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PREFACE

One might expect that, armed with good lectures and
lecture notes, an excellent textboonk, and exercises worked
out in meticulous detail, the student would have no need for
any additional components in a self-study course. Yet, there

are many reasons why supplementary notes are necessary.

For one thing, topics that are a prerequisite for
calculus today were not part of the curriculum several years
ago., Thus, for the student who has been away from school
for any appreciable length of time, it turns out that he
may not ever have studied the prerequisite material, For
example, much of the "new" mathematics is involved with the
study of sets. 1In particular, the textbook assumes that the
reader is at least somewhat familiar with the concept. Since
this might not be so, we have taken the precaution of making
sure that the fundamentals of set theory are available in
the supplementary notes.

Other topics in the text are presented adequately but
without sufficient motivation or generality. That is, they
are introduced to solve a particular problem, but they are .
not developed in their own right or in greater overview., In
such cases, the supplementary notes are used to shed more
light on the topics. For example, our treatment of mathema-

tical induction is from this point of view,

Still other topics are, to put it bluntly, just plain
difficult. For these topics, it often happens that even
with the textbook, lectures, and exercises, the student has
great difficulty. Thus, another use of the supplementary
notes is to supply other points of view and additional "rehash"
of these difficult concepts in the hopes that the student
will better grasp the concept if he has a choice of approaches
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to it. Our treatment of infinitesimals and the definite

integral are examples of such topics in this volume of notes.

Finally, there are those topics which traditionally
are beyond the scope of a beginning course but which are
important and within the grasp of the student who is taking
a refresher course. The supplementary notes try to treat
these topics adequately and in a self-contained way. For
example, our notes on uniform convergence fall into this

category.

Thus, the supplementary notes are another part of

our overall package. In many places the material is self-
contained and can be learned and appreciated gquite apart
from the actual course. In other places, no "attempt is
made to make the material self-contained., Rather, it is
our intent only to supplement the treatment given in other
parts of the package. 1In these places, the student who
tries to read the notes as a self-contained entity will be
somewhat at a disadvantage,

In all cases, however, the notes are meant to help
you obtain mastery of the subject and as a result they should

be read carefully as they are assigned.

Whenever possible the notes are written in an informal
style and proofs are included only so that interested students
will not be left "up in the air." That is, since the notes do
not in any way duplicate the text, virtually every proof in
the notes is given simply because it does not appear anywhere
else in the package. When important abstract proofs are
supplied in the text, the supplementary notes try only to
motivate how and why the proof was developed, and the actual
proof is left for the interested student to glean from the

text.

Cambridge, Massachusetts Herbert I. Gross
June 1970
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Chapter I
AN INTRODUCTION TO THE THEORY OF SETS

A. Introduction.

It is a toss=-up, at least at the elementary level,
whether the number line or sets receives the most publicity
in treatments of "modern" mathematics. Yet, the number line
can be traced back to 600 B.C., while the "newer" concept of
sets, as a self-contained study, can be traced back to about
1850 A.D. Among other things, this should serve as adequate
evidence that "modern" is used, not so much as a synonym for
"new," but rather, as a synonym for "meaningful" or "useful".

Why is the study of sets so meaningful? A precise
answer to this question would result in a multi-volume text,
but for our immediate purposes it might suffice as a rather
crude approximation to say that, in the same way that numbers
are the building blocks of arithmetic,sets are the building
blocks of all mathematics. Thus, we find that sets can be
used to help us examine every mathematical system, they can
be used to help us better understand the basic ideas of
probability theory including the topics of permutations and
combinations, they can be used in the study of logic. (Boolean
Algebra) including the designing of computers, they can be

used to enhance our ability to study quantitative relationships
(known in the literature as the theory of functions), and they
can be used to help us gain an objective insight into the concept
of infinity; in fact, the study of sets allows us to study the

entire concept of counting in an extremely beautiful way.

With all of this ballyhoo about sets and how profound

they are, it will probably seem surprising when we now confess

that, when all is said and done, a set is nothing more than a
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COLLECTION. Thus,while the study of sets may have had its
formal origin in 1850, sets themselves must have been known
from an intuitive point of view since the "dawn of conscious-
ness". That is, whether we use the word "set" when we refer
to a set of dishes or a set of books, or whether we use a
synonym for "set" when we refer to a flock (a collection) of
sheep or a herd (collection) of cattle, or even more indirectly
when we talk about the world series (a set of baseball games)
or the Boston Redsox (a set of baseball players), the fact
remains that we are dealing with the basic, simple, "self-
evident" concept of a collection. In short, the present
emphasis in the curriculum on the concept of sets should make
us feel a little like the high school freshman who was amazed
when he found out that he had been speaking prose his entire
lifel

In all fairness, however, there is one refinement con-
cerning the mathematical definition of a set which should
be stressed. Since, from a practical point of view, mathe-
matics is the hand-maiden of science and technology, and
since, whenever possible, the scientist desires quantitative
(or, at least, objective) measurements rather than subjective
ones (for example, in a precise experiment, he would feel
more comfortable knowing that he wanted water heated to 80°F
than to be told to use "lukewarm" water), it should not be
hard to understand that the mathematician might want the idea
of objectivity carried over to his concept of a set.

For example, our mathematician might balk at studying
the set of all beautiful paintings because the membership
rule for this set is gquite subjective. Indeed, the winner of
any beauty contest depends on the panel of judges; with a
different panel, we might well have a different winner. This
is exactly what we mean by the c¢liche "Beauty is in the eye
of the beholder."
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In summary, for scientific purposes at least, we wish
to study only those sets which are more than just random
collections, subjectively accumulated. Somehow or other
we want a bit more precision than that of the first grade
youngster (this is a true story, and sets are really being
studied this early in the curriculum) who summarized what
he had learned about sets by saying: "A set is a bunch of
dogs." Instead, we would like to limit our study of sets
to those for which the members can be tested objectively -
that is, in a precise way which does not depend on the

" judge " .

To get a more concrete idea of what we are talking
about, consider the set of. all people now living who were
born an April 2, 1929, If we wish to decide whether a
person belongs to this set, we need only ascertain the date
of his birth. Such a task does not depend on the person
who is chosen to serve as judge (to be sure, the efficiency
in ascertaining the date of birth may depend on who is the
judge, but the test for membership involves only the informa-
tion, not how it was obtained). Thus the set of all living
people born on April 2, 1929, has an objective test for
membership.

