - 5 cos 2x = % - %(coszx - sinsz
= 2 - 2(1 - 2 sin’x)
i
= % = % + sinzx

= sin“x .)

(d) j’seczx dx _ fd(tan X)
tan>x tan3x

f(tan_3)d(tan x)

= —% tan_zx + e

&3 3

=1

2 tan2x

Il
oR
0

3.2.7

This problem shows us that the mean value theorem still holds

as before.

Namely, if f(x) = sin x and a < b then f is continuous on [a,b]

1 3

and differentiable in (a,b). Hence, there exists c¢ such that
a < c <b and

f(b) - f(a)

ot = f'(c) .

That is:

sin b - sin a _
b - a = £'(c)

I1L.2.15
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SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 2: Calculus of Circular

Functions

[3.2:7 cont'd]

b - a

sin b - sin a| (= |sin b - sin ai)
- b - al

Now for any real number c, -1 g cos c < 1 hJcos c| € 1

. lsin b - sin a|
o [ - a]

sin b - sin a| g |b - a|

g.e.d.

As a corollary to this exercise, we may let a = 0. Then

sin a = 0 and the result becomes:

|sin b| g |b]|

Pictorially,

.

C

For any point A on the x-axis the

never exceed the distance from A to B.

Another way of obtaining the same

ITX.2.16

distance from A to C can

result is to let

= |cos ¢
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SOLUTIONS: Calculus of a S

Circular Functi
Functions

[3.2.7 cont'd]

f({x) =

From (1) it follows:
f1(x) =

and
£" (x)

I

Since -1 € cos x £ 1 ,
From (2) this tells us that

: il
iﬂahﬁ“”ﬂ pr

ingle Variable - Block III: The
ons - Unit 2: Calculus of Circular

X - sin X (1)
1l - cos x (2)
sin x (3)

it follows that 0 ¢ 1 - cos x ¢ 2 .

the curve y = x - sin x is never fall-

ing. From (1), £ (0) = 0. Hence the curve y = x - sin x looks
like
y=x
Y =x-sin x
g l - cos x =0
S %20 — cos x = 1 ¢
X-sin x>0 —) sin x = 0 ¢
X>sin x X - sin X = x &
stationary points are
5 o b on the line y = x
7
% Quite in general a common device for proving the f(x) » g(x)

for all x is to show that t

below the x-axis.

D A final observation he

he curve y = f(x) - g(x) can never be

re is that we have already solved this

problem more generally in Block II when we showed that

|£(b) - £(a)| ¢ |b - a|if |

£' (x) € 1.

TEL 2517




SOLUTIONS: Calculus of a Single Variable - Block III: The

Circular Functions - Unit 2: Calculus of Circular
Functions

3.2.8

Observe that the basic definitions are the same as before. For

example:
2 2
d™x d
a, = —3 and a_ = ——% .
¥ at Y at

Again, all that's new, compared with previous sections, is that we

can now differentiate sines and cosines.

Thus:
X = a cos wt — (1)
%% = —-aw sin wt —
d2x 2
— = -aw” cos wt — (2)
dt
= 2 . 2 2
a, = —aw” cos wt = -uw (a cos wt) = «w“x [from (1)] ‘
Similarly
y = b sin ot —™ (3)

bw cos wt —3

e

2
ay = Q~% = —bmz sin wt = -m2(b sin wt) = -w'y [by (3)]
dt

Notice also that we can analyze the path of the particle just as in
previous sections - only now we know a few trigonometric facts as

well.

For instance:

I11.2.18
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SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 2: Calculus of Circular
Functions

[3.2.8 cont'd]

2
X = a cos wt —> cos wt =§—-—)§-2-=coszwt (4)
a
. 2
y = b sin wt —3 sin wt = % S xf = sin“wt (5)
b
Combining (4) and (5), we obtain:
%% . 5° 2 2
2= cos pwt + sin“wt = 1
a2 b2

JThe equation of the path of the particle is:

nol o

val
+ ¥ =1
2

v

which happens ‘to be an ELLIPSE

when t=0, xXx=a cos wt - x=a cos 0 -+
x=a

y=b sin wt -+ y=b sin 0 -

b) y=0
——5so0 the particle starts at
=" (a,0)
(_a 0; ’O
’ k,_/(a ) when t=-Z-E—, X=a cos

y=b sin

+ xx=()

> y:b

_—
o
I
o
INERVE

I So at t=§%particle is at (0,b)
sparticle is moving counterclock-

wise (if w is positive).

3.2.9

This exercise shows how the law of cosines plays an important
analytical role in certain types of problems. In particular (see

diagram below) in this exercise we wish to find ds/dt+ knowing

IIL.2 .19




SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 2: Calculus of Circular

Functions

[3.2.8 cont'd]

a,b,da/dt,db/dt, and s at a given instant.

A
a
0] b B
32 = a2 + b2 - 2ab cos 120°
o [- R l
cos 120° = -cos 60° = )
;sz = a2 + b2 + ab

If we now differentiate (1) implicitly with

obtain:
ds _ da db db da
2Sa*t— = 2 aa—-E + 2 b-d—-t— + aa--E + ba-E

(While we may not be used to seeing letters like
variables, the fact is that we are only assuming
both differentiable functions of t. Among other

(1)

respect to t, we

(2)

a and b denote
that a and b are

things, this is

why we must use the product rule when we differentiate ab.)

Now, at the instant in question, we have that a = 8, da/dt =

b = 6, and db/dt = 30. Knowing a and b, we can find s from (1).

Namely,
s2 = 64 + 36 + 48 = 148 = 4(37)
therefore:
s = 2¥/37 .
ITL, 2:26

20,
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SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 2: Calculus of Circular
Functions

[3.2.8 cont'd]

With this additional piece of information, (2) becomes 4%3753 =

2(8) (20) + 2(6) (30) + 8(30) + 6(20) whence 3= = 250 & 43 mpn.
V37

Notice that, except for the law of cosines, we could have
solved this exercise prior to Block III as a related rates problem.
In fact notice that in Block II we solved a more special case of
this exercise wherein ¢ AOB = 90° whereupon we were able to use

the Pythagorean Theorem.

IIT.2.21
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SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions

UNIT 3: The Inverse Circular Functions

3x3.1 (1)

(@) & = sin"1(-2)
This, by definition, says that sin A = -% where —% <A < % . Since
A > 0—sin A > 0, we have that sin A = -%-—)-% <A <0 . We could

now proceed analytically and observe that since sinzA + coszA =1,

2y _ % L 32 X6
cos"™A = 1 =( §) = 5% .

2
Thus cos A = i% . We can next discard the minus sign since we
<0

know that —% <A and that in this interval cos A > 0 .

Hence: 4
cos A =z . (1)

Notice that in deriving this result it was crucial that we
realize that f(x) = sin_lx implies the restriction that —% £x £ % .
If this restriction is not imposed, then sin"1x is multi-valued and,
among other things, the fact that sin x = —% could imply that m <X *:é%
in which case cos x = -% not % . In other words, to reinforce our
remarks in the supplementary notes, sin"1x is not the inverse of sin x
but rather of Sl(x) where S; is defined by Sl(x) = sin x for all x in

the domain of S; = [—%, %] :

At any rate, once (1) is obtained the rest falls out. Namely,

I e R

sec A = EB%—K =-+%

cot A = EE%_K = -% .
III.3.1




SOLUTIONS: Calculus of a Single Variable - Block III: The

Circular Functions - Unit 3: The Inverse Circular
Functions

[3.3.1 (L) cont'd]

As a final remark, let us use this example as an illustration
of the use of radian measure. In this exercise, A is a number
(although we will admit that the symao%tA probably reminds us more
of an angle than a number). However, it we wish to view A as an
angle then, as our theme has been all along, we must view it as
measured ir radians if we want sin A to be unambiguously defined
regardless of whether we view A as a number or as an angle.

Thus we have sin A(radians) = -% where -;-< A < ;. Hence, A

is a fourth guadrant angle and we have:

L~

A 1(0,0) 4 $(4,0) -

B(4,-3)

whereupon we can read all the relationships directly from the
diagram. Notice that even with the diagram we are using the fact

that —% azas% , otherwise we could not conclude from the fact that

if sin A = —é, then A is in the fourth guadrant. In general, sin A <0

merely implies that ¥A terminates in either the 2nd or 4th quadrant.

(b) We have sin(2sin-10.8)

To translate this into an easier picture to see, we may choose an
4

|

i & -5 & - S G e oa

-l E e

L3 E£3

angle A (measured in radians) such that sin A = 0.8 = 5 and -% £ A <
X

0.8 = A. Our problem becomes:

NE

If we do this, then by definition sin_

II1.3.2
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SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions = Unit 3: The Inverse Circular
Functions

[3.3.1 (L) cont'd]

sin(2A) where —% <A < %

and sin A = %

¥
A terminates in first
5 quadrant since
4 Sin A > 03 A > 0 =0
—x ¢ m T
IA 3 since =5 <A & 5 -

<A

Now :
sin 2A = 2 sin A cos A
= 2(%)(%) (from our diagram, or from cos A = V1 - sinzA
_ 24
25 ¢
Finally resubstituting sin-lO.B for A, we obtain
sin (2 sin-lO.B} = %% F
3 30l
-1 a _ 5 .
(a) cos “( I§) = A—cos A = 13 and 0 g A gm. Since

cos A <0, it follows that % <A £ m. Thus if A is measured in

radians, we have:

From the diagram

_ 12 . _ 12
tan A = T v sin A = 13 "
III,3,3

)

<
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SOLUTIONS: Calculus of a Single Variable - Block III: The

Circular Functions - Unit 3: The Inverse Circular
Functions

| [3.3:2 conkt'd]

(b) If we are given cos (2 sin_l(-%g)) we may let A = sin-l(—%g)
which tells us:
!g 5
sin A = —-I-j-
12
A 12 = =<
- > cos A 13
N—S
13
g =l . 5 _
cos (2 sin (-T§ = cos 2A
! = coszA - sinzA
|
| 2 2
. w2 -5
= (3 - (@
=~ 119
169
(c) We have tan_lu = X, hence tan x = u where - % <X < +% v
Thus, pictorially, if x is measured in radians
I
f__—-1z tan x = u —
1+ . E4n 8= e
< V1l + u2
1 + u2
b -

(Note: In the diagram above, we have drawn the picture as if x is

a first quadrant angle. Certainly u could be negative. This would
u

place x in the 4th quadrant. In this event ——— = sin x would
+ u2
still be correct since both 2 and sin x would be negative, as
1+ u2
ITI.3.4
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SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 3: The Inverse Circular
Functions

[3.3.2 cont'd]

would cos x = - since each number is then positive. The

Jl + u2

point is that by our choice of principal values we may always refer

to a first quadrant angle without loss of generality.)

é'/

sin 2x = 2 sin X cos X

Then,

5 o B

li - u2 Ji + u2

2u

l + u2

(Stated analytically without reference to a diagram, we have:

1

tan "u = X — sin 2x = sin (2 tan_lu) 2 sin(tan_lu) . cos(tan-lu

u = tan x — u2 + 1 = seczx —sec x = ¥Vl + u  —cos x = F 1
1 +
m m _ -1 B 1
and -5 £x < §-acos X » 0 — cos x(= cos(tan "u)) = ———m ,
2
l +u
. -1 “ .\ _ _ 1 u
Then sin(tan "u) = sin x = (tan x) (cos x) = u(——m——) = ——— ,
V1 + u2 1l + u
3.3.3 (L)

(a) We are given y = tan J'zuz and we wish to determine %& .
Since we assume that we already know how to differentiate tan u wit
respect to u (if we didn't, it would hardly be of value to "fool"

with arctan), we rewrite the given problem equivalently as

X = tany , -% <y <1% .

TEL 3.5
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SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 3: The Inverse Circular
Functions

[3.3.3 (L) cont'd]

Then,

3% = seczy (we can either invoke the "recipe" or we
can write tan y %—:‘%% and use the gquotient
rule,)

Since g¥ is the reciprocal of %%, we can, in turn, write:

ol ooty .
sec’y X
To put our answer in terms of x (this in not necessarily
required but whenever y is given in the form y = f(x) we would like
to express %% = f£'(x), also, explicitly as a function of x), we
could write:

g§ = coszy where vy = tan lx i (1)

This answer can be made even more explicit if we employ the
L

techniques of the previous two exercises. Namely, y = tan "X —
gl L
X = tan y where —§-< y < ¥
*,COS y = -
'l+x2 % Jl+x2
A"4
1 or coszy = 1
1+ x2

Putting this into (1), we obtain that if y tan-lx then

(b) We are given that %ﬁ = ——l——g . Hence, by part (a),
1 + x

III.3.6
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Circular Functions - Unit 3: The Inverse Circular
Functions

[3.3.3 (L) cont'd]

y = tan_lx + C. Next since y = 3 when x = 0, we see that:
3= tan_lO + C mfbug
or 3=04+2¢C

or 3 =2¢C 4

Therefore, the desired f is given by:
=ik
f(x) = tan "x + 3 .

There are a few main points we would like to make with regard

to this example:

gl !
(1) While it is convenient to remember that QiE%%——EL is
__i__i when we want to compute __Qﬁ_i' it is not necessary to mem-
1 + x 1l + x

orize this result. The main idea is that expressions such as a? + p?

and a2 = b2 should, by the Pythagorean Theorem, suggest right triangles.

For example,

= )
Ya© - b

So given jr——gﬁ—i, 1+ x° might suggest the reference triangle:

vVl + x

X
1
and this, in turn might suggest the transformation tan 6 = x (or
B = tan_lx). The diagram, of course, also suggests cos 6 = e
f s
V1 + x
IET .3 .7




SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 3: The Inverse Circular
Functions

[3.3.3 (L) cont'd]

etc., but, computationally, tan 6 = x is the simplest for computing

dx in terms of 6.

In any event, letting x = tan 6, we obtain: dx = seczeda while

sect = V1 + x°; hence, 1 + x2 = secze. We then obtain:

2
f__g.’i_?=j§.?ﬁ_g.d_e.=fde=e+c where 6 = tan ‘x
l + x sec™ 8

2

" j;~g§—~ = tan_lx + C " (3)
1+ X

The diagram also could have been labeled:

V1 + x

8

X
Whence the suggested substitution would have been x = cot 6. Then

dx = -csczedewhile cscze = 1 ¥ x2 "

dx -csc” 6de -1
’e e = _"_T'— = - + C = -cot X+ C . (4)
fl + x2 csc™ B

This leads to our second point.

(2) At first glance tan—lx + C and -cot_lx + C might not look like

equivalent statements. However it should be noted that tan_lx

+ cot_lx = % . Since, viewed as acute angles, tan-lx and cot_lx are

complementary angles. Pictorially, tan_lx = 6 —

S S S &9 S s O U G = B e
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SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 3: The Inverse Circular
Functions

[3.3.3 (L) cont'd]

This in turn implies that cot(% -6) = x anc hence that

i _ =1

'2""'8 =cot X
;_% = kan tx = cot Tx (since 8 = tan” tx)
stan 1 + cot™1ix = % 8

(The fact that the trigonometric identity tan 6 = cot(%-—@) holds
for any 6 allows us to remove the restriction that 6 be an acute

angle.)

In a similar way, it can be shown that if f denotes any trigono-

metric function and if co-f denotes the complimentary function then

£ l(x) + co-f"1(x) =z .

In any event we then have

tan_lx + C = % = cot-lx + C = —cot-lx + (% + C)
= - cot 'x +C, where C, =1 + ¢
¥ ‘ 1 12 .
g €3
= Hence, since C denotes an arbitrary constant, we may write
tan_lx + C = - cotflx + Ch

L The point being that the inverse trigono-
metric identities may allow us to get equivalent answers which look

very different to us.

(3) It is very important to notice that in this example no

knowledge of trigonometry was necessary for the statement of the problem.

That is, %% = ——~£—§ is an algebraic not a trigonometric relationship.
1+ x

- ;(.""/

¥

IIT.3.9
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Circular Functions - Unit 3: The Inverse Circular
Functions

[3.3.3 (L) cont'd]

Yet the solutions of this exercise still required our "inventing"
the inverse trigonometric functions. This is further corroboration
of our claim that trigonometry transcends the mere applications to

geometry. We shall write more of this in later exercises.

(a) jr———gi—— suggests -éﬂ%::]x which in turn suggests
1 - x2 i - x2

the substitution sinf = x (or B8 = sin_lx) . Then cos 6 df = dx

while Ji - x2 = cosf. Hence:

6 de f
[t o)

We could also have labeled our triangle
é: |Jl w %
X

whereupon we would let cos § = x (8 = cos "x) .

B + C = sin-lx + C 3

Then =-sin 6 df6 = dx while Jl - X = sin 9.
Therefore

_sin 9 de

“sin 6
Jl - x

1
sin x + cos = % since ‘ﬁ:::f# a-+ 6 =

=1 1 - x2

and o = cos—lx while 8 = sin “x .

