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STUDY GUIDE: Calculus of a Single Variable
INTRODUCTION

This self-study course consists of several elements which
supplement one another. As in most cburses, the central building
block is the textbook. The remaining parts augment the text.
First, there are the lectures. These are designed to give an over-
view of the material covered in the text and to supply motivation
and insight in those areas where the oral word is more helpful than

the written word.

Because the lectures are on film (or tape) it is assumed that
you will be able to view a lecture more than once. You may use
the lecture as an introductory overview and then review the unit
by watching the lecture again when the rest of the assignment for

that unit has been completed.

Yet, the fact remains that most students will not, for one
reason or another, watch the lecture as often as might be advis-
able. For this reason, photographs of the blackboards, exactly as
they appeared at the end of the lecture, have been made and repro-
duced as "Lecture Notes." Consequently, as you proceed through an
assignment, there is always a rather convenient reminder and summary
of the lecture. In fact, it might very well happen that once you
have seen the lecture and done the assignment, the photographs of
the blackboards will be sufficient to supply you with an "instant

replay"”" whenever needed.

After the lecture, there are times when additional material
is needed to bridge the gap between where the lecture ends and
the text begins. Certain topics in the text are particularly
difficult and as a result the student requires additional points
of view or even a rehash of what's in the text. Frequently, a
choice of approaches to a difficult topic is the best psychological
boost to the student. Certain important topics are sometimes pre-
sented in the text in order to solve a specific problem, but it

turns out that these topics have applications far beyond the
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STUDY GUIDE: Calculus of a Single Variable - Introduction

specific problem in question; consequently, the student would
benefit from a more detailed explanation. Finally, there are
certain topics that form a "twilight zone" for the student.
Roughly speaking, these are the topics that the college professor
assumes the student learned in high school and the high school
teacher thinks he will learn in college. In such cases a student
may need more explanation than is offered in the text. For these
reasons, the course includes a volume entitled "Supplementary

Notes."

While good lectures and well-written text material are vital
in the learning of any course, it seems that certain ideas are
best transmitted through their application in various problems.
For this reason, we have designated certain problems as LEARNING
EXERCISES labelled with an (L). These exercises serve as a
springboard for emphasizing important ideas and, accordingly,

their solutions are presented in great detail.

Since these exercises lead to points that may not be stressed
elsewhere in the package, it is important that you do each learning
exercise and that you study the solution, EVEN IF YOU CAN DO THE
PROBLEM.

If you have done a learning exercise correctly and have read
its solution, you may, if you wish, omit all exercises prior to the
next learning exercise. Notice that after each learning exercise
there is at least one other exercise which is somewhat similar to
the learning exercise. These exercises are supplied for you to
get extra experience in the event you had difficulty with a learn-
ing exercise but feel that you would like another "chance" after
having read the solution. The solutions to these additional
exercises are more concise than the solutions to the learning

exercises.

Finally, for those who desire even more experience, the text-

book offers a very large assortment of exercises to practice with,
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STUDY GUIDE: Calculus of a Single Variable - Introduction

and the answers to almost all of the exercises are given in the

answer section at the end of the textbook.

Since this is a refresher course, there is always the chance
that you are particularly well versed in certain aspects of the
course. If you prefer, you may omit the corresponding blocks in
this package. To help you make this decision, we have included a
block pretest before each block. If you can do ALL of the prob-
lems in the pretest, you may omit the block. Otherwise, it is much

wiser to study the block.

You will notice that the solutions to the block pretest prob-
lems are rather sketchy. Do not be alarmed or frustrated. We
have chosen each problem to be important enough so that each is
presented somewhere in the block as what we call a LEARNING EXER-
CISE. Each learning exercise will be solved in a very detailed
manner (with the solution appearing separately from the problem)

in order that you may learn as much as possible from the problem.

We sketch the solutions only to the extent we think is neces-
sary for you to be able to decide whether you can do the problem,
i.e., to help you decide whether any error you made was merely a

careless computational mistake or a more serious conceptual error.

As important as the pretest is the post-test or what is more
colloquially known as the quiz. Somehow or other, there is no
substitute for a comprehensive test to see what the student has
retained. For this reason there is a "final examination" at the
end of each block. The correct answers together with rather de-
tailed solutions are supplied so that the student can better ana-

lyze his difficulties.
In summary, then, our typical format for a lesson unit is:
1. See a lecture.
2. Read some supplementary notes.
3. Read a portion of the text.

4., Do the exercises.
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When assigned, these four steps almost always occur in the
given order, but there are some assignments in which (1) and/or
(2) are omitted, and there are a few places where the supplementary
notes form the only reading assignment, especially in the treat-

ment of topics not covered in the text.

Finally, I would like to acknowledge the very able assistance
I have received from several people in the preparation of this
self-study course. First and foremost, I am deeply indebted to
John T. Fitch, the manager of our self-study development program.
He discussed and helped me plan the lectures and written material --
unit by unit. He made suggestions, offered improvements, and, in
many cases, put himself in the role of the student to help me "tone
down" certain topics to the extent that they became (hopefully)
more understandable to the student. In addition to all this, he
was a friend and colleague, and this went a long way towards making

a very difficult undertaking more palatable for me.

I would also like to thank Harold S. Mickley, the first direc-
tor of CAES, whose idea it was to make "Calculus Revisited" avail-
able as a self-study course. Most of this present course reflects
his ideas as to what constitutes a meaningful continuing education,
calculus course. He, too, during his stay at the Center was a con-
stant source of inspiration to me, and, in a certain sense, this
course belongs more to him than to anyone else.

If you think that having to read all this material is diffi-
cult, imagine what it would have been like to have had to type the
entire manuscript. Yet this job was accomplished, in an efficient
and good-natured manner, by our able staff of secretaries - in
addition to maintaining all the other responsibilities of their

office. 1In particular, I am grateful to Miss Elise Pelletier who

worked on the manuscript from its very inception and to Mrs. Richard

Borken for their help in the preparation of the manuscript.
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STUDY GUIDE: Calculus of a Single Variable - Introduction

I hope that your studying this course will be as rewarding
and enjoyable as preparing the course has been to me. Good luck.

Cambridge, Massachusetts Herbert I. Gross
May 1970
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STUDY GUIDE: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits

PRETEST

1. Given the equation x? - 4x + 3 =0,
(a) Write the solution set using set-builder notation

(b) Write the solution set in roster notation

2. (a) Show that (A MNB) Uc and AN (8 U C) need not be
the same set.

(b) What is the most general case in which (A B) U ¢
and A [) (B UC) are the same?

(c) What is wrong with the expression AN B U c?

3. LetA={1,2,3}
(a) How many elements belong to the set {f|f:A-A}?
(b) How many of these elements are 1-17?
(c) If £(1) = 2, £(2) = 3, and £(3) = 1, describe

£71.a,a,

4, Define f by

2 -x, if 0 g xg 2
£ (x)

0, otherwise.

Describe
(a) £(-x)
(b) -f(x)
(c) £ (x+3)

(d) £(2x + 3)

x1id
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STUDY GUIDE: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Pretest

5. Let £ and g be defined by:
f (x)

g (x)
(a) How do £ and g differ?

: xz -9
x+3 x+3
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STUDY GUIDE:

Calculus of a Single Variable - Block I: Sets,
Functions and Limits

UNIT 1: Sets

View: Lecture 0.000

Read: Supplementary Notes, Chapter I, "An Introduction
the Theory of Sets."

Exercises:

Yook wd GED Let A be the set whose elements are a, b, ¢, and d.

(a) Write A in roster form.

(b) How many subsets does A have?

(c) How many of these subsets have exactly two elements?

(a) Use the roster method to list each of the subsets of
A which have exactly two elements.

(e) If a coin is tossed four times (and we assume that
the coin is not "loaded") is there a fifty-fifty
chance that we will get two heads and two tails?

How is this problem related to parts a and c above?
Yol2 Let A be a set which has six members.

(a) How many subsets does A have?

(b) How many of these subsets have exactly three elements?

(c) How many of these subsets have exactly two elements?

(a) How many of these subsets have exactly four elements?

(e) How are c and d related?

(f) If a "fair" coin is tossed six times what is the
probability that we will obtain three heads and three
tails?

1.1.3 (L) Consider the equation
x4 = 1

(a)

Write the solution set for this equation in set-builder

notation.

b T e |




STUDY GUIDE: Calculus of a Single Variable - Block I:

Functions and Limits - Unit I: Sets

H.1:3 (1) cont'd]
(b) Write the solution set in roster form
(i) The universe of discourse is the
numbers.
(ii) The universe of discourse is the
numbers,
(iii) The universe of discourse is the
real numbers.
(iv) The universe of discourse is the
integers.

1EE
set

set

set

set

of

of

of

of

Sets,

complex

real

positive

even

1.1.4 Consider the equation (2x - 3) (x + 1) (x + 7) =0,

and let I denote the universe of discourse.

(a) Write the solution set of the given equation in set-

builder notation.

(b) Write the solution set in roster form, if:

(i) I is the set of rational numbers.
(ii) I is the set of real numbers.
(iii) I is the set of integers.

(iv) I is the set of positive integers

I.1.2
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STUDY GUIDE: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits

UNIT 2: Arithmetic of Sets

1. Read: Supplementary Notes, Chapter II, "The Arithmetic
of Sets"
2. Exercises:
L2 (L)
(a) Show that (AMB) UcCc and AN (B U C) need not be
equal sets.
(b) What is the most general case in which (Al B) U C
and A () (B UC) will be equal?
(¢) Why is it ambiguous to write A} B U c?
(d) Is it ambiguous to write Al B () c?

le2.2
(a) Show that (ALJB)rWC and A {J (B F]C) need not be
equal. Under what conditions will they be equal?
(b) Show that (A 'JB) M cCc and (AN Cc) U (BNC) are

equal sets.

1:2:3 (L)
(a) Show that (A |JB)' = A'[]l B'. (This result is often
referred to as DeMorgan's Rule.)
(b) sShow that it is possible that X |J B = X {J C but that
B # C.
(¢) I£fXUB=xUc and if XY B = X C show that B = C.

1.2.4 A school offers three foreign languages which we shall
call A, B, and C. Each of the 280 students takes at
least one of these three languages. The following data
is available: (1) 20 students take all three languages,
(2) 30 students take both A and B, (3) 50 students take
both A and C, (4) 60 students take both B and C, (5)

120 students take A and (6) 160 students take C. How

many students take only B as their language?

T.2.1
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STUDY GUIDE: Calculus of a Single Variable - Block I: Sets,

l'
2'
3.

Functiong and Limits

UNIT 3: Analytic Geometry

View: Lecture 1.010
Read: Thomas 1.1 through 1.5

Exercises;
1:3+1 (L) The x- and y- intercepts of a line L are respec-
tively a and b. Show that AN equation of L is

(x/a) + (y/b) =1, if ab # 0

1.,3.2 The perpendicular distance ON from the origin to
line L is p, and ON makes an angle 6 with the posi-
tive x-axis. Show that AN equation of L is given by

xcosf + ysinb = p

1:3.3 (L) Find the coordinates of the point P(x,y) which
is so located that the line Ll,which passes through
P and origin, has slope equal to 2, and the line %
which passes through the point P and the point A(-1,0),
has slope equal to 1.

1.3.4 (L)
a. Find the equation of the line L through A(-2,2) and
perpendicular to the line L': 2x + y = 4.
b. Find the point B at which the lines L and L' of a

intersect.
c. Find the perpendicular distance from the point A(-2,2)

to the line L' whose equation is 2x + y = 4.

1.3, 1




STUDY GUIDE:

Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 3: Analytic Geometry

1.3.5 Find the perpendicular distance from the point B(4,1)
to the line 3x - y = 5.
1.3.6 (L) In terms of the constants m, b', and b", find

the perpendicular distance between the parallel lines

whose equations are y = mx + b' and y = mx + b",

1.3.7 (L) If a and b are any two real numbers we say that

(a)
(b)

1.3.8
(a)

(b)

a is less than b and write a < b if (and only if)
b - a is positive (that is, b = a + h where h is
positive)., If a < b we also say that b is greater
than a and write b > a. Prove that:

If a<bthena+c<b+canda-c¢c<b-c.

If a < band ¢ <d thena+c <b +d, Is it also

true in this case that a - ¢ < b - d? Explain.

Prove the following properties of inequalities:

If a < b and ¢ is positive then ac < bc. What happens
if we remove the restriction that c be positive?

If a < b and a and b are either both positive or else
both negative (another way of writing this is to say
that ab > 0) then 1/b < 1/a.

1.3.2
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STUDY GUIDE: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits

UNIT 4: Functions

1. View: Lectures 1.020 and 1.025
2. Read: Supplementary Notes, Chépter III, "An Introduction
to Functions"
3. Read: Thomas 1.6 and 1.7
4, Exercises:
4,1 (L) vet A = {1,2,3}
(a) llow many elements belong to the set {f:A » A}?
(b) How many of these elements are 1-1?
(¢) If £(1) = 2, £(2) = 3 and £(3) = 1, describe £ T:A + A.

l.4.2 (L) bDefine f on the set of real numbers by:

_ 2 - x,if 0 £ x g 2
£(x) = (, otherwise

(a) Graph y = f£(x)
(b) Describe each of the following functions and sketch

the graph of each:

(1) £(-x) (2) -£(x) (3) f£(x + 3)
(4) £ (x) + 3 (5} E£(2x) (6) 2f(x)
(7) f£(2x % 3)

1.4.3: (L) Find the minimum and maximum values of f(x,y)
if f(x,y) = 3x + 4y, and the domain S of f is

defined by the simultaneous inequalities

XxX+y >2, y <£3x+ 2, 5xx 10 -y

1.4.1
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Calculus of a Single Variable - Block I: Sets,
Functions, and Limits =Unit 4: Functions

1.4.4 (L)

(a)

(b)

Let C and F denote, respectively, corresponding
centigrade and Fahrenheit temperature readings. Given
that the F versus C graph is a straight line, find

its equation from the data that C = 0 when F = 32 and

C = 100 when F = 212 (that is, (0,32) and (100,212) are
points on the graph).

I

Is there a temperature at which C = F? If so, what

is this temperature?

1.4.5 (L)
; . . 2 2
(a) Prove that |a| < |b| if and only if a® < b".
(b) Prove that |a + b| ¢ |a] + |b].
(c) Prove that |a - b| > ‘ la|] - |b] ,
l.4.6 (L) Describe the domain of the variable x without the
use of the "absolute value" symbol if it is known that
2 < |x -3 ¢ 4.
1.4.7 (L) Solve the following equation for x in terms of

y. On the basis of the assumption that x and y are
real variables, discuss the possible sets of values
of x and of y, the domain and the range of the

functions being defined by the formula

- X
b4 T 1 (1)

which here gives y in terms of x.

1.4.8 (L) Separate the equation xz + xy + y2 = 3 into two

equations, each of which determines y as a (single-

valued) function of x.

1.4.2
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Functions, and Limits - Unit 4: Functions

1.4.9(L) Given £(x) = 2x - 7, show that £ 1(x) is not
the same as F(IE)'







STUDY GUIDE: Calculus of a Single Variable - Block I: Sets,

Functions, and Limits

UNIT 5: The Derivative as a Limit

View: Lecture 1.030
Read: Supplementary Notes, Chapter 1V, Sections A, B, C, and D.
Read: Thomas 1.8 through 1.1l
Exercises: (Note: All derivatives should be computed as
limits. Do not use other formulas for differentiation,
since, in particular, they haven't been developed yet
in this course.)
1.5.1 (L) Find £'(x) if £(x) = x°.
1.5.2 (L) PFind £'(x) if £(x) = v3x.
. 1
1.5:3 Find f£'(x) if f(x) = —
) V2x
1.5.4 (L) Find the slope of the curve y = x3 at any point
(xl,yl) on the curve.
1:8.5 Find the slope of the curve y = ¥3x at (12,6).
1.5.6 (L) At what point does the line which is tangent to
the curve y = xz - 2 at (2,2) intersect the x-axis?
1.5.7 (L) Determine %% ifA=n"n r2.
1.5.8 Determine av if v = 1 m r3.
dr 3
1.5.9 (L) A particle is projected vertically upward in such

a way that after t seconds it attains a height of h

feet,where h is given by

b = 128k - 16E%,

Find the maximum height which is attained by the

particle.

1.5.1
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STUDY GUIDE: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits

UNIT 6: A More Rigorous Approach to Limits I

1. View: Lecture 1.040

2., Read: Supplementary Notes, Chapter IV, Section E
3. Read: Thomas 2.1 and 2.2

4. Exercises;

1.6.1 (L) Suppose f is defined on [a,b] and that %;g f(x) =L
for some ¢ in (a,b). Choose any two numbers m and M,
subject only to the condition that m < L < M. Show
that there exists a number § such that m < f£(x) < M
provided that 0 < |x - c| < 6.

1.6.2 (L) Suppose %i@ f(x) = 0 and that g(x) is bounded
(that is, there exists a number K > 0 such that
lg(x)| <k). Define h by h(x) = £(x)g(x). Prove that
%*g h(x) = 0.

1.6.3 (L) Given € > 0, determine § (in terms of €) such that
€2 + t - 12| < e if 0 < |t - 3| < 8.

1.6.4 Given € > O £find § so that |x2 - 5x - 6| <eif
0 < |x - 6| < 8.

1.6.5 (L) Define f by f(x) = {_l }g ﬁ 3 g

Discuss %}8 £(x).

I1.6.1
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STUDY GUIDE:

Calculus of a Single Variable - Block I: Sets,
Functions, and Limits

UNIT 7: A More Rigorous Approach to Limits IT

1. Read:

Thomas 2.3 and 2.4. Omit all references to
trigonometric functions, in particular, Example 3

on p. 52, and skip section 2.5 entirely. We shall
return to this material in a different context later

in the course.

2. Exercises:

.71 (L)

(a)

(b)

1.7.6 (L) Compute %im

suppose that lim £(x) = L and %&g g(x) = L,. Define
h by h(x) = £(x)g(x). Prove that %i@ h(x) = LlL2.

If lim f(x) = L show that %&g vEI(x) = vL, L 20,
provided that %%g f(x) exists. Generalize this result
to cover the case %%g N/F(X) where n is any positive

integer.

(L) Prove that:

lim 2 =
lim (t° + ¢) = 12
1 (xz - 5x) = 6
x>0

. ; i 2
Given that %iT x = 1, compute éiT[(x + l)s(x + x + 2)]

(L) Suppose that %}g f(x) = L and that L # 0. Define
_ . =
g by g(x) = I3 Prove that lim g(x) = £.
(L) ShoY that %ig f(x) has the same meaning as
lim e
xi0+ f(x)'

3x2 - 7x + 1

0 | 4x? 4 5% - 7

LT
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Functions, and Limits - Unit 7: A More Rigorous
Approach to Limits II

1. 2.7 (1) Compute %}Q (/x2 + X = X)
1.7:8" (L) Compute lim+ 1
= g x+1 x-1 °

1.7.9 (L) Suppose that lim f(x) and %}g g(x) exist and that

f(x) < g(x) for all x. Prove that %ig £ (%) & %&g g(x).

L.%0.2
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Functions, and Limits

UNIT 8: Mathematical Induction

1. View: Lecture 1.060

2. Read: Supplementary Notes, Chapter V, "Mathematical
Induction."

3. Exercises:

1.8.1 Prove by induction that 1 + 2 + ... +n = n___(2+1)
2 2
1.8.2 Prove by induction that 128 aas & n =08 (n:l)

1.8.3 Prove by induction that 1 + 3 + ... + (2n-1) = n2

1.8.4 Prove by induction that:

<
la; + coo +a | = |ag| + ..o+ o] .

1

1.8 1
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STUDY GUIDE: Calculus of a Single Variable - Block I: Sets,

Functions, and Limits
QUIZ

(a) Use circle diagrams to prove that (Al B)!' = a'N B'.

(b) Apply mathematical induction to part (a) to deduce that
] 1 1
"=
a,Ua,U...U0~1) a N A,N...Na.

(c) Use circle diagrams to show that
AN (BUCI' = a'U (8B'N c)

(a) Let A =1{1,2,3,4}. Define f:A + A by
£(1) =2, £(2) = 4, £(3) = 1, and £(4) = 3. Describe £~

(b) Let R denote the set of real numbers and define f:R * R

by
f(x) - 3x g 4
A -1
Describe £ 7,
The curve C is described by the equation y = x3 - 2x2. Let
P(xl,yl) and Q(xl + AXx, Yy + Ay) denote any two points on C.

(a) Find the slope of PQ in terms of Xy and Ax,
(b) Find the equation of the line tangent to C at P(xl,yl).

(c) A line is drawn tangent to C at the point (3,9). At

what point does this line intersect the x-axis?

Let f be defined by f(x) = 2x - 3, where 0 £ x § 4, Sketch
each of the following curves:

]
I

£ (x) (b) vy f(x + 5) (c) y = £(x) + 5

f(4x) (e) vy

(a) vy
4f (x) (£) y = |[f(x)|

(a) vy

Q.3
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STUDY GUIDE: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Quiz

5. We know that lims 1 = @
/x=1
(a) For a given M > 0 determine how close x must be to 1 if
1 > M
x- -

(b) In particular, describe the size of x if > 1000.