With the above as background, let us try to introduce
the concept of a well-defined set. A SET IS SAID TO BE WELL-
DEFINED IF, GIVEN ANY OBJECT, THERE IS AN OBJECTIVE RULE WHICH
ALLOWS US TO DETERMINE WHETHER THE OBJECT BELONGS TO THE SET,
OR NOT. ONE OR THE OTHER MUST HAPPEN, BUT NOT BOTH.

As to the decision of whether we have a "plain" set or
a well-defined set, let us simply observe that any set we
elect to study in this course is very likely a well-defined
set. For example, most mathematics books refer to the SET

of rational numbers. When we look up the definition of a
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rational number we find that a rational number is any number
which is the quotient of two integers. Observe that this
definition supplies us with a well-defined, objective test
for membership. Assuming that our judge can perform the
operation known as division (and if he can't, he shouldn't
be studying rational numbers anyway), he has an objective
test for determining whether a given number is rational.

To be sure, some tests may be more simple to apply than
others but this does not affect the test for membership.
(For example, in terms of decimals, the rational numbers are
precisely those decimals which either terminate or repeat
the same cycle endlessly.)

Our point is that in virtually every situation wherein
one would want to use sets, it turns out that the set is a
well-defined set, By the same token, by our insisting that

we deal only with well-defined sets, we introduce the necessary

machinery for removing from our conversation those sets for

which membership testing is subjective.

In all that follows in this text, we shall assume,
unless specifically stated to the contrary, that all our sets
are well-defined sets.

B, Set Notation

With the idea of a set firmly entrenched in our minds,
let us now turn to the "nitty-gritty" that is a part of
every game - the basic nonemclature. For better or for
worse, exciting or boring, like it or not, we must learn
basic vocabulary before we can do anything else; so we might

as well get started!

To begin with, unless it is otherwise specified, the
convention is that we denote sets by upper case letters,
and we use lower case letters to denote members (often called
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ELEMENTS) of a set. Thus, sets would be denoted by A, B,

C, etc., and elements by a, b, c, etc.

Then, as is the case in all studies, we invent a con-
venient shorthand. Namely if we wish to indicate that b is
an element of B, a member of B, or, more colloguially, that b

belongs to B, we write:

where the symbol "e" stands for "is an element of."

If, on the other hand, we wish to indicate that b is
not an element of B, i.e. it is false that b is an element
of B, we use the standard mathematical gimmick of placing a
"slash mark" through the symbol that denotes the relation.

In other words
b ¢ B

By way of illustration, let W denote the set of whole
numbers. Then one would write 3 € W, since 3 is a whole
number, but we would write 1/2 ¢ W, since 1/2 is not a whole
number.

At this point it is important to make sure that we
realize that € is a relation between an ELEMENT and a SET.
It is not a relation between two SETS. For example, consider
the set of states known as the United States. Maine, New
Hampshire, Vermont, Massachusetts, Rhode Island, and Connect-
icut are elements of this set; but the set that these six
states make up (namely, The New England States) is not an
element of the United States (that is, the New England

States are not a state) *,

*This should not be confused with the fact that it is
possible that the elements of a set are themselves sets. For
example, consider the state of Maine which is an element of the
United States. It is itself a set of people. (Notice in this
case that an individual person is not a member of the set of
states.)
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On the other hand, it is clear that the New England
States are a part of the United States. 1In still other
words, every state which is a member of the New England
States is a member of the United States.

In more abstract terms, if A and B are sets, it is
possible that all elements of A are elements of B (or more
concisely, all A's are B's). In terms of our new language,
this says that if x € A then x € B.

At any rate, this motivates our next item of vocabulary.
We invent a new bit of shorthand and write

ACB
as an abbreviation for
All A's are B's.

Moreover, when we write A C B, the accompanying prose is to
say that A is a SUBSET of B, or if we wish to place the
emphasis on B, we say that B is a SUPERSET of A.

By the way, it should be noted that when we say
All A's are B's
we cannot be sure about the truth of
All B's are A's

If we wish to emphasize that A is a subset of B but that
there is at least one member of B which is not a member of
A, we often write A c:B.

7

t

i e

3

B

<

t

|



» E 0w m ¢

8

| 3 |

[ B |

{

|

& |

¢

| 2 I

3

-

rm

T=7

By way of illustration, let, as before, W denote the
set of whole numbers, and let R denote the set of rational
numbers. Now, clearly every whole number is a rational
number. (A rational number is any number which is
the quotient'of two integers; thus if n is a whole number,
we have n = n + 1, and n is the quotient of two integers.)
On the other hand, not every rational number is a whole
number. For instance, l/2 is not a whole number since there
is no whole number whose double is 1. The point is that this
whole paragraph, if we use our new language, can be elegantly
abbreviated into:

c
W TR!

Also by way of review notice that, according to our definitions,

we would never write W € R since € is reserved for relating an
element to a set, and both R and W denote sets.

Another interesting point is that there seems to be
some sort of a resemblance between the symbol C and the
symbol < (which is used to denote "is less than" in a relation
between numbers). While there is some similarity between the
properties of these two symbols there is an extremely important
difference. Namely, if a and b denote two unequal numbers, then
it is a well-known rule of arithmetic that either a < b or
b < a, However, if A and B denote different sets, it need not
be true, that either A CB or BCA. For example, let A denote
the set of Frenchmen and let B denote the set of musicians.
Since there is at least one musician who is not French, it is
false that B C A. Similarly, since there is at least one
Frenchman who is not a musician, it is also false that A C B.
In fact, it should be easy to generalize the given example

and observe that quite often if A and B are randomly chosen
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sets then both A € B and BC A are false. (Again, if we wish
to abbreviate the statement that it is false that A is a
subset of B, we utilize the "slash mark" idea and write A gEB.)

A more interesting situation occurs when it happens
that both AC B and B € A are true. This tells us that each
A is a B and that each B is an A. When we put these two facts
together, logic tells us that A and B consist of precisely
the same members. In this event we prefer to say that A and
B are equal and we write A = B. In summary:

Given two sets A and B, we say A = B if A CB
and B C A.