= = 4+ C = —cos_lx + C "

e

ITT.3.10
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Circular Functions - Unit 3: The Inverse Circular
Functions

[3.3.4 cont'd]

Hence, sin"tx + C = % - o8 Lx ¥ O
v ool
LVl AR =
n \ﬂf % =
W 0
: - i -
N&giﬁ&ﬂww o e c, (since % + C is still an
%)
wmsﬂﬁ*ﬁ y vV arbitrary constant) .
VTR
I
_ =1 ; _x =1 _T i
y = 81n “(py)dsiny = 0 ' 7 §Y €35

Then, by implicit differentiation,

d d(x + 1)
. gy__(xﬁ'l)a(}{‘l)—(x-l)'—dx—“——
08 ¥ 3x T 2
(x + 1)
(x +1) - (x - 1) :
(x + 1)2 |
= 2
. h O, (x + 1)2
. ) X
G\N\M\wﬁ“h\
:.%% o 2_529_15 where y = sin~1 ;—:—% . (1)
(x + 1)

To make this answer into a form such that g% is explicitly a

function of x, we have

{ i 27
X+l ¢ X+l/
or
Y b4 -
'x

ITIT.3«11
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Circular Functions - Unit 3: The Inverse Circular
Functions

[3.3.4 cont'd]

Xx + 1
2Vx

-] =
dx (x + 1)% X% S5 b 1)

(Our triangle would be in trouble if x + 1 were a shorter length

hence sec y = and putting this into (1), we obtain

than x - 1 which could happen if x were negative. In this case,

x - 1 - . . = X1y . .
|§—1_T[ >1land this is impossible since l§—$_fl = |siny| s 1.)
3rded
ax 1
V = = =
dt 1+ t2

_J’ dt
Hence, x = e
1 + t

or = tan_lt + C . (1)

Now, when t = 0, x = 0. Therefore (1) becomes:

0 =0+ C
cC =20
Thus:
X = tan—lt (2)

; m
In particular when t =1, x = .

ITI.3.12
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Circular Functions - Unit 3: The Inverse Circular
Functions

[3.3.5 cont'd]

That is, the particle has travelled % feet in 1 second. Note

especially that the distance travelled is not an angle. 1In other
words x is a number in (2). If we insist on an angular interpreta-
tion, then x must be in radians. It is incorrect to say that when

t =1, x = 45° ,

Finally, notice again how the inverse trigonometric functions

Yy find their way into non-geometric situations.

/?Y
3.3.6 {L)
: = O o
(a) We have that a = at - 9x .
In the above form, we seem to have one variable too many. We,
therefore, elect to write ay as (QX)(QE) = (g!)v This leads to
¥ dt dx’ ‘dt dx *
av, _ _
V(a;) = -9x . (1)

Treating (1) as a differential equation, we may separate the variables

and obtain

vdv = =-9xdx (2)

whereupon integration yields

2 2
v -9x
T
or:

We may then determine the constant ¢ in (3) from the condition that

when x = 4, v = 0. That is, (3) becomes

ITI.3.13
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Circular Functions = Unit 3: The Inverse Circular
Functions

[3.3.6 (L) cont'd]

0 = -9(16) + c

whereupon ¢ = 144, and, since c is constant, (3) says

v? = 144 - 9x° (4)

or:

v = th44 - 9x2

(5)
and we cannot, without further specifications, select between the
positive and negative root in (5) since, for example, when x = 0

the speed of the particle can be either 12 feet per second in the

direction from right to left or in the direction from left to right.

In any event (5) gives us an expression for v as a function of

x and unless we wish to express the function in two parts (branches)

we see that v is not a single valued function of x.

Equation (5) should be refined by the observation that it is
only defined when |x| < 4, since if x exceeds four in magnitude,
144 - 9x% will be negative and hence its square root will not be

real.

While it is not necessary for obtaining the correct answer, a
certain amount of physical feeling for this problem should give us a
fair idea of what our answer means. Namely when v is 0 the particle
is at rest, hence our conditions in this problem tell us that the
particle is at rest when x = 4. Since the acceleration is propor-
tional to the displacement of the particle but in the opposite direc-
tion (this is what a = -9x tells us), we conclude that the particle

is always accelerated toward the origin. Thus the particle starts

at x = 4 and accelerates back to x = 0. This means that the particle

is gaining speed during this time but since the magnitude of x is

I11.3.14
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SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 3: The Inverse Circular
Functions

[3.3.6 (L) cont'd]

decreasing so is the acceleration of the particle. Once the
particle passes through x = 0, the acceleration reverses direction
and consequently the particle decelerates and finally comes to a
stop, evidently at x = -4, since any lesser value of x makes equa-

tion (5) imaginary. The particle then repeats a similar trip.

Pictorially,
At x = -4
the particle is accelerated — and the particle oscillates
back to the origin in the indicated manner.
x =0
x = -4
It passes througn and accelerates x = 4
X = 0 with its maximum ¢— { toward the «— {( particle
speed finally coming origin, starts here.
to a stop at x = -4
(Figure 1)

We can "sharpen" the feeling for what is happening in Figure 1

by putting in periodic "check point" speeds obtained from Equation 5.

For example equation (5) tells us that when:

= %3, v = /144 - 81 = ¥/63 X %8; x = 2, v = /144 - 36

x =2%1, v=3%T144 - 9 = /I35 % 11.5 ; and x

Il
o
-
<
I
1+
—
B

maximum speed occurs here

Thus ok
—4 -3 -2 =3 0 1 2 3 4 x-values
0 ¢ 8e=10¢=11. 5«—12«-11 5*—104—-8 4 (approximate
“tepr '_—)“V t._—;*l/“—_& rlhed *lr N 0.»-" Ow FE -&;-'pee (app )
(Figure 2)
ELL.3.15
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Functions

[3.3.6 (L) cont'd]

We could also, if we wished, plot v as a function of x from
Equation (5). Clearly (5) is equivalent to

or

or

2

Ava =

9x2

<
6

which represents an ellipse.

VA

N

-—..-\

144 -

2

+ v© =

jd
S B N
|

(0,12)

At x = x; the speed of the

particle is either +v, or

1
vy depending on the direction

in which the particle is
moving.

(-4,0)

(0,12)

(x4,

o

(Figure 3)

ITT1.3.16
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Circular Functions - Unit 3: The Inverse Circular
Functions

[3.3.6 (L) cont'd]

The major point of Figure 3 is that the ellipse is not the

path followed by the particle. Obviously, the particle is moving

o

along the x-axis. The ellipse allows us to see graphically the
velocity of the particle at the point x = x;. It is precisely
the v-coordinate of the corresponding point on the curve.

(b) This part of the exercise is designed to show once again
how the circular functions enter into the picture even though we
seem not to be dealing with geometry and we would also like to show
how calculus is used in conjunction with our intuition to help us

formalize and quantify certain conjectures we might have.

To begin with, notice that our discussion of part (a) has
already led us to suspect that the particle moves with oscillatory
motion and we might even visualize that its graph seems to resemble
a sine curve. Of course what it means to "resemble" a curve is
another matter. (For example y = x2 is a parabola; y = x4 is not
a parabola, yet, in a quick sketch, the two curves "seem to belong"
to the same family.)

A
\X\"‘

To get back to the specific aspects of this exercise, we return

to Equation (5) and rewrite it as

dX _ V144 - 9x2 (6)

dt

(where we have disregarded the negative root so that we utilize the
results of calculus which require that we have single-valued functions.
We are not discarding the negative root. Rather, once we have

solved (6) it is simple to hangle the negative root by symmetry con-

siderations).

At any rate, if we separate the variables in (6) we obtain

LIT « 3«17

Il EE = B PN PE B bE ew P Pm BE BE S BE Bm Bw bm Bl




¥ 4¥

SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 3: The Inverse Circular
Functions

[3.3.6 (L) cont'd]

dx

V144 - 9x

]

dt

whence

]
po
+
(@]

(7)

dx
jﬁu = Gx*

If we have not explicitly memorized how to evaluatej[ ox

we can return to our reference triangle: v144 - 9x
(z
—
(144-912)7 1

f

vi44 - 9x!

The least complicated transformation seems to be:

Sec b =
3x

3x b 1

sin 6 = -7 (or 6 = sin

RN

Hence 4 sin 6 = x or dx = 4 cos 68 d6 . Also

TR
cos § = 14412 Ix y V144 - 9%% = 12 cos 6 .

Thus:
dx _ 4 cos 6 d6 _ 1 = @
[ 2'[ 12 cosb '3[‘?‘9'3*'02“’here

144 - 9x —
a9y ’ T r 1/544-%)
s Ut /—V—,;—L)e = sin™t % "‘3”1(({44-%‘)?‘) = (08 ('7[ (8)

Putting (8) into (7) and combining the arbitrary constants

we obtain:

(9)

111.3.18



Il FE BN A P B P BE PE B BE Pm Pw em e

T e e

| .

K
"o o
td&ﬂﬂ%'g
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Circular Functions - Unit 3: The Inverse Circular
Functions

[3.3.6 (L) cont'd]

or:
Y X . . ‘
T= sin(t + C3) (by taking sine of both
sides of equation(9)) .
Hence,
x = 4 sin (t + ¢y - (10)

The value of C3 in (10) depends on the initial position of
the particle. Notice that being told that the particle was stopped

at x = 4 does not tell us at what time this occurs.

If, as in this exercise, we are told that x = 4 at t = 0

(that is, the particle starts at its maximum displacement), (10)
yvields:
4 = 4 sin C3 4

Hence sin C3 = 1, whereupon C3 &= %. (Notice here that one-to-oneness
is not necessary in the sense that 4 sin(t + %) and 4 sin(t + E%J etc.
are identical.) We obtain as our answer to iik?

m
x = 4 sin(t + ) (11)
Since sin(t + %) = sin t cos % + cos t sin %

sin t (0) + cos t (1)

cos t,

equation (1l1l) can be written as:

X = 4 cos t (12)

III.3:19
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[3.3.6 (L) cont'd]

The graph of either (11) or (12) is given by

X =4 cos t =4 sin(t + %)

(0,4) (Had X been -4 when 4
= 0, then we would
ave obtained x = =-4cos t.
This is the only differ-
ence in the choice of
igns for the root

4144 - 16x2

(Figure 4)

The result of this exercise is easily generalized. To begin
with, any motion in which the acceleration is proportional to the
displacement but in the opposite direction is known as simple

harmonic motion. In the language of differential equation, we may

express simple harmonic motion by:

2
i-iz‘- = =k (13)
ak

2

where we write k2 to emphasize that Q_% and x have different signs.

ITTI .3 .20
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[3.3.6 (L) cont'd]

2 2

Recall 42 . -kx allows both x and g to have the same sign if k
2 2
dt dt

is negative. 1In no case can k2 be negative if k is real.
2
, d™x dv _ dv dx _ _ dv . .
We then write g:f as 9 “adx at - V gx to obtain from (13):
av _ _kzx

vV ax

and separating variables yields:
_ 2
v dv = =k"x dx

whereupon integration yields:

v = -k%x% 4+ &y ) (14)

We can conclude form (14) that C; is non-negative since it is the
sum of two squares. That is, C; = {v)2 + (ka2 > 0 since a real

square cannot be negative. To emphasize that C, is positive

1
(non-negative) we will write it as C, = CZZ, whence (14) becomes:

or

v = inzz - kzxz (15)

Equation (15) is the generalization of Equation (3) and C,

cannot be determined unless we have some specific value for v at

a given value for x.

We can then write (15) as

ITT.3.21
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[3.3.6 (L) cont'd]

ax _ 4y~ 4 _ 2.2
'a-'t——_cz k™x

and separate the variables to obtain
dx

’/C22 - k2x2

jr dx
2 2.2
JCZ - k™x

Switching to our reference triangle,

= *dat

whereupon

t(t + C3) (16)

C
X
- 2 2.2
sin 6 = XX (6 = sin 1 kx ) ng - k'x
c C
2 2
Czsin 8 = kx _— Czcos 6 do6 = kdx
c,” - k%x?
— N - - -
cos § = C2 7 C2 k™x C2 cos 6
Hence, C2
dx _Jxees6ds 4 1 . -1 kx
= =0 +C,=s8in " =/—#%0C
= C, cos © k 4 k e 4
f 2 22 2 2
C2 - k™x

whereupon (16) becomes:

.-.lk_x_

L -+
5 Sin C2 = I(t #+ C

5)

TIL: 322
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[3.3.6 (L) cont'd]

or sin E; =+ k[t + C5]

kx _ .a
or — = sin [+ k(t + C.)]

C2 — 5

= *sin (kt + kCz).
Hence,
€2
=+ ]
X t — sin (kt + kCS). (17)

The constants c, and C5 can then be determined from specific
given conditions.

But the major point is that simple harmonic motion conceptually
exists without specific reference to classical trigonometry, but
the explicit representation of x as a function of t does invoke the

circular functions.

In still other words, this exercise affords us another example

of a non-trigonometric differential equation which has a trigonometric
solution.

3.3.7 (L)

Since both C and S are given to be differentiable functions of
X, so also is Cz(xJ + Sz(x). Now one of the most convenient ways
of proving that a function of x is a constant with respect to x is

to show that its derivative with respect to x is identically zero.

The derivative of Cz(x) with respect to x is 2C(x)C'(x) while

the derivative of Sz(x) is 25(x)S'(x). (Remember, we must use the
chain rule here). 1In any event, this means that the derivative of
IIT.3.23
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[3:3:,7 (L) cont'd]

Cz(x) + sz(x) is given by

2C(x)C' (x) + 2S5(x)S' (%) s (1)
We now put into (1) the information that C'(x) = -S(x) and S'(x)
= C(xX) to obtain that the derivative of Cz(x) + Sz(x) with respect
to x is given by:

2C(x) [=8(x)] + 25 (x)C(x)
which is, clearly, identically zero (that is, it is =-2CS + 2CS) .

Quite possibly one has already noticed more than a fancy coin-
cidence in our choice of C and S as symbols in this exercise. It
is obvious that if C(x) is set equal to cos x and S(xX) to sin x we
get true facts about these functions. However, our exercise shows
us that much more than this is true. Indeed, we have just shown
that no matter how C and S are chosen, provided only that they have
the given properties, that C and S must be circular functions in the
sense that C2(t) - Sz(t) = k2 implies that (C(t),S(t)) is a point on the
circle x% + y2 = k%. The choice of constant is determined by speci-
fying a value for c2 + s? for a given value of t. For example, if
C2{0} + 52(0) = 4, then the circle is given by x2 + y2 = 4. Thus
the particular trigonometric functions sin x and cos x are special
cases wherein CZ(O) + SZ(O) = 1 and in this case we obtain the

"usual" circular functions.

From still another point of view if we let x = S(t) we see that
x' = C(t) and hence that x" = -S(t). This in turn says that x" = -x
or, in the language of differentials,

d2x

and this has the form of simple harmonic motion mentioned in our

discussion of Exercise 3.3.6 (L) .

In other words, aside from further experience with the circular

functions, the main aim of this exercise was to provide us with

IT1.3.24
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Functions

[3.3.7 (L) cont'd]

additional insight to what is meant by the circular functions from

a non-trigonometric point of view. Roughly speaking, except for

the name we give the functions, C and S are pretty uniquely determined
as circular functions form the conditions that C'(x) = -S(x) and
S'(x) = C(x). The beauty of this approach is that there is nothing
in either the statement of the problem or its solution that regquires
any a priori understanding of trigonometry. Indeed the specific
exercise itself could have been solved prior to our study of this
Block. Except for our explanatory commentary, no reference to

trigonometry was made in the solution.

3.3.8 (L)

There is now a danger that because of our de-emphasis of
traditional trigonometry, we may begin to believe that one has no
great use for non-modern trigonometry. Such a view point would
be unfortunate. 1Indeed, it should be obvious that we stressed the
modern aspects of trigonometry because they have not been stressed
enough in the ordinary curriculum; and we did not stress the tradi-
tional aspects of trigonometry because these have already been

stressed too much in the curriculum.

In any event, in order to instill a bit of balance to our
presentation of trigonometry, we conclude our discussion with this
interesting problem concerned with an angle of vision. We have a
picture of height, h placed with its base b feet above the eye of
an observer. Clearly, the angle of vision depends on the location
of the observer. For example, if he stands directly beneath the
picture, he has a zero angle of vision as he tries to view the pic-
ture. As he moves back from the picture, Figure 4 shows that the

angle of vision subtended by the picture increases up to a point,

IIT.3.25
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[3.3.8 (L) cont'd]

after which the angle again diminishes and approaches zero as the
observer moves sufficiently far from the picture. Denoting the
angle of vision by a and the distance of the observer from the
picture by x, the problem is to determine the value of x for which

o 1s maximum,

h
b
1
[i-Xl-g-
4—*}{2——?
< X3 »
(Figure 4)
h
fo!
il
le— x —

(Figure 5)

We depict the general situation in Figure 5, where we also
introduce the angle, B, to ease our quest for a functional rela-
tionship between o and x. In particular, we observe that:

ctn(a + B) = x/(b + h)

and

ITII.3.26
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[3.3.8 (L) cont'd]

ctnB = x/b .
Then switching to the language of inverse functions, we obtain
a + B = ctn_lx/(b + h), and B = ctn_lx/b. Since a = (a + B) - B,

we obtain the required relationship, namely:
-1 =1
oo = ctn x/(b + h) - ctn "x/b . (i)

Since for physical reasons, o must exceed 0 radians but be
less than 7m/2 radians, we see that o is a well-defined, continuous
function of x in the required interval. Thus, the answer to our
guestion involves nothing more than using equation (1) to find
do/dx, and then setting da/dx = 0. Recalling that

d(ctn tu) /dx = (-1/1 + u?)) (du/dx), we obtain:
do -1 1 1 1
ax 2 (b+h) + 3 (B) (2)
D] g Ny

Equating do/dx to 0, and simplifying (2), we obtain:
0= =k + B)SI%® + B+ )% + blix® + b2 . (3)

Transposing, and clearing demonimators, we obtain:

2

b+ HY (%2 + B2) = blx> + (b + W3] . (4)

Simplifying (4) results in:
2
x“ = b(b + h) . ‘ (5)

Thus, we find that o is maximum when x = vVb(b + h) . (6)

ITIT 3 27
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SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 3: The Inverse Circular
Functions

[3.3.8 (L) cont'd]

We could stop at this point, smug in the knowledge that we've
shown a use for classical trigonometry in the context of calculus.
But we would be at least somewhat remiss now if we didn't make
some geometric comments about (6). Recall that the ancient Greek
had defined the concept of a mean proportional, and that he could
construct it by Euclidean means.