X

1.Q.2
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,

Functions, and Limits
PRETEST
(a) {x: x> - 4x + 3 = 0} (b) {1,3}

(a) and (b) They are unequal unless all C's are A's

(c) It is ambiguous since (A () B) U C need not equal

aN@Uc

(a) 27 (b) 6 (@) £1) =3, £1@2) =1, £713) =2

2+x, if -2 £ x< 0 x=-2, if 0 § x & 2
(a) £(-x) = (b) -£(x) =

0, otherwise 0, otherwise

-x-1, if -3 g x < -1
(c) £(x+3) =
0, otherwise

-2x-1, if -3 § X g sl
(d) £(2x+3) =

0, otherwise

(a) g(3) = 6 but £(3) is undefined; otherwise f(x) = g(x)

(b) Yes







5 65 S ) ) m e em e

&S & &a em e

€3 31 613

| |

SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits

UNIT 1l: Sets

p I o 0

(a) Recalling the convention that when we list a set we

enclose it in braces, we have
A = {a,b,c,d}

(b) A has 16 subsets. To see this, let us observe that
each element of A either belongs to a chosen subset or it
doesn't; moreover, the choice of whether one element belongs to
the subset in no way affects the choice of whether a second element
belongs to the subset. Thus, there are 2x2x2x2 = 2% = 16 subsets*
of A.

Another way of seeing this result might be to think in
terms of a code wherein 0 means that the element does not belong
to the subset and 1 means that it does. So, as far as whether
a belongs to a particular subset we have the two choices

a
0 (a doesn't belong)

(1)
1 (a does belong)

Moreover either of the above two choices holds, whether or not
b belongs to the subset. That is

*If how we arrived at 2x2x2x2 is not clear, continue
for ‘a more complete explanation.




SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 1: Sets

[1.1.1(L) cont'd]

|o
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(neither a nor b belong)
(a belongs but b doesn't)
(b belongs but a doesn't)
(both a and b belong)

(2)

=~ = O O
H © = ©

Again, either of these four choices may occur,whether or not
c belongs to the given subset. Thus

c b a
0 0 0
0o o0 1
0o 1 0
0 1 1 (3)
1 0 0
1 0 1
1 1 o0
1 I %

Finally, we observe that each of the 8 possibilities that
exist in (3) exists regardless of whether d belongs to the given
subset. This leads to

d ¢ b a

0 0 0 0 -+ This subset corresponds to @

0 0 0 ; § (4)
0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 1: Sets

[1.1.1 (L) cont'd]

(4)

H H H OO
H R M H O O ©O O K M
H H OO HKFH OO KK

+ This subset corresponds to A, itself

Moreover, if we now read the rows of (4) from top-to-bottom and

use our code we see that our sixteen subsets are:

only dif-
g {a}*, {b}, f{a,b}, {c}, {a,c}, {b,c}, {a,b,cl, ference be-
1 ¢ ¢ i I 0 ¢ $ ~~ tween cor-
.~ responding
'[d}; {a-fd}l {brd}: {a,b,d}r{C;d} ,{a,c,d} ,{b,c,d} l.,-[g‘:-,]_"b,,c’,d_} subsets is
whether d
belongs

Notice also that there are other ways of reconstructing the
results shown in (4). For one thing, if we read each row of (4)
as a binary number, then our rows name the sixteen numbers, 0
through 15 (in our usual decimal notation). For another thing,

we could use the following "branch" diagram:

*Again, notice that we write {a} rather than a. Aside from
our agreement upon symbolism, there is a conceptual difference as
well., For example, if S denotes the solution set of x - 1 = 0,
there is a difference between saying 1 € S and S = {1}, Among
other things,l € S does not imply that S = {1}. That is,

1 e {x: x4 - 4x + 3 = 0F but {x: X2 - 4% + 3 =0} = $31,;3F




SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 1l: Sets

[1.1.1 (L) cont'd]

(path shown by
arrows is read as:
d doesn't belong
c does belong

b doesn't belong _ 1

a does belong) ////, ////'\\\\
A ANYARYAN
0 1 0 1 0 1 0 1 (does b

NAANAMANA D =

(does d belong)

01 01 01 (does a
belong)

(sixteen paths to follow)

Notice also that (1) implies that there are two subsets of
a set which has one element; (2) implies that there are four
subsets of a set which has two elements; and (3) implies that
there are eight subsets of a set which has three elements. Our
other analysis indicates that every time we add a member to a
set we double the number of subsets (since every subset of the
original set is a subset of the augmented set whether we add the
additional element to it, or not. In other words, then, we would
expect that if a set has n elements it has 22 subsets.

(c) To answer this question we can return to our chart (4)
and count the rows which have exactly two l's. In this way, we
find that there are six such rows, and the six subsets are listed
explicitly as

{a,b},la,ct,{a,d},{b,cl,{b,d}, and {e,d},

1.1.4

(does c belong)

3 §9% &% €131 €32 L2 2 £ E2 1
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit l: Sets

[1.1.1 (L) cont'd]

of course we might not want to have to list all the possibilities
just to get the right number. For example, as we saw before if A
has n elements our chart will have 2" rows and 2" gets large very
rapidly, (For instance,220 exceeds one million as can be
checked by direct computation; hence if A has twenty elements

it has more than one million subsets. Thus the chart for listing
the subsets of A would have to have more than one million rows.)

In short, this may be one of those times when we would like
a clever way of counting that does not involve the usual type of
explicit enumeration. To this end, recall the notation C(n,r),
meaning the number of ways in which r elements can be chosen from
a set of n elements, without regard to order. We emphasize that
order is not important since the sets {a,b} and {b,a}l are equal.
That is, a set does not depend on the order in which we list its

members. Recall that C(n,r) is given by:

C(n,r) = ;

In our present example, we have n = 4 and r = 2. That is, there
are C(4,2) subsets of A which have two elements; and C(4,2) =
4! 24

2T T <

Without falling back on a mechanical-type of formula, we
see that one of our elements could have been any one of the four,
while the second could have been any one of the remaining three.
Thus, we could have picked a pair of elements in 4 x 3 = 12
different ways. Of these twelve ways, six would be a different
listing of the other six, such as {a,b} and {b,a}. Thus, the answer
of 12 takes order into account. Without regard to order, the

answer is 6.

Lal<5
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Functions, and Limits - Unit 1l: Sets

[1.1.1 (L) cont'd]

(d) We have solved (d) in our solution of (c). Again,we
wish to emphasize the difference between being able to compute
a particular number of things,as opposed to having to list them
all,

(e) Here we wish to emphasize how the same abstract mathe-
matical situation can apply to different physical situations.
The assumption that we do not have a "loaded" coin (such a coin
is often referred to as a "fair" coin) means that the event of a
head turning up on a given toss is as likely as that of a tail
turning up. At any rate,we can now think of A as being the set
of four coins (where we assume that tossing one fair coin four
times is the same problem as tossing four fair coins once). If
we now think of 0 as denoting heads and 1 as denoting tails, our
chart (4) can now be interpreted to show that there are 16 diff-
erent ways in which the coins may fall, of which 6 yield exactly
two heads and two tails and the other 10 don't. Since the events
are EQUALLY LIKELY, we say that the odds are 10 to 6 (5 to 3)
AGAINST THE EVENT. We also say that the probability of the event
is 6/16,0r 3/8,where the probability is defined to be the ratio
of the number of successes to the total number of possible out-
comes, PROVIDED THAT ALL OUTCOMES ARE EQUALLY LIKELY.

If the events are not equally likely,we must be a bit more
cautious and introduce appropriate weighting factors. For
example, when we toss four coins there are five* mutually-exclusive

*There are, of course, many other possibilities. For example,
we can get the two mutually-exclusive possibilities that (1) we
get four heads,and (2) we don't., This does not mean that the
probability that we get four heads is 1/2. Rather, four heads
occurs in only one way,while not getting four heads happens 15
ways. Thus,(2) should nave a "weighting" factor of 15.

I:.1.6
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SOLUTIONS: Calculus of a Single Variable - Block l: Sets,
Functions, and Limits - Unit 1l: Sets

[1.1.1 (L) cont'dl]

possibilities, one of which must happen., Namely: four heads and
no tails, three heads and one tail, two heads and two tails, one
head and three tails, or no heads and four tails. Only one of these
five includes two heads and two tails; yet we do not say that the
probability of getting two heads and two tails is 1/5, SINCE THE
OUTCOMES ARE NOT EQUALLY LIKELY, More explicitly,

outcome number of ways (according to chart (4))
4H,0T 1
30,17 4
2H,2T 6
1H,3T 4
OH, 4T s il
16

Notice that 2H,2T is more likely than any other single possi-
bility, but the total of all other possibilities exceeds the
number of ways in which 2H,2T may occur.

(a) We have 2x2x2x2x2x2 = 26 = 64 subsets.

(b) There are C(6,3) subsets which have exactly three

members. More explicitly C(6,3) = §$§T = 6'2'4 = 20.

(c) There are C(6,2) = 6x5 = 15 such subsets.
2

(d) There are C(6,4) = 15 such subsets.
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Functions, and Limits - Unit 1: Sets

[1.1.2 cont'd]

(e) The answers to both are the same. The reason for this
is that each time we explicitly choose two elements, we implicitly
choose four other elements, For example, if A = {a,b,c,d,e,f} and
we choose the subset {b,e} then we implicitly determine the set
of remaining elements {a,c,d,f}. (In modern language, there is a
one-to-one correspondence between the set of subsets of A which
have exactly two elements and the set of subsets of A which have
exactly four elements.

(f) There are 64 possible (equally-likely) outcomes [see (a)]

of which 20 involve exactly three heads (or tails) [see (b)]. Thus
the probability of obtaining exactly three heads and three tails

§ 20 _ 5 : x : :

is 7 S - (That is, the odds against this happening are
11 to 5.)

1.1.3 (L)

(a) Regardless of the universe of discourse, the set-builder

notation has us write
s = {x:x4 = X},

(b) If the universe of discourse is allowed to be the set
of complex numbers, then our solution set would be given in roster
form by {1,-1,i,-i} where, as usual, i denotes y-1. That is,

o
i” = =1,

Of these four numbers, all are complex numbers; 1 and -1
are the only ones which are called real numbers, 1 would be the
only real, positive numbers, and none of the four are even
integers. Thus we would have

3 D
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 1l: Sets

[1.1.3 (L) cont'd]

(1) {1,-1,i,-i}

(ii) {1,-1}
(iii) {1}
(iv) g

Note especially well that the answer to (iv) is written as #.

We do not write {@}. That is, if S is the solution set, we are
saying that S = g (obviously, we can't do any more than that if
we wish to list the elements of a set which has no members) and

that it is false to write S = {f#}.

This is more than a whim. The sets @ and {@} are concep-
tually very different. Among other things, @ has no elements
while {@} has one element, namely .

As a second illustration, let S denote the set of all sets
which have no members. Certainly there is at least one set with
this property, namely @. Since S has at least one member, it
cannot be the empty set. That is, S # #. On the other hand, only
g has no elements, hence S = {g}. Hence {@}# #.

If we desire still other reasons as to why{@}and ¢ are
different, recall that for any set A, A ¢ A, In particular, since
g is a set, we must have that ¢§ ¢ g. On the other hand, @§ e {f}.

As a final interpretation, recall that we may view a subset
of a set as being whatever part of the set we wish to choose.
Our extreme choices range from taking nothing (the empty set) to
taking everything (the universe of discourse in this case, the
set itself.) In this sense, then, it is easy to see why both the
set itself and the empty set are considered subsets of any set

(another reason would be that our nice result that a set of n
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Functions, and Limits - Unit 1l: Sets

[1.1.3 (L) cont'd]

elements has 2" subsets would have to be replaced by 20 -2
subsets if we excluded the set itself and the empty set from
being subsets). If we took all of the elements we elected to
choose, the empty set would correspond to our taking an empty
bag. Clearly, we can recognize the difference between an empty
bag and a bag which has another empty bag inside it.

As a final word, observe that the relation between @ and
{@} is a more subtle form of the relation discussed earlier
involving the difference between b and {b}.

1.1.4

(a) {x: (2x -3)(x+1)(x +7) =0} =5

(b) The roots of the equation are 3/2, -1, and -7. Of
these, all are real and all are rational; only -1 and -7 are
integers; and none are positive integers. Hence,

(i) s = {3/2, -1, -7}

(ii) s = {3/2, -1, -7}

(iii) s = {-1, -7}
(iv) s = @
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits

UNIT 2: Arithmetic of Sets

L2 (]

You will recall in the supplementary notes that we shaded
and/or hatched appropriate regions of a Venn (circle) diagram to
represent sets. For various reasons, it is sometimes difficult
(for example, we must shade the regions very carefully lest we
later misinterpret what region is actually shaded; such care is
very time consuming). An equivalent technique is to number (or
otherwise code) the mutually-exclusive regions in the circle
diagram. By way of illustration, we might indicate the Venn

diagram for the three sets A, B, and C by writing:

In this way, we would read A as A = {1,2,3,4} (where it is
important to note that we really mean this as an abbreviation
for A =1 U2 U3 U4. Notice also that our regions are numbered
sothat 1N 2=1N3=1N4=2N3=2N4=3MN4as=g). Ina
similar way, B = {2,4,5,6} and C = {3,4,6,7}.

With this new notation in mind, we solve the exercise as

follows:

Is2:1
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Functions, and Limits - Unit 2: Arithmetic of Sets

[1.2.1(L) cont'd]

(a) ANB = {2,4} (and a quick look at the above diagram
shows that this result agrees with what we would have obtained
by appropriately shading the proper region).

Thus (A N B)UcC = {2,4} UV {3,4,6,7} = {2,3,4,6,7} (1)
Similarly B Uc = {2,4,5,6} U {3,4,6,7} = {2,3,4,5,6,7}

Hence AN (B {JC) £12:3,4)} ) 1273;4:5:6,;7}

{2,3,4} (2)

A comparison of (1) and (2) shows that the two sets are not the
same. In fact, we can now translate (1) and (2) very neatly

into the appropriate circle diagrams. Namely:

e E— I I

aNeB Uc = {2,3,4,6,7} Al (B C) = {2,3,4)

The point is that while we could shade the regions directly, our

method seems to be a bit more objective. Our method, more
importantly, lenas itself to certain types of analysis, as we

shall see in the next part.

(b) From (a) we have that (A NB)U Cc = {2,3,4,6,7} while

AN BYUC = {2,3,4}. Since {2,3,4}C {2,3,4,6,7} we have that

for any choice of A, B, and C:

AN @BUCIC I(aNB)UCI] (3)

Bl o

L.

G 0 G B e e o

B G G G " o e




&N 6 &S & & O O o.

€3 £

M

SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 2: Arithmetic of Sets

[1.2.1(L) cont'd]

Moreover, we see at once that it is regions 6 and 7 that prevent
us from asserting equality in (3). Since our regions are mutually-
exclusive the only way we can offset regions 6 and 7 is to make

sure that they are empty. In other words, if 6 = 7 = § then:
awaNe yc-=1{2,3,4,6,7} = {2,3,4,0,0} = {2,3,4} (=2 N (B U <o)

2U3U4s U6 U7
2U3UVUaeUpgUYg
2 U3 U4

I

(In terms of unions, (AN B) UC

]

Thus we get equality if and only if both 6 and 7 are empty.
This, in turn, implies that 6 U 7 = §. If we now look at the original
circle diagram we see that 6 (J 7 represents those C's which are
not A's. Therefore, the most general condition that guarantees

equality is All C's are A's (that is, C o AYa

Again, another value of our coding system is that we do
not have to be able to recognize from the picture that 6 U 7 means
c N A' (C's which are non-A's). Rather we know that A {1,2,3,4)
and ¢ = {3,4,6,7}. Thus as soon as we know that 6 and 7 are both
empty, we have that ¢ = {3,4,0,8} = {3,4} and A = {1,2,3,4}.
Clearly {3,4}C {1,2,3,4}, and the assertion follows.

(c) If we look at A/ B (JC it seems that there are two
different ways of "pronouncing" it. One is (A /) B) (J/ C and the
other is AN (B (J/ C). But in both (a) and (b) we showed that
(AN B)U Cc and A N (B U C) were, in general, different sets.
Thus, with the parentheses missing AN B UcC can be interpreted

as two different sets.
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[l.2.d(L) cont'd]

This is somewhat similar to what happens in ordinary algebra.
For example a x b + ¢ is ambiguous (unless we add parentheses
or some other convention) since it can be read as (a x b) + ¢
or a x (b + ¢). In general these two numbers are different. For
example, (2 x 3) + 4 = 10 while 2 x (3 + 4) = 14, Thus 2 x 3 + 4
can mean either 10 or 14 depending on our voice inflection in
reading the expression. (Notice, for example, that if c¢c = 0
then a x (b + ¢) and (a x b) + ¢ are equal. We agree, however,
that equality means for all choices of a, b, and ¢, not just
for some special cases. Indeed, in (b) we were showing a special
case in which the two sets were equal even though in (a) we

showed that they were not always equal.)

Obviously, it is bothersome to have mathematical operations

which depend on "voice inflection". 1In a mathematical structure,

we prefer those operations (if we can get them) which do not depend

on this (such operations, i.e. those which do not depend on voice
inflection are said to have the ASSOCIATIVE property). Ordinary
addition (as well as multiplication) are associative since

a + b + c gives the same answer for all a, b, and ¢ regardless of
whether we read it as (a + b) + ¢ or as a + (b + ¢). This brings
us to (d).

Namely :

(d ANBNC can be read as (AN B) N corasaN (BNC).
From our diagram, we have A() B = {2,4} and BNc = {4,6}.
Hence (AN B) Nc = (2,4} N {3,4,6,7} = {4}
and A N BNc) ={1,2,3,4}N {4,6} = {4}
Thus (AN B)AN Cc=a0N (BNcC) (= {4}) and we may omit the
parentheses in A NeNc because we get the same answer no matter

where the parentheses are. That is, AN B Nc is not ambiguous.

In other words, we may say that the operation known as intersection

is associative.

Bl O G 5 = e
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 2: Arithmetic of Sets

l.2.2

Let us use the coding system:

Then: AUB {1,2,3,4,5,6}
BMNc = {4,6}
ANc=1{3,4}

(a) (AUB) Nc = {3,4,6}
aU®mNc) =1{1,2,3,4,6}
Thus [(AUB)N Clc [AU (B/NC)]. Moreover equality holds if
and only if 1 = 2 = ¢, This in turn means that:

All A's are C's

(b) (AU B) nC = {3:41'6}
(aNc)U (BNc) = {3,4} U {4,6} = {3,4,6}
Therefore the two sets are equal, since both equal {3,4,6}.

It is a widely accepted custom to write intersection as
multiplication and union as addition. Thus one finds A + B used
to denote AU B and AB to denote A () B. With this notation in
mind (b) would look like: (A + B)C = AC + BC. This greatly
resembles a well-known result of ordinary arithmetic.
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Functions, and Limits - Unit 2:

[1.2.2 cont'd]

Arithmetic of Sets

By the way, in the arithmetic expression a(b + c) = ab + ac,
we say that multiplication is DISTRIBUTIVE OVER ADDITION since the

multiplier is "distributed" over the terms being added. In a similar

way, one says that intersection is distributive over union.

Now, however, we see an important structural difference between

the arithmetic of numbers and the arithmetic of sets. Namely, in

ordinary arithmetic addition is NOT distributive over multiplication.

That is, it is not true that a + (b x c)

(a +b) x (a + ).

However, as the following circle-diagram shows, the corresponding

statement for sets is true, namely union is distributive over

intersection.
BNc
AU (BNC)

Il

{4,6}

{1,2,3,4} U {4,6}

{1’2'3'4,6}

4 @

That is

AU BNCOC

A + (BC)

AUB

13 ,2,3,4,5,61

atyc=11,2,3,4,6,7}
(A V) B) n (AU C) = {1f213f4r6}

= (AUB) N (AU Q)
(A + B) (A + C)
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 2: Arithmetic of Sets

1.2.3(L)

(a) We now use a coding device for two circles. Say:

A B I
4

Then: AUB = {1,2,3}
Therefore: (A UB)' = {1,2,3}' = {4} (1)
On the other hand, A' = {3,4} and B' = {1,4}.
Hence A'() B' = {3,4}/) {1,4} = {4} (2)
The result now follows from comparing (1) and (2). (Notice that
it might seem more "natural" to have (AU B)' = a'lU B', but
natural or not, it would be incorrect. In fact A'U B' = {1,3,4}

and this equals (A U B)' if and only if 1 = 3 = #; but this says,
if and only if A = B. That is, if A # B then (A U B)' cannot
equal A'(J B'.)

(b) Referring to the given diagram:
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Functions, and Limits - Unit 2: Arithmetic of Sets

[L.2.3(L) cont'd]

X UB
XlJc

{1,2,3,4,5,61
{1,2'3;4'6'7}

Thus XU B = X U C if and only if 5 = 7 = g. So, all that is
required for X UB = X (J C is that all B's be either X's or C's
(that is, 5 denotes B ) X' 1 C') and that all C's be either X's
or B's. Certainly this can happen without having B = C. (For
example, one possibility would be that B and C were different
subsets of X. In this event both X U B and X |/ C would equal

X but B # C.)

(c) From (b) we know that X U B = X {J ¢ implies that both
5 and 7 are empty. Thus we already know that B = {2,4,6}and
c = {3,4,6}. We next have that: X/N B = {2,4} and X NcCc = {3,4}.
Hence X (B = X /)C implies that 2 and 3 are empty. Coupling
this with our previous knowledge that 5 and 7 are empty, we see
that B = {4,6} and ¢ = {4,6}. Hence B = C. (This is known as
the "cancellation" law for sets. That is unlike the analog for
numbers if either X{U B =X UC or XN B = X/ C we cannot be sure

that B = C - in other words, we cannot "cancel" X from both sides

of the equation. However if both conditions apply simultaneously,
we can.)

1.2.4

This problem gives us a nice application of circle diagrams
and also serves as an illustration of how the diagram may actually
be easier to handle in some situations than the more analytic

"recipes".