Paraphrased into plain English,A = B means that A and B are
two different names for the same collection (set).

At this point, the astute critic could make an interesting
observation. Namely, why should one wish to give the same
collection two different names? The question is well taken,
and a proper answer to it will unveil an important aspect of
how one finds unifying threads in the systematic study of any
subject. For example, let us take an illustration from plane
geometry. Suppose we let A denote the set of all triangles
which have two sides of equal length, and let B denote the
set of all triangles which have two angles of equal measure*.

*At first glance the phrase "two angles of equal measure"
may seem a stilted way of saying "two equal angles". 1In the
"new" mathematics the point is made that it is not the angles
that are equal (since they are located in different parts
of space) but the measures (be the units, degrees, or radians
or what have you). 1In a similar way it is not the two sides
of an isosceles triangle that are equal (since the lines con-
stitute two different sets of points); but the lengths of the
two sides which are equal. However,now that we have paid the
proper lip-service to the idea behind the language, we shall
not become angry if we should forget ourselves and say things
like "two equal angles". (To carry the formalism to an extreme,
the old high-school geometry theorem that the sum of the angles
in a triangle is 180° should read that the sum of the measures
of the angles is 180°. Obviously, the sum of the angles of a
triangle is 31!)

t
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Now, there is no "inborn" reason for the geometry-unintiated
to suspect that A and B are equal sets. However, in the
course of time, one proves as theorems that all A's are B's
and that all B's are A's; and in this way we obtain the
unifying thread that the triangles which have two equal
sides are PRECISELY those which have two equal angles.

As a final topic in our initial onslaught of amassing
ﬁocabulary, let us invoke the notion that a picture is worth
a thousand words. One frequently uses "pictures" for
"viewing" sets. These pictures are known as CIRCLE DIAGRAMS or
VENN DIAGRAMS. Briefly summarized, we view a set as being
containea with a closed curve (actually "closed curve," as we
shall soon see, is a far better term than "circle" in the
present context). Using this device we would illustrate the

fact that A ? B by:

B's which are
not A's

(By the way, if all we were given was that A C B, we would

then daraw the diagram as:

The dotted lines are used to warn us that we are only sure
that the A-circle lies within the B-circle; and that we are

not certain whether it is true that some B's are not A's.)



Earlier we had mentioned that neither the statement

All A's are B's

nor the statement

All B's are A's

need be true.

In terms of our circle diagrams, this situation would
be depicted by:

A's which B's which are not A's
are not

B's

Elements
which are both
A's and B's

(Here we see a good reason, pictorially, for referring to <
"closed curves" rather than "circles." Namely suppose we draw
A and B as circles and insist that all sets be circles. Then
those objects which belong to both A and B form a set; but

as the above diagram indicates, that region would not be a

genuine circle, even though it would be a closed curve.)

In line with the representation of sets by circles, it
is quite natural that the idea that A and B are equal would
translate into the picture that the curves A and B enclose

precisely the same region. This is exactly what is implied

i
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when we say that the A-circle is contained within the B-circle
and that at the same time the B-circle is contained within the

A-circle.

Notice how we have used the word "within" in the above
paragraph. It is certainly natural from a geometric point
of view to consider any region as being contained within
itself. In terms of sets, this translates into the fact that
it is perfectly proper to say that all A's are A's. It may
be a truism - but it's still a fact. The important point here
is that this gives us another important difference between €
and €. Namely, while a well-defined set is not a member of
itself there is no such restriction placed on a well-defined
set being a subset of itself. In other words, if A is a well-
defined set, we have that A ¢ A but AC A*. Another way of
visualizing this important result is o think of a set as being
any collection and a subset as anything we can form by choosing
members of the collection. In this context, if someone says to
us "Take whatever you want", one choice we can make is to take

everything.

Of course, there is another  extreme, and that is that
we may elect to take none of the collection. This has no
bearing on what we have just discussed, but it plays a large

role in motivating our next section.

C. Two Special Sets.

We have just intimated that it was conceivable that a
set might have no members. Why would we allow a set to have
no members? For one thing, if there are no members, why

*For example, the United States is not a state; nor is
the National Football League a team in the National Football
League.
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bother naming it; for a second and more important thing, if a
set is a collection, doesn't the term "collection" imply at
least one member?’

The answer to these questions centers around the idea
of THE TEST FOR MEMBERSHIP that is implied for any set.
That is, in terms of the test for membership, it is possible
that the test for membership is so stringent that nothing
can survive it. For instance let us consider the set of all
numbers which are greater than 5 but less than 3. Certainly,
we have an objective - indeed, meaningful - test for member-
ship. Namely, given any number we see if it exceeds 5 and
then we see if it is less than 3. If both of these things
happen then our number belongs to the above set; otherwise,
it doesn't. Of course, it happens that no number can survive
the test for membership in this case; nevertheless, the test
is objective and well-defined. Moreover, it is a significant
piece of knowledge to discover that a test is so severe that

no element can survive it.

To strengthen our case even more, notice how often
(especially in mathematics) we are more interested in the test
for membership than we are in knowing the names of all the
members. For instance, we might be given a particular number
and wish to know whether this number is a prime. At this
point, we are more interested in knowing the recipe by which
we objectively test the given number for being a prime than we
are in wanting to see a complete listing of all the primes,
for, among other things, the number of primes is infinite!

Later we shall supply even more reasons for allowing a
set to contain no members. For now we wish only to establish

the fact that such a set is meaningful.
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In any event, it should be clear that such a set is the
smallest possible collection. In other words, we do not say
that a collection is so tiny that even if it had three more
members there still wouldn't be any! Less colloquially, we do

not have a notion of "negative" sets,

All summed up, then, we define THE EMPTY SET to be a set
which has no members; and we denote the empty set (also called
the NULL SET) by 4@.

By the way, do not confuse @ with 0. For example, con-
sider the set of all numbers which are neither positive nor
negative. This particular set happens to have one member -
namely 0. In other words, the set whose only member is 0 is
not the empty set because the empty set has no members - not
even 0. What is true, however, is that 0 denotes the NUMBER
of elements in @. On the other hand the set of all numbers
which are both even and odd is the empty set. (Notice that

0 is an even number, but 0 is not odd.)