To refresh our memories, recall that the mean proportional, m,
of b ana ¢, is defined by m = bc. That is, m is defined by the
proportion:

b/m =/m/c .

Geometrically, if we view b and ¢ as lengths, we may construct
m as follows:

On the same straight line, mark off lengths b and c successively,
thus forming b + ¢. With b + ¢ as a diameter, construct a semi-circle.

At the point where b joins c erect a perpendicular which shall extend

from the point of juncture to the circle. The length of this seg-

ment is the mean proportional between b and c. (See Figure 6)

PQ denotes the mean pro-

portional of b and c.
This follows from the

triangles: PQT, PQR,
and QTR.

(Figure 6)

I1T.3.28

similarity of the three

G 0 =9 N N Ul b O 8 w

B TS S S By b N EE "




I M o ) S ) 8N om s @ M a 0 N em B em e e

SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Unit 3: The Inverse Circular
Functions

[3.3.8 (L) cont'd]

At any rate, if we now apply this result to (6), we obtain
the very interesting result that the maximum value of o occurs
when x is chosen to be the mean proportional between b and (b + h).
This, in turn, leads to a particularly simple geometrical solution
to our problem. Namely, (see Figure 7), we use the same diagram
as in Figure 2, only now we lable certain key points for exposi-
tory clarity. We merely extend BA its own length to D, and then
construct a semi-circle on CD as diameter. Letting E denote the
point at which the semi-circle intersects OA, we have, quite simply,
that E is the point at which the observer should be stationed if
he wishes the maximum angle of vision (for by our construction, AE
is the mean proportional between b + h and b, and by (5), this

determines the position at which the maximum angle of vision occurs).

(Figure 7)
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SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions

QUIZ

. sin 4x . 4x ,sin 4x : 4 ,sin 4x
L; (a) 1lim ——— = lim {—— (—————4} = llm[— (_————AJ
%0 3x %0 3x 4x 250 3 4x

_ %lim (SJ.n4x4x) _ % lim (su:;;x)
x>0 4x+0
-4
3
(The key point here is that lim sin( ) _ 1.)
()0 O
(b) lim 99%S§5-= © since cos 4x+1 as x>0 while 3x+0 as x->0.
x+0

That is, our denominator gets arbitrarily small in magnitude while

our numerator stays near 1l as x gets small.

(Notice in this problem, unlike in (a), the numbers 4 and 3

have no bearing on the answer.)

. tan 4x . sin 4x : sin 4x 1
(¢) 1lim =—— = lim ——— = lim B ) ]
20 3x 530 3x cos 4x ——_— 3x cos 4x
. A sin 4x 3 1
= lim (——Eg——d lim (ESEHEE)
x+0 x+0
: sin 4x, _ 4 ; ; 25 - ’
But by (a), lim (__ii__) = 3 while lim o5 Az T " 1. Hence:
x+0 x-+0
lim 824X _ 4y (1) =
x+0

(d) lim §i§l§i:21,= lim [}x+3)sin(x2—9)} = lim [(x+3) Sinéx2-9)]

x+3 X~3 x+3 (x+3) (x-3) X+3 x =9
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SOLUTIONS: Calculus
Circular

[1. cont'd]

(e) Observe that lim

h~+
d(tan x)
dx

provided, of course,

lim

of a Single Variable - Block III: The
Functions

2
lim (x+3) 1im Sin{x -9)

x>3 X*3 X =9

. 2
lim (x+3) 1im Sin(x -9)

2

%3 x2—9+0 x -9

6 (1)

6

[tan(x+h% - tan x] is the definition of

0

. [tan(x+h) - tan x] - 2
lim 5 = sec x
h=+0

that seczx # @, In other words

seczx, if x # i%; i%;q i%}, —

[tan(x+h) =

h-+0 h

4
2. (a) ﬂs'cli—gﬂ=4

d(cos4x)
dx

d_X = di (sin4x
b4 X

tan x] _

] , otherwise

sin3X d(sin x)

4 sin3x cos X
X
= 4 cos3x QiEEE_iL = -4 cos3x sin x
dx
- c054x) = fi—sin4x - fl—cos4x
dx dx
TXL 02
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SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Quiz

[2. cont'd]

. 3 3 ,
= 4 sin"x cos X + 4 cos™x sin x

; g 2
= 4 sin X cos X (sin"x + coszx)

= 4 sin X cos X

= 2 sin 2x
(In fact, you may have noticed that

sin4x - cos4x (sinzx - coszx)(sinzx + coszx)

y = =
= sinzx - coszx = - (coszx - sinzx) = - CcOS 2X
- dy _ .
.-d—}—[-—281n 21{.)
_ n dy _ n-1 d(tan u)

(b) If y = (tan u) then e n(tan u) ey but
d(tan u) _ seczu ng Hence, if y = tan32x = (tan 2x)3, we have

dx dx
5 = 3 tan22x(sec22x)2 =6 tan22x sec22x. (Notice that the key

dx

to this problem lies in the chain rule and the basic formulas

for differentiation.)

3. (a) Ify = sin4x + cos4x then:

. 3 ;
—= = 4 sin"x cos x - 4 cosBx sin x
= 4 sin X cos x(sinzx - coszx)
. 2 .
= -4 sin x cos x (cos“x - 51n2x)

= -2(2 sin x cos x)(coszx - sinzx)
= -2 sin 2X cos 2X

= - sin 4x

IIT.0.3




SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions = Quiz

[3. cont'd]
£ QY o b e glin G =0 4x = 0 2m, 3
56 e B sin 4x = ++ 4x =0, m, 27, 3w, 4m, 57 67, 77, 87,...
erx =0, L X 31 2l 21 4t
X 0!4r2r 4!“: 4!2_r 4’ 27

(Notice that since 0 & x £ 27, we must have 0 & 4x £ 87.)

(b) In (a) we found that Q% = -sin 4x. Hence,
d2
d ¥ - -4cos 4x
2
dx
. ™ 37 d2 .
.. At x = 0, 5 T, ifj and 2T, -—% = -4 . « Curve has a maximum
dx

at these values of x. In other words, (0,1), (%,1), (m,1), (%;71),
and (21,1) are high points,.

Similarly x = 1, 31, EE, In give rise to low points. Since
4’ 4 4 4
4 4 4
sin -+ + cos = = (J;) + (—la kgl lj we have that (E,i),
4 4 /3 /3 4 4 2 4’2
(%1,%), (%;1%), and (253%) are low points.

Leaving the other details for you to check by any method you

prefer, we obtain

¥
1h‘ y = sin4x + cos4x
0 £ x & 21
l-‘
2
S X
nom 3 . 51 3w 7mo, 7
4 2 4 ) 4 2 4
III.Q.4
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SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Quiz

[3. cont'd]

(An alternative method which requires less calculus but more

algebra and trig identities is

2
4x = L [(sinzx + coszx)

y = sin4x + cos 5

*
2
+ (sinzx - coszx) }

&1)2 + (-cos 2x)2} = % [1 + cosz2x]

|
N+

1 1l + cos 4x 1 1 4x
b1 e TR ES B

. 3 + cos 4x
ey = 1 w)

4. (a) _[tan5x seczxdx = -ftansx d(tan x) = %tanex + c
i
. (3.5 2 L. 6. P oz S 1. %
..f- tan x sec xdx = gtan %K = gtan 3 - Etan 0
0 x=0
6
_ 1 o
—gtaHB
mo_ 611_ 6_3
Now, tan 3 = VY3, hence tan B (V3)© = 3° = 27
3
;-f tansx seczxdx = 2L
0 6
2 2
*Quite in general (a2 + b2) + (a2 - b2) =
2 2
a4 + 2a2b + b4 + a4 - 2a2b + b4 = 2a4 + 2b4. Therefore a4 + b4 =
P 2
%— iaz + b2) + (a2 - b2) }.
ITII.Q.5




SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Quiz

[4. cont'd]

(b) _[coszxdx = jﬁl f con 2x dx = '[(l + 2 cos 2x)dx

2 2 2
_ X L.
=5 + I sin 2x + c
T
T 4
s 4 cos®xax = % + % sin 2x
0
x=0
I 1 2r ] _
= [2(4) + 2 sin 7 J 0
=141
=873

5. Here we apply the discussion of total and net distance in

Block II to trigonometric functions.

For part (a), we recall that

I
P 3
AX = J;B cos 2t dt = %—sin 2t = % sin %g‘= % (% V3)
0
- _'? (v 0.433) feet

Thus the displacement of the particle is 0.433 ft. (& 5.2 inches)

to the right of the starting point.

(b) We observe that cos 2t 2 0 if 0 § 2t < g-or 0 t< Eu Hence
the particle moves from left-to-right if 0 ¢ t % and from right-

to-left if % < t g %\ Hence the total distance travelled by

the particle is

III.Q.6
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SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Quiz

[5. cont'd]

i m
1‘4 cos 2t dt| + jﬂB cos 2t dt | =

0 m

i
T il
4 3
% sin 2t + %-sin 2t =
t=0 In
vz

1 . 7 1 27 . (L

5511’15 + 551n—§—-—-2—51n2 =

1 V3 1l . A 1 V3, _
’f*T‘E‘“EJ’(E 1) C

1l - %?- A 0.567 ft. a4 6.8 inches
Pictorially
starts /3 is here at t = %
here @ *o*7T YO
* 4 ¢ 1
is here
at t = %
3
..=-1 =5 . -5
6. Let 6 = sin (I—}. Therefore sin 6 = —=. Moreover by

13
>

3
principal values ‘%‘6 B < L. Hence cos 6 0. In terms of our

2

reference triangle:

QZBFiTEEHHMHJ_S
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SOLUTIONS:

Circular Functions - Quiz

[6. cont'd]

Therefore

(a) cos [sin—

. (%ﬂ = co

bl =in [2 sin-l(i—sz—)]

7. (a) y =

.. By inverse functions,

dy _ dy du _

dx du dx

Finally, u =
". sin y =

én terms of

Hence

=1
cos "u * u

= -sin y

i du
sin y dx

cos y > u2
+ Y1-u”, bu
sin y =

a reference

-5, ,12
2(I§)(T§)
=120

169

dy _ -l
du sin y

= coszy & 1—u2 = l-coszy = sinzy

t since siny > 0 1if 0 € y ¥

Vl—u2

triangle cos y = u *>

A

111.0Q.8

Calculus of a Single Variable - Block III:
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The

———, and by the chain rule

we have
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SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Quiz

[7. cont'd]

(b) This is (a) with u = 3x2. Hence g§-= 6x. Therefore
g_iv; = —-l._ 6x = i’ where 3}(2 < 1%
J/1-9x* 1-9x?
_ -1 2 _ 2 <. &
(c) If y = cos " (3x"+5) then cos y = 3x” + 5 2 5. But this is

impossible when y is real. Namely, y real implies |y| < 1.
Hence there are no real numbers x and y such that y = cos-l(3x2+5).

That is %%-does not exist!

(We included (c) only to show that numerical answers must
be checked for realness. For example, had we computed the answer

using (a), we would obtain

-6X

/1-(3x%+5)2

but 1-(3x245)2 < 1-(045)2 = -24. Therefore /i-(3x245)2 cannot be

real for any real value of x.)

1<

(d) ‘[ = S cos_lu + c if |u| <1

Jl-—u2

g [ AU pns ™y 4 c if |u] <1

—~
I
ET
B

*Again notice that y = cos 13x? » ]3x2| € 1. 1In other words
i 1

y = cos_13x2 means 3x2 = cos y and |cos y| < As an arithmetic

check notice that if 3x2 > 1, then 8% is not a real number.

1-9x

ITI.Q.9




SOLUTIONS: Calculus of a Single Variable - Block III: The
Circular Functions - Quiz

[7. cont'd]

1
3

-.f d (since for u=%-or u=0, |ul <1
0

I1I1.Q.10
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SOLUTIONS: Calculus of a Single Variable - Block IV: The
Definite Integral

UNIT 1: Area

Draw AC(BD could be used as well), thus decomposing the

trapezoid into two triangles T, and T..

1L 2

_ _ - _ & ;
The Area of T, =5 blh = ATl . Similarly AT2 =5 bzh. Since

the trapezoid is T,uT

the area of the trapezoid is:

o and Tl and T2 share only a boundary in common,

(Geometrically ——5—— 1s an "average" base. That is:

Area of rectangle EFGH = Area of trapezoid ABCD.)

Iv.1l.1




SOLUTIONS: Calculus of a Single Variable - Block IV: The
Definite Integral - Unit 1l: Area

4.1.2 (I—l)

The first word of caution here is to observe that if we are
to apply the logic of this section we must use area, not perimeter
(although, historically, the problem was done in terms of perimeter).
The reason is, as mentioned in the supplementary notes, that we can
not conclude that the larger region has the larger perimeter. 1In
other words, the principle of "sandwiching" applies to area but not

to perimeter.

The inscribed hexagon consists of six congruent equilateral
triangles, each of whose sides has length 1 unit. The altitude of
each triangle is %f?. Hence the area of each triangle is ph =

2
F(1) (33 = 273 .

Since the inscribed hexagon is the union of these six triangles,
we have that the area of the inscribed hexagon is 6 x %/_ = %/3
(> %(1.73) = 2.66). Thus, since the circle contains this hexagon,
the area of the circle, which is m(since its radius is 1), must

exceed the area of the inscribed hexagon. That is:

3/3

(2.66 <) 3

<m

IV o din:2
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SOLUTIONS: Calculus of a Single Variable - Block IV: The
Definite Integral - Unit 1l: Area

[4.1.2 (L) cont'd]

Similarly, the circumscribed hexagon is made up of six

equilateral triangles, each of whose altitudes is 1 unit. Hence

a side, s, of the triangle is given by: cos 30° = é = gﬁ . Thus
2
S = — .
/3
. e _ 1, 2 I -
Therefore, the area of each triangle is Ebh = 5{"_)(1) = =
. /3 /3
=3 and as a result of the area of the circumscribed hexagon is

6 x ﬁg = 2/3 . Conseqguently, since our circle is contained in the

hexagon, we have:

T <2/3 (< 2(1.74) = 3.48)

In summary then:

égz <m < 2/3

or in decimal form:

2.66 < m < 3.48 .

Hopefully, this example illustrates the so-called "method of
exhaustion" employed by the ancient Greeks in which the region un-
der investigation was squeezed between two other regions. Our
choice of a hexagon simplified the computations by yielding equi-
lateral triangles. The technique, however, applies to any regu-
lar inscribed and circumscribed n-sided polygons. While we needn't

prove it, it should seem apparent that as n increases without bound,

IV.l1;3




SOLUTIONS: Calculus of a Single Variable - Block IV: The
Definite Integral - Unit 1l: Area

[4.1.2 (L) cont'd]

the polygons serve as better and better approximations to the
circle. It is for this reason that one sometimes, quite loosely,
refers to a circle as an "infinitely many sided" regular polygon.
In short, the "method of exhaustion" anticipates the limit con-
cept.

If we accept the circumference of a circle as 2mr, etc. we can

compute 7 as follows. If we inscribe a regular n-sided polygon we

may think of the polygon as being the union of n triangles. The

central angle at each triangle measures 2n radians. Thus:
n

g
=g m . m ™
OC = cos — sArea of OAB = sin — cos —

n n n
e : m i ; : ; : m m
BC = sin = ~Area of inscribed n-sided polygon = n sin o €°s 3

It will be helpful if we re-write .
sin —
n sin ¥ cos T~ = g [————E—cos lT-] .
n n T n

n
Assuming that the area of the circle is the limit of this expression

as nve ,

' ™
sin — .
HArea = 7 (lim ) (lim cos %) = 1(lim Eiﬂ—ﬂ)(lim cos 7m)
n—-« =3 n-»® m-+0 m~>0
= m (1) (1)

=7
Iv.l.4
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SOLUTIONS: Calculus of a Single Variable - Block IV: The
Definite Integral - Unit 1l: Area

4.1.3 (L)

The aim of this exercise is to make sure we are familiar wWith

some of the Z—notation.

Il

(a) ZL (a, + Dby)
K=

(al + bl) + ... + (a_ + bn) (by definition)

= (al + ... + an) + (bn + «v. + b))

Il
= ): a, +
k=1

Gog
wb"

k
Note:

while (a) may "look right," it is by no means self-evident. For

example, it might appear that

n n I
ZL ayby = Zl ak)(z1 by)
k= k= k:

but this is not true. What we can write is that

n
z; akbk = albl + es F anbn
k=

whereas

Il n
53 ak)(z:1 b) =@ + ... +a)(by + .. + b))
k=1 p=

- + oee *
albl anbn + many more terms

of the form aibj . i#3

n n
In essence, in the expression(z ak)( Z bk) each term in Zak
k=1 k=1
n

multiplies each term in Zbk' whereas in Z akbk the "kth" a multiplies
K=

only the "kth" b. As a simple example, we may let n = 2,

IV.L.5




SOLUTIONS: Calculus of a Single Variable - Block IV:

pefinite Integral - Unit 1l: Area

[4.1.3. (L) cont'd]

2 2 3
Then 5_‘1 a, b, = a;b; + a,b, while (Z ak)()'_‘1 b) = (a; + a,) (b; + by)
K= K= K=

The

= alb1 + a2b2 + aZbl + albz.
n n
(b) Cc means Z a where a =¢ for each k =1, ..., n
k= k=
n
021C=C+..-+C=D.C
a L __}
k= B o
n times

Note:

It is only necessary that c be constant with respect to k.