1
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets, .
Functions, and Limits - Unit 2: Arithemtic of Sets

[L.2.4 cont'd]

Stated analytically, this problem asks us to find N(A'/) B/ C').
[Note that A'/) B /N C' is another way of saying the set of all B's
which are neither A's nor C's], given that:

N(AUY B UC) = 280
N(ANBAC) = 20
N(A M B) = 30
N(A N C) = 50
N(B NC) = 60
N (A) = 120
N(C) = 160

The recipe stated in the supplementary notes is fine if

all we want to do is determine N(B). Namely:

N(AUBUC) = N(A)+N(B)+N(C)~-[N(A/B)+N(ANC)+N(BNC)1+N (AN BNC)
or:

280 = 120 + N(B) + 160 - 30 - 50 - 60 + 20

or:

N(B) = 120

But we want only part of B and analytically this means that we
must find some way of expressing A'() B () C' in terms of the given

sets.

In a more rigorous treatment of sets we would have to come
to grips with such problems, since we often would have several
sets rather than just three. As we have seen in the previous
exercise, the circle diagrams (and equivalently, the charts) get

out of hand quite rapidly when we deal with many sets.




SOLUTIONS:

Functions, and Limits - Unit 2:

[1L.2.4 cont'd]

Calculus of a Single Variable - Block I:

Sets,

Arithmetic of Sets

However, with just three sets, we can utilize the given

information to arrive at:

A B
@ (since N(ANBANC)
c

V

A

(since N(A NB)=
30)

7

B

@

C

}

(since N(ANC)=
50)

(since N(B NC)=
60)

Y+2s20

20

A

A

)

A

(29

T

S

c

.« N(BNA'NC')=50 ans

i

@

B
i

(since N(C) =

Jao>

g

C

B

{20 m (since N(A) =
- étk"
: i

(since N(AUBWCQC)=
280)

160)

120)
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,

Functions, and Limits

UNIT 3: Analytic Geometry

1.3.1(L)

A given line (or, for that matter, any curve) can be repre-

sented by many different equations. For example, the equation of

any line not parallel to the y-axis can be written in the form

y = mx + b,where m is the slope of the line and b is its y-

intercept. Such a form is particularly convenient if we want to

write the equation of the line in a way which emphasizes its

slope and y-intercept. 1In this exercise, we are being asked to

find a convenient equation for the line if we wish to emphasize

its x- and y-intercepts.

One way of tackling this problem is to use the previous

form y = mx + b*. Since the line passes through
its slope is given by (b - 0)/(0 - a), or -b/a.

equation becomes:

y = (-b/a)x + b

Clearing of fractions, we obtain

ay = -bx + ab; or bx + ay = ab

Dividing both sides by ab (which we can do since

the desired result:

(x/a) + (y/b) =1

*The fact that in this exercise a and b are
that our line intersects both the x- and y-axis.
parallel to the y-axis. Therefore y = mx + b is
form for the equation of L.

(0,b) and (a,0),

Thus our

ab # 0) we obtain

numbers means
Hence our line is not
an acceptable




SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 3: Analytic Geometry

[1:3.:1(E) ‘cont'd]

0f course there was nothing crucial about the equation
y = mx + b except for its convenience. We could have fallen

back to the basic equation:

¥ =g

X = A
o

= m

. ' ~-b
where (xo,yo) is (0,b) or (a,0), and m = =

At any rate, it is hoped that our presentation emphasizes
that the line remains the same - only its equation changes. For
example,% - % =1landy = - % x + 3 are different (but '
equivalent) equations for the same line. One form emphasizes
that (2,0) and (0,3) are points on the line, while the other

emphasizes that (0,3) is on the line and - % is its slope.

Which of the two forms is better depends on the particular
problem involved. Perhaps there are situations in which
neither form is advantageous. For example, it is possible
that we have a "radar-type" situation, in which we know the
perpendicular distance of the line from the origin and we also
know the angle this perpendicular makes with the positive x-axis.
Letting 6 denote the angle and p the distance, it might be
advisable to express the equation of the line in terms of p and 6.
(This is true in general in mathematics. When there are alterna-
tive ways of expressing a relationship, we try to choose the way
which utilizes the measurements we have available. As a
rather trivial example, consider the case of a freely-falling body

near the surface of the earth, starting from rest. The
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 3: Analytic Geometry

[L.3.1(L) cont'd]

typical elementary physics text explains the three recipes:

v = gt; s = l/2gt2; and v2 = 2gs. The three recipes are equiva-
lent, but the one we use in a given problem depends on what we
want to determine and what is known. Thus if t is known and we

wish to find v, we would use v = gt, etc.)

L3

siné = p/b; .- b = p/sind

cos® = p/a; .» a = p/cosH

r—

i = P = B _ i
Observing that a cosh and b sing’ we can invoke the

result of Exercise 1.3.1(L) to obtain:

X + = 1 or;
p/cosb D/sino

X C;SB 3 Z S;I'l 0 — 1 or;

X cosf + ysind = p




SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 3: Analytic Geometry

1.3.3(L)

(a) Here again we can solve the problem graphically - but we don't
have to. (By the way, once again let us point out that we are not
belittling the concept of drawing to scale. Rather, (1) it is
unnecessary to take the time to do so and (2) if we were dealing
with more variables - for example had we been dealing with planes
rather than lines - it would be difficult to draw things to "true"
scale (not to mention the fact that we can't even draw the graph of

a linear equation in more than three variables).

Had we wished to solve this problem graphically, the key
construction would be to observe that if we know a point Q(xl, yl)
on the line whose slope is m, then we can locate a second point on
the line merely by taking (xl + l,y1 + m), since slope m means y
changes by m units when x changes by one unit. [ Whether the
line is rising or falling is taken into account algebraically by
Yy + m. That is, if m is negative we are in effect subtracting
the magnitude of m from yl.] In any event, we obtain a graphical

solution as follows:

We draw L, and L, and

measure the coOrdinates

of their point of intersection.
That is point P (x,y).
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€3 £ 12

E 3 3

A EE s

- O EE O -

R e e




il S & & h D R B BE B B e

&l a &a =

3

3 N

SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 3: Analytic Geometry

[1.3.3(L) cont'd]

of course, in terms of our lecture concerning the concept of
points-versus-dots, we are faced witn the general problem
(although it is rather trivial in this particular example)that
we can, at best, only approximate the coordinates of the pbint of inter-

section,since all of our constructed lines have a certain amount
of thickness. That is, with the usual line, how shall we distin-

guish between, say, (1,2) and (1.00002,1.99998)?

The advantage of the analytic solution is that when we
write an algebraic expression,such as x = 1, we have the equivalent
of a point rather than a dot. We only run into trouble when we
locate x = 1 on the number line, even though there are many times
when the accuracy of a diagram is sufficient for the problem and
the diagram is much easier to arrive at than the more analytic

result.

To find the point P analytically, we know that it
belongs to both lines L1 and L2. The slope of L2 is the
same as the slope of the line segment AP, since we have already
seen that the slope of a line is WELL-DEFINED, in the sense that
we get the same slope no matter what two distinct points we choose
on the line. Since (-1,0) is on L2 thg slope of AP is given
by [y - 01/[x - (-1)]; or y/(x + 1). (Notice again how the
algebraic signs take care of themselves, without our having to
draw a picture.) On the other hand, we are given that the slope
of this line is also +l1. Since a line has but one slope, it

follows that:

I.3.5




SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 3: Analytic Geometry

[1.3.3(L) cont'd]

We are told that the slope of OP equals 2. Since (0,0)is on
OP, the slope of OP is also given by (y-0)/(x-0) = y/x. This tells
us that:

= 2 (2;

2
I

Where the lines.intersect, their x- and y- coordinates are the same.
Here we solve by using y.
(1) and (2) can be written in the form:

y x + 1 (3)

y 2x

Il

Solving the pair of simultaneous equations in (3), we find rather
quickly that x = 1 and y = 2.,

A few passing remarks may now be in order.
(a) The fact that the slope of L, is 2 means that

Ay - (4)

If we compare (4) with (2), it seems that the A's "cancelled"

just as in ordinary cancellation of common factors. Observe
however that A is not a number - it is an OPERATOR which, when
operating on a number, prefaces it by "the change in...". We must
never cancel W' or confuse it with a number. The only reason that
(2) and (4) looked so much alike was that, if our point of origin
happens to be (0,0), our point of termination (x,y) also happens to
be labeled (Ax, Ay). Although we won't prove it'here, the

only time Ay/Ax and y/x are identical is when we have a straight
line passing through the origin (0,0).
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 3: Analytic Geometry

[1.3.3(L) cont'd)

(b) The wording of this problem refers to "a point P".
Actually P is a UNIQUE point, since it lies on the intersection
of two non-parallel lines (we know that L, and L, are not parallel
since they have different slopes); and two non-parallel lines in
the plane intersect at ONE and ONLY one point. In this way,
notice how understanding the geometrical interpretations
involved help us to VISUALIZE what must be happening analytically.

In terms of Analytic Geometry, observe that what we did was to
relate an algebraic expression, y = x + 1 with a picture - the
line passing through (-1,0), with slope equal to +l.

In the language of sets: .
{(x,y): y=x+ 1}

can be viewed either as a set of ordered pairs of numbers or as
a set of points in the plane., As a set of points, the relation

determines the line L2.

1.3.4(L)

This three-part exercise breaks down the problem of finding
the perpendicular distance from a point to a line into three
consecutive steps. In essence we are saying that, knowing the
slope of a given line, we also know that its negative reciprocal
must be the slope of the line L through the given point A which
is perpendicular to the line L'. If we then solve the two
equations of the lines L and L' simultaneously, the solution
labels the point on L', B, which is the foot of the perpendicular
from A to L'. The length of this segment, AB, is then clearly
the perpendicular distance of the point A from the line L'.

I.3.7




SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 3: Analytic Geometry

[1.3.4(L) cont'd]

This is precisely the mechanism behind the rather abstract
proof of the formula for finding the perpendicular distance from
a point to a line.

At any rate, returning to the specifics of this problem, if
we rewrite L' as y = -2x + 4, we see at once that its slope is
-2 (why?). Hence, since L is perpendicular to L' its slope must
be 1/2.

Then since (-2,2) is a point on L, we have that a point (x,y)
is on L if and only if E—%—%:%T = 1/2. Upon proper simplifi-
cation of this equation, we see that an equation for the line L
is given by 2y - 4 = x + 2, which in turn may be written as
X = 2y - 6; and this is the answer to part (a) (although, of

course, there are other forms that the correct answer may assume).

For part (b), we have that (x,y) is on L' if and only if
2Xx +y = 4; and (x,y) is on L if and only if x = 2y - 6.
Observing that B the point of intersection of L and L' is the
point which belongs simultaneously to both lines, we see that the
point B(x,y) which we seek must be determined as the solution to

the pair of simultaneous equations:

2x +y = 4
X =2y - 6

Solving this set of simultaneous equations we find that the point

of intersection of L and L' is given by (2/5, 16/5).

As for part (c) we observe that for the line segment AB,
AXx = -2 - 2/5 and Ay = 2 - 16/5. Since the length of AB is pre-
cisely /Q&x)z + (A y)z, we see that the required distance is given
by /(12/5)% + (6/5)% or VIZE/Z5 ¥ 36725 = /I80/25 = 6/5/5, which

is the correct answer.
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 3: Analytic Geometry

[1.3.4(L) cont'd]

As a final check that we obtained the same answer as that

which we would have obtained from the formula

|Axl + Byl + Cl*
- 2

d
/A% + B

(where (xl,yl) denotes the given point and Ax + By + C = 0 is
the equation of the given line), we need only let X, = -2 and
¥y = 2. Then we could rewrite the equation of L' in the form
2x + y - 4 = 0; whence A =2, B=1and C = -4, Plugging these

values into (1) we see that we obtain the correct value for d.

In closing this problem, it might be valuable to you to
return to the proof given for the distance between a point and a
line and to see if the abstract proof seems more "real" now that
you have dabbled with an example in which "concrete" numbers are
used., Quite in general many abstract mathematical situations
become more understandable if we first "play around" with examples

which use specific numbers.

1:3.5

The recipe (xl,yl) = (4,1) and Ax + By + C = 0 in this case

.

means 3x -y - 5 =20 ce Xy = 4, ¥y = l, A=3,B=-1, C= -5,

*We shall study the significance of absolute values in the
next unit. For now it is sufficient to know that for any number X
|x| (called the absolute value of x) means the magnitude (size) of
x. In the present context, observe that distance is by definition
non-negative while Ax., + By, + C might be negative. Writing
|Ax, + By, + C| stresSes thé fact that we are dealing with magnitudes.
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Functions, and Limits - Unit 3: Analytic Geometry

[1.3.5 cont'd]

Hence by formula:

S Byt el 3y -1 -5 6/10

E . SO0
AL+ B2 AFT /15 = IO

mg

To do this more systematically, in the spirit of Exercise
1.3.4(L), we have

A\ (4,1)

L', " 3x -y =25

or y = 3X 5
P - Fa l
- My 3..mL Sl

&
L
equation of L: %—E—% = - % or x + 3y = 7

Since C belongs to both 1, and L' we find that it is
determined by:

11
X + 3y =7 . X = —= $ 11 8
3 Y 3 } ] 5 . e C-_— (_g__ ” _5_)
X - Y .S _ 8
Y =3
T 11, 2
ss BC = /(; - 7;) + (1 - %)2 = %% + {% = %%.: % JI0
I¢3Ilo
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 3: Analytic Geometry

1.3.6(L)

It should be clear that the two given lines are indeed
parallel (since they have equal slopes). The major place for
misinterpretation in a problem such as this is to oversimplify
what is happening. For example, it is possible that you might be
tempted to subtract one equation from the other and conclude

that the distance between the lines was |b' - b"|. (Again use
absolute values since we are looking for a magnitude. In other
words, one of the pair of numbers b' - b" or b" - b' is non-

negative; and that is the one we choose). However, if we do this
we have found the VERTICAL distance (which is not necessarily the
perpendicular distance. In fact unless m = 0 which occurs when
the lines are horizontal, the perpendicular and the vertical

distances will be different). In terms of a diagram:

y = mx + b"

¥
y = mx + b'
(In our diagram b" > b'. Since
this need not be the case, we had
best write |b"-b'|)
S a |cose| = TEW%ETT Here we write
6 : |cose| since the
|b"-by | lines could have a
fi / negative slope - in
o which case 6 > 90,
/ ;"{O b') S.d o= |-b"_hII | |C056| and .. cosf < 0,
/ '
6 6 -

/// B
Since m = tanf, a convenient diagram for determining |cose|

(or for that matter, any other trigonometric function of 8) is

to draw the "reference triangle"

I.3.1l1
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Functions, and Limits - Unit 3: Analytic Geometry

[1.3.6(L) cont'd]

This says tanf =m

Then by the Pythagorean Theorem,

s
X m |cose| = -;2
B vl <+ m
1

(The problem with our reference triangle is: (1) m might be

negative, (2) whether m is positive or negative there are two

quadrants in which 6 can be located. Such considerations "merely"

affect the algebraic sings; hence the use of absolute values
solves our problem.)

Gl G s

) - e

t 3 €3

t3» 3 2

That is, if tan6 = m, we cannot be sure that tan® and cos6

have the same sign. What we can be sure of is that cosf = + x x
1 %) ;1 + m§

However this insures that |cosf| = ﬁ
1l +m

" d = ul
2 Yl + m

I.3.12
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 3: Analytic Geometry

[1.3.6(L) cont'd]

Although it wouldn't be considered a proof in any way,
notice how (1) reaffirms our claim that vertical and perpendicular
are the same only when the lines are horizontal. Namely only if

m = 0 is our correction factor equal to 1.

An interesting aside is that this result gives us an alterna-
tive method for finding the distance from a point to a line: We
find the equation of the line which passes through the given point
parallel to the given line and then use the result of this exercise
to find the perpendicular distance between the two lines.

For example, suppose the line is given by ax + by + ¢ = 0
and the point is (xl,yl). From the fact thatax + by + ¢ = 0 it
follows that:

y = (-a/b)x + (-c/b)

Thus the slope of our line is given by m = -a/b and its

y-intercept is given by b' = -c/b.

Now to find the equation of the line which passes through
(xl,yl) parallel toax + by + ¢ = 0, we need only solve the slope
equation that (yl - b")/(x; - 0) = -a/b, where b" is the y-
intercept of this line. Solving this equation for b", we obtain:

n
b" = Yy, + axl/b

Combining this with the fact that b' = -c/b, we obtain
X
"o _ 1 - = o
| b b'| |Y1 ¥ axl/b + c/b| lbl laxl + by, + c|. Moreover

Y1l + mE = ]%I /a® 4 b2; whence it follows that

d = |ax, + byl + cl//a2 + b2 (what happens if b = 0?).

; 8

1.3z13
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Functions, and Limits - Unit 3: Analytic Geometry

2.3 7(L)

From one point of view the study of inequalities may be
viewed as being a bit premature at this stage of our course,
From another point of view, however, the fact is that in the study
of calculus (or for that matter in most numerical mathematics

situations) we are often more interested in inequalities than in

equalities. For example, in this course we shall often be interested

in investigating cases in which the difference between two numbers
must be LESS THAN a certain amount.

If we apply this notion to the idea of straight lines, let
us observe that we are often as interested in finding all points
(or ordered pairs of numbers), (x,y) for which, say, y < 3x - 5

as we are in finding those points for which y = 3x - 5,

For these and a multitude of other reasons, we wish to intro-

duce inequalities as quickly as possible,

In this exercise we shall also try to emphasize our theme
of analytic geometry by juxtapositioning the algebraic and
geometric techniques for solving the problem.

With this in mind we proceed with the solution of the

exercise.

(a) We are given that a < b and we want to show that
a+c< b+ c. According to the definition, a + ¢c < b + ¢ if and
only if (b + ¢) - (a + ¢) is positive. But (b + ¢c) - (a + c) is
equal to b - a; and SINCE WE ARE GIVEN THAT a < b, the definition
tells us that b - a is positive. Therefore in this case (b + c) -
(a + c) is positive; whence the result follows. An almost word-

for-word treatment can be used to show that a - ¢ < b - c.

In terms of geometry a < b merely means that a is to the left
of b on the number line., If a is to the left of b and we move the
same amount (c) from both points a and b, the point we arrive at
having left point a will be to the left of the point we arrived at
after leaving b. (-c merely means that we moved in the direction
opposite that of c.)

I.3.14
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 3: Analytic Geometry

[L.3.7(L) cont'd]

We are not advocating one method over the other. Rather both
are important. The picture is easier for us to interpret, and
the analytic approach captures the spirit of logic wherein we
only accept those results which follow inescapably from our
stated assumptions. Moreover, the logical (analytic) approach
still makes sense even in those cases for which there is no

convenient picture.

(b) To show that a + ¢ < b + d we must show that (b + d) -
(a + c) is positive. This may be rewritten as (b - a) + (d - ¢).
Since we are given that a<b and ¢ < d it follows by our defini-
tion that both b - a and 4 - ¢ are positive, then since the sum
of two positive numbers is positive, it follows that (b - a) +
(d - ¢) is positive - and this is precisely what we had to show

to prove the given result.

Again in terms of lengths this means that if a "is shorter
than b" and c is shorter than d; then the combined length of a
and c is shorter than the combined length of b and d.

As for the second part of this problem, a counter-example
(that is, merely one case in which the result is false) is the
fact that 4 < 6 and 1 < 5 yet it is not true that 4 - 1 < 6 - 5,
in other words, when we subtract, the fact is that the more we
take away the less we have and this causes problems. By the way,
observe that the assertion in the problem CAN be true SOMETIMES
(for example 4 < 6 and 1 < 2 and 4 - 1 < 6 - 2). However by
truth we mean ALWAYS TRUE. Thus as soon as there is one case in

which the result fails to hold it cannot always be true.

I.3Il5
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[1.3.7(L) cont'd]

To see what happened here from a more analytical point of
view, we are given that a < b and ¢ < d. This means that both
b - a and d - ¢ are positive. Now we want to investigate the

relation a - ¢ < b - d. For this relation to hold it is necessary
that (b - d) - (a - ¢) be positive. This in turn can be rewritten

as (b - a)+ (c - d). Since d - c is positive, ¢ - d is negative.

Hence we are adding a positive and a negative number in the

expression (b - a) + (c - d); and such an expression can be either

positive, negative, or zero, depending on the magnitudes of the

involved numbers.

A very important by-product to this exercise is the fact
that we must be very careful when we deal with the meaning of
"self-evident" in inequalities. It may seem that equals sub-
tracted from unequals should be unequal "in the same sense" but

notice that the order of the inequality changes.

1.3.8

(a) a<bs>b=-2as>0
L.,c>0+c(b-a) >0+cb-ca>0+cb > ca+ ac < bc

If ¢ is negative then b - a > 0 - c(b - a) < 0 (since
negative times positive is negative).

.
.+ Cb - ca < 0

.". ac > bc

(In other words, multiplying an inequality by a negative
number reverses the order of the inequality. Failure to observe
this result will result in more than one embarrassment during

this course.)