To see what the empty set means in terms of grammatical

structures, consider a sentence like:
No dog has two heads.
In the language of sets, this says:

The set of dogs which have two heads is the
empty set.

Well, enough said about @ for now. Instead, let us turn
our attention to the other extreme mentioned in the last
section on subsets., That is, you can't take more than you
have. In other words, given a set A, the smallest subset
of A is @ and the largest subset of A is A itself.

This can be generalized, among other ways, by thinking
of the following stupid question: "Does the color blue



belong to the set of all lawyers?". At first glance the
answer is no. At second glance the answer is even more
emphatically no! In fact, we get the feeling that when we
talk about the set of all lawyers, it is implicitly under-
stood that only people are eligible for even the test for

membership.

In other words, at certain times not only do we wish
to limit membership in a set but also we even wish to limit
those things that are eligible for the test for membership.
To formalize this idea, we introduce the following definition:

By THE UNIVERSE OF DISCOURSE or THE UNIVERSAL
SET, usually denoted by I, we mean the set such
that for any element b and every set A which is
being considered, it is true that b € I and A C I.

Thus, @ and I serve as "upper" and "lower" bounds in our
discussion in the sense that no set being studied can have
feﬁer than no elements nor can it contain any element not
already contained in I. That is, for each set A, it is true
that

gL ACT.

If we accept the fact that we can use a concept even
though we don't know its name, it turns out that we have made
use of the universal set many times in our treatment of
elementary mathematics. Consider, for example, the fact that
in ninth grade algebra we are told that x2 + 1 cannot be
factored; yet in the eleventh grade, we are taught that
x2 + 1= (x +1i) (x - i). Certainly the body of knowledge
in mathematics did not change that drastically during the

two years! What happened was that in the ninth grade we were
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dealing with real numbers, while in the eleventh grade we
were using the complex numbers. In terms of our above
discussion, what we were really taught was that if the
universe of discourse were the real numbers, then x2 + 1
could not be factored, but if the universe of discourse

were the complex numbers, then it could be factored.

As a second example, let us refer to a problem in
analytic geometry. Suppose we wish to know the graph of
the equation x = 1. If our universe of discourse is the
x-axis then the graph of our equation is precisely a single
point., On the other hand, if our universe of discourse is
the xy-plane, then our graph is a straight line. Finally, if
our universe of discourse is 3-dimensional space, our graph

is a plane. Pictorially:

Y
‘ I x=1
— X

>X /
i
(

®
Y
»

t
0 1 ‘

xX=
(a) (b) c)

There are many such examples that can be supplied, but
for our purposes the present two examples should suffice to

show the meaning of the universal set.

In terms of Venn diagrams, it is conventional to repre-
sent I by a rectangle and to make sure that all sets under
consideration are drawn within this rectangle. For example,

instead of denoting A by



we would write

D. Set-builder vs., Roster method.

Now that we have established a few basic terms and the
concept of a well-defined set, it might be in order to des-
cribe some general methods for describing sets. The two major

methods are known as

(1) The Roster Method
and
(2) The Set-Builder Method

Each method has properties which, depending on the parti-
cular circumstances, make it more desirable than the other.
Let us begin our discussion with the roster method. As the
name may imply, the roster method is nothing more than an
explicit listing of the members of a set. For example, if A
were to denote the set of natural numbers which are less than
ten, then use of the roster method would yield

A={1,2,3,4,5,6,7,8,9}

It should be noted that the use of the braces to "enclose"
the set is a universally-accepted convention. Logical or not,
we agree never to use such notation as A =1,2,3,4,5,6,7,8,9.

(.3 ¢t
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It should also be noted that in our definition of the
equality of two sets, we merely specified that the two sets
contain exactly the same members. We never required that the
elements be listed in any particular order. This certainly
agrees with our intuition and past experience. For example,
if we were talking about the set of all men who were‘senators
of the United States during 1964, we would not quibble about
whether they should be listed by age, or by years of service,
or in alphabetical order. Indeed, while one listing may be
more convenient than another for a particular purpose, the
fact remains that each is a listing of the required set. 1In
terms of our example, we would write, for instance,
{1,2,3,4,5,6,7,8,9} = {9,1,3,2,7,6,4,8,5} = A. 1In this same
context, we agree that a set doesn't change merely by counting
the same element more than once, For example, no matter how
many times we wished to count "Monday" there are still only
seven days in a week. Thus, for simplicity, we agree never
to list the same element more than once. For example, we
would write {1,2,3} rather than {1,1,2,2,3,3,3}. (There are
some exceptions; for example, suppose we wish to list the
set of all letters which occur in the word, "Mississippi" and
investigate the various rearrangements. In this case, we
would most likely not write {M,i,s,p}, but rather
{m,i,s,s,i,s,s,i,p,p,i} since we are distinguishing between
the first i and the second, etc. If this seems awkward,
notice we may, for purposes of identification, imagine the
i's, p's, and s's to be colored differently so that we can
tell them apart.)

In contrast to the roster method, the set-builder nota-
tion describes the members of the set implicitly rather than
explicitly. In other words, while the roster method actually
lists the members of the set, the set-builder method describes,

or emphasizes, the test for membership.
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Specifically, in set-builder notation, we write {x:X.....},
which is read as "The set of all elements, X, such that......"

For example, we might write {x:x is a real number} to indicate
that we are referring to the set of real numbers., Or if we
were going to make reference to the real numbers very often,
we might say let R denote the real numbers, and we could then
write, very compactly, that {x:Xx € R} denotes the set of real
numbers. As a non-mathematical example, let I denote the set
of all Americans who were alive on January 1, 1960; and let B
denote the set of all Americans who were born on April 2, 1929.
Then by

{x:x € I and x € B} *

we would mean the set of all Americans who were alive as of
January 1, 1960 and who were born on April 2, 1929, Notice
the compactness of the set-builder method as, it clearly empha-
sizes the test for membership.

Now that the two methods have been described, let's
discuss their relative strengths and weaknesses. We begin
with the roster method. The obvious strength of this method
is that it tells us outright what the members of the set are.
That is, we have the easiest possible test for membership.
Namely, if an element appears on the list, it belongs to the
set; otherwise, it doesn't.