Il

Il

For example E;.x means a, = X for each k. Hence E;-x
k= k=

point »f (b) is that if c is any factor inside our summation sign

= nx. The

which does not vary with k, we may take c outside the summation

sign.

n
(c) z; ca, = ca; + ca.. + ca,
k=

c(al + ... + a_)

n
n

=c E: ay
k=1

1

Notice that (c) is the generalization of (b).
with a, = 1 for all k.

Iv.1l.6
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SOLUTIONS: Calculus of a Single Variable - Block IV: The
Definite Integral - Unit 1: Area

4,.1.4
n
(2k - 1) =
K=
n
Zl [2k + (-1)] =
k=
NERD?
2k + (-1) =
n

2;k+n(-l)=
K=

2n(n + 1) _

Notice that this is another proof that the sum of the first n odd

integers is the n'th perfect square. That is

n
Z(2k—l)=l+3+5+...+(2n-—l) .
k=

4.1.5 (L)

(a) This result is known as a telescoping sum since all but
the first and last terms cancel. We may show the result in several
different ways. Perhaps the most straightforward is to apply the
definition directly. Thus,

IN..Lad




SOLUTIONS: Calculus of a Single Variable - Block IV: The
Definite Integral - Unit 1l: Area
[4.1.5 (L) cont'd]
& /’—\
k=
(an - an-l) + (an+1 - an)
"Ry T R
0 |
Another way is to say
n n n
E; (agyy ~ 3) = E;-ak+l - E: ay
k= k= k=1
=a2+a3+...+an+an+l
—(al + a, + aj G T an)
= Ayt Bnel
n
(b) EE; (ak+l ak) = a5, " 3 becomes
K=
a 2 2 2 2 2
z; [(k + 1) - k] = (n + 1)° - 1° when a, =k . (1)
k=
Now (n + 1)2 - 12 = n2 + 2n. While

I
E: [k + 1)2 - k
k=1

n

}E; (2k + 1) .
k=

2] _

IV.L1l.8
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SOLUTIONS: Calculus of a Single Variable - Block IV: The
Definite Integral - Unit 1: Area

[4.1.5 (L) cont'd]

Putting these results into (1), we obtain

I 2
(2k + 1) = n" + 2n . (2)
K=

E;fzk + 1)
K=

But
n

2k + E;-l
k=1 K=

n

=2 E;-k + n
K=

and putting this into (2), we obtain

o]

- 2
2 EE: k + n=n"+ 2n
k=1

, = K = n2 +n _n(n + 1)
IOZ - 2 - 2
k=1

Again, aside from gaining additional experience with the
E}notation, notice that we have also found a rather nice way of

Il
evaluating E k with a minimum of guess work. Moreover, as we

K=

shall see in the next few exercises, this technique generalizes

very nicely.n The key point is that we have found a way to deter-

mine that E: k = Eiﬂii_ll without having to know the answer first
k=1

(as is required in other mathematical induction).




SOLUTIONS: Calculus of a Single Variable - Block IV: The
Definite Integral - Unit 1: Area

(n+1)° -1

w
+
s
W
I
i
‘_.Lu
Il

=nd+ 30% +3n . (1)

Moreover, (k + 1) - k3 = 3k% + 3k + 1
Putting this into (1) we have:

n

(3k2 + 3k + 1) = n> + 30 + 3n (2)
=1
Now:
n 2 n 2 n n
(3k +3k+1)=):3k +Zl3k+ le
Q;; k=1 = 3=

n
=3Zlk2+3n(n2+l)+n .
k=

Putting (3) into (2):

I

k™ + + n=n" + 3n° + 3n

k=1

2 3n(n + 1) 3
e

L98]

Il

n
,‘,62k2+3n(n+1)+2n 2n~ + 6n° + 6n
k=1

IV.1.10




a TS & =S m om M

3

-l &N ea ea

B N fm oa o0 em e

SOLUTIONS: Calculus of a Single Variable - Block IV: The
Definite Integral - Unit 1l: Area

[4.1.6 cont'd]

3 2

2n~ + 3n” + n = n(2n2 + 3n + 1)

:l
o
-

il

Il

nin + 1) (2n + 1)

g arrived at the "recipe"
without having had to
know the answer first.

n
e E; k2 ~nin+1)(@2n + 1) - again notice that we
k=

4.1.7 (L)

In terms of the central theme of this unit, we actually want

to solve (b). What we find is that to evaluate U "conveniently"

I
we are required to come to grips with E: k3. Namely,
k=1
(b)
Y y - %3
T2 =1k I °°
n n n n
w 3 3
A, = (5 % 5 EZ
k n
I
i1 == A =nk3_.l o 3
e B k
i aeL Y
k= k= nk:
= 13 + 23 + 5 aw P n3
4 ' (1)
n
IV.1.21




SOLUTIONS: Calculus of a Single Variable - Block IV: The
Definite Integral - Unit l: Area

[4.1.7 cont'd]

With the aid of modern calculators we could compute (1) for

large values of n, and, in this way, we could approximate lim U,
T+

as closely as we wish. In fact, except in relatively simple cases,
such as is this exercise, we often have to settle for such approxi-

mations.

In any event, the answer to (b) is

n-o© n+«< n
&3
and any further refinement will involve computing"zd , a result
k=1
that we have not yet found in this course.
With this as motivation, we tackle (a). Mimicking the approach

in the previous exercises, we have

n

ZL (e o+ 13 = ¥4
k=

- 3 2
Z [4k> + 6k + 4k + 1] = n” + 4n~ + 6n° + 4n
k=1

4

m+ 1)% -2

n
o 4 Zlk
K=

‘4 ii k3 &+ 6n(n + 1) (2n + 1) . 4n(n + 1) W B n4 4 4r13 & 6n2 % A

iz ] n n
346 Zlk2+4zlk+21=n4+4n3+6n2+4n
= =
3

- 6 2
k=1

3 3 2

k™ + [2n™ + 3n2 + n] + [2n° + 2n] + n =n" + 4n” + 6n2 + 4n

L=
Y

IV.1.12
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SOLUTIONS: Calculus of a Single Variable - Block IV: The
Definite Integral - Unit 1l: Area

B.1.7 cont'd

4 E: k3 = n4 + 2n3 + n2 = nz(n2 + 2n + 1) = nz(n + l)2
k=1
n 2 2
:.EE k3 = B (n4+ 1) answer to (a) * (2)
k=1
2 2 n
(Aside: B (n4+ 1) . [E-g-r-l-ﬁi—}--)-]2 and El&ii_ll = E: k i

Hence we have the interesting number theory result

n n
Z k3=(z k12 that is, IS #5% 4 ..0n dn° = (14 2% i
=% =y

At any rate if we put the result of (2) into (1), we see that:

1 n2(n + l)2

2 1 n
n
= 14 -1 2 _1
HBp = lim U = 4(l + 0)° = 7 . (4)
n—-
n 2 2
*Notice now that we know k3 =1 (n4+ 1) we can assign it as

k=1

an exercise 1in math induction if we so desired, but it is hardly
likely that induction provided the first proof for this result.

Iv.1.13




SOLUTIONS: Calculus of a Single Variable = Block IV: The
Definite Integral - Unit 1l: Area

[4.1.7 cont'd]

(c)

y=x

=1

Area of OABC =1 x 1 =1
AS = % (from the previous exercise)

Area of OABC = AR + AS

Our main aim here is to emphasize the property that the area

of the whole equals the sum of the areas of the parts.

4.1.8 (L) T

Iv.1.14
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SOLUTIONS: Calculus
Definite

4.1.8 (L) cont'd]

of a

Single Variable - Block IV: The

Integral - Unit 1: Area

o il kT
Up= ) Ar " ) Imsin(y
k=1 k=1
) L g km
AR = lim Un = lim n sin (-2-17

]

n
lim g—n Zi sin(k[%ﬁ]) ; (1)
n-+c =

Assuming for the moment (we will have a further note at the

end of this section) that we really did know that

Putting (2) into (1):

cos % - cos EE—%—L 8
ke = -
2 sin L)
2
m 2n + 1, @
cos ZI_I COS[(—T—) E'r_l]
.
2 sin Ty
w i T
cos = cos(i -+ ZH)
. T
2 sin an
™ A
cos m + s1n El-’-l- (2)
. ®
2 sin G
IV.1l.15




SOLUTIONS: Calculus of a Single Variable - Block IV: The
Definite Integral - Unit 1l: Area

[4.1.8 (L) cont'd]

m .
[COS — 4+ S1n

m
; 4n Eﬁ—l
A_ = lim
R 2n .M
n-roe l 2 sin '4—1_-1' _|
B m . T 7
_ llm T cos TI'_I + sin z-ﬁ
an . T
n-+o sin —
- 41’1 -
= Tm . ot
cosS — + sin —
= lip IO 4 4
4 . T
m-0 sin —
- 4 e
cos E— + sin g&
= lim - . (3)
m-+0 sin . o
=
4
Now:
lim cos %ﬂ =cos 0 =1
m-+0
: . Tm s
lim sin = s8in 0 =0
m=+0 T
. sin u _
lim —T— =1 .
u-+0
Hence (3) becomes:
11 + 0f_

For better or worse, the major aim of this exercise is to show

how quickly computations tend to get out of hand even for

Iv 'l .16
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SOLUTIONS: Calculus of a Single Variable - Block IV: The
Definite Integral = Unit 1l: Area

Bg.1.8 (L) cont'd]

rather elementary expression for f(x). This degree of difficulty
is important for us to grasp if we are to truly appreciate the

results of the next unit.

A Note on the identity:

6 _ 2n + 1
n cos 5 cos > _E
E: sinkf = 2 sin %
k=1 .

To derive this result we can put telescoping sums to good use.

n
= - + +
Ej'[cos 255——3£ - cos 20 3 L gl = cos % - cos 223——l 6
k=
B 2k - 1
(ak = COoSs 6) .
Now cos A - cos B = -2 sin & Z B gin & 5 B

3 2k - 1)6 (2k + 1) ; . w
J.cos i"‘??"—" cos —-——3——-& = =2 sin kb8sin (_%)

I

2 sin sin k6

@

0 _ 2n + 1
cos 5 cos (——5———)9

- AR
g
B
wn
H.
)
N
()]
=
o
-~
@
I

n
. .8 . _ o _ 2n + 1
~.2 sin P Z sin k6 = cos > cos ( 5 )6
=1
n cos % - cos (2n2+ 1)9
;5: sin kg = 3
k=1 2 sin 3
INe L Ll7




SOLUTIONS: Calculus of a Single Variable - Block IV: The
Definite Integral - Unit 1: Area

[4.1.8 (L) cont'd]

Again, while this is a tough result to derive (that's why we gave

the result rather than have you derive it), it should help us capture
the flavor of the computational gymnastics involved in evaluating
infinite sums.

Iv.1.18
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SOLUTIONS: Calculus of a Single Variable - Block IV: The
Definite Integral

UNIT 2: Area as a Differential Equation

4.2.1 (L)

1
(a) Geometrically, j-ﬂl - X dx represents the area of tne

0 ——
region R, where R is bounded above by the curve y = V¥1 - x“, below

by the x-axis, on the left by the y-axis, and on the right by the
line x = 1. Observe that y = y1 - xz corresponds to the upper half
of the circle x2 + y2 = 1 (since our convention is that Jl - x2 is
non-negative unless otherwise stated, y is non-negative). Thus,

-
. y =Vl - x° —
¥

R is

-
/’g,ﬂtfx\ x =1-=-x“, y>»0

! (0,0) "(1,0)

(Figure 1)

Then it is easy to see that A_ is exactly the area of the first

R
quadrant of the circle whose radius is 1. That is, A =

R . FPinally,
1
since A, is denoted by.£ V1l - x“ dx, we have:

N

R

1

'f.JI*:H;E dx =

0

W)=

1
(b) We also know that J.Jl - x“ dx = G(1) - G(0) where G'(x)

= ¥l - x° . However, we may not know such a function G. (Beware not

3/2 3/2
£ thifk that GE) = %(1 = %% PR Stx) = %(1 L T
1/2
2@ a-AT ke -3 = V- e o

If we recall our earlier remarks when we discussed the inverse

circular functions, we may notice that vl - x2 suggests the

Iv.2.1




SOLUTIONS: Calculus of a Single Variable - Block IV: The
befinite Integral - Unit 2: Area as a Differential
Equation

[4.2.1 (L) cont'd]

"reference triangle"

Jl - .

(Figure 2)

Hence,
| sinf = x
and cosf = £ = 3¢
Jecosfd6 = dx .

Thus, with 6 as above,

[~

Icosﬁ(cose)de

= fcosze de

=fl+§°528d6

%f{l + cos 26)de

0 y [f—
5 + 7 sin 26 + ¢ . (1)

Since we would like our answer in terms of x, we may use

Figure 2 to "convert" (1) into a suitable expression involving x.

sin 28 =

N @
+
|

[2sinfcosh] =

sin %, Lot - x2)

| @
+
| =

|
=

Iv.2.2
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SOLUTIONS: Calculus of a Single Variable - Block IV: The
Definite Integral - Unit 2: Area as a Differential
Equation

[4.2.1 (L) cont'd]

::[l - X" dx = %[sin_lx + xV¥1 - xij + C

1
-'-d['l—x dx

(%[Sin-lx + le - xz])t (2)

1 1

[%sin- 1+ 0] - [%sin_ 0+ 0]

- % (3)

In this case, we were able to find the required G(x), but it
was not too convenient. In other cases, the desired G(x) may not
exist at all, explicitly. 1In any event, our hope is that (a) and

(b) emphasize the difference between areas and derivatives.

Note:
1
There is an alternative way for determining jPJl = xz dx making
0
use of Figure 2. "Mechanically," the approach is as follows:

We let sinf = x and obtain as before that dx = cos® ds, V1 - x° = cosf,
We also observe (using principle values) that‘ghen x =0, 68 =0 and
when x = 1, 8 = % . Finally observing that-['f(dex really means

x=b a
J’ f(x)dx, we obtain:
x=0
_ _m
f \Jl - x dx = f cosf (cos6 df)
x=0 6=0
IV 243




SOLUTIONS: Calculus of a Single Variable - Block IV: The

Definite Integral - Unit 2: Area as a Differential
Equation

[4.2.1 (L) cont'd]

J c0528 de

%

(ST

(1 + gos 26)de

J
0

f
|
+

Mol =

sin 26]

pO
S

= (z +0) = (0 + 0)

INE

and we arrive at the same result as in (3) but in a somewhat less

cumbersome manner than the result in equation (2) leads to.

The validity of this approach may be generalized as follows:

Suppose we have f(x)dx and we know that x = h(u) where h
is a continuous 1l-1 function (so h_l exists). Then
x-b u=h"1 (b)
f(x)dx = f(h(u))d(h(u). That is, if we consistently
X=a u=h_l(a)

make the substitution x = h(u), we do not change the definite integral.

To demonstrate this result, suppose

fbf(x)dx = G(b) - G(a) where G' = £ . (4)
a

Gl OGS IS S G B s B SE E B e EE e

E3 €23




SOLUTIONS: Calculus of a Single Variable - Block IV: The
Definite Integral - Unit 2: Area as a Differential
Equation

[4.2.1 (L) cont'd]

Notice in (4) that x is a "dummy variable" and that more

generally, (4) can be represented as

[ 1=b b
I £(0 1)Aa(l 1) = G([ 1) = G(b) - G(a) . (5)
[ I=a a
In particular with [ ] = h(u), the left side of (5) becomes
(u)=b
f(h(u)d(h(u), 222 if h is 1-1, h(u) = b ¢&9u = h_l(b), and
h(u)=a
h(u) = a ¢>u = h_l(a). Thus (5) becomes
i Lib) u=h"1(b)
I f(h(u))d(h(u)) = G(h(u))
u=h" +ia) u=h"1(a)

c(h(h™ (b)) - ch(n™t(a)))

= G(b) - G(a)
b
=j’ £ dx
a
which is the desired result.
4.2.2
(a)
. X
6 - x2
IV.2:5
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SOLUTIONS: Calculus of a Single Variable - Block IV: The
Definite Integral - Unit 2: Area as a Differential
Equation

[4.2.2 cont'd]

sing = % or X = 4 sin®
dx = 4 cosf do
J 2
cosf = ~l§—%—§— or 416 - x: = 4 cos6
; 1 i |
X = 2 —) sinb =2-—-)8 =€
X = 4 — sing = 140 = %
x=4 9=%
o f vie - x5 dx = 4 cosfB (4 cosf dB) |
x=2 6=¢
3 l
= 16 cos?e as '
U

m
2
= 8[ (1 + cos 208)dé6
S
9]

Ll
= 8(p + %sin 2e)r
il
6
il kil 1 . m
= 3[(i + 0) - (E + 5 sin 3)]
Iv.2.6
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SOLUTIONS: Calculus of a Single Variable - Block IV: The
Definite Integral - Unit 2: Area as a Differential
Equation

[4.2.2 cont'd]

[
[o.9]

N
!
+

N =

n S

)]

o=

m _ /3, _ 8[4m - 3V/3] _ 81 _
By =~ =3l = 12 =3-273 .