I.3.l6

£ 3

1 L 1

3

-l e

Il EE e

aa 0

Bl Bl Ea 0

Ea




_——

SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 3: Analytic Geometry

[1.3.8 cont'd]

(b) a<b-+b-a>0
fiow == = 228
a b ab

But b - a > 0; hence ab > 0 » ba; 2 > 0 (since positive

divided by positive is positive) .. a < b and ab > 0 ~»

B 1 1 I
g 07

(If a and b have different signs, i.e. ab < 0, then Eag—i

. . « 1 i
is negative and .. = E.)
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits

UNIT 4: Functions

1.4.1(L)

(a) Each a € A can have any one of three possible images
(L, 2, or 3), since there are three choices for a € A (namely,
again, 1, 2, or 3). We have that there are 33 or 27 functions

f: A > A, In terms of branch diagrams:

oA N N
f(3)=l//2\3 1/!\31/*;3 l/i/31/131%£\3 {'5\3 1%2 351\5

3

(b) The list is chopped to six as soon as we require that

f be 1-1. In this case our diagram becomes

l \ | \ / 3\
A
3 2 3 1 2 ik
(1) (2) (3) (4) (5) (6)

I.4.1




SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 4: Functions

[1.4.1(L) cont'd]

More specifically, our six elements of {f:f:A » A, f is 1-1}

are
(1) I(l) =1 (2) g(l) =1 (3) h(l) = 2 (4) £(1) =
I(2) = 2 g(2) = 3 h(2) =1 £(2) =
I(3) =3 g(3) = 2 h(3) = 3 £(3) =
(5) k(1) =3 (6) gq(l) =3
k(2) =1 q(2) = 2
k(3) = 2 g(3) =1
(c) We know that f-l is characterized by
e = 1; £ (£2) = 2; ana £7H£(3)) =3 (D)
In this exercise £(1) = 2, £(2) = 3, £(3) =1; hence (i) becomes:
£l2) =1, £l@3) =2, £t@) =3
That is
f—l
-1 1 1
£ (1) =3 Pictorially: -
£12) =1 ]
£7133) =2
A A
[If we go back to (b) we see that
k(1) = 3
k(2) =1
k(3) = 2
% f_l(x) = k(x) for all x € A and dom f_l = dom k (= A)
f £ =kl

Hwr

r

i 1 £ 2
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 4: Functions

1.4.2(L)

(a) y = 2 - x represents a straight line whose slope is -1
and whose y-intercept is 2. Thus, our graph is this line on the
interval 0 ¢ X ¢ 2. Elsewhere, the graph is the x-axis (that is,

y = £(x) = 0). Thus, the graph is given by

Before proceeding to part (b) of this problem, a few words

of review about graphs and functions might be in order.
2

consider, for example, the function g,where g(x) = x", In
g
terms of a picture
G(X)
r . 2 \ \
| £ =
&(%Lt.._.;_ g-machine putput=(input utz tnds rule "input''  "output
(x™)

For the purpose of the problem we are dealing with, it is
now important to note that the use of the symbol "x "was not at
all relevant. We could have written that g(y) = yz,

g(l 1) = [ ]2, or g(3x + 4) = (3x + 4)2. What is important is
that our notation indicates that g is the rule which assigns to

any number its square.

I‘4.3




SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 4: Functions

[L.4.2(L) cont'd]

With this in mind let us now return to our Exercise.

(b) (i) We are given that f(x) = 2= % b 0 < X< 2

0, otherwise

In terms of a less restrictive notation, we could rewrite
our rule, £, by saying:

S S &8 Eam 0

2-[1,1if 0g [ ] § 2 ) and this is how we

£([ 1) = shall visualize f
0, otherwise, throughout this
entire exercise.

In particular, if we now replace [ ] by -x, we see that:

2 - (=-x), if 0 § "X § 2
f(-x) =
0, otherwise

Performing the indicated algebraic operations, we see that:

f(-x) = 2 + x, if -2 g x g 0%

0, otherwise

*Here we must be a bit careful in our use of inequalities.

Observe that when we multiply both sides of an inequality by

the same NEGATIVE number, we reverse the order of the inequality.

See Exercise 1.3.8(a).

I.4.4
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éOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 4: Functions

[1.4.2(L) cont'd]

If we were now to graph f(-x), we could find that:

We could now go one step further and plot the graphs of
f(x) and f(-x) in the same diagram. This yields:

1Y
(0,2)
A
QAB 3

4 s -8‘:,

4 +
d‘_ /

(-2,0) (2,0) =

and now, it is not difficult to conjecture that f(x) and f(-x)
seem to be related by the fact that their graphs are the mirror

image of one another with respect to the y-axis.

However, it is important to realize that while this is a nice
visual interpretation for distinguishing f(x) from f(-x), we never

have to do this to find f£(-x). Rather we need only think analy-

tically of -x replacing x as the input to the "f-machine". In
summary, the graph allows us tothink more "pictorially" - and,
I.4:5




SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 4: Functions

[1.4.2(L) cont'd]

hence, more "intuitively", but whenever we are in doubt as to

what is happening, there is no substitute for being familiar enough
with our notation so that we may obtain the desired result analy-
tically, without the aid of a picture.

(ii) Among other things, (ii) is designed to show you that
there is a basic difference between f(-x) and -f(x). In the case
of £(-x), we see that this is related to our original function £ (x)
in the sense that we have changed the sign of the input. On the
other hand -f(x) indicates that we are changing the sign of the
output (recall that f£(x) corresponds to the output of the "f-

machine") .

In terms of a graph, observe that the x-axis plays the role
of the input, while the y-axis plays the role of the output. Thus,
since -f(x) is the output which is the negative of the output f(x),
we see that -f(x) and f(x) have the same y-magnitude but are
oppositely directed. In other words, f(x) and -f(x) are related
in that their graphs are the mirror image of one another with
respect to the x-axis. Thus:

y = -f(x)

(2,0)

(0,-2)

I.4.6
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[1.4.2(L) cont'd]

(iii)

2 - x or 0 as an output depends on what the input is.

Calculus of a Single Variable - Block I:
Functions, and Limits - Unit 4:

Sets,
Functions

Here again we must remember that whether f yields

For example,

if we change the name of the independent variable (that is, the

input) from x to x + 3,

our rule becomes:

2 - (x+31if 0 g (x+ 3) § 2

f(x + 3) =

That is:

0, otherwise

-x—lif—B\sxg-l

y = £f(x + 3 =

0, otherwise

This leads to the graph:

y=f (x+3)

Notice that f(x+3) is

another bona fide function

of x. That is we could

write:

gilx)= 1% -1 if -3gxg-1
0, otherwise

whereupon g(x) = £(x+3)

Quite in general the graph of f£(x + a) is the same as the
graph of f(x) except that it is shifted a units to the left.

1.4.7




SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 4: Functions

[1.4.2(L) cont'd]

(iv) Again we wish to show the importance of the order of
operation. In this case we are going to show the difference
between f(x + a) and f(x) + a. Specifically, since f(x) is
graphically identified with the y-axis, f(x) + 3, is point by
point 3 units higher than the graph of‘f(x). Thus:

LY
(0,5)

y = £(x) + 3

(2,3)

Analytically, if h(x) = f(x) + 3, then dom h = dom £ but each
output from the h-machine exceeds by 3 the corresponding output
of the f-machine.

(v) £(2x) has the same range of outputs as does f(x), but
its graph is "compressed", compared with the graph of £(x).
Rather than tackle this idea too abstractly, let us investigate
it from the point of view of our specific problem. By our
definition of £, we have:

2 - (2x) 1if 0 g 2x g 2

£(2x) = i
0, otherwise

Gl G .
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 4: Functions

[1.4.2(L) cont'd]

That is,
2 -2x if 0 g x g1
f(2x) = .
0, otherwise.
Thus, we obtain
AY
(0,2)
y = £(2x)
— b pnt— P X
(1,0)

It is not too difficult to see that in this case the graph
seems to be the original one "suitably compressed".

(vi) Again we are emphasizing the order of operation.
f(2x) and 2f(x) are quite different. 2f(x) has the same inputs
as does f(x), but in this case each output is double the output

of £(x). Thus, our graph here is given by

(2,0)
I.4.9




SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 4: Functions

[1.4.2(L) cont'd]

Actually, both (ii) and (vi) are special cases of a more
general result. Namely, it should be noted that,as ominous as
it may appear, f(x) is merely a number. Thus, if m is any number
so also is mf(x). 1In,fact it is precisely that number which is
m times f(x).

In terms of our specific problem, all this means is that if

2-x if 0 ¢ x & 2

f(x) =
0, otherwise
then
m(2 - x) if 0 §x§2 2m-mx, if 0§ x§2
mf (x) = =
m(0), otherwise 0, otherwise

That is, as "machines) f and mf have the same inputs, but for
a given input the output of the mf-machine is m times that of the
f-machine.

(vii) Finally,we indicate the effect of two of the previous

types in a single problem. Specifically, our definition of f yields

2 - (2x +3),if 0§ 2x + 3 § 2
£f(2x + 3) =
0, otherwise
That is,
-2x - 1,if -3/2 § X § -1/2
f(2x + 3) =

0, otherwise

I.4.10
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SdLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 4: Functions

[1.4.2(L) cont'd]

Thl.'lS r Ly

3
(=5, 2)
y = £(2x + 3)

\

|

i

L X itppppbppppppt——= x
1

(_710)

PP T 1
Ty

Observe here that we must again be careful and not decide that
the +3 shifts us 3 units to the left. In fact, it is easy to
see from our specific problem that the shift was only 3/2 to the
left. The point is that,analytically, we are saying that

f(2x + 3) is f£(2[x + 3/2]).

At any rate, the main aim of this problem is to make sure
that you have the analytic tools by which one shifts, raises,
lowers, compresses, etc. graphs of given functions, and that you
learn to feel at home with such expressions as f(-x), £(2x),
f(2x + 3), etc.

1.4.3(L)

The major values of this problem are (1) it introduces us to
the concept of CONSTRAINTS (which, among other things, are useful
in the study of linear programming) and (2) it affords us another

excellent example of the value of graphical techniques in mathema-

tical analysis.

I.4.11
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Functions, and Limits - Unit 4: Functions

[1.4.3(L) cont'd]

To begin with, note that nowhere in this problem are we
forced to view things geometrically. That is, we are given a
certain SET of ordered number pairs, (x,y) and we wish to find
for which of these pairs 3x + 4y is the least and for which pair
it is the greatest. Of course if there were no constraints
(restrictions) placed on the pairs (x,y) we could make 3x + 4y
as large as possible just, for example, by making x and y "as
large as possible". But there are constraints placed on the
ordered pairs. Indeed, it appears that we must "locate" the
required set of ordered pairs by solving the given system of

inequalities.

Now if we wish to restate this problem in the language of
sets, observe that our three inequalities define three sets of

points; Sl' 52' and 53, where:

w
1l

1 {(x,y):x +y 3 2}

0
I

2 {(x,y):y & 3x + 2}

0
I

3 {(x,y):5x ¢ 10 - y}

and the domain S of this problem is then simply 5111 52 N 33.
We could then proceed analytically and try to solve this

problem. However, since we want to establish the benefits of a

geometrical approach, we shall proceed to solve this problem

pictorially.

If we think of Sl' 52, and S3 in geometrical terms then we

are viewing ordered pairs of numbers as points in the plane (which

again emphasizes the analytic geometry theme). What domain is

I.4.12
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 4: Functions

[1.4.3(L) cont'd]

described by the set of points (x,y) for which x +y 2> 2? Well,

X + y = 2 represents the straight line whose x- and y- intercepts
are each 2. (One way of seeing this is to use the result of
Exercise 1.3.1(L) and rewrite the equation as x/2 + y/2 = 1.
Another way is to write the equation as y = -x + 2 and use the
slope-intercept formula to conclude that the line has slope equal
to -1 and y-intercept equal to 2. The "correct" way depends on
what our mission is. As we shall soon see, in this type of problem

the slope-intercept form is the more desirable,)

Now it may seem "intuitively obvious" that since x + y = 2
is a straight line then x + y > 2 must be the region which consists
precisely of all those points in the plane which lie on or ABOVE
this line (such a region is called a HALF PLANE. In particular,
the regions above and below the x-axis, or the y-axis, are examples
of half planes). (It turns out that our intuition is correct in
this case, but in a way it was because of a fortunate choice of
signs. For example, x - y = 2 also represents a straight line; yet
the region x - y > 2 represents the half plane BELOW the line
X -y = 2.) With regard to an earlier remark, let us observe that
one of the safest ways of determining whether the half plane is
above or below the line is to use the slope-intercept form of the
line. That is, suppose we have the line y = mx + b. Then it is
easy to see that for a given value of x, y must be given by mx + b
if the point is to be on the line; while if y is less than mx + b
the point (x,y) is below the line. For example, given the line
y = 3x + 2 we see that (1,5) is on the line. However (1,4) which
lies below the point (1,5) must therefore lie below the line., In
a similar way, if y is greater than mx + b then the point (x,y)

lies above the line.

I.4.13
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[1.4.3(L) cont'd]

y = 3x + 2
(1) If h < 5 then (1,h) lies
below the line y = 3x + 2
(2) If x > 5 then (1,k) lies
above the line y = 3x + 2
(3) In general if (xl,yl) is on
the line y = mx + b then
(xl,y) is{below the line if
y < mx, + b
above the line if
y > mX, * b
The key point is that for a
given X, (xl,yl) lies vertically
above (xlyz) if"and only if
Yy 2 ¥
S X
Figure 1

Applying this to the example x - y > 2; we see that -y > -x + 2.
Recalling that multiplying an inequality through by a negative num-
ber reverses the sense of the inequality, (see, for example,

Exercise 1.3.8(a)) we see that x - y > 2 implies that y < x - 2.
But if y < x - 2 the point (x,y) lies below the line y = x - 2 which

is the same line as that given by the equation x - y = 2,

At any rate, it follows that the region S, is the half-plane

i

on and above the line x + y = 2; the region S, is the half plane

2
on or below the line y = 3x + 2; and the region S3 is the half plane
on or below the line 5x = 10 - y. Then S is the intersection of

these three half planes and S is sketched below:

I.4.14
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 4: Functions

[1.4.3(L) cont'd]

(1) The points (0,2), (2,0) and
(1,5) are obtained as the
points at which each pair of
3x + 2 lines intersect. That is, by
solving a pair of linear
simultaneous equations.

(2) S is determined pictorially
by the fact that a point is
in S if and only if (1) it is
on or above L, AND (2) on or

below L2 AND ~(3) on or below

L3I

Figure 2

So far, so good; we have at least determined the picture of
our domain S. However, this is only part of what we must do. The
next thing we must do is to decide where 3x + 4y is minimum (or
maximum) for the set of points (x,y) in S. Now it is clear that
for a given point (x,y) 3x + 4y has some fixed value, say, k.
There are many points in the plane which yield this same value for

3x + 4y. In fact the set of such points is given by the equality

1.4.15
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[L.4.3(L) cont'd]

3x + 4y = k, which happens to be the equation of a straight line
also. (In this type of situation k is known as a parameter - a
kind of "variable constant". That is, the choice of k varies with
a particular choice of x and y, but once chosen in a problem k
remains constant. In this context 3x + 4y = k is called a one-
parameter family of straight lines. 1In this instance, changing k
does not affect the slope of the line, only its position. Thus

3x + 4y = k represents a one-parameter family of parallel lines.)

Next we observe that (2,0) is the lowest point at which a
member of the family 3x + 4y = k meets any point in S. In this

instance since x = 2 and y = 0, we see that 3x + 4y
if 3x + 4y < 6 then (x,y) is below the line 3x + 4y = 6; and this
in turn means that any point (x,y) for which 3x + 4y < 6 lies
OUTSIDE S. Thus the least value for 3x + 4y for any point (x,y)
in S is 6 and this occurs at (2,0). In terms of a picture:

f (1,5)

Figure 3

6. Moreover,
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[1.4.3(L) cont'd]

Similiarly, the highest point at which a member of the family
3x + 4y = k meets a point of S is (1,5); and for this choice of
point we see that k = 3(1) + 4(5) = 23. Thus the greatest value
that 3x + 4y can have for any point (x,y) in S is 23 and that

occurs when x = 1 and y = 5. Again pictorially:

3x + 4y > 23

3x + 4y 23

(0,2) 4

1l
o

3x + 4y

Figure 4

Computational complications can set in, but in general our
above discussion shows how geometry may be used to solve maximizing
or minimizing functions subject to systems of constraints placed on
the independent variables. It is not our purpose here to explore
further the idea of linear programming. All we wanted to do was to
present the fundamental ideas of functions, lines, and inequalities

in terms of one such problem.

I.4.17
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1.4.4(L)

As far as part (a) is concerned, let us first observe a
rather subtle difference between pure and applied mathematics.
If we were dealing with x and y instead of C and F, this would
be a "pure" geometry-oriented problem. However, merely by
giving physical significance to the coordinate axes, the problem
suddenly becomes "applied" mathematics. We only wanted to take
this opportunity to reinforce this close bond that exists in
almost all of mathematics between theory and application,

At any rate, once we know that the graph is a straight line,
all we need is two points on the line to determine the line; and
we are given precisely this amount of information in the problem.
In essence, all we want to do here is to find the equation of a
line given that the points (0,32) and (100,212) are points on the
curve. As we mentioned above, the only difference is that the y-
axis is now labeled F and the x-axis is labeled C. Pictorially:

F
A
L
(100,212)
(C,F)
///,J (0,32)
> C
_ 212-32 _ 180 _ 9
The slope of L = 100=0~ - 100 - 5
- . . . F_32 — 9
.. (C,F) is on L. if and only if = = =
I.4.18
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[1.4.4(L) cont'd]

‘ F =2 432 (1)

The solution to part (b) follows as a corollary to (1). Namely,
in (1) we let C = F to obtain

- 2C
g = = + 32

_40 .

]

whence :%E- = 32; or | C

At this point let us admit that if all we want is the answer
to this problem, there is nothing more for us to do. However,

there are a few asides that are worth mentioning.

For one thing let us observe that there was nothing in the
wording of this problem that forced us to adopt the order (C,F).
It would have been just as logical to think of the ordered pair
as (F,C). In this event, our graph would have been:

¢
A
Ll
(212,100)
- F
////'(32,0)
I.4.19
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[1.4.4(L) cont'd]

100-0 5

' = = —_—

The slope of L >13-37 5
. . . Cc-0 5
(F,C) is on L' if and only if F—=3 = 7

.. The equation of L' is given by:

(F=32) (2)

0
i
|

The thing to note is that equations (1) and (2) are INVERSES
of one another. Indeed, had we obtained either equation, we
could have derived the other by the usual algebraic manipulations.
In still other words, (1) expresses the situation in terms of C
being the input (independent variable) while (2) expresses the

same relation in terms of F being the independent variable.

It should also be stressed still another time, that the
relation between C and F does NOT require that we draw a picture -
it is merely that the picture suggests things more directly than
the analytical approach. Quite in general, if two variables say
X and y are related linearly it means that there exist constants
a and b such that y = ax + b; and the graph of this algebraic
expression happens to be a straight line. In other words, without
recourse to any picture, we could have started with the knowledge
that C = aF + b (or, as we have already mentioned, we could reverse
the roles of C and F which would give us different constants -
say, F = a'C + b'). We would then have two unknown a and b, but
knowing that C = 0 and F = 32 and that C = 100 when F = 212; we

could write:

I.4.20
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Functions, and Limits - Unit 4: Functions

[1.4.4(L) cont'd]

0 = 32a + b
100 2l2a + b

from which we could determine a and b and thus obtain the same

result as before,

Another point worth mentioning is that it is almost instantly
clear from a geometric point of view that the answer to part (b)
HAD TO BE in the affirmative. For the slope of the line C = F is
1 while the slope of either L or L' (the choice depending on
whether we think of the order (C,F) or the order (F,C)) is not 1.
Thus the line C = F is not parallel to, say, L. Hence these two
lines intersect at precisely one point; and this point, since it
belongs to C = F, must be the point at which the temperature

reading is the same in both units.

Finally, let us make an observation concerning the graphs of
a function and its inverse. Namely, the two graphs are symmetric
with respect to the 45 degree line. This follows from the fact
that the inverse function merely reverses the role of the dependent
and independent variables. Stated in terms of graphs, if (x,y)
belongs to the curve y = f£(x) then (y,x) belongs to the curve
y = f_l(x), and conversely. However, as the following diagram
shows, (x,y) and (y,x) are symmetric with respect to the line y = X:
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[1L.4.4(L) cont'd]

With regard to our problem, our equations (1) and (2) are inverse
functions; hence the two graphs should be symmetric with respect
to the line C = F. That this is indeed the case, may be seen
from the figure below:

1.4.5(L)

There are three rather "trivial" properties of absolute
values that will be of help to us in the analysis which follows:

(1) |a] > a

I.4.22
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[1.4.5(L) cont'd]

This follows from the fact that |a| is always positive. Thus
if a is positive then |a| = a; while if a is negative la] > a.

Since |a| is positive

2) lal2 = a®

This follows from the fact that la] = +/a2. Thus:

lal? = (+ a%)2 = a%,

(3) |ab]| lal |b] .

This follows from the fact that (+¥a2) (+¢b2) = +/a2b2 ; and this
in turn is +/Qab)2 or ]ab

With these three facts we are ready to begin our solution:

(a) Let us start with the assumption that |a| < |b|. Since
these two numbers are non-negative, we have already seen that we
can conclude that |a|2 < |b|?; but from (2) above this implies

that a2 < b2 - which is the desired result.

To complete (a) we must show that the converse is also true.
That is, we must show that under the assumption that a2 < b2, it

follows that |a|] < |b].

To this end, we know from (2) that a2 < b2 implies that
|a|2 < |b|2. This in turn means that |a|2 - |b|2 < 0. Thus
(lal + Ipl) (Ja] - |p]) < 0.

This can only happen if one pair of parentheses names a negative

number. Since both |a| and |b| are non-negative, so also is their

I.4.23
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[1L.4.5(L) cont'd]

sum., Hence (|la| + |b|) cannot be negative. Thus it must be

(la

which completes our proof.

- |b|) which is negative; and this says that |a| < |b]|;

Now let us come to grips with a more vital question. Namely,
why is it useful to know a result such as (a)? The answer lies in
the fact that it gives us a way of comparing absolute values
(magnitudes) without having to have recourse to the absolute
value symbol. That is, a paraphrase of (a) is that we can compare
the magnitudes of a and b merely by comparing those of a2 and b2.

We can illustrate this idea in the solution of (b).

(b) From the result of (a) we need only compare (|a| + |b|)2
2
and (a + b)“.

Now (|a| + |b|)? lal? + 2]a] |b| + |b|?

|a]? + 2]ab| + [b]® Y (3)]

a® + 2[ab|] + b2 [by (2)]

On the other hand:

(a + b)2 = a2 + 2ab + b2
2 2
Hence (|al + |b|)© - (a + b) = 2|ab| - 2ab
= 2(|ab| - ab)
But by (1) |ab| - ab is non-negative (since |ab| » ab)
Therefore (|ab| - ab) is non-negative.