There are basic weaknesses, however, that can cause us
great difficulty. For one thing, we cannot list an infinite
set if only because life is finite. That is, suppose we wish
to list the set of natural numbers. How shall we go about
it? We could begin by writing: 1,2,3,4,5,6,7,8,9, 10, 11,
but we would never come to an end. Some people write:

1,2,3,4....., where "..." may be viewed as standing for "etc."

*We usually abbreviate {x:x € I and x € B} by {x:x € B}.
That is, when I is clear from context we assume x € I. 1In
still other words: {x:x ¢ I} = #.
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However, "etc." can be vague and subjective, to say the least..
As an example, consider the numbers generated by the following
recipe:

a =n + (n - 1)(n - 2)(n - 3)(n - 4)
where a, is merely an abbreviation for indicating the nth
number, For example, if we wished the first number in our

progression, we would choose n = 1, and write

a; = 1+ (1L -1)(L-=2)(1 =-3)(1 - 4) (where we have
merely replaced
every n by 1)
Thus:
a, = 1+ (0) (-1) (-2) (-3)
=1+ 0
=l'

and then we see that 1 is the first member of our sequence.

To obtain the second member, we replace every n by 2.

a, =2+ (2 -1) (2 =-2) (2 -3) (2 - 4)
2 + (1) (0) (-1) (-2)

=2+0

=2’

and we see that our second term is 2.
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Replacing n by 3, we next see that

3. % (3-1) (3-2) (3=3) (3-4)

V]
Il

3
=3 + (2) (1) (0) (=1)
=3+ 0
=3

Similarly

a. = 4 + (4-1) (4-2) (4-3) (4-4)

4 + (3) (2) (1) (0)

4 + 0
4

In this way, we see that we have a well-defined test
which tells us that the first four members in our sequence,
in order, are 1,2,3,4. Suppose we told this to a person,
but we did not tell him the "recipe" we were using. What do
you guess he'd choose for the fifth member of the sequence?
Well, it seems reasonable that when someone says 1,2,3,4....,

we expect 5 to occur next. Yet

a. = 5 + (5-1) (5-2) (5-3) (5-4)

5 + (4) (3) (2) (1)
5 + 24

291

a far cry from being "self-evident,” if the recipe is withheld.
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As other examples of this type of confusion, consider the
sequence: o,t,t,f,f,s,s,..... What letter comes next? We
claim that this sequence consists of the first letter in the
name of each natural number starting with one, that is, one,
two, three, four, five, six, seven, eight,...

'e" as our next

Thus, in this example we were looking for '
entry, which is again, not so self-evident when the rule is
witheld!

As a final example along these lines, consider the following

sequence and try to decide what comes next:

31, 30, 31, 30, 31, 31, 30, 31, 30, 31; 31,...

Wrong if you said either 30 or 31! We weren't looking for
either 30 or 31 but rather 28. For the above list is the
number of days in a month, starting with March in a non-leap

year,

These examples should serve as excellent reasons for
why we have the right to shun the subjective "etc." Moreover,
these examples should also serve to illustrate, at least
indirectly, one advantage of the set-builder notation. Namely,
notice how the "riddle" effect of these examples vanishes as
soon as we let the other fellow in on the explicit rule we

were following.

Aside from the fact that the roster method cannot be
used without some ambiguity for trying to list infinite sets,
there is even trouble in listing non-infinite sets. For
example, the people who are named in the Boston telephone
directory this year constitutes afinite set,yet a set large
enough to be undesirable for the average man to list! Not
only that, but even if a set has few elements, it might still

be very difficult to list,because we may have trouble "locating"



its members. To this end, consider the set of all living
people who were born in New England on May 14, 1865. It is
reasonable to assume that this set has relatively few numbers.
In fact, it might well be empty. Yet, look at the difficulty
that could arise if we were to try to determine the list of the

actual members of this collection!

The very weakness of the roster method is the strength
of the set-builder method, for, quite often, we are more
interested in the test for membership than in the members
themselves. For example, we might be more interested in
knowing whether a particular number is divisible by 7, 11,
and 13 than in knowing the entire set of numbers which are
divisible by 7, 11, and 13. By the same token, the strength
of the roster method is the weakness of the set-builder method.
That is, there are times when we require the members of a
set explicitly. For example, the lawyer might be more inter-
ested in the names of the people mentioned in a will than in
the set-builder idea of "all my living relatives". -

ONE OF THE UNIFYING THREADS IN THE PRESENTATION OF THIS
CALCULUS COURSE WILL BE THAT OF JUXTAPOSITIONING THE ROSTER
METHOD AND THE SET-BUILDER NOTATION SO THAT WE MAY BETTER
UNDERSTAND THE OVERALL PROBLEM. THAT IS, WE SHALL USE THE
SET-BUILDER METHOD TO EMPHASIZE THE PARTICULAR TEST FOR
MEMBERSHIP; THEN WE SHALL APPLY VARIOUS COMPUTATIONAL
TECHNIQUES WHICH WILL ALLOW US TO TRANSLATE FROM THE IMPLICIT
FORM TO THE MORE EXPLICIT FORM OF THE ROSTER METHOD.

In order to illustrate this idea more concretely, we
have chosen an example from elementary algebra so that we may
highlight the technique without having it obscured by a maze

of cumbersome computational devices.
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In this section, it shall be our aim to show how the
roster method and the set-builder method can be combined to
give a "modern" meaning to "traditional" topics. In parti-
cular, let us focus our attention on the problem of finding

roots of algebraic equations.

Consider the following "traditional" ﬁroblem:
Find the roots of x2 - 4x + 3 =0,

In this problem one was expected to show that 1 and 3 were
the required roots, whether the technique employed was that
of factoring, or using the quadratic formula, or for that
matter even trial and error. In terms of factoring, one used
the fact that xz - 4x 4+ 3 and (x - 1) (x - 3) were "synonyms"
and then replaced the original equation by the "equivalent"

one,
(x - 1) (x - 3) =0

This latter equation lent itself more readily to solution,
by virtue of the theorem that if the product of two numbers
is zero then at least one of the factors is zero, whence the

result that either x = 1 or x = 3 followed immediately.

So much for that! In modern language, the same problem

might read:

Find the solution set, S, for the equation

x2 - 4x + 3 = 0.