(b) vy = afle - x> =32 92 =16 , § 50

Hence, R is given by

x2 # y2 = 16 ' y >0
/'””—\A
o
B
° 2,0 4,0
That is,
4
AR =-[ 6 - x dx .
2
The key, geometrically, is to draw OA and observe 4m AOC = 60°
(% radians) .
sin ¢ OAB = % = %
Oo
4 =~ v ¢ OAB = 30°
2/3
\ EBS = 16 = § = 12
gQ® 2 | .
0 B C AB = 2/3
IV.2.7




SOLUTIONS: Calculus of a Single Variable - Block IV: The
Definite Integral - Unit 2: Area as a Differential
Equation

[4.2.2 cont'd]

Sector AOC(=S) is % of the circle, hence its area is % that

of the circle. The area of the circle is l1l6m. Hence, the area

of the sector OAC = %(lﬁﬂ) = E% . The area of AOBA = Ei%le = 2v3 .
AR = As - AT where T is AOBA
= B
%~ 2V3
4.2.3 ,
N m
Y (3+1)
Y=8
R
7 X
-
‘2- m™
AR =-[ sin x dx = G(f) - G(0) where G'(x) = sin x
0
s« We may let G(x) = -cos x
= f= By o e
:.AR = ( cosz) (=cos 0)
= = = (=1)
=1

We get the same answer as we did in Exercise 4.1.8 (L) but
the ease of the anti-derivative technique obviously speaks for

itself.

V.2 .8




Il IS B N Bl PE BE Pm PEm Pm .

/N N PE Bm P P ew

SOLUTIONS:

b 4

Calculus of a Single Variable - Block IV: The
Definite Integral - Unit 2: Area as a Differential
Equation
3
= COS X ¢
o = sin x
’5//:
S |
1 2
3 7 X
J
4
L)
-
ARUS=I cos x dx
0
i
4
AS=151nxdx
0
.8 g
4 @
"‘AR=ARUS As=d[cosxdx -Jsinxdx

Il

L

4
f (cos x - sin x)dx
0

(sin x

(sin

e

2 = 1

Iv.2.9

m
4
+ cos Xx)
0
+ cos %) - (sin Q0 + cos 0)
13) - (0 + 1)
2




SOLUTIONS: Calculus of a Single Variable - Block IV: The l
Definite Integral - Unit 2: Area as a Differential
Equation I
4.2.5 (L) I
a
(a) s
f(a) i l
-f(b) I
sl 1
a=x b X
Since the highest point now occurs at the left end point we l
have: I
b, = f(xo)ﬂx + saa ¥ f(xn_l)ﬂx
while I
L, = f(xl)Ax * gww F f(xn)Ax . I
Hence U - Ln = f(xg)ﬂx - f(xn)&x,since all other terms cancel I
= [f(a) - f£(b)]Ax
= [£(a) - £(0)] (D)
(b) I
-1
y = ——-]—'—-2— = (1 + x2) I
1 ==
Hence: I
y' = =(1 + x2) "%2x = - >
(1 + xz) l
3. 2 2
pro= L1 x8) (02) - C2m) (20 + x%)2x) "
> 1
(1L + x2)
IV.2.10 I
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SOLUTIONS: Calculus of a Single Variable - Block IV: The
Definite Integral - Unit 2: Area as a Differential

Equation

[4.2.5 (L) cont'd]

_ 20+ A -+ %)+ ax”)
(1 + x2)4
_ 2(3x2 - 1)
TEY o

Since 1 + x2 > 1 for all x, the denominators in y, y', and y"
are all positive; hence, the signs are determined by the numerators.
We then see that the curve is always above the x-axis. It rises
for negative values of x, falls for positive values of x and attains
a maximum when x = 0, or at the point (0,1). Moreover the curve
holds water for 3x2 - 1 > 0 (or when |x| > J§-= %/3), spills

water when [|x| < j%, and changes concavity when x = % & Db

Hence, the required graph is

g 3, 1
Since 5

1 + x 1+ (—x)2

the curve is symmetric
with respect to the y-axis.

Iv.2.11




SOLUTIONS: Calculus of a Single Variable - Block IV: The

Definite Integral - Unit 2: Area as a Differential

Equation

[4.2.5 (L) cont'd]

(c) (0,1) 1 16
i 77
1 4
"'rg)
3 16,
25
(1 L)
\ )
i 1 1 1
4 4 4 4

Since the curve is always falling in the given interval

the

mimimum height of each inscribed rectangle occurs at the right point

of each interval.

Hence:
T R C RS CURET
“hedetsod
- 2489 (1n decimal form 0.71 < L, < 0.72  .)
(d) Our curve obeys the conditions of part (a); hence,

U, - L, = 22-2[f(a) - £()] = F[£(0) - £(M)] =31 -3 =3

28]

2

449 1 8
+ —
8 4

3400

33 (Again in decimal form:

e
.
G
=N
Il
o)
+
|~

< 0.85 ‘)

Since L4 < AR < U4, parts (b) and (c) tell us that

0471 % AR < 0.85 .

IV.2.12
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SOLUTIONS: Calculus of a Single Variable - Block IV: The
Definite Integral - Unit 2: Area as a Differential

Equation

[4.2.5(L) cont'd]

(e) Now 3.14 € 3 € .15 —
0.78 < 1;- < 0.79 .

: i ] i =T
Since 0.72 < AR < 0.85 it is 20551b1e that AR =7

(f) Wwhile it is possible that Ap = %, such a result is not

at all obvious (or even plausible) from our previous considerations.

Now, we do know that

1
dx
A=j
and this means:
A_ = G(1l) - G(0) where G'(x) = ———i—?
R "
1 + x
'_ l
But [arctan x]' = =r—vrirroy -
l + x
=1
Hence AR = arctan x = arctan 1 - arctan 0
x=0
=T .
_4 0

= exact value of AR :

N

As a final remark, we are not so much interested in how one

"recalls" that (arctanx)' = «——5—7, for example, we may have memor-
1l + x

ized this result or we may have derived it by use of differential

IV.2.13




SOLUTIONS: Calculus of a Single Variable - Block IV: The
Definite Integral - Unit 2: Area as a Differential
Equation

[4.2.5 (L) cont'd]

calculus, as how inverse trig functions can supply an
answer to a problem which seems to require no knowledge of trigo-

nometry.

4.2.6 (L)

The main aim of this problem is to show how we may evaluate
certain infinite sums by expressing them as definite integrals and

then evaluating the definite integral by differential calculus.

(a) 1lim %[f(%) + ... + f(%)] is just another way (although
n+e
it may take a while to get used to it) of writing J; f(x) dx.
0
Namely, recall, in general, that if f is continuous on [a,b] and

a <Xp <... <X 0= b then, among other things,

b
n

1im 21 £ (x, ) A% ff(x) ax . (1)

Il->w k= a

Using this notation, if we let a = 0, b = 1 then Ax= | - %
while X = % . Thus (1) becomes
" 1
. kol
152 Z £(2)% _f f(x) dx
e k=1 0
or:
n
1 - k ; 1 1 n
lim [H f(H)] = lim [H{f(ﬁ) + ... + f(ﬁ)}] = f(x) dx .
V214
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SOLUTIONS:

Equation

[4.2.6 (L) cont'd]

(b)

BN N a ma

=

.1k
sin —
n

lim
n-+g,

o]

S BN

k=1

4.2.7

In the previous exercise,

n*o

Calculus of a Single Variable - Block IV:
Definite Integral - Unit 2:

This is an application of (a).

. 1 1 2
lim H[f(ﬁ) + f(ﬁ) +

The
Area as a Differential

Namely, if we let f(x)

sinmx, the result of (a) says

sinmx dx

{l

1
-5 cosmx

i 1
( = cosm) - (_F cos 0)

Sy
Sy

SIS

we saw that

1

sg b f(%)] =f f(x) dx . (1)
0

Il O MM Bm B B PE P BPA P B R el

Let us take f(x) = xG. Then (1) becomes:
1
6 6 6
lim %[ig -+ gg + ... + EE] = x6 dx
n-+co n n n
or: 1
l6 + 26 - - n6 i 1
lim [ . ] = x/ = =
& 7 bt 7
=+ 00 n
0
IV.2.:15
e e ——— P — e —— e



SOLUTIONS: Calculus of a Single Variable - Block IV: The
Definite Integral - Unit 2: Area as a Differential
Equation

[4.2.7 cont'd]

Notice that while the notation is new to us (relatively speaking)
the concept is precisely as it was before. For example, had we been
asked to find the area of the region R where R is bounded above by
y = x6, below by the x-axis, on the left by x = 0, and on the right
by x = 1, then on the one hand this area is given by

%
»
(=]
o
»
I
o I
v b
g8 3
Y
g
s
Sl

and this is precisely the same expression that we are dealing with

in this exercise.

IV.2.16
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation

UNIT 3: The Second Fundamental Theorem of Integral Calculus

4.3.1(L)

a. The key point here is that G(x) is precisely the

area of the region R where

%%

T

P

That is G(x) = AR(x) and, hence, G'(x) =

What is really important is that our procedure in (a)
gives us G(x) rather explicitly (as opposed to the implicit
idea that G(x) is a function such that G'(x) = &) in the
sense that we can compute G(x) for each x > 1.

Y Lkel SR

To be sure, we might have difficulty evaluating the limit,

. n
For example, G(2) = AR(Z) = LB [Z (L )ﬂ.x] etc.

but the point is that either we can or else we can approxi-

mate it to as great a degree of accuracy as we desire.
Specifically, in this exercise we are going to illustrate

this idea by "locating" G(2) between 0.6 and 0.8, the idea

being that the technique is easily generalized and/or refined.

IV.3.1
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 3 - Second Theorem

[4.3.1 (L) cont'd]

ot |
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 3 - Second Theorem

[4.3.1(L) cont'd]

. . - 533 319
.'s Since AR = G(2), 340 < G(2) < 120
319 . 533 r .
m < 0:.76 ; _840 > 0.63 =+ L0.63 < G(2) < 0.76

50.6 < G(2) < 0.8

4.3.2(L)
4 du
JVl - u

is known as an integral equation. An integral equation

is one in which our "unknown" appears as one of the
limits of a definite integral. The computational key

lies in the second fundamental theorem. Namely,

a [¥ _
dy./Z f(u)du = £(y)

(In terms of a quick recipe, we replace u by y in the

integral to obtain the derivative.)

Yy
In any event, from x = ‘——dui',we obtain
0V 1-u

ax _ 4d Y_gu
dy dy 01’l—u2
s (1)
1=y

From (1) we now proceed as usual (the main idea was
that we used the fundamental theorem to obtain (1)).
Namely,

IV.3.3




SOLUTIONS: Calculus of a Single Variable - Block IV:

Differentiation - Unit 3 - Second Theorem

[4.3.2(L) cont'd] dy fax\"1 JiZ
a% =(—§) =V1l-y (2)

I
ﬁ
(¥
=
1|~
<O
(&
—_
o fol
Eell

- Y 4y
e (3)

Putting the value of %% from (2) into (3), we obtain

2
dy . Vl-yz) (|v] < 1)

= ¥
dx2 Vl-y2

= =N
which is the desired result.

[Note: 1In order to exhibit an integral equation that
could be solved without too much difficulty we "cheated"
just a little. Namely, recall that

du — Y du -
5 = sin lu . 5 = sin ly
1-u 0 Vi-u

Y s
Thus x = -/. “Jduz' was a "fancy way" of saying x = sin ly
0 V1-u
or y = sin x. Now it should be clear that if y = sin x,
2 ¥
9—% = -y. In all fairness, however, ——dua‘ is more
dx 0 V1-u
profound than it may seem to be at first glance. In
Yy
particular, ——guz'is an analytic representation which
0 Vl—u

does not depend on geometry. In other words,

IV.3.4

l U =S U B IS G S OGS s S S TN S e e

.l N S




) &S By o m ea bl

rs 3

il R em n G M M s m e

SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 3 - Second Theoremn

[4.3.2(L) cont'd]
. _l _— y du . .
sS1n ¥ = 2 gives us a non—geometrlc way for
0 VI-u

defining the (inverse) circular functions.]

4:3.3 Again, all we are doing here is emphasizing that

if f is continuous

d %
= ./' fle)adt = E(%)
dx 0
In this example f(t) = ELE—%E
I+t
Thus:
X . .
G'(x) = a% J sin w; at = Sin n;
3 il 1 1
ooy o _EiE_E;__ = 2 _ 7 1 36
R (=) = = = x
6 1 + (l 2 1 + & 36 + 1 2 36 + 1
6 36 36
- 18 _ 18
1 + 36 37

4.3.4(L) Stripped of embellishment, this exercise is
another example of an integral equation. Namely,
if we let A(t) denote the area under the graph of

y = f(x) between x = 0 and x = t, we have

A(t) = [F(8)1° (1)
£
Since A(t) = f(x)dx, we have that
0
A'(t) = f£(t) (2)

Putting this into (1), we obtain

[£(t)3] (3)

Il

A'(t)

£(t) = [£(t)°]

I

IVied.5




SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 3 - Second Theorem

[4.3.4(L) cont'd]

! *

Now [£3(£)] = 3£2(t) ' (t) (4)

Coupling (3) and (4), we have

£(t) = 3£2(t)£' () (5)
* %
Sl o= 3E(8) ' () (51)
_ 3 ;
1= 22£(0£0 (1))

_ Bl P
= j[f (t)] : (6)

And, "integrating" (6), we obtain

t +c= %fz(t)

£(t) = %t + (7)

Putting £(0) = 0 into (7) we have c = 0

i e _ I2x
S f(E) = 3t or f(x) ~'/—3 (8)
*This is just the chain rule. Let u = f(t) then u3 = [f(t)]3.
' 3
- 3 _d(u’) _ 2 du _ 2y
Thus [£7(t)] Beme " F 3u e BLE(E))ITE(8)

*

*We cancelled f(t) from both sides of (5) which is okay provided
f(t) = 0. If f(t) = 0, we have a "trivial" solution to the exer-
cise. Thus to insure an "interesting" problem, we assume f(t) is
not indentically zero.

IV.3.6
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 3 - Second Theorem

3 M

[4.3.4(L) cont'd]

(An alternative way of obtaining (8) is to let
u = f(t) in (5'). We then obtain

P <
1l = 3udt

or = udu

1
+
(@)

1l
l\-‘lél—‘

As a check:

3 " 1
fd%x dx = f @xz dx
0 0

|l e om B M e eE e
c
1
W
‘+
+
o)

W
MIN)
»

Il
WIN
w|N

o+

I
e
wuﬂ

t+
~—

w

£3(¢)

Bl FN em n A e e
I
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SOLUTIONS:

Calculus of a Single Variable - Block IV:
Differentiation - Unit 3 - Second Theorem
Here we only want to stress the chain rule again.
X
Namely-%§ /. f(t)dt = f(x) requires that our upper
a

limit and the variable of differentiation be the

same. In this sense

x2 2 2
d sin Tt At = sin m(x”) _ sin (mx")
2 gret = 2" 4 (1)
d(x“)/0 1 + t 1 + (x%) 1 + x
However, we want
2
¥ sin 7t
da ——————f-dt which is equal to
dx J0 1l + t
2
d ¥ sin 7t dx2
3 274t | §x
da(x”) Jo 1+t
dx2
Using (1) and the fact that i = 2x, we obtain
x2 2
a sin 7t dt _ sin(mx”)
ax 3 - W | =5
0 1+ t 1 + x
i.e., 5
H' (x) = 2x51n(w§ )
L B %
4 4
G(t) = t sin x dx _ t sin x dx
- 4 4
2 1l + x 0 1.4 %
t
2
_‘Lt sin x dx
1 + x4
IvV.3.8
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 3 - Second Theorem

[4.3.6 cont'd]

¢ ¢
© G (L) = @a sin x dx d sin x dx
" dt 4 - dt B
0 1l +x 1 + x
4 2
_ 4 ]tsinxdx dt4_d I-tsinxdx at?
at | Jo 1+x* |9 ad?|Jo 14kt O
: 4 . 2
_ sin (t )4 a3 - sin (t L 2t
1+ (e 1+ (t?)
_4t3 sin (Y _ 2t sin (£?)
1+ ¢1® 1+ £8
4.3.7(L)

b
a. Consider [ f(x)dx
a
By the first Fundamental Theorem, we have:

[b f(x)dx = G(b) - G(a) (1)
a

But, G(b) - G(a) = (b-a) G'(c) (2)
some ¢ € (a,b) by mean value theorem.
Combining (1) and (2) we obtain

b
j f(x)dx = (b-a) G'(c) (3)
a

some c e (a,b)

Iv.3.9




SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 3 - Second Theorem

[4.3.7 (L) cont'd]

Finally, since G'

I

£, we have
G'(c) = f(c) (4)

Putting (4) into (3):

b
f f(x)dx = (b-a) f(c) (5)
a

some ¢ £ (a,b)

Because of this rather strong connection with
the mean value theorem of differential calculus, (5)

is usually called the mean value theorem of integral
calculus.

For a given c¢ e[a,b], (b-a) f(c) denotes the
area of the rectangle whose height is f(c) and whose
base is (b-a)

*y

__——*”’*#”#”- ‘\\\\
y

f(c)

(Figure 1)

As drawn is Figure 1, (b-a) f(c) is apparently
greater than the area under the graph of y = f(x)
from a to b (AR).

On the other hand, as drawn in Figure 2, (b-a)f(c)

is less than AR.

Iv.3.10
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SOLUTIONS:

Calculus of a Single Variable - Block IV:
Differentiation - Unit 3 = Second Theorem

[4.3.7(L) cont'd]

I y = f(x)

£ (c)

(Figure 2)

The mean value theorem [part (a)] says that
c may be chosen such that (b-a) f(c) is exactly

equal to A Intuitively, the result may be

R*
arrived at by successive approximations. For
example, if we combine our results of Figures 1

and 2, we see that

f(cl)(b-a) < A_ < f(cz)(b—a) (see Figure 3)

R
Since f(x) (b-a) is continuous, (6) tells us
that the desired c lies between c1 and Cye We then
pick C€ (cl,cz) and look at f(c3)(b—a).
If f(c3)(b—a) > AR then ¢ lies between cy and
while if f(c3)(b-a) < AR' ¢ lies between c2 and
We may continue in this way, each time getting

e
3
Ei &
3
better approximations. In this sense, we arrive

at ¢ by a version of the limit process.