Therefore (a + b)2 € (|a| + |b|)2
Therefore |a + b| € |a|] + |b

; as claimed.
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[1.4.5(L) cont'd]

(To see this result more intuitively observe that if a and
b have the same signs then a + b and |a| + |b| are equal. However
if they have opposite signs then the magnitudes of a and b are
subtracted from one another as we take the algebraic sum. On the
other hand, by taking absolute values first we are insuring that

all magnitudes being added are non-negative.)

This result is often referred to as THE TRIANGLE INEQUALITY.
This name becomes clear if we think of numbers as lengths (vectors).
Namely the triangle inequality merely says that the third side of
a triangle can be no greater than the sum of the lengths of the
other two sides (or the shortest distance between two points in
the plane is the straight line segment which joins these points).

That is:

Y

la + bl

(c) This result can be obtained intuitively in much the
same way as we could do (b) intuitively. That is, for example,
if a is positive and b is negative then a - b represents a SUM
of two magnitudes whereas if we take absolute values first we

subtract magnitudes.

From an analytical point of view (c) may be obtained as a
corollary of (b) by a clever ruse. In many instances (as we shall
see during the development of this course) it is wise to add 0 to

an expression in a rather clever way. In (c) we observe that:
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[1.4.5(L) cont'd]

la] = |(a - b) + b]
but from (b)
|(a-b) +b] s« ]a-bl + [b]...]a] ¢ |a-Db| + |b]
Hence:
la - b| 2> |a] - |b]
In a similar way, we may write that
|[b|] = |(b - a) + a
from which it follows that

b - al > [b] - [a] = -(]a] - [b])

Since b - a and a - b have the same magnitude it follows that
|la - b|] = |b - a|; whence

la - b| > |a] - |p|] aND |a - Db 3 -(la] - [p]) (1)

either |a|] - |b| or -(|a] - |b|) equals
fore from (1) it follows that

Ll |b|| (why?) There-

la - b] >

jal - Iol|

1.4.26
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[1.4.5(L) cont'd]

Again in terms of geometry, it is easy to visualize the
absolute value in terms of a picture (in fact this will be
emphasized in the next exercise). In many situations, the geometry
will be simpler for us to use than the analytic methods described
in the solution of this exercise. However, while we do not mean
to belittle the geometric approach (in fact, we encourage it where-
ever it is applicable) the fact remains that there are many cases
in which only the analytic method is available to us (this is
particularly true in the study of functions of more than two inde-
pendent variables). For this reason we have elected to emphasize

the analytic approach.

1.4.6(L)

Using the results of the previous exercise we can begin by

observing that 2 < |x - 3| & 4 implies 22 < |x - 3|2 < 4% which

in turn implies that:
2

4 < (x - 3)" < 16

That is:
2

4 < x" -6%x + 9 g 16
From x2 - 6Xx + 9 £ 16 we obtain

x2 -6x-7%0

or
(x - 7) (x+1) g0 (1)
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[1.4.6(L) cont'd]

(1) tells us that (x - 7) and (x + 1) have opposite signs
or equal 0. A convenient graphical device here is to "draw" the
sign of x - 7 and x + 1 in the same diagram. That is

That is x-7 is
x=-7 negative <+
% < 7

- - - - - - + 4+ ++ + + + + 4+

T T S S T S S [ S A S S S S S S

Z+1 x+1l is negative
— x < =1
-1 7

We see at once that x - 7 and x + 1 have opposite signs if
and only if -1 < x < 7,

Thus:
{x|x2 - 6x +9 < 16} = {x|-1 € x ¢ 7}

Note: If a < b then {x|a < x < b} is called an open interval

and is abbreviated by (a,b).

Similarly {x|a € x < b} is called a closed interval and is
abbreviated by [a,b]. Thus the difference between an open inter-
val (a,b) and a closed interval [a,b] is that a and b belong to
[a,b] but they do not belong to (a,b).

One may also write (a,b] to abbreviate {x:a < x < b} as well
as [a,b) to abbreviate {x|a < x < b}.

Thus (x - 3)% < 16 « x ¢ [-1,7] (2)

On the other hand 4 < x° - 6x + 9 implies that X2 - 6x + 5 > 0
or

(x -5) (x-1) >0 (3)
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[L.4.6(L) cont'd]

(3) tells us that (x-5) and (x-1) must have the same sign.
Thus:

- - - - - - + + + + + + X=5

- —-—=-=-|++++|++++ + + x=1

or X must exceed 5 or else be less than 1.

That is
(x]4 < x% - 6x+ 9} = {x|x< 1}U {x[x > 5) (4)

(In terms of intervals, one often writes {x|x < 1} as (==, 1)

and {x|x > 5} as (5,®).)

Combining (2)and (4) we see that:

xe [-1,1) U (5,7]

(Pictorially: ¢ » (NNt sz )
-1 1 5 7

So far we have employed (disregarding a few min or visual

aids) only the analytic procedure.

To utilize graphs, let us observe that [xl - x2| is simply
the distance between Xy and X, on the number line. Thus |x-3| < 4
means that X must be no more than 4 units from 3. Pictorially:

|x-3| € 4 implies x is in here

4{—#‘-1'4—;‘—#'1‘-'44—1‘—»‘-»‘-;‘4_ (Fig 1)
-1 3 7
I.4.29
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[1.4.6(L) cont'd]

Thus we obtain the knowledge in (2) almost by inspection.

Similarly |x-3| > 2 means that the distance
between x and 3 exceeds 2., That is, X is more than 2 units from 3.

X must
be in here

/ N

A 44
A T

Functions

[ WY [ 5
AL ] L) A

| e <
w
Ul A~

Sets,

(Fig 2)

If we now superimpose (Fig 1) and (Fig 2) we see that:

(Fig 3)

The cross-hatched region in (Fig 3) is now the desired

region. (Since xxxx is the result of being in \\\\ and in //,,.)

l.4.7(L)

We are given

= f X
Y x+1

(1)

Recalling that we have agreed to use single-valued functions (1)

must be read as if it said:

= /' x
Y % x+1
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,

Functions

At any rate, to solve for x in terms of y, it might be
advisable to square both sides of the given equation to ob%i}n:

2 X
Y T oox + 1

whereupon we obtain:

(x + 1) y2 =

X
It then follows that:
xy2 + y2 = X
or:
2
y2 = x - xy2 = x(1 -vy")
Therefore:
2
B R .
2
L =¥

/,/

(2)

(3)

£3 €93

€% £33 £33 1

Equation (3) would appear to be the correct answer to our problem -
EXCEPT THAT WE MUST NOW PAY ATTENTION TO OUR CONVENTION THAT WE
MAKE ALL FUNCTIONS SINGLE-VALUED. In this respect, recall that

we are assuming in (1) that only the positive square root is

involved. (In still other words, a = b and a2 = b2 are NOT

synonyms; for a2 = b2 means that a = b OR a = -b, that is,

a = +b.) If we wanted the square root symbol to include both the
T.4s31
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[1.4.7(L) cont'd]

positive and negative roots, then (2) and (1) would have been
synonyms. To get around this difficulty we replace (3) by the

"amendment":

2
X = _J[__E (4)
l =y
where y > 0.
In any event, let us explore (4). If y is real then so
also are y2 and 1 - y2. [Here we are using the "fact" that the

sum, difference, or product of real numbers are again real
numbers.] On the other hand, the quotient of two real numbers

is real if and only if the divisor is not 0*. Since the divisor
in (3) is 1 - y® and since 1 - y> = 0 if and only if y = 1 or

-1; it follows that y can assume any real values except 1 and -1l.
We can exclude the value of -1 since (4) demands that y be non-
negative. In the language of functions, we have shown that if £
is defined by

£ = Vs

then the range of £ is the set of all non-negative real numbers
EXCEPT for the number 1. More symbolically the range is given
by {x:x > 0 but x # 1}.

Lest the above seem merely like a drill exercise, let us
observe that the process of going from (1) to (4) is the compu-

tational technique for constructing f_l once £ is known. That is,

*We shall say more about this in the next unit.
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[1.4.7(L) cont'd]

the function implied by (4) "undoes" the function implied by
(1) . In other words if we let

2
- - N S
f(x) = %=+ 1 and g‘(X) = e x2 (x > 0)
it is readily verified that £f(g(x)) = x.

Of course, we should also recall from our discussion of functions
that unless f is l1l-1 it cannot have an inverse. Again it is not

difficult to show that:

x . T -
Wgsr = Wegsi ™ ETY

(That is: £(x) = £(y) » x = y.)

In fact:
x ] 1 —L x = Y
+V/x F1 WiFT T xF1 v + 1
— Xy + X = xy t+ Y
> X = ¥
In a similar way - = = —v/ y + X =
X + 1L y + 1 Y

To continue with the material required in this problem,
let us return to (l). Since we are not allowed to divide by 0,
it follows that x + 1 # 0, or that x # -1. But there is still

more to worry about since (1) involves extracting a square root.

T+, 33
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[1.4.7(L) cont'd]

In other words, from (1) if y is to be real x/(x+1l) cannot be
negative, since the square root of a negative number is an
imaginary number. Now the only way a quotient can be negative
is for numerator and denominator to have different signs. Using
the technique introduced in Exercise 1.4.5(L)

---------- ++++++ 4+ x

----- +++ ++ | ++++++ x+1

X = =1 x =0

whereupon it readily follows that x and x+l1 have different signs
only if -1 < x < 0. Coupling this result with our previous
result that x # -1, we have that x can take on all real values

except for those in the interval [-1,0).

While we have technically completed the questions asked in
this exercise, it might be well to extrapolate these ideas in
terms of graphs. To this end, suppose we were asked to sketch
the curve whose cartesian equation was defined by (l). We would
have performed the same operations as we did above, and, among
other things, we would have concluded that x could not satisfy
-1 § ¥ < 0. Graphically this excludes any point from the shaded
region shown below (since for any point in the shaded region the

point (x,y) has its x-coordinate in the restricted range).

4
(x = 0)
B X
™~
\\
I.4.34
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[1.4.7(L) cont'd]

[Here again we see another nice example of the difference between
a point and a dot - and a possible shortcoming of our picture.
Since a line has no thickness (of course the model we drew to
indicate the line does have thickness) we cannot tell by looking
whether points on the line are included or excluded. It is for
this reason that notation such as [-1,0], (-1,0), [-1,0), and

(-1,0] is particularly useful.]

We next observe that y = 1 represents the equation of a line
and since we have seen that y # 1, we can conclude that no point
in the graph can have its y-coordinate on this line. In other

words:

r
-
-
T

Y

Putting both diagrams together, we obtain the region where
the graph does NOT exist. Thus:

3 ¥

N, W W O, L . Y (O'l)
S S 2 s i e

g

I -

(-lf0J1 L P4
(0,0)
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[1.4.7 (L) cont'd]

Of course, if we are willing to do a bit of extra work, we
can obtain even more data about the curve. For example, if x
is non-negative x/(x+1l) starts at 0 (when x = 0) and gets
arbitrarily near 1 in value (but never equal to 1) as x gets
arbitrarily large. This seems to indicate that the curve looks
like:

7.

Tl

7
!
Y

5(0;0)

/

for non-negative values of x.

If on the other hand, x is negative and if we prefer
working with positive numbers rather than negative ones; we can

let x = -u where u is positive. For this situation (1) becomes

y = V-u/(-u + 1); and if now multiply both numerator and denomin-

ator by -1, we obtain:
y = Vu/(u-1)

If u is nearly equal to 1 (that is, if x is nearly equal to -1)

u-1l is nearly 0; hence y is very large. Moreover as u increases

(therefore, as x decreases [becomes more negative]) u/(u-1)
always remains more than 1 but gets arbitrarily close to 1.

Putting this new information into the hopper, we obtain
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[1.4.7 (L) cont'd]

Thus as predicted earlier, there is no
Y point on the curve whose y-coordinate

is 1. But every other line parallel

to the x-axis (provided the line is not

below the x-axis) intersects the curve

at exactly one point. This bears out

Ezégéii our contention that
::;f’
Z
%

+

J_,.  T— ’1 . e e v y:l Y = 4+ X
r X - j

J

\r

[These results could be documented by use of derivatives, but

for our present purposes what we have already suffices.]

For a finale, let us now return to the question of single-
valued versus multi-valued functions. Had we wished to invoke
the classical meaning that the square root implied both the nega-
. L ’ _ T
tive and positive roots, then the equation y = T T should have

been replaced by the two equations:

_ X
@) ¥y=% 51 These are usually abbreviated
and by our writing y = + 1
(B) y = 4/ X x +
X % L
Our present graph is the graph of (a). Notice also that if we
write (a) in the form y = f£(x) then (b) has the form y = -£(x).

This means that for a given value of x the graphs in (a) and (b)
are related by the fact that the y-coordinate of the point in one
graph is the negative of the y-coordinate in the other. In terms
of a picture, this is obtained by reflecting the graph of (a)
about the x-axis. We would then obtain:
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[L.4.7(L) cont'd]

and we now have a rather vivid way of seeing how a double-
valued function can be viewed as the union of two single-valued
functions, and that there is indeed no loss in generality when

we restrict our attention to single-valued functions.

1.4.8(L)

In many respects this problem is much the same as our previous
one - but with a few major differences. From a computational point
of view, it may be a bit more "sophisticated" trying to solve for
y as a function of x than it was in Exercise 1l.4.7 (L). For another
thing, we have here an excellent example of what we mean by y(x)
being an IMPLICIT function of x(y). That is, the given equation
does not express either of the variables EXPLICITLY in terms of
the other; but a recipe is IMPLIED Whereby we can solve for x(y)

once y(x) is given,
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[1.4.8(L) cont'd]

By way of illustration suppose we tell our "function machine"
to compute y from the relation xz + xy + y2 = 3 once x is given.
For example, if we start with x = 0, the relation becomes
0 + 0 + y2 = 3; whence y = i_f@i In this case, it appears that
we have a double-valued function. On the other hand, if we choose
x = 2, the relation becomes:4 + 2y + y2 = 3; whence

y2 + 2y +1=0; or (y + 1)2 = 0. In this case, the function

machine cranks out the single answer y = -1; thus for this value
of x we have a single-valued function. Finally if x = 3, we obtain:
9 4+ 3y + y2 = 3; in which case yz + 3y + 6 = 0. Now the guadratic

formula (among other ways) shows us that there are no real values
of y that satisfy our last equation. [An alternative to the

quadratic formula is completing the square. Observe that

v2 + 3y +9/4 = (y +3/2)2. Thus y? + 3y + 6 = y° + 3y + 9/4 + 15/4
(since6 = 24/4) = (y + 3/2)2 + 15/4 3 15/4, since (y + 3/2)% 3 0 and
can equal 0 if and only if y = -3/2; in other words, we have just

2

shown that y“ + 3y + 6 > 15/4 and hence can never equal 0.]

The idea of the quadratic formula, however, is not a bad idea
for this problem, Observe that x2 + xy + y2 = 3 [or more suggest-
ively y2 + xy + (x2 -3) = 0] represents a quadratic equation in y.
[In thinking about the quadratic equation ay2 + by + ¢ =0, we
usually think of a, b, and ¢ as being constants; yet nothing in
the proof of the quadratic formula requires this. That is, we
may think of the equation ay2 + by + ¢ = 0with a =1, b = x and

c = x2 - 3.]

We then obtain that:

_x s A% - a® - 3
y = 2
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[1.4.8(L) cont'd]

or:

“x £ 12 - 3x

o]
I
N

Thus, the two equations sought after in this problem are:

-x + V12 - 3x°

y = . (1)
and
_ ex - Y12 - 3%2
Yy = 2 (2)

While this gives us the solution to this exercise we have just

begun to make the comments we would like about this problem.

For a start, we observe that since we are extracting a square

root, 12 - 3x? must be non-negative if y is to be real. But
12 - 3x2
approach described in previous exercises, we see that

X = =2 X = 2
s il s Ot T T o (S I O e R O O (I R TR 2 - X
4 4 4
Different ; Different
; Same sign .
signs ' signs
s g o + + 4+ + + +] + + +++ + 4 24X

from which it follows that y is real if and only if -2 £ x £ 2

(or in other words, if and only if |x| < 2).

I.4.40
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[1.4.8(L) cont'd]

If we try to graph x2 + xy + y2 = 3, the above information

tells us that no portion of the graph can exist in the regions
defined by x > 2 and x < -2, That is, the graph must exist

entirely within the region shaded below:

Our next remark about the equation x2 + Xy + y2 = 3 is that
it has the rather uncommon property that if we replace every x by
y and every y by x in the equation, we arrive at the same equation
[when this happens we say the equation is SYMMETRIC in x and vl.
This in turn implies that equations (1) and (2) must remain valid,
then, when x and y are interchanged. Thus we can conclude that

for x to be real it must happen that -2 <y < 2.

As far as our graph is concerned, we can now state that the

curve lies entirely within the shaded region:

X = 2
y=s2
>— X
i % =2
Il4.4l
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Functions, and Limits - Unit 4: Functions

[1.4.8(L) cont'd]

What does it mean graphically if an equation is symmetric
in x and y? If we call the curve defined by the equation C,
symmetry says that (x,y) € C if and only if (y,x) € C. Let P
denote (x,y) and Q denote (y,x). Then as indicated below, POQ
is an isosceles triangle. Moreover the angle-bisector of 0O
is the line y = x. Hence it follows that P and Q are "mirror

images" of one another with respect to the 45° line:

(Compare this discussion
with that about inverse
functions in Exercise
1.4.4 (L).)
P(x,y)
X
y = X
y--
Q(y,x)
Yy
+ > X
0

To carry this idea further, observe that if an equation
remains the same when X is replaced by -x, we have symmetry with
respect to the y-axis (in other words x and -x are the mirror
images of each other with respect to the y-axis). Similarly we
have symmetry with respect to the x-axis if the equation remains

the same when y is replaced by -y.

I.4.42
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 4: Functions

[1.4.8(L) cont'd]

o
wn

-X X

Finally if the equation remains the same when we simultan-
eously replace x by -x and y by -y, we have what is called symmetry

with respect to the origin. That is:

LY The line segment
P o(x,y) which joins P and Q
is bisected by 0
-x Y
} p X
0
=¥
Q(_xr_Y)

Applying these ideas to our graph we have symmetry with
respect to the line y = x and also with respect to the origin.
In fact, while it is not necessary for our purposes, it can be
shown that our graph is an ellipse whose axes of symmetry are the

lines y = x and y = -x. That is,

I.4.43




SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 4: Functions

[l:4.8 (L) cont'd]

Hopefully the above diagram will supply us the necessary hints
for concluding why there were two answers to this problem. Namely
the graph is NOT a single-valued function. Indeed for each x such
that -2 < x < 2, we have that there are two corresponding y values.
That is:

The two answers correspond to the two single valued branches of

the curve we obtain by drawing in the given vertical tangents:

I.4.44
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,

Functions, and Limits - Unit 4: Functions

[1.4.8(L) cont'd]

Y
2
_-x @ V12-3x
Y = —2
X
=X O V12-3x>
2

In our diagram, the curve C is given as the union of the single-
J12-3x2

valued curves Cy and Cyi where Cy is defined by y = = >
[that is, the TOE curve] while C2 is defined by the branch
_ -x - V12-3x
Y = 5 .
1.4.9(L)
We have already seen in the supplementary reading that
-1 .
f T (x) = E%Z . This follows from the fact that

f(f-l(x)) - £L (f(x)) —_

and indeed:

I.4.45
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[1.4.9(L) cont'd]

f(f_l(x)) - f("—;l) = 2(";—7) -7 = x,

and
g =N (f(x)) = £ 1x - 7) (2% '27) 7w
On the other hand l_- 1_
f (x) 2x-7 °
; -1 x+7
More symbolically, we may let g(x) = £ “(x) = - and
ok N
Bix) = f(x) — 2x-7 °

L |

GE S & N N e

t 1

Among other things g(0) = %while h(0) = % Since h(0) # g(0),

h # g. (Another thing is that is not in the domain of h since

2

2x = 7 is 0 when x = % and we are not permitted to divide by 0
while g (%) - 7/§+7 = g%u In other words g and h even have diff-

erent domains.)

In any event, this exercise is meant to show the difference

-1 1
between £ ~(x) and IGT

II4-46
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits

UNIT 5: The Derivative as a Limit

1:5.1(%)

In this problem as well as the next two, the main idea is
to emphasize that the basic definition of f'(x) in no way depends
on f(x). What does depend on f(x) is the amount of computational
sophistication which is required to determine f'(x) explicitly.

Picking an arbitrary value of x, say Xq and a number h # 0,

we compute

f(xl + h) - f(xl)
5 = G(xl,h)
(the quotient clearly depending on both Xy and h). In this parti-
cular case, we obtain:
_ 3 _ 3 2 2 3
f(xl + h) = (xl + h)” = Xq + 3xl h + 3xlh + h
_ 3
f(xl) = X;
Hence:
- 2 2 3 _ 2 2
f(xl+h) f(xl) = 3xlh + 3x1h + h” = h(3xl + 3xlh + h°)
and since h # 0,
2 2
G(xl,h) = 3x5 + 3x,h + h (1)

1 L

By way of review, (1) gives us the formula for computing the
average rate of change of f(x) with respect to x over the interval

from x = X, to X = X, + h. This average is precisely what is

1 1
denoted by G(xl,h).
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Functions, and Limits - Unit 5: The Derivative as
a Limit

[l1.5.1(L) cont'd]

In terms of our basic definition we now obtain f'(xl) (the
instantaneous rate of change of f(x) with respect to x at x = xl)

by letting h approach zero in (1).