In this event, we would be expected to write that
s = {1,3}.
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Now, as we mentioned earlier, if we agree to be sensible
about the whole thing, we will soon admit that it is wasteful
to introduce new expressions just to express the same things.
That is, what difference does it make whether we refer to the
roots of an equation or whether we refer to its solution set,
if we must still understand such techniques as the quadratic

formula, factoring, etc.,regardless of the language employed?

Our claim, of course, is that there is much more to this
than meets the eye and involves our two major ways for des-
cribing sets. For example, we used the roster method when we
said that the solution set, S, of the equation x2 - 4x + 3 =0
was given by S = {1,3}. On the other hand, had we wished to
use the set-builder notation for expressing the solution set,
S, of the equation x2 - 4x + 3 = 0, we would have written

S = {x: x2 - 4x + 3 =0}

As we have mentioned, these two methods for describing
sets are basically different. For example, S = {1,3} tells
us explicitly that our set consists of the numbers 1 and 3,
but it does not tell us what property they share in common to
make themselves members of the same set. On the other hand,
s = {x: x2 - 4x + 3 = 0} tells us implicitly the property
which all members of S must have in common, but it does not

explicitly name for us the members of S.

Thus, we have two methods for describing the same set,
much as in ordinary arithmetic we often have two (or more)
ways for describing the same number. At the same time, again
as in ordinary arithmetic, which of the methods is "best™

depends on the specific problem being solved.
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We shall now show how "traditional" algebra is enhanced,
both for the student and the teacher, by an effective use of
these two major methods for describing sets. Still working
within the framework of the equation x2 - 4x + 3 = 0, observe
that the sat-builder notation gives us an ultra-simple way
for describing the solution set, S, of this equation. Namely,

we need only write S = {x: x> = 4x + 3 = 0}.

It is now urgent to point out that the above solution is
not a gimmick! Granted that the form of our answer may not
be as reassuring to our intuition as the answer afforded by
the roster method, and granted that it looks as if we really
haven't done anything by the set-builder method, the important
fact is that it focuses our attention on the meaning of the
answer and an understanding of the question. That is, even
if we have never heard of factoring or the quadratic equation
we can use the test for membership to decide whether a given
number belongs to S. For example, if we are given the number
four to test, we need only check to see whether it is true
that (4)2 - 4(4) + 3 = 0. Since this is a false statement,
the test for membership allows us to conclude that 4 ¢ S.

On the other hand, since it is true that (l)2 - 4(1) + 3 =0,
we can conclude that 1 € S, EVEN THOUGH WE MAY HAVE LACKED
THE COMPUTATIONAL TOOLS TO DISCOVER WITHOUT TRIAL-AND-ERROR
THAT x = 1 HAD TO BE A SOLUTION!

Indeed, one could now motivate algebra, at least in part,
by observing that algebra is a system of techniques whereby
one learns logically how to convert a solution set from the
implicit set-builder notation into the more explicit roster

form. s,

In other words, with respect to our illustrative problem,
whether the technique be factoring or the quadratic formula
or anything, it is a computational device which allows us
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to convert the set-builder form S = {x: x% -4x + 3 =0}

into the roster form S = {1,3}. From a pedagogical point

of view, this process allows us to focus our attention on two
separate, but equally important, parts of the problem; namely,
knowing what it means to solve the problem (that is, being
able to recognize a solution when we see it), and finding

techniques for helping us discover solutions more "conveniently".

Finally, if we recall that two sets are "equal" if they are
"aliases" for one another, we can then get a rather meaningful

interpretation concerning the equivalence of two or more

equations. For instance, we are not born with the knowledge
2

that x“ - 4x + 3 and (x - 1) (x - 3) "look alike"; thus, we
should beware of such statements as "The equation
x2 - 4x + 3 = 0 is the same as the equation (x - 1) (x - 3) = 0".

What we really mean (and notice how much less ambiguous things
become this way) is that the two different equations have "the
same" solution set. That is, if we let S = {x: x2 - 4x + 3 = 0}
and T = {x: (x -1) (x - 3) =0}, then S = T. Even more
explicitly, we have s =T = {1,3}. Notice also here that
when we say S = T we are not just being frivolous and giving

the same set two different names. Rather, we have showed that
the two different descriptions are actually equivalent. More-
over, when such is the case, it will frequently happen that

one of the equivalent descriptions will be more advantageous

to us in a certain situation than the other.
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Chapter II
THE ARITHMETIC OF SETS

A. Unions, Intersections, and Complements

In Chapter I we introduced the concept of set along
with a few basic properties. We pointed out that the
study of sets served a multipurpose'function in mathematics.
More specifically, we used the concept of sets to show the
inner mechanism whereby one proceeded from an implicit
to an explicit form of an answer, and how the "recipes"”
usually associated with algebra fit into this overall

pattern.

In this section we intend to introduce a few additional
concepts in the study of sets, and we shall then show how
sets may be used to unify apparently unrelated topics in
the study of mathematics.

We begin by pointing out that, while we have applied the
concept of sets to arithmetic, we have not applied the concept
of arithmetic to sets. That is, as of now we have in no
way explained how we may combine sets to form new sets. Thus,
before proceeding further, let us first introduce the arith-
metic of sets. For the present, we shall study this idea
for its own sake and then later we shall see how this

applies to other topics in mathematics.

From a very informal point of view, suppose that two
organizations, which we shall call A and B, wish to form a
merger. This means that a new organization incorporating A
and B is formed. Calling this newly-formed organization C,
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we see that C consists precisely of those elements which

belonged to at least one of the original groups A or B.

In a sense, C may be viewed as the union of A and B. Notice
that if there are well-defined tests for membership in A
and B, then there is also a well-defined test for membership

in C. Namely, given any element in our universe of discourse,

we test to see whether it belongs to either A or B. If it
belongs to neither then it will not belong to C; otherwise,
it will.

Using this as an intuitive motivation, we generalize
this idea to cover all sets. First of all, to minimize any
chance for paradoxes, we assume that we have a specific
universe of discourse which we shall denote by I.