AY
y = f(x)
TN
[N
£(c,)
£(c)) | 2
—
a cq C, b
(Figure 3)
V3311

(6)




SOLUTIONS: Calculus of a Single Variable - Block IV:

Differentiation - Unit 3 - Second Theorem

[4.3.7(L) cont'd]

Note: The restriction that f is non-negative is

not crucial if we consider net area rather than

total area. For example, if f(x) = sin x
2T
0 € x € 2m we find that sin x dx =
3]
- cos 21 - (-cos 0) = 0. Namely,

Ay

y = sin x

— W
0
eaual
areas, opposite
signs
In this case ¢ = m, f(c) = 0

It is also interesting to notice that there
is good reason, at least in terms of our geometric
interpretation, to define f(c) [where c is as in

(5)]1 to be the average value of f(x) on [a,b].

A rather nice interpretation of this idea is in
terms of velocity-time graphs. Namely,

Av

These two areas

are eQU
v = E(E)

i
= R
" .
a (o b
AR = f(c) (b-a)
V312

€ a

N Tl e

E3 £33 €3 ©13

- = o=
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SOLUTIONS:

Calculus of a Single Variable - Block IV:
Differentiation - Unit 3 - Second Theorenm

{4.3.7(L) cont'd]

Now, AR denotes the distance travelled by the
particle if it moves according to v = f(t)

a< t €« b. On the other hand, f(c) (b-a) is

the distance travelled by a particle moving at
the constant speed of f(c) between t = a and

t = b. This 1is clearly the meaning of average

distance travelled ,etc.

Il

speed since f(c) (b-a)

b b
We have L xzdx = AR = % X 3 = %‘— (b3-a3)

Now ¢ must satisfy

(b-a) £(c) = T (b7-a°) (1)
Since b3-a3 = (b-a)(b2+ab+a2}, (1) becomes:
(b-a) £(c) = % (b-a) (b2+ab+a?)
and since b # a,
£(c) = 92—*;"“—*;“2 (2)
Since f(c) = c? , (2) becomes:

This is part (b) with a = 1 and b = 7

2 2
Then b™ + ;b + a” _ 49 + ; 4 _ 19

IV.3.13




SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 3 - Second Theorem

[4.3.7(L) cont'd]

o'+ Height of rectangle = 19 and it meets
vy = x° at (/19, 19)

A

49 v = x2
(V19,19)
19
1
Jem—-
1 c 7

4.3.8(L) At first glance, this problem may seem superfluous.
Don't we already know that G' = £f? The point is that
this exercise is concerned with actually differentiating
the "concrete" G(x) which can be constructed (as in
Exercise 4.3.1) from the given f(x).

In any event, we have

Xx+AxX
G(x + Ax) = f(t)dt
a
X
G(x) = f(t)dt
a
X+Ax X
S Gix + Ax) - G(x) = f(t)dt - f(t)dt
a a
x+Ax
= f(t)dt
X
= (x + Ax - x) f(c),
some c between x and
X + Ax
IvVv.3.14
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 3 - Second Theorem

4.3.8(L)
= Ax f(c)
. G(x + Ax) - G(x) _
o o = f(c)
. lim G(x + AX) - G(x) _ 1lim _
iy Kt e = Ax=0 f(C) = f(x) ’

since f is continuous and c+x as Ax-0.

4.3.9 a. By mean value theorem of integral calculus

%
/ f(t)dt = f(c) [x - xl] where ¢ is between x and Xy (1)
X

1
2 X 2
s X _ X
R / f(t)dat = . f(c) (x - Xl) (2)
1 xl 1

X
and since we may assume x ¥ Xq (otherwise f f(t)at=0),
¥

(2) becomes: 1

2 X
o / £(t)dat = x°£(c)
X - X
1 X

1
. 2 X 2
. lim X lim 2
.. o - o f(t) dt = X f(C)
XXX Xq /; XXy
1
_ lim Zyv.g ddm
= X%, (x7) X% f(c) (3)
lim 2 _ 2 ; ;
Clearly xox. X = X7 and since c¢ is between x and Xy
IV.3+15




SOLUTIONS:

Calculus of a Single Variable - Block IV:
Differentiation - Unit 3 - Second Theorem

[4.3.9 cont'd]

lim _ 1im -
e f(c) = - f(c) = f(xl),

since f is continuous.
1 1

Putting these results into (3) yields:

2
Xq f(xl)

lim [ x2 /x ]
—_— f(t)dt
x+xl X xl ”

1 b4
f(t)dt

(The key here is that Lim { %1
x+x1

X—Xl

X

since j flt)dt = £(&) (x—xl) and ¢ is between
X
1

X and xl).

5 K )
lim [ 42 / cos" 't dt] i Hhie: mpeekal. sawss
2

RKF2 X=- 1 + t
coszt
of part (a) with X, = 2 and f(t) = 1+ &
Hence:
lim 4 x coszt 3k = (2)2c0522 o 4 COS22
X2 x-2 5 1 + t 1 + 2 3

(By the way in coszz, 2 is either a pure number or

else it is an angle measured in radians not degrees.)

IV.3.16
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SOLUTIONS: Calculus of a Single Variable - Block IV:

Differentiation

UNIT 4: Some Simple Applications of the Definite Integral
4.4.1 (L)
a. Given y = 12x (x—l)2 , we see at once that the

curve meets the x-axis at (0,0) and (1,0).
3 2

Moreover, y = 12x (x—l)2 = 12x 24x" + 12x
Hence, y' = 36x2 - 48x + 12
= 12 (3x° - 4x + 1)
= 12 (3x - 1)(x - 1)
and y" = 72x - 48
= 24 (3x - 2)
From (2) we see that y' = 0 +» x =1 or x = % 3
and from (3) we see that y" > 0 while y" 1
x: l — —
3

< 0. Thus (1,0)is a low point of the curve while

24

16.% ; : ;
(5 » §_) is a high point.

3
Moreover, (3) also tells us that the curve changes
concavfty when x = % , or at the point (% " g).

Thus, our curve has the form:

‘Y 116 y = le(x—l)2
3"°9
2 8
3'9
R
|
I 2 1 & —
3 3 3

*
Recall, for a given x, y is determined by y = 12x(x - 1)2_

IV.4.1
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 4 - Definite Integral

[4.4.1(L) cont'd]

1 2
B AR 12x (x-1)“ dx
0

Il

1
j (12x° - 24x% + 12x) dx
0

x=1
= 3x4 - Bx3 + 6x2

x=0
=3 -8+ 6
= 1

c. We first find where the two curves intersect. Solving

y = 12x (x-1)° 5% =132 = g-x

4 we have: or:
y=3* 36x (x-1)2 = 4x
o X (x-1)° = x (4)

If x # 0 in (4) we have 9(x-l)2 =1

or 3(x-1) = *1 (5)
o.-X“.‘L:i%

. - L_2 4

S x =1 3 = 3 or 3 (6)
Since these points must belong to y = % X we
see that if x = % r Yy = g while if X = % ‘
y = %E (We could have used y = 12x (x—l}z, but
y=%x is easier to handle. As a check against errors,
we can see if our answers satisfy y = 12x (x-1)2.)
Thus, from (6), we see that the curves intersect
at (%,g) and (%,%g}. Moreover since the validity

of (5) required that x # 0, we see that x = 0 is
another candidate for a solution to (4). Since
X = 0 satisfies (4), we have that (0,0) is also a

point of intersection.

Iv.4.2
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 4 - Definite Integral

[4.4.1(L) cont'd]

Pictorially,
| 4 y=12x(x—1)2 4
N = § X
7 o
(gr_'g")
——
Now, for Rl’ we have
2
3 2 4
A = [le (x-1)“ - —x] dx (7)
R 3
1 0
while for R2
!
§ *
4 2
A, = [ x - 12x (x-1)°] dx (8)
2 2 3

W]

*
Notice that while we did not need a graph as accurate as that

obtained in part (a), we do need enough accuracy to determine
which curve is "on top". That is, if f(x)>g(x) on [a,b],

j;b[f(x)—g(x)]dx>0 while if f(x)<g(x) on [a,b] then ng[f(x)—g(x)]

<0. Unless we keep track of how the curves"crisscross", we will
find the net area rather than the total area.

Iv.4.3




S

SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 4 - Definite Integral

[4.4.1(L) cont'd]

12x3 - 24x% + 12% - % %

Now 12x (x—l)2 - % X

= 12x3 - 24x2 + %zx i
Hence %x - l2x(x—l)2 = —12x3 - 24x2 - %gx

Putting these results into (7) and (8), we obtain

2
3 3 2 32%
AR = (12x~ - 24x° + -§—J dx
1 0
2
2 3
= 3x% = g 4 16X
x:
4 3 2
2 2 16,2
3('3—) 8(§) S 3—-('3-)
16 _ 64 , 64 _ 16
- 27 27 27 27
4
3 3 2 32x
AR = [-12x~ + 24x —5—] d
2 J2
3
: |*3
_ 4 3 _ 1éx
= -3x" + 8% 3 xzz
3
Iv.4.4
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 4 - Definite Integral

[4.4.1(L) cont'd]

4 3 2
-39 + 83 - 32D ]

I

4 3 2
-1-3d +8dh -2

-256 , 512 _ 256
L 37 * 37 57 1

: [3(%)4 - 8(%)3 + ;-—6(%)2]
= 0+ 30
= .21% (10)
Combining (9) and (10) we obtain
A = ARl + ARZ = %% + %% = %% (11)

4

3
(Notice that / [12x (x—l)2 - %x] dx = 0 and
0

this means our net area is zero. This is confirmed
by the fact that |Ap |=[|a; |
1 2

Iv.4.5




SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 4 - Definite Integral

4.4.2(L) This exercise gives us additional practice with

the idea of inverse functions. We begin by

observing that the curve x = 12y (y—l)2 is the

reflection of the curve y = 12x (x—l)2 with

respect to the line y = x.

We have, quite conveniently, in the previous

exercise, sketched the curve y = 12x (x-l)z. We

*
have, therefore:

|

I

/ \ [
|

(0,1) € \ '

Ay y=12x(xl-1)2

y=x

S x=12y(y—l)2
(18 4,
9’3

A

(Figure 1)

*

we can, of course, obtain the graph directly by computing

dx

— etc., but since we are used to working with y = f(x) it

dy

2
might be easier, conceptually, to graph y = 12x(x-1)
first, rotate this through ninety degrees and the "flip it
over", which is what we have done to arrive at Figure 1.

IV.4.6
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 4 - Definite Integral

[4.4.2(L) cont'd]

Since y = le(x-—l)2 was not one-to-one, x = 12y(y—l}2
is not single valued.
We thus arrive at one awkward stage since there are
now three possible tops for our region. That is,

let's view x = 12y(y-1)2 as C; U Cy U C3 where:

(Figure 2)

Notice, then, that either C, or C. or C. could be

1 2 3
the upper boundary of our region. That is, R could
look 1like
N % ‘
16 4
(0,1)C2 _ /"”T
s |
c 9’3 iﬁ,l) R
j{l"'/T s o ‘
R—-"-x = :}.6-—
(a) - (b) or @ 5
(Figure 3)
Iv.4.7




SOLUTIONS: Calculus of a Single Variable - Block IV:

Differentiation - Unit 4 - Definite Integral

[4.4.2(L) cont'd]

. n
. : lim
In evaluating Ap in the form = e p f(ck) i\xk:l

16
9
we would have the definite integral ~/- f(x)dx
0

where now f(x) can be related to either C1 or C2

or C3. More explicitly, with enough "know how" we

could take x = l2y(y—1)2 and solve for y in terms
of x. We could get three different solutions to

correspond to the three single-valued branches.

It is not the aim of this course to teach one how

to solve cubic equations. Of even more importance,
this exercise could be generalized into one for which
it was impossible to solve for y explicitly in terms

of x.

The procedure for solving this problem hinges on

thinking of the area in the form j;Z:b xdy, for in
this example x is given explicitly as a function of
y. Say x = gl(y), then j;bxdy = fabg(y)dy and our

integrand is in "good shape",

For example, if we pick C

by

1 to be our top, we have

Wl

Iv.4.8
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SOLUTIONS:

Calculus of a Single Variable - Block IV:

Differentiation - Unit 4 - Definite Integral

[4.4.2(L) cont'd]

= (X6 (& -

But

0
L
f3
= 3y4 = 8y3 # 6y2
A = iﬁ i ll — .i_
Z R 27 27 27
If we choose 02 then
_ (6 1
AR—(9)3+/;xdy
3
_ 16 _u
=327 % [1-353]
: _ 32
'AR_Z'?
Iv.4.9
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 4 - Definite Integral

[4.4.2(L) cont'd]

Pictorially;

%

- 2
(0,1) R 2y AR

b=
Il
o)

_161

—
(0,1)

w
W]

Iv.4.10
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 4 - Definite Integral

[4.4.2(L) cont'd]

4

3
« 04 _1y 2
= 27 f 12Y(Y l) dy

1
4
64 4 3 2 |3
=357 - 3y® - 8y~ + 6y
1
4 3 2
_64 _[f5.4% 58 471
= 27 85(3) 8(3) +6(3) l]
_ 64 _[f256_ 512 9_6.}_
= 27 [{27 27 79 1]
8 [2.1) -5-5,
= 27 27 =T
. = 39
<o Bp = 37

Notice how the correct answer requires that we be
able to isolate, or identify, the various single-

valued branches of our curve.

IV.4.11




SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 4 - Second Theorem

4.4.3 We first solve the pair of simultaneous equations

3
y ==X

v =7x - 6 ‘ to find where the curves intersect

We obtain

X" =7x - 6
or:
3 -

X" - 7x + 6 =0 (1)
Letting P(x) = x> - 7x + 6 , we see that P(1) = 0.
Hence (x - 1) is a factor of x3 - 7x + 6.

In fact:
3
X - 7x + 6 x -1
% w x2 x? + X = 6
x2 - 7% + 6
x° - x
- 6xXx + 6
- 6xX + 6
0
o x3 -7x + 6 = (x - 1 )(x2 + X - 6)
= (x = 1)(x - 2)(x + 3) (2)
Putting (2) into (1), we see
(x - 1)(x-2)(x+3) =0
s X=1l,0rx=2, or x = -3

Iv.4.12
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 4 - Second Theorem

[4.4.3 cont'd]

Substituting these values of x into y = x3, we see

that the two curves intersect at (1,1),(2,8), and

(‘3;"27)
Pictorially,
Ay y=x
(2,8)
R
(1,1)
= X

x3 -(7x - 6) dx and

[{7% = §) — %7 %

L
A =
Ry A
f2
A =
R, 1

IV.4.13




SOLUTIONS:

Calculus of a Single Variable - Block IV:

Differentiation - Unit 4 - Second Theorem

[4.4.3 cont'd]

L 3
(x™ - 7x + 6) dx
-3

1 7 1 4 7 2 _
(3-%2+6) -[2en? - 02 + 6 3]
11 _ [81 _ 63 _
4T T2 T 2 18]

11 _ [81 - 126 - 72] 11
4

L 4 4
32
2 3
(7x - 6 - x7) dx
I
2 4 2
% X - 6x - = x
1

2
1) _ ., 1
3 = [ =z g
3
4
3 131
A + A = 32 + = or ==
Rl R2 4 4
IV.4.14

117 _ 128
4 4

1

-6 - 2:]
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 4 - Second Theorem

[4.4.3 cont'd]

2
(As a check observe that f [x3 - (7x - 6)] dx =
-3

4 2 2
lx - Zx + 6X
4 2 -3
= 5 - (-117
- & (4)
o125 _ 41
‘4"314

which is the correct net area, since:

% (and the negative sign since

- x3*(7x-6) is negative here.)

32 .". Total Area 32

=l w
Il

32 +

W

q - - 1
Net Area = 32 7 31 7

V.4.15




SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 4 - Second Theorem

v=2td -7 +6

<
1l

(E+3)(t - 1)(t - 2) (from previous exercise)

Sketching v versus t we find

2

*v v'=3t"=7; v'=0ﬂt=igﬁil.5

v'=6t

e

2 4 2 2
.ﬂ.x=[(t3—7t+6)dt= t--—’%+6t
0

=4 - 14 + 12 = 2(ft) displacement

1
Distance travelled = / (t3 - 7t + 6)dt
0

2 3
+ (-t7 + 7t - 6)dt
%

IV.4.16
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SOLUTIONS:

Calculus of a Single Variable - Block IV:

Differentiation - Unit 4 - Seccnd Theorem

[4.4.4 cont'd]

ik 2
- ltq = ltz + 6t + —it4 + th 6t
4 2 4 2
0 1
= |L_ 1 -9y - (=1 4+ 71 _
=[-Z+6]+ [ - 3+ L]
_ 1 1.
Sl [’2 4]
5 S R ¥ (. |
= 72 + 7" 32 ft
Pictorially,
Travels 2% ft
x0+2 xl during lst second
: ! i .- 3
; : and returns = ft
x =2 L1 2
t_g 0 4 during next second.
=1
R
) v
R
i
y=X
= X
Iv.4.17




SOLUTIONS: Calculus of a Single Variable - Block 1IV:
Differentiation - Unit 4 - Second Theorem

[4.4.5 cont'd]

AR=/:§(4—X2)dx=4x—%x3 _z
=l g =imee p=sy
Now
N
(-(E',CJY=C
RC

AR = (c = x7) dx = 2 (c - x7) dx
c VQ; 0

; 2 .
(since ¢ - x” is an even function)

F 1 .3 VE‘
= 2|cx - 3 X
0
3 3
= 2_92 - % c2
3
_ 4 2
_gc
Iv.4.18
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 4 - Second Theorem

(4.4.5 cont'd]

Now, by hypothesis,

_ X
Ap = 38y
e
3 3
. 4 c2 _ 1le . cz _ 4
. = 3 3 LI
2
c=43= vie = 22
# Notice that y=2v2 is above
. | y=4 the midpoint of the inter-
\\ val [0,4]. This seems

_ plausible since the area
y=2v2 of R seems to be concen-
trated near the "top".