That is:

- lim G(xl,h) = 3x2

1
£ = 1o i

Finally, since x. denotes ANY point in the domain of £, we

: |
may write:

£1(x) = 3x2 if £(x) = x° (2)

Notice that a convenient "recipe" for memorizing the correct
answer is to note that we "brought the exponent down" and replaced
it by one less. In fact, with the aid of the binomial theorem, we
can mimic the procedure used in this exercise and deduce that if
£(x) = xn where n is any positive integer, then f'(x) = nxn_l. We
shall investigate such recipes in more detail later iﬁ the course.
(The key to the present recipe is to observe that by use of the
binomial theorem we can conclude that (x1+h)n = x? + nx?_lh + hz(...)
where the parentheses indicate that we can factor the common factor

h2 from each of the remaining terms in the expansion. If we then

subtract x? and divide by h, we obtain: nxg_l + h(...) and the
result follows when we let h approach zero.) For now we only wish

to indicate that by use of our basic definition for f'(x) we can
often find convenient recipes that allow us to write down f'(x)
very quickly for certain special cases of £(x). At the same time

-l ¢
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 5: The Derivative as

a Limit

[1.5.1(L) cont'd]

we wish to caution that: (1) the validity of the short cut depends
on the "long" way, and (2) for certain functions there will be no
recourse other than the long way. For example, the fact that we
have a recipe for finding £'(x) if f(x) = x" does little if any-

thing to find £'(x) if, say, f£(x) = sin x.

1542 (L)

As we said before, when we've seen one such problem, we've

seen them all. In every case

lim f(x+Ax - £(x)

£1 (x) Ax~0 Ax

It's just that computationally some expressions are nastier

to handle than others.

In our present example f(x) = V/3x; hence f(x+Ax) = V3 (x+AX) .

Hence:

£ - i SOTRY - g

If we replace Ax by 0 in the bracketed portion of (1), we

obtain our old friend 0/0 - but this was obtained illegally since

lim
Ax~+0
equal 0.

means that while we let Ax get close to 0, we never let it

Somehow or other, we would like to rewrite the bracketed

expression in (1) so that its numerator contains Ax as a factor.
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Functions, and Limits - Unit 5: The Derivative as
a Limit

[1.5.2(L) cont'd]

(Then since Ax # 0, we could cancel it from both numerator and
denominator.) To this end we "rationalize the numerator." That

is, we utilize the identity that

(va - vb) (Va +/b) = a -b

Thus:

VI (X+AX) - /3x _ (/3 (X+Ax) - /3x (/3!x+ﬂxi + /§§) *
AX Ax V3 (x+AXx) + V/3x

3(x+8x) - 3x  _ 3Ax (1)
Ax (V3 TX+AX) + V3X) Ax (V3 (x+AX) + V/3X)

: f(x+Ax) - £(x) _ 3
o If : - iy 2
k¥ 0 AX /3 (x10%) + /3x ve)

Now letting Ax>0 in (2), we see that

£1(x) = Lim [:f(xm:c) - f(x)] . 3 . 3
Ax>0 ¥ /3(xF0) + /3x  /3X + /3%
e 3
2/3x
a

*The only time a # 1 is when a = 0. Thus our above operation
requires that /3 (x+Ax) + V/3x is not 0. Since we "accept" only
non-negative roots, V3 (x+Ax) + V3x can be 0 only if v/3(x+Ax) and
Y3xX are both 0. But this can't happen since v3x = 0 implies x = 0
but when x = 0, V/3(x+Ax) = V/3Ax and Ax # 0. .. V3Ax # 0.
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 5: The Derivative as
a Limit

[1.5.2(L) cont'dl]

A Note on "Rationalizing Denominators"

In most elementary algebra courses, one talks about ration-

alizing denominators.

For example, consider

(3)

O
V2
We are taught to remove radicals from the denominator; and in

this context we would rewrite (1) as:

- (L) (2 2
== (%) (3)- = W

We are not usually taught to "rationalize the numerator"”

(as we did in this exercise).

Now 7%- and f% are synonyms. Why should one be preferred

to the other? The answer depends on what we are trying to do!

For example in most engineering applications we would write
/2 as a decimal. In this context if V2 = 1.4142, (3) becomes
TTE%EE while (4) becomes l;ﬁ%ﬁ%_ It is clear that (4) is easier
to calculate as a decimal than (3) is (at least if computers are

not involved).

Thus it is quite likely that the topic of rationalizing
denominators was born out of consideration for having to divide
by "messy" decimals. In other words, we can often convert the

"messy" decimal into the dividend rather than have to treat it




SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 5: The Derivative as
a Limit

[1.5.2(L) cont'd]

as the divisor by use of rationalizing denominators. On the
other hand, to eliminate a factor of Ax in computing, say, f'(x)
in this exercise, it was to our advantage to know how to ration-

alize numerators.

The important thing is that

a-b = (Ya+ /b)) (Ya - /b)

and how we use this result is best determined by the "real life"

situation we are facing at a given moment.

1:5:3
1 1
= s f A = ——
f(x) Vet (x+Ax) Bl
i _ 1
. f(x+Ax) - £(x) _ V2(x+Ax) V2x b
i Ax - A
V2X - /2 (X+AX)

AxV2 (x+bx) V2x

V2X - Y2 (X+AX) V2X + /2 (X+AX)
AXVZ (X+AX) V2% V2x + V2 (x+bx)

2x - [2(x+4Ax)]
AxV2 (x+Bx) V2x (V2x + V2 (x+bx)

i3
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits = Unit 5: The Derivative as

a Limit
{1.5.3 cont'd]

-20%
AxY2TXFAX) V72X (V2% + /2 (x+B%)

=2 (since Ax # 0)
VITXRF.X) V2X (V2X + /2Z(xFBX)

lim f(x+ax) - £(x) _ =3
Il Ax /7% VIX (V2X + V2X)
= ——-'2 = __].'__ = - -l
2x (2/72%) 2xV2x%x 2xV/2V/x

-3/2 -
J T . lim [%(x+&x) - f[xi] N -1 _ _X / _ /2 x 3/2
R An = 573 372 i 2

1.5.4(%L)

In the truest sense there is little here to make this
problem worthy of being called a learning exercise except that
it helps us to reinforce the connection between analysis and
geometry. Specifically, the slope of the curve y = f(x) at the
point (xl,yl) is precisely f'(xl). In fact, if we now refer to
the solution of Exercise 1.5.1(L) we observe that G(xl,h) can be
interpreted as the slope of the line which joins the points

(xl,f(xl)) and (xl+h,f(x1+h)} on the curve y = Eilx) .

Thus the slope of the tangent line to the curve at

(xl,f(xl)) is 3x§ just as in our solution to Exercise 1.5.1(L).
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Functions, and Limits - Unit 5: The Derivative as
a Limit ’

1.5.5

. 3
In 1.5.2(L) we found that if £(x) = V/3x, £'(x) =
2¥ 3x

Therefore, the slope of y = /3x at (xl,yl) is given by:

S .

2/3x1

_ = 3 . 3 _ 1
If X, = 12, m = . 3 = 3 S.

1.5.6(L)

Here we see a rather elementary problem involving equations
of straight lines provided that we know the slope of the tangent

line.

Noew given y = x2 - 2, we can easily show that g¥-= 2x and
hence that the slope of the curve at (2,2) is 4. Thus the tangent
line we seek has its slope equal to 4 and (2,2) is on the line.

Thus the equation is:

Y -2 _ 4
X - 2
or
y = 4x - 6 (1)

Knowing the equation of the line we find where it crosses
the x-axis by letting y = 0. Letting y = 0 m(l) we obtain:

0 = 4x - 6 or X = 3/2

Bl S - s s e e

Bl S - s e
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Functions, and Limits - Unit 5: The Derivative as

a Limit

[1.5.6(L) cont'd]

Notice that (and this happens very often in the use of
calculus) we used calculus for essentially one step (to find the
slope of our line), afterwhich the problem proceeded in a manner
independent of calculus. That is, once we found the slope, the

rest was a pre-calculus problem.

As elementary as this problem is, it has a very useful
generalization known as NEWTON'S METHOD FOR APPROXIMATING ROOTS.

The technique is as follows.

Suppose we wish to find a root of £(x) = 0. This is

equivalent to finding where the curve y = f (x) crosses the x-axis.

While there are certain complications that may occur, the
general idea is that we choose any value x = Xy which we call our
first approximation. We assume that f(x) is differentiable and

we draw the line tangent to y = f£(x) at (xl,f(xl)).

y = £(x)




SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 5: The Derivative as
a Limit

[1.5.6(L) cont'd]

We then let x, denote the x-coordinate of the point at which
this line meets the x-axis. X, becomes our next approximation
and we continue in this way, obtaining, it is hoped, better and

better approximations.

In any event the tangent line to the curve y = f(x) at

X = x., passes through (xl,f(xl)) and has slope f'(xl). Hence

1!
its equation is:

y - f(xl)

X - X - f'(xl) (2)

1

We find x., by setting y = 0 in (2).

2
We obtain:

0 - f(xl)

X; = X

’ X, = X, - (3)

Equation (3) tells us how to obtain X, (the next approxima-
tion) from x;. We can then use (3) again with x, as our "new"

X, to obtain the next approximation.

1

I.5.10
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SOLUTIONS: Calculus of a Single Variable - Block I:
Functions, and Limits - Unit 5: The Derivative as

a Limit

[1.5.6(L) cont'd]

In terms of our specific exercise, observe that a root of

x2 - 2=0 is ¥2. Thus Xy

Our answer x, = %—was the next approximation. In particular:

F(x) = x2 - 2 + £'(x) = 2x

Hence using (3) with Xy 2 we obtain:

»
[
[\ ]

I
=l
I
NI

I

If we now use (3) with x1 %, we obtain:

2 2
X - '§—- 2 —2 = 1 -— -—J-'—- —
2 2 3 < 2 12
17\% _ 289 1
(and v =TT ™ 2 + TZZJ' In this way we can

Y2 rather quickly.

(The interested reader can find additional discussion of

Newton's method in Thomas, Chapter 10.3.)

1.5.7(L)
A = nrz = A(x)
- = 2 2 2
.. A(r+Ar) = 7m(r+Ar)° = mr” +2mrAr + w(Ar)
J. A(r+Ar) - A(xr) = 2mrAr + n(ﬂr)z
.. A(r+Ar) - A(xr) _ (2mr + mAr) Ar
Axr Ar
1 I T

Sets,

= 2 was our first approximation to v2.

"converge on"
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[1.5.7(L) cont'd]

= 2rr + mAr, since Ar # 0.

. dA lim |A(r+Ar) - A(x) _ lim
~= dr Ar>0 [ AT = Ar+0 [2” * “M]
= 2nr answer.

Notice that up to this point the problem is no different
from 1.5.1, 1.5.2, or 1.5.3 (except that it's a bit less computa-
tional). We see at once, however, that A = nrz suggests that we
are studying the area of a circle. Notice also that our answer,

27r, suggests the circumference of a circle.

In fact, what we have proved is that the rate of change of
the area of a circle with respect to its radius at any instant is

numerically equal to its circumference at that instant.

Here we see an application of calculus to elementary geometry
and we have arrived at a rather "nice" piece of information by
this analysis that might not have been so obvious in terms of

our intuition.

The result obtained in this section has a rather far-reaching
generalization that will be discussed later in this course. In

essence what will be shown then is the following.

If R denotes the area of the region bounded above by the
curve y = f(x), where f£(x) > 0 for all x, below by the x-axis,
on the left by the line x = a and on the right by the line x = t
then the area of R, AR' is a function of t. The amazing fact

that will be proven is that

da

R _
T £(t)

1.5.12

i
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a Limit

[L.5.7(L) cont'dl

‘y

y = £(x) Q At the instant x = t,
A the rate of change of
the area of R with
respect to x is numeri-
~ cally equal to the
length of PQ.

In this way we shall have exhibited a rather amazing relation-
ship between the rate of change of an area (AR) and the length of
a line (PQ).

1.5.8
V(r) = % ﬂr3 V(r+Axr) = % ﬂ(r+6r)3
4 3 4 3
V(r+Ar) - v(r) _ 3 w{rehr) = = 3 ™ - 4 41r3+3r2&r+3rﬂr2+6r3)—r%]
Ar Ar 3 Ar

_ 4 E3r2 + 3rAr + &rz)Ar:}
3T Ar

%T(Brz + 3rAr + arz), since Ar # 0

I.5'l3
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[1.5.8 cont'd]

e A vie) o &V - 2 (3?4 3r0 4 0%) = 4rr® ans.

Note: %ﬂr3 denotes the volume of the sphere of radius r. 41Tr2

denotes the surface area of the sphere of radius r.

Thus in a manner analogous to that in 1.5.7(L) we see that
at a given instant the rate of change of volume of a sphere with
respect to its radius is numerically equal to its surface area

at that instant.

1.5.9(L)

The main point of this exercise is for us to learn the
difference between being able to compute %% and knowing how to
use the information contained in I

The key concept - and this concept plays a great role in
calculus as we shall see many times throughout this course - is
that at its maximum height the particle can be neither rising nor
falling (for if it ﬁere falling it would have already passed
through its maximum height, and if it were rising it would not

yet have reached its maximum height) .

Thus the particle reaches its maximum height at the instant
that it is neither rising nor falling, but this means that the
particle has zero speed at this time. In other words since %%
denotes the speed of the particle, the particle attains its

maximum height when g%-z U

I.5.14
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a Limit

[1.5.9(L) cont'd]

With this as motivation, we are led to compute %%. Recalling
dh lim h(t+At) - h(t)

once again that 3t = At+0 AT and omitting the details,
we see that:

dh _

IE = 128 - 32t (1)

%% = 0 if and only if t = 4. Hence the particle reaches its

maximum height when t = 4 seconds and since at any time t, the
height, h, is given by

h = 128t - 16t2 (2)
we compute the maximum height by letting t = 4 in (2). This yields

128(4) - 16(4)2

hmax = ht=4

512 - 256

256 feet ans.

The result of this exercise can be generalized as follows.

If a particle is projected vertically upward with an initial
speed of v ft/sec it attains a height of h feet in t seconds

given by

<
1l
|
Il

v = 32t
fo)

I:5.15
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[1.5.9(L) cont'd]

<

Hence the maximum height is attained when t = 3%3 Therefore the
maximum height is given by:
v v =
_ o) _ .9
Boax = Yo (55) L6 (32)
v 2 v 2
—1 R
32 64
2
v
i
64
I-S.ls
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UNIT 6: A More Rigorous Approach to Limits I

1.6.1(5)

What this problem is telling us in terms of more intuitive
language is that if iig f(x) = L we can always find a deleted
neighborhood of ¢ so that in this neighborhood the values of £(x)
can be "squashed in" as close to L as we desire. (Recall that c
is itself removed from consideration. Among other things
iig f(x) = L doesn't even guarantee that f(c) exists.) In still
other words, we may think of a dot centered at y = L on the y-axis.
Then we can find another dot, centered at x = c on the x-axis such
that for all values of x in the latter dot, the values of f(x) are

in the former dot. Pictorially:

= f(x
then Y (x)
f(x) is
in here*

e 3

If x is in here

To see how we arrive at this result more formally, let us
recall that by definition ii? f(x) = L means that for any € > 0
we can find § > 0 such that |f£(x) - L| < e provided that
0 < |x -c| < 6. That is, if 0 < |x - ¢| < & then

L - ¢ < £(x) <L + ¢.

I.6.1
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[1.6.1(L) cont'd]

Notice that the only restriction on € is that it is positive.
Consequently by choosing € sufficiently small in magnitude we can
make L - € and L + € as nearly equal as we wish, and the more
nearly equal they are the more easily we may think of the "dot"
which joins them as being a point. This also agrees with our
intuitive notion that we are interested in what happens "near" L.
In any event, then, for this choice of € we can find a deleted
neighborhood Na(c) such that L - € is a LOWER BOUND and L + € is
an UPPER BOUND of f(x) for all x € Né(c). Again in terms of a

graph:
y = £(x)
L+e
L 4
L-€ For each x € NG(C)'

f(x) can be no "higher"
than L + €, nor "lower"
than L - €.

In our problem we do not require that m and M be symmetrically
located with respect to L (in less geometric language, we are
saying we do not require that L - m equal M - L). In this event
we merely choose ¢ to be the minimum of L - m and M - L. For
this choice of € we then determine the value of § such that for
0< |x-¢c| <8, L -€< £(x) <L+ € and this is equivalent to

saying that m < f£(x) < M.

1-6.2
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 6: A More Rigorous
Approach to Limits I

[1L.6.1(L) cont'd]

In terms of a picture:

In this case M

€= Lem 7 e

L

» X

If x is in this neighborhood of c,
we have m < £(x) < M.

If we wish to be even more rigorous and establish our proof

without having to make reference to a graph, we proceed as follows.

Sincem < L < M, both L - m and M - L are positive. Let €
equal the minimum of L - m and M - L (abbreviated as
€ =min (L - m, M - L)*). By the definition of iig f(x) = L, we

are guaranteed that for this choice of € we can find § such that

0 < |x - c| <& implies that

L -€ < f(x) <L + €. (1)

*Quite in general, min (a,b) denotes the smaller of the two
numbers a or b. From a structural point of view, the important
fact is that min (a,b) €< a and min (a,b) ¢ b. (That is, the lesser
of the two numbers, a and b, cannot exceed either a or b, or else
it wouldn't be the lesser of the two.)

1.6.3
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Functions, and Limits - Unit 6: A More Rigorous
Approach to Limits I

[L.6.1(L) cont'd]

But ¢ = min (L - m, M - L) implies that € € L - m and also

€S M- L. Hence, in particular,

L+e<< L+ (M-1L),
or
L+esM (2)

In a similar way, € = min (L - m, M - L) implies that - € 2 - (L - m)
and that - € > - (M - L) (where we again recall that a < b if and

only if -a > -b). Therefore:
L-¢€>2L-(L-m),orL=-€232m

or
m< L - € . (3)

If we now introduce the results of (2) and (3) inot (1) we
obtain: 0 < [x - ¢c| < 8 implies that m € L - € < f(x) <L + € £ M
and, therefore, m < f£(x) < M and this establishes the proof.

Notice that we would like to use both the intuitive and the
rigorous aspects of the situation. The rigorous aspect (and
notice how the rigorous demonstration was modeled after the fact
that we sensed intuitively what was happening) shows us that the
result is an inescapable consequence of our already-accepted
definitions and hence is more than just a conjecture. On the
other hand, the intuitive aspects are what we tend to invoke when
we are setting up a problem. From the intuitive point of view
what we are really saying is that if iim f(x) = L then in a

+C
sufficiently small neighborhood of ¢, f(x) "behaves like" L

£t 3 €2

£t 3 ¢33 (13
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 6: A More Rigorous

Approach to Limits I

[1.6.1(L) cont'd]

itself. For example of iig f(x) = L and L is positive then we

can conclude that there is a neighborhood of c in which f(x) is
always positive. Namely if L > 0 we may choose, say, €=L/2. This
choice is not critical; what is critical is that we choose € to

be less than L. In terms of a picture:

The important thing is
to choose g so that

} ¢ ¥ ’ 0 # (L-e, Lte)

0 L-¢ L L+g

In this event, we now have that we can find § such that
0 < |x = c| <& implies that L - e < f(x) < L +¢ but each element
of (L - g, L +¢) is a positive number by our choice of ¢.

Therefore for this neighborhood of c, £(x) cannot be negative.

As the course progresses, we will find ourselves often (we
hope) being able to use limits in a very intuitive (natural) way
but at the same time always being able to demonstrate the validity
of our beliefs more rigorously whenever we are called upon to do
so (as for example, in those cases where the situation is of
sufficient complexity so that we are not at all positive about
the truth of what we feel intuitively to be correct).

14652 {1%)

lim _ .

X h(x) = 0 means that for each ¢ > 0 we can find § > 0
such that 0 < |x - ¢| < 6§ » |h(x) - 0] < €.

Now h(x) = f£(x)g(x).
Hence, we must show that given ¢ > 0 we can exhibit § > 0 such

that 0 < |x - ¢c| < & » [£(x)g(x)]| < e.
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[1.6.2(L) cont'd]

The fact that g(x) is bounded means that there exists a
number K > 0 such that |g(x)| < K.

This means that |f(x)g(x)| = |£(x)] |gx)| < [£(x)|kK. 1In
turn, the fact that

|£(x)g(x)] < |£(x)|K (1)

guarantees that |f(x)g(x)| will be less than € as soon as
| £(x)]| < %. (Notice here the "convenience" of the fact that
K # 0.)

Recalling that iig f(x) = 0, we have that for El > 0 we can
£ind §, > 0 such that 0 < |z = el < 8, = [£(x) -0 <e,. If
we choose €, = gr We have that there exists a number 51 > 0 such

K
that

=, or |£(x)] < %—

0<|x—c|<61+|f(x)—0|<K

Putting this result into (1) we have:

Given € >0 there exists 6. > 0 such that

0< |x-c¢c| < 51 > |£(x)gx)| < [£x)IK < (?{-K = E,

That is:

Given € > 0, there exists 51 > 0 such that 0 < |x - c|< §

implies that |£(x)g(x) - ol < e,

1

By definition, then:

£(x)g)x) = IS h(x) = 0

lim
> st o-

L 2
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 6: A More Rigorous
Approach to Limits I

[1.6.2(L) cont'd]

The practical value of this result is that if we know that
lim . lim _
- f(x) = 0, we can conclude that e [E(x)g(x)] = 0 as soon as
we know that g(x) is bounded.

This result is rather analogous to the result that any
number times zero is zero. That is, if f(x) approaches 0 then
so also goes f(x)g(x) if g(x) is bounded. The situation wherein

g(x) is not bounded is analogous to the problem of "infinity"

times zero which is indeterminate. (» x 0 is of the same ilk
as 0/0.) For example, for very large values of n, 2n is very
large, while % is very small. Yet (2n) (%) = 2 which is neither

very small nor very large.