Definition 1l: Let A and B be subsets of I. Then by the
union of A and B, written A U B, we mean the

set of all elements which belong to either

A or B (unless otherwise specified, by "either
- *
cees O ...." we mean at least one ). In the

language of sets:
AUB = {x: x € A or x ¢ B}

In terms of our circle diagrams:

*While this may seem strange to some, the fact remains
that "either... or ..." is often used in this non-mutually
exclusive sense. For example, when we say that either Tom
or Jerry will go to the store, we do not preclude the possi-
bility that both boys might go. When we reach into a deck
of cards and say that we shall draw either a spade or a face
card, we do not feel that we have lied should we draw the
king of spades. On the other hand, there are times when
"either ... or ..." means "one or the other, but not both."
In this event, there is still no contradiction, for "one or
the other, but not both" is covered by the expression "at
least one." Thus, our only precaution is that we will say
"either ...or ... but not both" when we mean "either ...
or ..." in the exclusive sense.

i
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/// denotes A4 B

Now we could have combined the sets A and B in a way
almost completely "opposite" to that of union. For example,
rather than a merger, we could have formed a "shrinker".
That is, we could have consolidated our two organizations A
and B by forming a new organization D, characterized by the
fact that its members were those which belonged simul-
taneously to both A and B. That is:

Definition 2: Again let A and B be subsets of I. Then by

the intersection of A and B, written A () B,

we mean the set of all elements which belong
to both A and B. More symbolically:

ANB={x: x e A and x £ B}

The choice of the word "intersection" can be motivated
in one way from the circle-diagrams by observing that A M B
actually is the intersection of the two circles. That is:

I

/// denotes A() B
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Notice that Definitions 1 and 2 introduce operations
on sets which are closed. That is, the union of two sets is
again a set; and similarly, the intersection of two sets is
a set.

This leads to still another reason for introducing the
empty set, @. For, first observe that since A( B = § if
and only if A = @ and B = § (why?), it would not be nec-
essary to "invent" the empty set for unions, since the only
way for a union to be empty is for the sets forming the union
to be empty. However, it is possible for the intersection
of two non-empty sets to be empty. For example, if I denotes
the integers and if A denotes the even integers while B
denotes the odd integers, we see that both A and B contain
infinitely many elements; yet, their intersection is empty,

since there are no integers which are simultaneously even

and odd. That is, each integer is either even or odd, but not
both. At any rate, this shows that if we did not consider

the empty set, it might well happen that the intersection of

two sets might not be a set.

AN B =g is equivalent to the more familiar "No A's are
B's" and translates into the following circle diagram:

|

=D

The final operation that we wish to introduce in this

section is the concept of the complement of a set. Observe
that whenever we choose a subset of the universe of discourse,

we actually choose two subsets. For example, if I denotes the

L3 i
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t
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set of natural numbers and A denotes the subset consisting
of the perfect squares, then we have induced the set B
whose members are the natural numbers which aren't perfect
squares. If I denotes all American citizens and A denotes
the set of American citizens who reside in New York, then
we can induce a set B, by allowing it to denote all
American citizens who do not reside in New York. More

generally:

Definition 3: By the complement of A, written A', we mean

the set of all elements which belong to the uni-

verse of discourse but not to A. That is

A' = {x: x e I but x ¢ A}

In terms of our circle-diagrams:

/// denotes A'

Remarks: (1) "But" logically has the same meaning as "and"
in many contexts. In this sense,A' =
{x: x e I and x ¢ A}. (Thus, we may say that
A' =INA'

This is not surprising since all elements
belong to I, that is,if B is any subset of
I then B = I N B.)
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(2) The concept of complement does not depend on
the concept of universal set. However, the
complement of a given set does depend on the
universal set. In other words, we do not say
that A' means all non A's but rather, all I's
which are non-A's.

(3) One often extends the concept of complement

to that of relative complement. Given any

two sets A and B, we define the relative
complement of A in B, written B - A, to be
all B's which are non-A's. That is

B=-A={x: x e Bbut x ¢ A}

Combining this with our observation in Remark
(1) we see that

B-A=BMNA"

In terms of circle-diagrams:

I
AU B=

(AN B")U (ANB)U (BOA')
(why?)

In terms of a basic structure, observe that arithmetic
seems to hinge on rules of combination that are closed. 1In
this sense, we see that we are in a good position to introduce
the arithmetic of sets, for we have our three basic opera-
tions of union, intersection and complement whereby we can
form new sets from old ones. For example, if A, B, and C
are sets, we can form the new set D = BU C and then form

6
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A\ D. That is, we can talk about such "combinations" as

A0 (BUY Q)

In terms of circle-diagrams:

Example:

Let I

Then:

A\ B
AN B
(A Y
(aU
A' =
B' =
A'J
A'N

4
Ui

{1,2,3,4,5,6,7:;8,9,10}
{1,2:3:5:7+9%
{1,3,5,6,8,9}
{1,2:3:4:5:7%

= 4X,2,3,5:6,7,8,9}
= {1,3,5,9}

B) ) ¢ = 11,2;3,5,;7}
BJ* = {4,10}
{4,6,8,10}
{2,4,7,10}

B' = {2,4,6,7,8,10}
B' = {4,10}

A is denoted by ”l
BlJ C is denoted by =
LAN (BUC) is denoted by3Hf
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In terms of circle diagrams, we could have represented

the above problem as follows:

Before concluding this example, it is worth observing
that certain "natural" things do not seem to be true. For
example, while one might "suspect" that (AU B)' = A'U B',

the above example shows this to be false. On the other hand,

in terms of the above example, (A U B)' = A'() B' seems to
be true. We shall be interested in those things that are
true for all sets, not just for special cases. Thus, we
shall be interested in such statements as: For all sets A
and B, (AU B)! = A'") B'. That is, we are interested in

finding universally true recipes about sets. (For example,

in the case of ordinary arithmetic, it turns out that
lx (2+ 3) = (1 x 2) + 3; yet this is not true in general.

That is, we can find numbers a, b, and c for which a x (b + c)

is not a synonym for (a x b) + c.)

i B
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B. Contrast Between Addition and Union

In many ways, especially since union seems to incorporate
the idea of COMBINING sets, there is a tendency to associate
union with addition. That is, suppose we have two sets A
and B and we know the number of members in each set. Say A
has m members and B has n members. Then it is not necessarily
true that Ay B has m + n members.