Iv.4.19
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 4 - Second Theorem

a. We can graph y = xz(x - 3)

Namely

e
I
xl\J
=
I
&
I
X
|
w
X

y" = 6x - 6

Putting these facts together yields:
| 4
{(0,0) 1(310)

/

(2,-4)

(Figure 1)

Hence the curve x = yz(y - 3) is given by

Iv.4.20
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 4 - Second Theorem

[4.4.6 cont'd]

¥
A
(0,3)
(_4;2) P
(Figure 2)
3
Ap = (-x) dy (since x < 0 for
0 0 <y < 3)
3
- / (-y> + 3y%) ay
0
3
4
AR = -y + y3
0
- 31
= 7t 27
= 27
4

(As a check, this is the same area as that of
region S in Figure 1.)

Iv.4.21




SOLUTIONS:

Calculus of a Single Variable - Block IV:
Differentiation - Unit 4 - Second Theorem

From the previous exercise, we have

The dotted portion fails to
" obey 0 < v < 2.
/-”'
-~
7/
Vs
("4:2)
S
R
(0,0)
.ﬂ”
RU S is a 4 by 2 rectangle, hence ARUS = 8.
Now AR = ARUS - AS

2
=8 - [ xa

0

2
=8 - [ (v +3wH ay

0

2
-8 - _% y4 5 y3
0

=8 - [-4 + 8]

Iv.4.22
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation

UNIT 5: Volume

S.l
A v
——
x2 ” y2 -9
b
—
——/

.'« side of square = 2y = 2V9 - x2
oo AlX) = (ng - x2)2 = 4(9 - xz)
6

l
=
>
8.
Q
b

In general v

IV.5.1




SOLUTIONS : Calculus of a Single Variable - Block IV:
Differentiation - Unit 5 - Volume

[4.5.1 cont'd]

Thus, in our case,

3
Vv = f (36 - 4x%) ax
23

3
2 ) e - 45 G Ohecanse 55 - 42
0 an even function)

= 2[108 - 36]

= 144

IV.5.2




SOLUTIONS:

[4.5.2 cont'd]

Calculus of a Single Variable - Block IV:

Differentiation - Unit 5 - Volume

1
m j' [(x2)2 - (x3)2] dx
0

1 1
w(g = 7)
2m
35

IV.5.3




SOLUTIONS: Calculus of a Single Variable - Block IV:

Differentiation - Unit 5 - Volume

[4.5.2 cont'd)

|-

1
l pases
Alternate way: Vy T j~ [(y3)2 = (Y2)2 ] ay
0

1 2
=7 j. (y3 - vy) dy
0

5
5 2 0
= a3 -1
= w(s 5)
o
10
4.5.3
y = 4x - x? - 3
y' = 4 - 2x
Yll=_2
Hence R is given by:
y = 4x - x2 = 3
R
e
/1 \3

Iv.5.4
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SOLUTIONS:

Calculus of a Single Variable - Block IV:
Differentiation - Unit 5 - Volume

[4.5.3 cont'dl

d.

v

X

3
=T f (16x2 + x4 + 9 - 8x3 - 24x + 6x2) dx
1
3 4 3 2
= ﬁ.[ (x® - 8%~ + 22x° - 24x + 9) dx
1
3
=T 1 x5 - 2x4 + 22 x3 - 12x2 + 9x
5 3 1
=n[(2%3-1sz+193-1oa+27)
1 22
“(§-2+3—12+9)]
= n(gég— 2% s 40) = 13 (726 - 110 - 600)
= lém
15

IV.5.5




SOLUTIONS: cCalculus of a Single Variable - Block IV:
Differentiaticn - Unit 5 - Volume

[4.5.3 cont'dl]

81 _ 27
4

]

2m[(36 -

5
Fulde el e -

4.5.4(L) First of all the equation of the circle is

(x - b)2 + y2 = r2 since
Ay
By Pythagorean Theorem,
(x - b)2 + y2 = r2
y = +/&%2 - (x - b)?2
r

IV.5.6
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SOLUTIONS: cCalculus of a Single Variable - Block IV:
Differentiation - Unit 5 - Volume

[4.5.4(L) cont'd}

b+r brr 1
V. = 27 j- x(2y)dx = 4n.f xﬁ&z = fx = b)2 dx
Y b=¥ ot o

Notice that obtaining (1) was essentially no more
difficult than any of our exercises to date. The
work comes in when we try to evaluate

fx%':z - (x = b)z'dx

To this end, we may invoke the reference triangle

sj_n@:ﬂ
r
x-b r sin 6 = x-b; x = r sin
r cos 6 d6 = dx

8
B (i AR
Vgi:?;:g;f‘ r cos 6 = /é (x-b)

Wi & = ¥ 9 sine=‘b+§) =B e=1
When x = b - r, sin g8 = (b - g) aalll -1 5 g = -
x=b+r "
Coan [ xvr? - (x - b)? ax
X=b-r
L
2
= 47 [ (r sin 6 + b) (r cos 8) (r cos &) do
=il
=732

IV.5I7
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SOLUTIONS: calculus of a Single Variable - Block IV:

Differentiation - Unit 5 - Volume

[4.5.4(L) cont'd)
m

2
= 4ﬂr2 f~ (r sin 6 + b) c032 6 de
m

2 |
T ™ |
3 2 2 2 2 2
= 4mr f- cos™ 6 sin 8 d6 + 4mr‘b jﬂ cos” 8 A8 ,
L _m f
2 2
and since cos? g = l_iﬂ%gg_gﬁ , we have |
Y T |
302 o 2 21 + cos 20
V. = 4nr jﬂ cos 0 sin 6 de + 41r‘b f‘ de
4 T T 2
2 2
s s
2 2
= 4nr3[;%c053 3] l + 4nr2b[% + %sin 2
T I
2 2 |
3 2 m i 5 : m 1
= 4n1r [0 - o] + 4rnr b{(I + 7 sinm) - [-Z * 7 sin(-m)]}

_ 2y T
= 47r b[2]

= 21%r?p

(Aside: The area of the circle is nrzand its center moves
through a distance of 2mb. Notice that the answer to this
problem is the area of the circle multiplied by the distance

through which its center travels)

IVv.5.8
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4.5.5(L)

SOLUTIONE: Calculus of a Single Variable - Block IV:

Differentiation - Unit 5 - Volume

Here we have a nice application of the second
fundamental theorem to a volume of revolution.

We have:

a
v = j; £2(x)dx = a° (a > 0) (1)

Now, while we may not be used to viewing a as

a variable, the fact remains that (1) implies:

a% [n j;afz(x)dx:l= dé:sj (2)
Now = f'afzcx) ax = £2(a)
0
Hence (2) becomes
n£2(a) = s5a%
o f?'(a) = %l or

f(a) =4/ 2%— &= azvq? (3)

Replacing a by x in (3), we obtain:

£(a) =v/§‘ x2

IV.5.9




SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 5 - Volume

[4.5.5(L) cont'd]

As a check:

&Y

T

I
3
e
V]
w
E
jol)
»

Iv.5.10
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4.6.1(L)

SOLUTIONS: Calculus of a Single Variable - Block IV:

Differentiation -

UNIT 6: Arcs and Approximations

The main aim of this exercise is to emphasize
the fact that arc length is dependent only on
the path and not on the equation which represents
the path.

For example, when we developed the "recipe" that:
b
= dy, 2 1)
s= [ §1+ (5H° ax (
a

we were assuming that our curve was given in the

form y = £(x), which made it convenient to compute

dy
dx °

Had the equation been given in the form x = g(y)
it would probably have been more convenient to
compute %% . In this case, reasoning similar to
that which led to (1), would yield:

d
5 = [Jl+ (7° ay (2)
e

Other times, the equation of the curve is given

parametrically in the form

l x = f£(t)
y = g(t)
in which case it is most convenient to compute g%
and %{ . It can then be shown that

3

_ dx,2 | dy,2
s= | V@@ a b2

G

o}
(while (1), (2), and (3) are all proven rigorously,

assuming the proper degree of continuity and differ-

entiability, once proven, thev can be memorized by

thinking of the "pseudo-reference triangle" ds :: 'd
Y.

dx

IV.6.1
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 6 - Arcs and Approximations

[4.6.1(L) cont'd]
; 2 2 2 : .
wherein ds™ = dx + dy  , from which we can find

Jl + (%)2 dx or ds = dl + (%)2 dy or

ds = J(g-i-c‘- 2+ (GH? at by dividing through by dx,

ds

dy, or dt respectively. This, of course, is not
a proof but rather an easy way of recalling the
correct result once it has been proved.)

The key idea is that (1), (2), and (3) are
equivalent and so, in a given problem, we invoke

the one that is the most convenient for us to use.
3
: . - ¥ 1
In this exercise, the fact that x 3 + 4§-makes

it most convenient (at least compared with finding

dy dx
dx) to compute ay ° Thus,

3 3
X 3 + Iy 3 + 3 ¥ (L <y € 3). Therefore,
ax _ 2 _1.-2_ 2 _ 1
3 = N
Yy 4 4yz

We then invoke (2) to obtain:

3
s = f{l*r(g—;)z dy (4)
1

where 1 + (%5)2 =1+ (y2 = —13)2
Y 4y
=1 + y4 - % + 14
l6y
IV:6.2
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 6 - Arcs and Approximations

[4.6.1(L) cont'dl

) i
=Y t3+—
l6y
2 . 1 *
= (§ +* ——5)2
4y
Thus (4) becomes
3 3
2 1 2 -
s = jﬂ(y F.==g] &y = j.(y + %y 2) dv
i ¥ 1
or § =52y -2yl ’
=37 7Y 3
=;y3_1_|3
3 4y 1
B Ay 1 _ 1, _ -1
=0-)-G-7 = 9-5
= 33
6

It might be

helpful to look at the graph of

*
Notice how contrived our equations have to be if we are
to be able to handle ds. In most real life situations

"1 + (gﬁ 2 would be extremely difficult to integrate and

it is often likely

that we will have to resort to some

sort of numerical approximation.

Iv.6.3




SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 6 - Arcs and Approximations

[4.6.1(L) cont'd]

3

X =-§— + Z%- so that we can get a better picture
of the problem we've solved. To this end, we
3
reflect the graph of y ='§— + Z%— with respect
to the line y = x, and, leaving the details as
an exercise, we A obtain
y
3 B
1
g -
i
12
length of AB = 5%
(Figure 1)

Notice that our curve is single-valued as a

function of y but double-valued as a function of

x. For example, wheny =1, x = % #* % - I% while
when v = 3, x = 9 + I% . Had we been asked,
however, to find s if I% € X < 9I% we would have

had "trouble" since when x =

1. That is, the line x = T% cuts our curve in

v need not equal

=
N~

Figure 1 at A and C. In essence, had our limits
been given in terms of x, we would have had to
break the curve into single-valued branches;
algebraically, this is not always easy. (For
example, given that x = T% , We have

7y, 1 4

e e b - i it i
5 3 e 1y or 7y 4y + 3, from which it is

Iv.6.4
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SOLUTIONS:

[4.6.1(L)

4.6.2(L)

Calculus of a Single Variable - Block IV:
Differentiation - Unit 6 - Arcs and Approximations

cont'd]

easy to check that y = 1 is a root, but what is
the other real root, which we know exists from
Figure 1?)

Finally let us observe that we would also have
had big trouble if the range of y included y = 0
since our curve is not continuous (it isn't even

defined) when y = 0.

Given that y2 = x3 we have a choice of expressing
y as a function of x or x as a function of y.
Before exercising our option, let us graph y2 - x3
so that we may anticipate any trouble spots.
Since y2 > 0, we have that x3, hence x, cannot be
negative. Making use of our usual techniques of

curve plotting, we find that

Ay
871 y2 = x3

The hatched portion represents the

curve whose length we are seeking.

(Figure 1)
The graph tells us that we have a problem regardless

of the choice we make! Namely, viewed as a function
of x the curve is double-valued and, hence, we would

have to treat it as two separarate branches (which in

IV.6.5




SOLUTIONS:

Calculus of a Single Variable - Block IV:

Differentiation - Unit 6 - Arcs and Approximations

[4.6.2 (L) cont'd]

this case, at least, is not very complicated);
while viewed as a function of y the curve is

®
single-valued but is not differentiable at y = 0,

which is a point in the given range of y. Thus, in

this case, we would have to view the curve in two

segments -1 < vy < 0 and 0 < y < 8.

For the sake of experience, we will tackle the

problem from both points of view.

Suppose first that we elect to express y as a

functigé of x. We have, since y2 = x3, that

y = ix2 (Notice again that y2 = x and y =/ X are
not the same. y2 = X means y = */X).
3

We let C, denote y = %2 and C, denote y =-x

N W

(Figure 2)

*Recall

b
that the formula s = _[ ‘fl + {%3)2 dx required
a

that %% exist at all points in the interval so that we

might invoke the mean value theorem, etc.

IV.6.6
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 6 - Arcs and Approximations

[4.6.2 (L) cont'd]

We then observe that for Cl y varies from 0 to 8,

hence x varies from 0 to 4; while for C, y varies

2
from -1 to 0; hence, x varies from 1 to 0. 1In

other words,

_ / dy, 2"
length of C, = j‘ 1+ (ai) dx

¢ (1)

length of

Q
Il
~
=
+
T:m
L
o,
”

[
N ]

1=

+

O

C

Putting this result into (1), we find

4
length of Cl =‘% .f V4 + 9x  dx
0

¢ (2)
.
1
2 E f vd + 9x dx

0

length of C

P

du

Letting u = 4 + 9%, we see that du = 9dx or dx = 5

Therefore:

n| W

w|c
+
O

1
J/aTFer ax= [ -2

IV.6.7
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 6 - Arcs and Approximations

[4.6.2 (L) cont'd]

3
27
3
_ 2 2
= 37 (4 + 9x)" + C
: 3
L va+ox ax=5 a+om?sc (3)

Putting the result of (3) into (2) we obtain:

3 4
length of C, = . (4 + 9x)2
g 17 27
0
3 3
_ 1| a2 42
= 55 40 4 (4)
3 ]1
length of C, = 0 (4 + 9“)2
2 27 -
0
3 3
- 2 _ 52
= 55 [13 4 (5)

Hence, the desired arclength is the sum of (4)

and (5); or

[ 3 3 3
1|, .3 2 7|
37 L40 + 137 - 2(4) =
5% 4040 + 13/13 - 16 J ~ 10.5

IV.6.8
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 6 - Arcs and Approximations

[4.6.2 (L) cont'd]

Note: While the exact answer may be difficult to
obtain, we still have a relatively simple way of
obtaining a rough check. Namely, we may think of
the length as a sum of lengths of straight line
segments, which , of course, is in accord with
the definition of arc length. For example, as a

very quick check we have

#Y (4,8)

OA + OB ~ 8.9 + 1.4

= X ~ 10.3

which shows that our answer is at least in the
"right ball park". By the way, also notice that
our approximation should be less than the correct
answer since we have replaced the curves OA and

OB by the lines OA and OB.

RIEN]

As for the second method, we would write x =y~ ,

whereupon g% = % y 3 (and this is infinite at y = 0,
thus giving us an additional clue to be wary of

y = 0).

2 2
Then (g$)2 - g y 3 and /1 + (gﬁ) =\fl ks g v 3

Iv.6.9




SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 6 - Arcs and Approximations

[4.6.2 (L) cont'd]

~8 2
length of C, = 1+ %V dy
"0
5 ) r (6)
B 4 73
length of c, = L+ 3 Y dy
-
_l J

(Notice that while (1) and (6) are equivalent, the
resulting integrals are not of equal difficulty.

In other words, the choice of whether we write

v = £f(x) or x = g(y) might depend on the difficulty

in evaluating the resulting integral.)

To evaluate 2
4 3
1+ 5y dy

2
we might proceed by writing le + 5% N 3 dy

Al

dy

Il
—
| ol
+

=
wi

]
N
< -
Wi+
(s}
<
WIIN
+
=N
[o}
<

Il
W
o [

W+
O
g

|8

+
.

*

o
kg

*
See footnote next page.
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 6 - Arcs and Approximations

[4.6.2 (L) cont'd]

2 1
We could then let u = 9y3 + 4, whence du = 6y 3dy
1
or y 3dy = g%~. Hence,
[-L/—E__' f; 3
1 3 3 = 2 _ 1.2 .2
3 Yy 9y~ + 4 dy = 18 u” du = 18[3 a1 +=C
2 3
= g3 2
= 27(9y + 4)° + C (7)

Putting (7) into (6), we find:

2 3 |8
B 2
length of C, = 2?(9y + 4)
0
33
1 2 2 . .
= 57[40 - 4%] (which checks with (4))
3 3o
= Lgy? 4+ g2
length of C, = 2?(9y + 4)
-1
3 3 . .
” _}[42 B 132] (which except for sign

27 checks with (5))

*
We must be careful with algebraic signs. For example,

—%" % . is negative when y is negative. Yet we think of
y 9y” +

length as being positive. If we want our convention of length
being positive to be obeyed we should write:

i | 2 L2
J l+§y3dy=—%_’.y39y3+4 dy

=1

Iv.6.11




SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 6 - Arcs and Approximations

[4.6.2 (L) cont'd]

As a final note, observe what would have happened
had we failed to observe that y = 0 was a trouble

spot. Namely, we would have blithely computed

8 / _2 2 3 |8
4 73 _ 1,,.3 2
I l+5y° dy =350y +4)

=1 -1

3 3
N X
= 55040 13°] etc

which would not have been the correct answer.