Another very important point is that it is not necessary
that g(x) be bounded everywhere. Rather it is sufficient that
g(x) be bounded in a neighborhood of x = c. In essence, finding
a limit is a "local" thing that depends only on what is happening
"nearby". In still other words if |g(x)| < K held only in some
interval 0 < |x - c| < §, we would merely choose § = min (61,62)

and for this &, both |g(x)| < K and |f(x)]| < % would both be true.

1.6.3(L)

In disguised form, this exercise is asking us to prove that
ti? t2+t = 12. Namely given ¢ > 0 we are being asked to exhibit
§ > 0 such that 0 < |t - 3| < & implies |t2+t - 12| % e,

Now, the fact that we want [t2+t - 12| < & means that
- € < t2+t - 12 < €, We can then use the quadratic formula to

locate the bounds on t. Pictorially:
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[1.6.3(L) cont'd]

Our "extraneous" |
values are on the
curve "near"

t = -4 |
(A,B) determines the
domain of the required
values for t. Since

the curve rises more

and more rapidly as t
increases, notice that

B is closer to 3 than A
is to 3. Hence the
largest value of § is

the length of the segment
from 3 to B.

However we will offer an alternative approach that leads to

the same solution. Once we are at the stage where:

.

—g<t2+t-12<e (1)

we observe that in terms of "completing the square", t2+t - 12

may be written as t2+t + 1/4 - 49/4; and this in turn may be
written as (t + 1/2)% - 49/4.

Thus we have:
2
—e<(t +1/2)% - 49/4 < ¢
49/4 - ¢ < (t + 1/2)% < 49/4 + ¢

49-4¢ 2 49+4¢
g < (t + 1/2)° < i (2)
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 6: A More Rigorous
Approach to Limits I

[1.6:3{L) cont'd]

Now recall from our discussion of inequalities that if a2 <b < c
then all we can be sure of is that La[ < |b| < |c|. However if

a, b, and ¢ are all positive then a” < b” < ¢” does imply that
a<b< c. (By way of an illustration to help refresh any
reluctant memories observe that -4 < -3 but that (—4)2 > (-3)2.)

With this in mind let us revisit (2). For one thing we know
that ¢ is positive hence the right hand side of this equation is
a positive number [and therefore it has a real (positive) square
root]. Secondly, we are, by the nature of this problem interested
in the case where t is "nearly" equal to 3. 1In particular, then,
we may assume that t + 1/2 is "near" 7/2 - and therefore, is at
least positive. Thirdly, since we are interested primarily in
small values of ¢ we may also assume that 49 - 4e¢ is positive.

Thus (2) may be rewritten as:

2 2
=] < wsm? o [

and since all of the numbers being squared may be assumed to be

positive, we obtain:

LEE%EE < t +1/2 < Lig%ii (3)

. Since t - 3 = (t + 1/2) - 7/2, (3) yields:

%/3—9—495 - HID < & =3 < Zlf4‘“9+'4é - 7/2 (4)

2

i
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[1.6.3(L) cont'd]

(In terms of our earlier drawn graph %JZ??EE - 7/2 corresponds
to the distance between 3 and B, while 7/2 - %ng:zg

Q= |%¢qg:15 - 7/2|) corresponds to the distance between A and 3.
In terms of our previous observations about this graph, we have

a pictorial proof [since B is closer to 3 than A is] that

WASHE - 1/2 < |3/A91E - 1/2]

[a fact which is not so trivial to verify algebraically].)
At any rate, from (4), if we now pick any § such that

0 < § < min {%¢39+Zs - 7/2, 7/2 - —45}

S o

(5)
(= L agere - 7/2)

we have solved the problem.

While (5) supplies us with an excellent solution, there is no

denying the fact that this solution is computationally cumbersome.

That is, it might not be too convenient given a particular value

for € to compute v49+ 4E.

We can avoid much of the difficulty of this approach if we
next observe that there is nothing sacred about finding the

greatest value of 6 which will work.

With this in mind we can proceed as follows: We want
|t2+t - 12| < €. This in turn means that |[(t + 4)(t - 3)| < ¢;

and since we have already demonstrated that the absolute value

of

a product is the product of absolute values, we may in turn write

that:

106010
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 6: A More Rigorous

Approach to Limits I

[1.6.3(L) cont'd]

|t + 4 |t -3 <c¢

(6)

Now for the purposes of our present problem, we know that t must
be "near" 3, hence t + 4 (which, of course is equal to |t + 4]

when t is "near" 3) is "near" 7; or in terms of a more concrete

inequality, t + 4 being near 7 on either side, must lie between

6 and 8.* Thus:

[t + 4| < 8

(7)

If we combine the result of (7) with (6) we see that if
|t - 3| < /8 it is SUFFICIENT to guarantee that [t + 4| |t - 3| < e.
(We say sufficient rather than NECESSARY because since t + 4 is
less than 8 the inequality in (6) could hold even if |t - 3| were

to exceed ¢/8. However, if we make sure that t - 3 < g/8 then

(6) certainly holds, even if we could have got away with less!)

This approach allows us to obtain an answer much more readily -

namely 0 < § < /8.

While the problem is now solved, we would still like to tie

together a few loose ends.

For one thing we assumed that we were interested in small

values of €. Among other places we used this fact to assume that

49-4¢ was positive. If we were not sure that € was this small (for

example if ¢ exceeded 49/4) the problem of finding § would be trivial

*If § > 1 then t being within & of
t + 4 lies between 6 and 8. However in
a smaller value, say, 6, < 1l. In other
before, if it is more cOnvenient we can
neighborhood by a smaller one.

I.6.11
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[1.6.3(L) cont'd]

since the "tolerance limits" were so great). In other words,

the flavor of this problem is in no way lost by the assumption

that € is small, even though nothing in the problem says we have

to make this assumption (again, the main reason we make this
assumption is to capture the reality of the situation. In dealing
with limits we want to know what is happening "very near" the point
in question. In modern dress, if we are making a trip and we want
to know how fast we were going when we were near Albany, our speed

when we were in Buffalo would be of little importance now).

Secondly, it might be interesting to see how ¢/8 and

%/I??IE - 7/2 compare.

An application of the binomial theorem tells us that (a + b)n

A ar & nan_lb if b << a (that is, if b is very small compared with
a). Thus for ¢ sufficiently small:
1 1
/avFrs = (a9+4e) 2 3y (49)2 + La9) Z(ae)
2€
v 7+ =

.. For sufficiently small €,

1 1 2€ . €
iJ49+46 - 7/2 X 5(7 + ﬁFJ - 7/2 = -
So it would appear that %-is "close" to a least upper bound.

As a partial check let us look at t2 + t - 12 when t = 3 +

~|m

I.6.12
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[1.6.3(L) cont'd]

We obtain:

(3+E)2+ (3+% -12=
7 7
6 82 E
9+7—+-—9-+3+?'—12=
2
€
€+E,
E2
and while this exceeds € by 79’ We see that we are "pretty close"
when ¢ is small. (In fact, for small g, %E is much smaller.)
To generalize this approach, let us put t = 3 + % (c > 0).
Then: t2 + t - 12 =
€ < €
(3 + E) + (3 + 3) - 12 =
6 2
g4+ 284 E. 33 ¢ B w
c 2 [
c
e + 62
c = 2
& c

Thus for sufficiently small e, we need only be sure that c > 7.
(Indeed ¢ = 8 meets this challenge, but, for example, so does
c = 7.001.)

|x2 -5x -6 <e + |x-6| |x+1| <e¢

I.6:13
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[1.6.4 cont'd]

We are interested in values of x near 6. In particular if x is
within 1 unit of 6, { : ) , X + 1 is between 5 + 1

L T

and 7 + 1. That is: 5 6 7

6 < ]x + l| < 8
L [x + 1[ < 8

X -6 <5 |x-6] [x+1 <E8=c¢

-
. »

Thus, we may pick § = %

1.6.5(L)

At first glance it might appear that this problem had two
answers, 1 and -l1l. Surely as x approaches 0 through positive
values, f(x) approaches 1. In fact, for all positive values of
x, £(x) is exactly equal to 1. In a similar way for each negative
x, £(x) = -1, hence it would appear that as x approaches 0 through
negative values, f(x) approaches -1.

However, neither 1 nor -1 pass the epsilon-delta test.

Pictorially the case against L = 1 is given by:
Y
[

If we surround L = 1
by an e-neighborhood

£+€ i A Y that doesn't include

= 7 7 SN 7 -1, £(x) for x < 0
L-€ \#*MZi_q/{__d_i_ﬂ —~ — doesn't fall into the

required range.

- e

**1These are not in here
I.6.14
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[1.6.5(L) cont'd]

and a similar treatment holds for L = =1.

In fact, for any 6§ > 0, the fact that 0 < [x| < § means that
x is within 8 of 0 and this means that x is in the interval (-6,9),
and in this way the pictorial situation is readily translated
into the analytic equivalent.
This problem motivates the mathematical notion of such
lim lim

expressions as + and - .
pres X+C X*C

That is, we often talk about limits as x approaches c through

values greater than c or through values less than c. In this

context, iig f (x) existing means that both i1m+ f(x) and lig f(x)
llm _ lim_ _ 1lim
exist and that + f(x) = K f(x) = " £(3x)

As a final aside to this problem, let us observe that our

definition of limit makes it impossible for a limit to have more

than one value. Roughly speaking if llm f(x) = Ll and also
lim
xic f(x) = L2 and if Ll # L2, we could choose a value of £ such

that 0 < € < |Ll - L,| and establish a contradiction. Namely:

o

L) +e maps into here (as it must if
> lim £(x) = L.).
L /;fa-;’/ X>rC !

Then nothing is left to
map into here.

s could not be a
llml% (unless possibly
! if £(x) were not single-
11717 valued - but this has
C been excluded in our
f definition of function).
If everything in
here
L6015
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[1.6.5(L) cont'd]

What happens in our present problem is that iig f(x) does
not exist but that i1m+ f(x) and iig- f(x) each exist. In fact,
lim _ m s
sexg f(x) = 1 while o f(x) = -1.

Perhaps the most important thing about this problem is that
it shows us how once we accept a particular definition logic allows
us to deduce inescapable consequences of the definition regardless
of how strange the consequences might be. In this case the fact
that we might feel that the limit should exist requires either
that we change the definition of limit or else agree that our
definition has some "unnatural" consequences.

I.6.16
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits

UNIT 7: A More Rigorous Approach to Limits II

1.7.1(L)

a. This exercise is known more familiarly as "the limit of a
product is the product of the limits". To prove that
ii:[f(x)g(x)] = L;L, we must show that for a given € > 0 we can

£ind 6§ > 0 such that 0 < |x - c| < § implies [f(x)g(x) - L;L,| < e.

Now, what do we know about this problem? Well, we know that
lim _ lim _ : .
o f(x) = Ll and i g(x) = L2' This, in turn, means that we have
a good hold on both [f(x) - L|

sufficiently small neighborhood of x = c we can make both of these

. Namely, in a

and [g(x) - L,

expressions as small as we wish. The problem is to somehow or
. A

other manage to get such expressions from |f(x)g(x) - LlL2
neat trick in such cases is to add zero in a "clever" way. For
example, starting with f(x)g(x) we observe that if we added

- ng(x) to this we would have: f(x)g(x) - ng(x) = [£(x) - Ll]g(x).
So if we add this and then subtract it we obtain:

|£(x)g(x) - LiL,| =
| £(x)g(x) - ng(x) + ng(x) B L1L2| =
| (E(x) - L)g(x) + Ly(g(x) - L)) |g

1£60 = 1yl lgGa] + [5y] lgGo - 1, (1)

In (1) we see that both |f(x) - Lﬂ and |g(x) - L2| can be
made as small as we wish and g(x) and Ll are both bounded in a
suitable neighborhood of x = ¢ (Ll because it is a constant and

g(x) because iig g(x) exists [see Exercise 1.6.1(L)]).
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[1.7.1(L) cont'd]

Thus (1), and hence |f(x)g(x) - LlLZI' can be made arbitrarily
small, and this seems to confirm the result sought in this exercise.

The next problem is to make the details more rigorous.

To this end, we observe that for a given € it is sufficient
to make |f(x) - Lll lg(x)| + |Ll| lg(x) - L2| < £ since:

|[£(x)g(x) - LiL| < [£(x) - 1| lgx)| + L] [g(x) - L,]
In turn this can be accomplished if each of the terms

| £(x) - Lll |g(x)| ana |L1| lg(x) - L2| are less than €/2. Now

by virtue of the fact that g(x) is bounded in a neighborhood of c,

we can say that there exists a number 61 such that if

0 < |x - c|_< 810 lg(x)| < K, for some number K. By virtue of the

fact that iiz £(x) = L;, we can find another number 62 such that

0< |x -c¢c] < 62 implies that |f(x) - Ll] < £€/2K. (Notice here

that we are using the idea that if |f(x) - Ll] < €/2K and

lg(x)| < K, then [£(x) - Ly| |g(x)| < (e/2K) K = €/2.)

lim _
x> gix) = Loy
§4 such that 0<|x - ¢ < §, implies that lg(x) - L,| < €/2 |Ll[

(the only trouble is if Ll = 0, but’'in this case the result is

In a similar way, since we can find a number

true by the result of exercise 1.6.2(L)).

Now if we choose § = min (61, 62, 63) all three of the above
results hold. Hence: 0 < |[x - c| < & implies that

[£x)g(x) - LiLy| < [£x) - L] lgx)| + |L;] lgx) - L] which

" . € 3 = 3

in turn is less than (ff (K) + |Ll| (3) =

%‘ +-2- = E. That
is, 0 < |x = c| < § implies that |f(x)g(®) - L < € and the

15|
result follows.

I1.7:2
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 7: A More Rigorous
Approach to Limits II

[1.7.1(L) cont'd]

This exercise has many aspects which recommend it for study.
For one thing, it was not quite as obvious in this case as to
how one determines delta in terms of epsilon as it was in some of

our earlier examples presented in the previous unit.

Another very important result of this exercise is that we
can now, once for all, compute the limit of a product by merely
taking the product of the limits. The point is that in many
problems we are only concerned with whether the limit exists and
if it does what is its value; and we are not concerned with being

able to exhibit a specific delta for a given epsilon.

Up to now we have stressed the epsilon-delta technique both
because we wanted to emphasize the definition of a limit and also
because there were times when we might want to know specifically
the size of a particular neighborhood. What we wish to now is to
exploit the other side of the coin and see how we may conveniently

determine limits without having to make recourse to epsilons and

deltas (and by the way this is a common situation in most sciences.

We have one definition that is best suited for qualitative purposes

and other criteria which lend themselves more readily to quantita-

tive situations).

Thus the main aim of part (b) is to utilize the result of
part (a) and determine the limit directly. At the same time we

will take the opportunity to point out that even in this case,

something is lost if we completely abandon the epsilon-delta ideas.

To begin with, let us assume that iig YE(x) exists and let

us call this limit G.




SOLUTIONS: Calculus of a Single Variable = Block I: Sets,
Functions, and Limits - Unit 7: A More Rigorous
Approach to Limits II

[2.7.1(L) cont'd]

Now iig YI(X) = G implies by the result of 1.7.1 (L) that
ii% (VETET )2 = G%; but since (VE(x) )2 = f£(x), we have that:
G2=L

and the result follows.

Notice, however, that we have only proven that if there is

a limit, it is VL. We have not proven that the limit exists.

To prove that a limit exists, we often have no recourse other
than the epsilon-delta approach. In this case, we would want to
show that we could make Vf(x) - VL arbitrarily small, and we could
accomplish this by writing:

\

Tl = /% . f(x) - L
VE(x) + /L

We could then argue that the numerator can be made small and
unless L = 0, the denominator is bounded away from 0, ana hence
that the quotient can be made small. A little refinement handles
the case L = 0, but this is not our main purpose in this exercise.
The major point is that there is a difference between a limit

existing and knowing its value if it does exist.

Finally, to complete this exercise, we can use mathematical
induction to show that the limit of a product is the produﬁj of

o : lim lim |,n n
the limits, We would then write e f(x) as e E:Vf(x) ) iaal I

I.7.4
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 7: A More Rigorous
Approach to Limits II

[L.7.1(L) cont'd]

Letting iig f(x) = G and invoking the product theorem, we obtain:

_ lim _ lim [/n n| _ ,lim n _ .n
Lo E@ = o0 E./‘r"(i)' ):l = (e Ex))T =6
whereupon it follows that G = L.

Thus if 1im"/E(x) exists it is equal to VIim £ (x).
X*c X*c

1.7 «211)
F ; lim 2 -
In the previous unit we proved that T, (t™ + t) = 12 and
ii? (x2 - 5%) = 6 by the epsilon=delta method. The main purpose

of this exercise is to reinforce the remarks made in Exercise 1.7.1(L)

and show that we can now find these limits much more conveniently.
Namely, by invoking such results as the limit of a sum is the sum
of the limits, the limit of a product is the product of the limits,

etc., we obtain:

lim 2 . Jam ;2 lim
feg (BT E o & F a %
_ lim lim
B g (£ % £) +* t>3 E
= [((lim t) (lim t) & Iim &
t+>3 t+3 t-+3
= [(3) €3)] +.3
= 12
T o7 a5




SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 7: A More Rigorous
Approach to Limits II

[1.7.2(L) cont'd]

lim 2

(Equivalently we could have shown that £>3 (t™ + £t - 12) = 0 by

writing t2 + t - 12 = (t + 4) (t - 3.)

Then

lim lim _ 1lim lim

2 - — — —
t+3(t +t =-12) = t+3[t + 4) (t 3)1 t+3(t + 4) t+3(t 3)
=7x0
= 0-)
In a similar way, we observe that:
lim, 2 _ lim _2 . lim ,_
x+6(x - 5x) = G x" + o (-5x)
_ (lim x) (lim x) + [lim -5) (lim x)]
X6 X+6 X+6 X+6
= (6) (6) + (-5) (6)
~

36 - 30 = 6

The important point is that we could compute these limits without
specific recourse to epsilons and deltas - yet we must keep in

mind that it was the use of the epsilon-delta approach that allowed
us to invoke these limit theorems validly.

I.7.6
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 7: A More Rigorous
Approach to Limits II

lim[(x + 1)2(x2 + x + 2)] = [lim(x + 1)°] [lim(x% + x + 2)]
x+1 x+1 x+1

(lim(x + 1)1° [lim x° + lim x + lim 2]
x>1 x+1 x~>1 x+1

[lim x + lim 1]°[lim x)2 + lim x + lim 2]
x+1 x+1 x-+1 x+1 x+1

(L +1)° (12 +1 + 2]

Il

(2%) (4) = (32) (4)

128

Notice, again, the advantage of not being required to
exhibit a specific § for a given € in order to find the required

limit.
1.7.4(L)

In essence what we must do here is to show that |f%§T = %l
becomes arbitrarily small as x gets arbitrarily close to c. (The

restriction that L # 0 is obvious in the sense that L = 0 implies

that 1/L doesn't exist). From a semi-rigorous point of view, we

observe that:

1 _1_L-£(x) o
(%) ' LE(X)
T7%7




SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 7: A More Rigorous
Approach to Limits II

[1.7.4(L) cont'd]

In (1) we observe that since iig f(x) = L, then: (a) L - f(x)
can be made arbitrarily small, and (b) f(x) is bounded in a
neighborhood of x = ¢ (see solution to Exercise 1.6.1(L)). In
other words, the numerator of (1) may be made as small as we wish
while the denominator is bounded but not zero. Thus the quotient

exists and can be made as small as we wish.

To handle this problem more formally, we can prove that

lim L - £(x) _ i
T 0 and that =)

the result of Exercise 1.6.2(L) to conclude:

is bounded. We could then invoke

lim 1
X+C £ (x)

lim (L—f(x))( 1) _,

1
L X+C L f(x)/

* lim 1)

- - *
x+c f(x) = %

We may observe that this exercise together with Exercise

1.7.1(L) (a) gives us an interesting way of proving the quotient

theorem for limits. Namely suppose that A f(x) = Ly and
lim . ; : f (x)
= g(xi = Lz, with L2 # 0. Then we may write F(x) as
f ST Y -
(x) [g(x)]

We then have:

*Note that iim f(x) = L and lim [E(x) - L] = 0 are equivalent
statements. To prgve this, merel§ §¥rite what the epsilon-delta
definition for each says and see that they are identical.

GBS N b e

al 8

Al Ea e

i 3




1 W 0

S A &a Em

aa EE e

1 €1

1

{

| S

SOLUTIONS:

Approach to Limits II

[1.7.4(L) cont'd]

Calculus of a Single Variable - Block I:
Functions, and Limits - Unit 7:

Sets,
A More Rigorous

lim £(x) _ lim [g L’ 1]
X+Cc g (x) X+C (x)

lim
X+C £ix)

L. 7..5(1)

lim 1
x+c g(x

In more intuitive language this problem is asking us to verify

that studying what happens for large values of x is equivalent to

studying what happens for small values of 1/x.

gets large, 1/x gets small. From

That is, as x

a more analytical point of view,

the significance of the result lies in the fact that our limit

theorems involve the fact that when we say x approaches c¢, c is a

real number. On the other hand «

what we may do, once we prove the
see iig f(x) we may replace it by

and thus reduce the "new" problem

Thus,
whenever we

is not a real number.

stated result, is:
lim
x+0
to a previously-solved type.

+g(x), where g(x) = £(});




SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 7: A More Rigorous
Approach to Limits II

[1.7.5(L) cont'd]

So much for the motivation of this exercise, let us now turn
our attention to a formal proof. What we must do is show that
either property leads to the other. For example, suppose we

start with the fact that iiﬁ f(x) = L. We must show that this
lim

implies that + f(%) = L. That is, given € > 0 we must show that

x+0
there exists 6 > 0 such that 0 < x < ¢ implies that |f(%) - L| < e.
(Notice here that we are saying 0 < x < § NOT 0 < |x| < &§. This
lim lim
+ rather than .
x+0 x-+0
from the fact that x+» implies that, among other things, X is

is why we write This change comes about

positive.)