4.6.3 (L)

a. Things look fine for a start. Afterall, gﬁ = COS X.
Hence 1 + (%%)2 = 1 + c052 x. Hence the answer to
this exercise is:

m

2
L = I/l+coszx dx (1)

0

b. Technically speaking, (1) is the solution to the
exercise, but we might desire a more specific

numerical form for the answer.

To be sure, (1) can be re-written as:

™
G(«z-) - G(0)
L] (2)
where G' (x) =v/l < 0052 X
The trouble with (2) is that there 1is nb elementary
(familiar) function G(x) such that G'(x)==¢GA+ c052 X

However, (1) does name the exact area of a particular

Iv.6.12
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SOLUTIONS: Calculus of a Single Variable - Block IV:

Differentiation - Unit 6 - Arcs and Approximations

(L) cont'd]

region; namely the region bounded above by

y =V 1+ cos2 x, below by the x-axis, on the left
by the y-axis, and on the right by the line x = % i
(Notice that to work analytically with this region

it is not important to have an accurate plot of

y =1+ cosi . What is important is that we know

v =v/l + 0052 X 1s continuous.)

Now, to approximate (1) by the use of trapezoids

with n = 3 we have:

/ 2
X cos X cos2 = 1l + cos™ X

0 1 1 v2 =1.41
il 1 3 7T ~
3 5V3 5 z =1.30
m 1 1 5 ~ '
TT —
5 0 0 1 =1.00
Thus
’ky
[ —— Notice why we don't need
the actual curve.All we are
i doing is using the tabulated
value to form trapezoids.
1.41 1.3]1.12 1
R
1 R2 R3
-
b kil S
0 6 3 2
(Figure 1)
IV.6.13




SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 6 - Arcs and Approximations

[4.6.3 (L) cont'd]

" -
_ (1.4 + 1.3 | 7w _ w
ARl =1l 5 15~ 13 {(2.71)
_[13+1.1277 _
AR2 | 2 1= 13 (2-42)
1,12 +1]w7 =
AR3 [ 5 ]g— 13 (2.12)

(ST

2 - oo
I\/l+cos X dx~AR +AR +AR3—T§(T.25)

X .604m = 1.96

(If we let T = 1.96 be the trapezoidal approximation,
we can use the result

b - _
f f(x)dx = T - E_ng f"(e).{&x2 a <e<x<hb
a

to estimate our error. We will not take the time to
do this here.)

c. | 1)

(0,0)

(Figure 2)

IV.6.14
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 6 - Arcs and Approximations

[4.6.3 (L) cont'd]

d 2
- J&T s 2 v E adm T o
length of Cl = (2) + (6) = T .28 + .25
=~ 0.73
T w2 1 T 2 2 i e
lenqth of C2 = Jij = g) + (5\5 - -2—) = 3_6.. + (1 - .2_\[‘_7-;)
= .28 + .14 =0.65
ﬂ T, 2 1 2" ﬂz 7 h
length of C3 = Jr(-z—' - §) + (1 - -2—\/:_-?;) = 5-6- + Z i ﬁ

v.28 + .02 =0.55

.73 + 0.65 + 0.55 = 1.93

Thus, 1.93 is an underestimate of the arc length, and

a glance at Figure 2 seems to indicate that the error in
our approximation is not too great.

Coupling this result with (b) we have:

il

2 —
1.93 < [ V1 + cos? x ax~ 1.96
0

4.6.4 (L) The aim of this exercise is to emphasize our
remarks concerning infinitesimals and "squeezing out"

errors when we take limits.

We have that %§ = m and As® = K% + E?z
o, B8? = IR+ m’R® = (1 + m?)ER?
-.- &S = l + 1'[12

IV.6.15




SOLUTIONS: Calculus of a Single Variable - Block IV:

Differentiation - Unit 6 - Arcs and Approximations

[4.6.4 (L) cont'd]

Ax - Ax + V1 +m Ax

Ax + (V1 + m2 -1) Ax

5om= 1 w2 -1 (1)

Since m is a constant, so is a. Now the only way for
a constant to be an infinitesimal is if the constant
is zero. From (1) this means that 1+ mZ -1 = 0,

whence m = 0.

Thus unless m = 0, we do not "scueeze out" the error

in our approximation.

On the other hand, when m = 0 we have a line parallel
to the x-axis, and in this case As and Ax are

identical.

3
y = 32t + 1)°
_ 1.2
x=5t
r 1
dy _ 1[3 2]_ - dyy2
at = 313 (2t + 1)° 2| = V2t + 1 S (Fe) 2t + 1
dx _ v pOd: 2 2
5 = t "(EE) = t
EH2+ G@%=t*+2t+1=(t+1?

57, @n7 .
J(dt) + (P t+1

IV.6.16
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 6 - Arcs and Approximations

[4.6.5 cont'd]

6
-
2

6

Il

Il
()
(=}

1

dxy 2 dy, 2

f (t + 1) dt

4.6.6 (L) Quite mechanically, we can apply our recipe

to obtain

S

S = j‘ 2mx A4x (1)
Sy

Notice that we write 2mx when the rotation is with

respect to the y-axis, since

1

| Y
X

r

7 ds

Since x and y are both functions of t, it is most

convenient to express ds in the form

dx, 2 dy, 2
{(dt) * (ﬁ:) at

IV 6w 17




SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 6 - Arcs and Approximations

[4.6.6 cont'd]

dx _
We have at -

becomes

S
y

If in (2) we

Now, in many

it is either

1 and =t + 1. Equation (1) then

ke

4
[ ene+ 1) Vi+ (£ + 12 at
0
let u = t + 1, we obtain

5 *
j. 2ru v1 + u2 du
1
3 5
3%(1 + u?) 2
1
33

201262 - 2%

3%[26¢§€ -~ V7]

cases involving parametric equations,

impossible or else very difficult to

eliminate the parameter so the method described

above is important.

4
*
Notice that ‘[ was expressed in terms of t. Recall

0

(2)

that when we change variables in a definite integral, we

must also make the appropriate changes in the limits of

integration.

IV.6.18
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 6 - Arcs and Approximations

[4.6.6 cont'd]

However, the parameter is easily eliminated in

this exercise. Specifically:

x=t+1 > t=x-1 >

2 2
g = (x ; 1)~ . (5 = 1) = (x - 1)° + 2(x = 1)
2
_x-1)(x-1+2) _ (x-1)(x+ 1)
a 2 ; 2

.'. the path followed by the particle is the parabola

y = 5——%—i . That is

2
‘Y y = x -1 particle moves as
indicated since
x and y each
increase with t

= X
(1,0) = position of particle
at t=0

Notice that the interval 0 < t < 4 determines the

section of the curve between (1,0) and (5,12)

IV.6.19




SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 6 - Arcs and Approximations

[4.6.6 cont'd]

since x=t+1, y = % t2 + t . Thus we are talking
about:
2—1
(5422} ¥ =034
X
R
~(1,0)
A2
Again S = j‘ 2tX ds
Hy

as
2
dy, 2 . _xT =1 dy _ dy, 2
1+ (ai) dx ; y = 5 sl x-ail*-(d )
=1 + x2
5
e Sy = ]‘ 2mx V1 + x dx
1.
3 5
=2 1+ xH?
1
IV.6.20
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SOLUTIONS: cCalculus of a Single Variable - Block IV:
Differentiation - Unit 6 - Arcs and Approximations

[4.6.6 cont'd]

= 2T (26V26 - 242)

which agrees with our previous result.

(Notice that the integral for surface area when R
is revolved about the x-axis is a bit more difficult

to evaluate; even though the theory is the same.

Thus
5
Sx = 27 /. yvl + x2 dx
1
5
=T f(x2 - 1)Vl + x2 dx
1

This is one reason why additional techniques for

integration are so useful.)

IV.6:21




SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Unit 6 - Arcs and Approximations

[4.6.7 cont'd]

_ I
5, = 21 [x ds ; as = (y° + 7y ay
3 3
- 24 L.g72 Yy 41
= 27 ‘[ x(y™ + T Y ydy , x = 3 + e
1
¥ 3
= Y Ay vl 4 L
o [+ )y
. y
3
=2ﬂf(ly5+ly+—l)dy
3 3 Loy
3 y
3

3
~ 1.6 .1.2 1 -3
=2mMg ¥ +t§¥Y -~ 33¥
| i
P P O R T i g
=dmistz " 1MW 18 76~ 32

_ 2w£§; e Ppeiggn 11 £ 9)}

2 588 288
8L, 3 _ 56]_ 5 [81,3 _ 7
- 2“[ 2 v 3 288] = 2"[ 2 v 3 36]
= 2ﬂrl§%§]
15057
= 13

IV.6.22
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SOLUTIONS:

Calculus of a Single Variable - Block IV:
Differentiation

QUIZ

X
The key here is that £ f £(t)at = £(x).
a

X
Hence, if g(x) = ‘[ _EQE__ then g'(x)
u + 1
_ 1 . pipda: 1
ke aamalll Therefore: g (2) = T E+1
x +1 (5)
- 1  _ 64
1 ~ 65 :
gl + A

With g as in (a), it follows that

x+h '
. _ lim 1 du
9‘x"h+o|hf : ]
X

u + 1
Namely:
x-+h x+h
lim X f du ]_ 11m[;_(f du
h-0 h g u6 + 1 h~+0 h 0 u6 + 1

lim

- o L7 (s0em - st) |

Iv.Q.1




SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Quiz

[1. cont'd]

1lim {g(x - E) - g(X)]

h->0
= g'(x)
g - i
Now, from (a), g'(x) = -
x + 1
Hence:
xX+h
lim i -[ du _ i
h>0 h u6 + 1 x6 + 1
X
2.
A
Y y=4x—x2
R
b -
[0 4
4
_ L o2
a. AR = _[ (4x x7) dx
0
4
= 2x2 - % x3
0
IvVv.Q.2
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Quiz

[2. cont'd]

= 20)% - 3(@)?

Il
w
N

1

lm

(OS]
’

Iw
wino

b
[The concept used here was simply that._[ f(x)dx
a
denotes the area of the region bounded above by

y = £(x), below by the x-axis, on the left by
X = a and on the right by x = b. Moreover, if £

is continuous, as it is in our exercise,

b
f‘f(x)dx = g(b) - g(a) where g'(x) = f(x) ]
2 b
b. Here we use the fact the Vx =7 jﬂ [f(x)]zdx

a
In this case:

) 4
V =1 _[ (4x - xz)2 dx
0

4
=T ‘[ (16x2 - 8x3 - x4) dx
0

*
Do not make the mistake of identifying ]k4x - x2)2 dx

with the form _[uzdu. In other words jk4x - x2)2 dax
+ %(4x - x2)3. For this to be the correct answer we would

have to have:

j}4x - %592 q(ax - x%)

IV.0Q.3




SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Quiz

[2. cont'd]

4
. N 16 3 _ 4 X 5
- Vx =7 3 X 2x + 5 p &
e 0
16 (4) 3 4 . 1,.5
=1T*-—'§'——-2(4) +§-(4)

_ 3, 16 _ 16
—-1r(4)[3 8 + 5]

_ 64T o _
= 15[80 120 + 48]

5127
15

The key here is that it might be best to use the
method of cylindrical shells. For to use the
revolution-method of part (b) our "element of

area" would be

and this would involve inverse function multi-
valuedness. In the case of a quadratic equation,
the "inversion" is not difficult, as we shall
soon see. In more general cases, the problem is

guite serious, perhaps, even hopeless.

Recall that the "recipe" for cylindrical shells

is:

IV.Q.4
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Quiz
[2. cont'd] | s

Yy = £{x)

/’,,,—-
]

a b
b
vV = j‘2nxf(x)dx

¥
a

In our case, we have

4
_ —
VY = j- 2mx (4x X)) dx
0
4
= 27 '[ (4x2 - x3) dx
0

4

= 27 % x3 = % x4
0

3
- 4(47) 1 4
= 2TT[—‘——3 - '4—(4) ]

- St = = L
= 21(4%) [3 - ] = 512n(3;

IV.Q.5




SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Quiz
[2. cont'd]
Had we elected to use the technique in (b), we
would have:
(2-vA=y,
v | -4 r4)
y = 4x—x2
(2+VZ“Yry)
S X —4dx +y =0
+ =y
o 4_V%6 4y _ 2t Viy=y
o 4 *
4
v, = [le+vi-p?2-c-vi-n?la
0
4 3 4
=T .f 8v4 - v dy = 87 -%(4 - y)2
0 0
[ : ]
_ -1 242 - 16
= 87|0 [ 3(4) } 8 ( 3)
_ 1287
3
3. Here we wish to emphasize the genexal formula for

area (lest we begin to feel that every section is either

a circle, a "washer", or a cylindrical shell).

The general formula is V

b
.[ A (x)dx where A(x) denotes

the cross-sectional area of ofir solid as a function of

X.

IV.Q.6




3 BN

s

L |

.

(BN BN BN B

- Em m ' e,

Ml mmomMm

SOLUTIONS: Calculus of a Single Variable - Block IV:

Differentiation - Quiz

[3. cont'd]
In our case: ‘Y’ 2 2
= = +
0,29 ¥ TY TATY =S
H\“\kA(x,V4—x2)
2—'—0—]—.-)(
("230)

/B(x,-m)

(0 1'2)

AB is the length of the side of the square

cUA(x) = BB2 = (2v4 - x2)2

2
* ¥ = f 4(4 - x%) ax
-2
2
= 16X - — x3
=2
_ _ 32, _ 128
2(32 = =) = =5
IV.Q.7

= 4(8 - %) .
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2
f(ls - 4x%) ax
-2
2
2l16x - & &3
0




SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Quiz

S2

a. The length is .[ ds and in this case, since

85

the equation is in the form y = f(x), the most

convenient form for ds is ‘{1.+ (%%)2 dx.

Therefore, the length of C is given by:

4
f ‘/1 + (%%)2 ds
0

1 L
R QR B
1 1
1+ (%ﬁ)z = x + % + I% x 1 = (%% + % x %2
- L
2 2

- (_i.z 2 — 2 -]:.
. _Jl + (dx) ¥+ 7 x

Therefore, from (1), the length of C is:

IV-Q.8
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Quiz
[4. cont'd]
4 1 3
_[ (x2 + % 54 2) dx
0
3 1|4
=12 2 1l .2
=13 X" =+ 5 X
0
3 1
s B 4 L2 o 2
- 19
3
3 ds
X
3
Our recipe is
Ry
5 = 2mx d
y jﬂ m s
i |
IV.Q.9




SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Quiz
[4. cont'd]
. . dlz
Again, we write ds as 1+ (dx)
to obtain:
41 1
_ 2 L o %
SY = _[ 2rx(x” + 7 X ) dx
0
4 3 1
= 27 -[ (x2 +7 xz) dx
0
. B 3 |4
w42 .2, 1.2
= 27 T X + g X
L 0
_ ‘2 1
= 2ﬂ-5(32) + 6(8)]
_onfet . 4] - 2
= ZW[ 3 3] = 15[(64)(3)
_ 424n
= 15
5. a. Here we are reviewing continuity. The point is that
since sin x and x are both continuous,
also be continuous except at x = 0. Now at x = 0,
S1n X J5 not defined. But we already know that
lim sin x _ 4
x+0 X -
Iv.Q.10
T — e —

dx and use (2)

+ 4(5)]

sin X F
will
X
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Calculus of a Single Variable - Block IV:
Differentiation - Quiz

sin x

In other words, since x # 0 =>f(x) = == g
lim _ lim sin x _
x+0 £(x) = x>0 X =1
Moreover
f£(o) =1

Comparing (1) and (2)‘we have:

lim

oo E(X) = £(0),

hence, by definition of continuity, f is continuous

at x = 0 (even though 553—5 isn't). Since f(x) =

sin x

is already known to be continuous when x # 0,

the result follows.

SOLUTIONS:
[5. cont'd]
b -

There is no need to sketch y = f(x) accurately. The
crucial points are that (1) f is continuous and (2)
f(x) > 0 for all x E[O,%].

Dividing [0,%] into 3 equal parts yields the partition

T M T : _ s
0, g 33 - Since f£(0) = 1, f(6)
; ki) 1
sin = =
6 2 _ 3 m, _ 3V3 W o B
T =5 = = 9 f(g) b=l and f(_f) ==
6 6

it follows that:

IV'Q. ll
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SOLUTIONS: Calculus of a Single Variable - Block IV:
Differentiation - Quiz

[5. cont'd]
Ay
(0,1)
r \\
3 giihhhhﬁ““xﬁ
R 7| R Tar
Ry 2
m™
S
S m T
6 3 2
- 3,
ARl = '2'(1 + F) ('6-)
1,3 3¢?
Ay =3+ 32 (P
2
_1,3v3 2,
Ar, T35 TR @

Therefore, our trapezoidal approximation with

yields
T, = A + A + A
3 Rl R2 R3
1 3 3v3 3J'
-iDla+d + G+ - A

IV.Q.12
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l SOLUTIONS: Calculus of a Single Variable - Block IV
Differentiation - Quiz

C

' [5. cont'd]

l = '1_12: + I% % 3—1-‘% + ]—_—g

' — 3V3 (~ 1.37)

|

{

£

I

|

£

9

|

i

L

i

i

|
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