At any rate, from the definition of iiﬂ f(x) = L, we know
that given any € > 0 we can find M > 0 such that t > M implies
that |£(t) - L| < €. (The change from x to t will clarify our
notation later in the problem. For now observe that no change
occurs Ly replacing x by t, since the use of either t or x is as
a "dummy" variable. In still other words, in the notation
iig f(x), we may think of x as denoting any variable. That is,

lim - lim
b f (x) may be viewed []+c £(01) )

If we now use a change of variable and let t be replaced by
1 lim

X’ e have that x+mlf(x) = L means that given € > 0 we can find

M > 0 such that if = > M then |[£() - L| < e. (Notice here that
x > 0 since if x = 0, 1/x would be undefined.) Next, since both
x and M are positive, it follows that %—> M if and only if x < %.

Thus, if we now let § denote 1 we have arrived at:

ﬁl

iig f(x) = L means that given e > 0 we can find 8§ > 0 such
that 0 < x < § implies that |f(%) - L| < e€; and this is precisely

lim

1, _
x+0+ f(io = L. Thus we have proved that

what it means to say that

II?.lO

E e
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 7: A More Rigorous

Approach to Limits II

[L.7.5(L) cont'd]

lim . . . lim i :

—— f(x) = L implies that x+0+ f(;) = L. While we spare you the
details, it is not hard to show that reversing the steps in our
above derivation establishes that the converse is also true, and
the result of the exercise follows.

Again from a practical point of view, ijﬂ f(x) merely means
to study f£(x) for large values of x, and the fact that this is
equivalent to studying f(%) for values of x near 0 allows us to
utilize all of our previous limit theorems in the investigation

1

of im £(x).

1.7 6 18)

From the result of Exercise 1.7.5(L) we have:

1.2 1
lim [3x% - 7% + 1|_1im, (3G} " 76 + 1
x> 2 x+0
X X
| —
_ lim, |3 - 7x + x2) /%2
T x*0 2 2
(4 + 5x - 7x7)/x

Since x+0% implies that x # 0, we finally have:

lim 3x2 - 7x + 1 " lim d = 4% ~+ x2

Xro 2 = x+0" 2

4™ + b5x - 7 4 + 5x - 7x
L:7=11




SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 7: A More Rigorous
Approach to Limits II

[1.7.6(L) cont'd]

Now we may employ our previous limit theorems (observing first
that the theorems remain valid of iiz is replaced by i:2+ or
lim :
x*c-) to obtain:

P i Z 2
lim 3 = 7 11m+x -+ (11m+x)

lim, |3 - 7% + x°_ | _ %0 x>0 %0 L 3o THO) #0°
0" 14 4 5x - 7x° lim 4 + 5 limx - 7(lim+x)2 4 + 5(0)
x>0 x+0 x+0
= 3
)

Hence:

lim 3x2 - 7x + 1
Hres 4x2 + 5x - 7

|
oW

Before we leave this exercise, let us point out that we may
have decided that there was a quicker way to arrive at the same
answer. For example when x is very large, x is "small" compared
with x2. Thus we might feel thét for very large values of x,
3x2 - 7x + 1 "behaves like" 3x2 while 4x2 + 5x - 7 "behaves like"
4x2. Thus:

3% = 7% # 1
dx® & Bx =

2
"behaves like" éﬁf or % for large values of x.

4x

T.7.12
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 7: A More Rigorous

Approach to Limits II

[1.7.6(L) cont'd]

There is no denying, as we have just shown, that this approach
yields the correct answer, and that it does it without the fuss
of our first method. There is, however, a great deal of subjec-
tivity involved with the expression "behaves like" and it is
possible that results which seem plausible may in fact turn out
to be incorrect in situations where great delicacy is necessary.

We shall indicate this in more specific detail in the next exercise.

1.7, 7¢5)

We might be tempted to say that for large values of x,
2 @ PO - i /2

x“ + x "behaves like" x°. We might then decide /x + x - X

. behaves like x2 - x=x -x= 0, Yet, surprising as it may

“seem e (sz + x - x) is NOT equal to 0. To obtain some sort of

X*% .
empirical evidence that L (/ﬁz + X - X) is not zero, we might

X+
compute sz + X - x for certain values and see what happens when

X gets large. That is, letting f(x) = sz + x - x, we see that:

/2 -1 0.41"
£(2) Ve - 2

£(3) = J/IZ. -3 =2/3 -3 = 0.46"

Il

« il i )

I

0.44%

£(100) = /(100% + 100 - 100 = /10,100 - 100 =
100.49% - 100 = 0.49"

and while we haven't really proven anything we begin to feel that

f (x) increases with x and seems to begin to "behave like" %.

L+7 <13




SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 7: A More Rigorous
Approach to Limits II

[1.7.7(L) cont'd]

To show that iiz (/xz + X - x) is indeed %,-we may observe
that:

VG;F:T;’_ & . A x% + x - X) (sz + x + x)
,/x +: X + X

Vx= + x)2 - x2
/xz + X 4+ X

3 the numerator)
VX + x + x

. in + X -x =

X
/1 +%+ 1)

Since we are interested in large values of x (x»») we may assume

x # 0. Hence, for x > 0:

/L ax=x = & (1)
/1+§I+1

Looking at the right hand side of (1) we sense that as x+» ,

% + 0 and hence:

lim |, /02 . = _ lim | 1 1_ ;I |
+

T.7.14

b 4 (in essence, we rationalized
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 7: A More Rigorous
Approach to Limits II

[2:7.7(L) cont'd]

If we prefer to invoke the result of Exercise 1.7.1(L) we

have:

lim A _ 11m

=S e ) e [mn]
X

This, in turn, becomes:

lim
E(+ +H _ i |

[1im, /T 7% Eim /T x:] + 1
+ +
x>0 x+0 +0
Now from the result of Exercise 1.7.1l(b), since ilg+ 1 + x
it follows that ilg+ Il +x = 1l =1.

. 1lim

< 1
e [t

=
+
=

Il
=

of cou se we cou have done this problem by going at once

from 11m sz + x -

T.7+15

1,




SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 7: A More Rigorous
Approach to Limits II

[1.7.7(L) cont'd]

2
lim L 1 1
x+07| (:—(-) X7 x

and then proceeding as described above.

The main feeling that we hope comes about from Exercises
1.7.2(L) and 1.7.3(L) is that we learn to appreciate the sensitive
balance between intuition and rigor. We shall not object to such
terms as "behaves likes" provided that whenever we are challenged
to do so, we can show more objectively that our intuitive feeling

can be "documented."

1.7.8(L)

We observe that as x 4-l+,x - 1 becomes a very small but
positive number, hence ;—é—I gets arbitrarily large. In other

as large as we wish by choosing x (>1)

words we can make ——

sufficiently close to 1.

This in turn implies that if L is any finite number it is

p . lim L _
lmpc}SSlble that x+1+ }?—:—-]': = Lais

Indeed given any € > 0 we can find § > 0 such that
l1<x<1l+ § (equivalently: 0 < x - 1 < §) implies |§%T - Ll > ¢
(since E%T gets as large as we wish by an appropriate choice of

§, while L remains fixed).

To indicate the fact that E%I-increases without bound as

+ .
x+1 , we write

lim+ 1
x->1 X - 1

Il
8

.7 16

—
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 7: A More Rigorous
Approach to Limits II

[1.7.8(L) cont'd]

Quite in general,

lim e
X+C £(x) =

means that given any real number M > 0 (no matter how large),
we can find § > 0 such that whenever 0 < |x - c| < § then
|£(x)| > M. This is the formal way of saying that f(x) increases

without bound as x approaches c.

1.7.9(L)

lim - lim _
Let f(x) =L and prsin g(x) =L

X+C 1 2°

We shall show that L, > L implies a contradiction. Namely, in

terms of a picture:

2

Choose any ¢ > 0 such that ¢ < %| L, - L2|. This insures the
fact that we can find - neighborhoods of both Ll and L2 which do

not intersect. Thus:

T
=
s

- ) ¢ -
Lz-*e L2 L2+g Ll—e Ll L1+e
L AR lim _ lim _
Now by definition of Yoo E(x) = Ll and Xoc g(x) = L2 for

the above g, there exist numbers 61 > 0 and 62 > 0 such that

I1:7:17




SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 7: A More Rigorous
Approach to Limits II

[1.7.9(L) cont'd]

0< fx=-¢c|] <6, = L

1 - g < f(x) < L. + €

i i

-e<g(x) <L, + €

0<Ix—c|<62+L 5

2

Thus if 6 = min {§ }, we have that

1'62

0< |x-¢|] <& = L, - €< £(x) <L +¢€

L2 - £ < g(x) < L2 + €

Recalling that we chose € so that L2 + € < Ll - €, we have

0 < Ix - c| <8+ g(x) < L2 + g < Ll - e < £f(x); or
g(x) < £(x).

But, g(x) < f£(x) gives us the desired contradiction since

we are given that f(x) < g(x).
Notes:

(1) Observe that it is not important that f(x) < g(x) for
all x. Rather it is sufficient that f(x) < g(x) for all x in some
deleted neighborhood of x = c¢. For example if f(x) < g(x) only
£ 0< | -] < 63, we need only let 64 = min{§ 53} to adjust
the result of this exercise to the new situation.

(2) Notice that £(x) g g(x) for all x doesn't prevent the

lim : lim
fact that et f (x) might equal . g(x).

I.7.18
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 7: A More Rigorous
Approach to Limits II

[1.7.9(L) cont'd]

2 : 2
X lim X
For example ——— < 1 for all x, yet —_ = 1.
%% + 1 ® e 241

(3) An important corollary to this exercise is that if

' lim lim lim
f(x) < g(x) < h(x) and S £1(x) ; i g(x), and il h(x) all

exist, then:

lim lim lim
£(x) < g(x) € 4, h(x)

X>C X+C

; .o lim _ lim _
In particular if — f£(x) = i h(x) (=L) then

lim g(x) € L

3 X>C

or

lim _
X+>C g(x) = L.

In other words one way to compute AN g(x) is to find two

X=->C
functions f£ and h such that
f(x) < g(x) < h(x)
but wh e TR
ut where __ X) = Foad (x)
In this case lim g(x) = lim f(x) (or lim h(x)) This "sandwiching"
X>C X+C X>C )

device is a very powerful technique for determining limits - and

we shall use this device several times in this course.

Tolwdd
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits

UNIT 8: Mathematical Induction

1.8.1

We let P(n) denote the proposition that

14+ 2 # ooa +#0n = Ei%iil
Since 1 = 1 L%L we see that P(1l) is true.

We next assume that P(k) is true and try to show that because of

this P(k+l) is also true.

That is, we try to show that

1+ ... +k-= Eigill

implies that

L # oo # (kel) = SEED UEH2)

To this end:

1 4 eoe + (k+1) = (1 + .o. + k) + (k+1)
Ei§i£1-+ (k+1) [Since our assumption
is 1l + ... + k = k(k+1

2

= (k+1)(§ + 1)

= (k+1) (k+2)

2
.81

]




SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 8: Mathematical Induction

[1.8.1 cont'd]

. [ P(1) is true

The truth of P(k) implies the truth of P(k+1l)

. w By mathematical induction P(n) is true for all positive

integers, n.

1.8.2
3 3 n? (n+1) 2
Letting P(n) denote 1™ + ... + n 8 e W& BEE that
2 2
P(l) means 13 = i—i%iil— or 1 =1 . P(l) is true
3 . .3 2*(24a3° .
P(2) means 17 + 27 = S OF 9 =9 .. P(2) is true
3 3 k% (k+1)2
Assume P (k) is true. That is, 1~ + ... + k™ = T
Now: 12 # ... + (k+D)3 = (13 + ... +x3) + x+1)3
k2 (k+1) 2 3
= + (k+1) (by the assumptiocn
that P(k) is true)
2 [k2 2 [k% + ax + 4
= (k+1) 7 + (k+1) = (k+1) 7}
_ (k+1)? (k+2)2
4

but this is precisely the statement that P(k+l) is true.

S S E I I A S R N O S E I EE S S IS =S e




aE a e

il &S S oa e

an ea =

1 &a m & e

| . |

SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 8: Mathematical Induction

[1.8.2 cont'd]

By Mathematical Induction P(n) is true for all n.

Interesting Aside:

2 2 2
Note that % = El(n__‘gl_)] R — n(x£+l)
1+ vee * N,
2 2 2
R R E‘i%ill‘== E?%ii%] =@+ ... +m% (1)

Equation (1) indicates the interesting fact that the sum
of the first n cubes is the square of the sum of the first n

numbers. For example.

13 +$23 433 £ 43 21 48+ 27 + 64 =100 = (L+2+3+4)°

1.8.3

Letting P(n) denote 1 + 3 + ... + (2n - 1) = n2 we see at

once that P(l) is true. Namely 1 = 12.

Next P(k+l) means that 1 + 3 + ... + (2[k+1l] - 1) = (k+l)2

Now if we assume that P(k) is true we obtain:

1 +3 4+ ... 4 [2(k+1)-1] = [1 + 3 4+ ... + (2k-1)] + [2(k+1)-1]
= k2 + [2(k+1)-1] (since we assume
P(k) is true)
= k2 + (2k+1)
= (k+1)2
I:8.3




SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 8: Mathematical Induction

[1.8.3 cont'd]

.= P(k) =+ P(k+l)

,

.. P(n) is true for all n by induction.

Notes:

(1) If we were alert we might have noticed that when we
add 2n+l onto n2 we get (n-l-l)2 and this might have helped us

conjecture the given result so that we could try induction.

(2) This problem tells us that the sum of the first n

th

positive integers is the n perfect square. We may visualize

this result quite nicely geometrically:

Writing the square as a
square array of dots the
L-shaped regions are made
. . . . . up of consecutive odd
numbers of dots.

1.8.4

Letting P(n) denote |a; + ... an| € laj| + .o 4 la | we

already know that both P(l) and P(2) are true. That is the fact

that |a,| ¢ |a;| establishes the truth of P(1l), while the "triangle

1l
inequality" states that |al + a2| < ]al] + |a2|, which establishes

the truth of P(2).
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Unit 8: Mathematical Induction

[1.8.4 cont'd]

.. Let's assume |a; + ... + a | < [a) | & wam lak| is true.
Then the required result follows as soon as we can prove that

s T LE

lag + e tapgl e lagl + k1!

Well:

=l (a; + ... +a) +a

a4 k+1l

<

=la; + ... ta] ¢+ | a1l *

<

= (lag| + <00 # la, [) + [ak+l| (by the
assumption
that P (k) is
true)

and since

(Jaj| + ... #+ lak|) - Iak+ll

laj| + + la | + + |a .l (the associative

rule for addition)
the required result follows.
*Here we utlllze the fact that a e is a single number,

. Then l(a a ) + a and by the truth

o s + a
of P(2), thislin turn cahnot e§céed AA$ §+l|
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits

QUIZ

1. (a)

I

A B
4
T ={1;2;3;4}
A = {1,2} |
B =1{2,3} | A' = {3,4} >
AlUB=1{1,2,3}1B' ={1,4} Thus 5;/ : the shaded
- = region denotes
Al B'
/3
(b) Let P(n) denote the proposition that
(AlU UAn)' =Al('l ...nAn n 32

Then we already know from part (a) that P(2) is true. So we
assume P(k) is true and show that this implies the truth of P(k+l).

] ]
That is, we must show that if (A, o U A) = Aif7 R i A

' 1
then (Al | S UA](+1)I = Aln .. nAk+l

Now:

A U ...Ua ) = (U ... Uag Ua )¢

[AlU . Ak]'n A, ., (since P(2)

is true)
]

] 1
(a, 3 a10 A, (since P(k)
is assumed true)

1 1 1
aN...08 Na .
and the proof by induction is complete,

LQ.1




SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Quiz

[1. cont'd]

I
A B 1=1{1,2,3,4,5,6,7,8}
’A a=1{1,2,4,5}
da B = 12,3;5;6}
b c = {4,5,6,7}
T
c

sVUc={2,3,4,5,6,7} B'Nc'={1,4,7,8YN{1,2,3,8}={1,8}

a'U 'Nc')={3,6,7,8} U{1,8}

|
I
An(BUC)={1;2p4J5}n{2r3p4;5;6;7}:

={2,4,5} ={1,3,6,7,8}

|
S [AO@BUC)] '={1,3,6,7,3}/

I

shaded region is [A N (B UC)]"
or A'(Y (B'N ¢c")

1

2. (a) We know that £ ~(£(1)) = 1
f'l(f(z)) = 2
£71(£(3)) = 3
£7l(£(4)) = 4

Hence by the definition of £,

LQ.2
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Quiz
[2. cont'd]
£l@2) =1
= B
£ ~(4) = 2
_l _
£ 7(1) = 3
£133) = 4
or:
£l = 3
-1 .
£ 7(2) =1
=3 3
E (3) = 4
f'1(4) = 2
(b) 1Ify=3%
Let g(x) = LS ; 4
f(g(x)) = = = x
and
3x - 4
Jfxs4) .
g(f(x)) = > = x.
3. Since y = x3 - 2x" for (x,y) to belcocng to C, we have that

_ 3 2
Yi *&¥ = (xl+ax) - 2(xl+Ax)

.Q.3




SOLUTIONS:

[3. cont'd]

(a) Now the slope of PQ is Ay

.. slope of PQ =

(b) The slope of the curve at P is by definition .

Calculus of a Single Variable - Block I:
Functions, and Limits - Quiz

Ax

l}xl+ﬁx)3-2{xl+&x)€] - [%13-2x1%]
Ax

3 2

X, +3x

— 2
1 1 ﬂx+3xl&x

+£i3-2x1

Sets,

3 2

2—4xle-Zd§2—x +2x

1 1

Ax

2 —2, =3 —2
1 ax+3xlax +Ax 4xlax 2Ax

Ax

3x

(3x12-4gﬂax+d§2(3xl+Ax-2)
AX

2
3xl —4xl+ﬁx(3xl+ﬂx-2) (since Ax #

Q+P

0)

(slope of PQ).

That is, slope of the line tangent to C at P(xl,yl) is:

lim

2 -
Ax0 EBxl —4xl)+ﬂx(3xl+ax—2a =

2 _ 2_
3xl —4xl + 0(3x1-2) = 3x1 4xl

Hence the equation of the tangent line to C at P is:

Y-y
L = 3% %y
x-xl 1 il

_ 2
or: y = (3% -4xl) (x-xl) +¥;

1.Q. 4
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Quiz

[3. cont'd]

(¢) 1In particular when x, = 3, 3x12-4xl = 3(9)-12 = 15. Hence
the line tangent to C at (3,9) is given by:

Y2 = 315

x-3
or y=9 = 15x - 45,

»

.y = 15x-36

(Note that y = (3x12—4xl) (x-xl) + Y, [the answer to part (b)]
reduces to this when X, = 3 and y, = 9.:)

At any rate y = 15x-36 meets the x-axis when y = 0.

P _ 36 _ 12
- *¥T 15775

. . The line meets the x-axis at (E%, 0)

4. (a) and (b) The graph (see below) of f(x+5) is that of f(x),

shifted 5 (horizontal) units to the left.
/y = %x+7

(-1,5% |/
(4,5)

graph of f (x+5)” graph of £(x)

(—5..—3))‘! "/(0,43)

7/

4
¢

y = 2x-3
I.Q. 5




SOLUTIONS: Calculus of a Single Variable - Block I: Sets,

Functions, and Limits - Quiz

[4. cont'd]

More abstractly £ is defined by

£(L1) =211 -3,0s[1xs4

Hence f(x+5) = 2[x+5] - 3, 0 £ x + 5 ¢ 4

e E(xX+5) = 2x+7, -5 ¢ x § -1

(c¢) £(x) + 5 (2x-3) + 5 0 ¢ x

A
=S

= 2x + 2

Thus the graph of £(x) + 5 is that of f(x) raised 5 units.

y = 2x+2

(b) and (c) show us that f(x+5) and f£(x)+5 are different.

(d) f (4x)

2(4x) - 3, 0 € 4x ¢ 4

8% — 3, 0 € x¢ 1

.LQ.6
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SOLUTIONS: Calculus of a Single Variable - Block I: Sets,
Functions, and Limits - Quiz

[4. cont'd]

(e) On the other hand

4f (x) X < 4

4(2x-3),

0 s
8x-12 0 xg 4

Thus, in a single diagram:

y
A
graph of
£ (4x) “"'*';
J
1L
/
!”f 6t
J./"
/1
12¢

(£) Since [f(x)]| = £(¥) 4f £(x) 0
-f(x) if f£(x) < 0
the graph of y = |£(x)| is the same as that of y = f£(x) except

that anything below the x-axis (-|f(x)|) is reflected above the

X-axis. Thus

LQ.T7




SOLUTIONS: Calculus of a Single Variable - Block I:
Functions, and Limits - Quiz

[4. cont'd]

Sets,

Recall |f(x)| can
never be negative

5. (a) We want 1 > M.
R 1
Since both and M are positive, —— > M is equivalent to
V-1 < %»Whlgﬁ, in turn, implies that (/x-l)2 <
1 1

is, x-1 < —pr Or: X < 1+ =

1
(H) - that

In other words x must not exceed

2.
1 by more Mthan 12. %
M
(b) In particular if M = 1000, M2 = 1,000,000; hence
1 _ =6
x=1 < 1,500,000 - 10
That is x must be in the open interval (1, l+10-6). (As a quick
check, x = 1+4107% » x-1 = 107% » /&=T = 1073 » —L_ = 103 = 1,000.)

1.Q.8
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