As a particular example, let us consider the case
wherein A has 20 members and B has 30 members. We then wish
to ascertain the number of members in AU B. Let us first

introduce the following notation:

If X denotes any set, let us use the notation
N (X) to denote the number of elements that belong to X.

In other words, for the problem we are now describing,
we wish to compute N(A U B), knowing that N(A) = 20 and
N(B) = 30.

Often, since the first impulse is to think of union in
terms of addition, we decide that N(A\ B) 50, since
20 + 30 = 50. We do not deny that 20 + 30 50! The point
is that it is not clear that we really want to add 20 and 30

in this problem. Why? Well, for example, suppose the college
registrar finds that 20 students have enrolled in Math 209

and that 30 have enrolled in Bio 232. The registrar records
the names of all these students. It should not be difficult
to see that the resulting list will contain 50 different

names if and only if no student takes both Math 209 and

Bio 232. However, for the sake of demonstration, let us
assume that 7 students take both of the courses. Then the

list would contain only 43 different names. To see this,
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let A denote the set of students taking Math 209 and let
B denote the set of students taking Bio 232. 1In terms of
a circle-diagram, we see that:

A B

(/

The diagram shows us that there are 13 elements that belong
to A but not B, 7 that belong to both, and 23 which belong
to B but not A. In all, there are 43 elements, despite

the fact that, separately, A has 20 members and B has 30.

The controlling factor is A(1 B, for if an element belongs
to both A and B, it contributes 1 to N(A) by virtue of
belonging to A; and 1 to N(B) by virtue of belonging to

B, even though it is just one element. In summary, each
element in A/ B is counted twice when we form N(A) + N(B);
but it is only one element of A()B. For example, in the
problem we just considered, notice that the difference
between the correct answer (43) and what may have been the
impulsive answer (50), is exactly the number of elements
in the intersection of the two sets. That is, we have

50 - 43 = 7.

It thus appears that our recipe should have been
N(AU B) = N(A) + N(B) - N(A B).
Applying this result to our problem we have

N(AU B) = 20 + 30 - 7 = 43,

il S D E =
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which agrees with the proper result. To carry our example
one step further, the given information that N(A) = 20
and N(B) = 30 does very little to determine N(A U B).

We do know that N(A N B) is between 0 and 20, but little
else. These two extreme cases correspond to the events
that (1) A and B share no elements in common, and (2)

A is a subset of B. Pictorially:

N(A Y B) = 50
(1) (2)

In terms of our recipe, these cases lead to

(1) N(AU B) 20 + 30 - 0 = 50
and

(2) N(AU B)

20 + 30 - 20 = 30

In other words, with regard to the present problem,
unless N(A /N B) is given, we can only conclude that N(AU B)
is at least as great as 30, but, in no event, in excess of
50. Moreover, we can obtain a correct answer between 30
and 50 merely by appropriately choosing the wvalue for
N(A /) B). 1In general, for this problem, we need only let
N(A U B) 50 - N(A B). For example, if we wish that
N(A { B) 37, we let N(A/N B) = 13. Thus:

>
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In summary, the trouble with writing N(A U B) =
N(A) + N(B) is that A and B need not be mutually exclusive.
That is, it may happen that AM B # @#. In the above

diagram, we ran into no trouble when we added 7, 13, and

17, but this was because the regions in question were
mutually exclusive. In other words, as we shall speak
more about later, if X, Y, and Z are mutually exclusive,
in pairs (that is, XM Y=Y/ 2 = X 2 = @) then
N(XU Y VU 2Z) = N(X) + N(Y) + N(Z). With regard to the
above diagram, think of X = AN B', Y = A1 B, and

Z =A'" B. Then, N(AU B) =N(XU YU 2) = N(X) + N(Y) + N(2),

since in this case X, Y, and Z are mutually exclusive

in pairs.

So far, we have made no restriction as to the finiteness
of the sets under consideration. To avoid ambiguity and/or
misinterpretation, we shall now impose the restriction for
the remainder of this section that all sets under con-
sideration be finite. To see why, let us consider the
following situation. Look at the expression 5 - 3. We
viewed 5 - 3 as the number which must be added to 3 to
yield 5. From a physical interpretation point of view,
we might have viewed 5 - 3 as the process of deleting
three tally marks from a collection of five. More generally,
in terms of sets, suppose that BC A and that N(B) = 3
while N(A) = 5. Then 5 - 3 could be viewed as being the
number of members in the set that results when B is
deleted from A. (Recall that this set is called
A - B, where A - B is merely another name for A/) B').

In general, then, if B¢ A then we can view N(A) - N (B)
as being N(A - B). The problem occurs if B is a subset
of A where A is an infinite set; for in this case, it is
not so easy to describe the number of members in A - B.

i
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For example, let A denote the set of whole numbers. Then
A is certainly an infinite set. Now let B denote the set
of even whole numbers. Then it is clear that B is an
infinite set which is also a subset of A. In this case,
A - B would be the set of odd whole numbers, which is

an infinite set; hence N(A - B) would be infinite. On
the other hand, suppose B were the set of all whole
numbers greater than 10. That is: B = {11, 12, 13, 14,
15, 16, 17, 18, ...} 1In this case, B would also be an
infinite subset of A. If we now delete B from A to

form A - B, we find that:

A-B={1,2,3,4,5,6,7,8,9,10} = Jlo;

or

In summary, if A and B are infinite sets, and no further
specifications are made, then we cannot, without the risk
of misinterpretation, give a well-defined definition of
N(A) - N(B).

In other words, the formula:
N(AY B) = N(A) + N(B) - N(A /) B)

becomes "troublesome" if A and B are infinite sets since (1)
we can't be sure whether AN B is finite or infinite, and
(2) if AN B is infinite, we must in effect subtract
"infinity" from "infinity," and, as mentioned above, this
is not well-defined. At any rate, for these reasons, we

shall only consider finite sets in this section.
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Let us return to
N(A U B) = N(A) + N(B) - N(A /) B)

By way of additional drill, consider the following
situation. We have a standard deck of playing cards
(52 cards). We define the face cards to be: Ace, King,
Queen and Jack. We are to reach into the deck and randomly
extract a card. What is the likelihood (probability)
that we chose either a face card or a heart? Well, there
are 13 hearts in the deck and 16 face cards. 13 + 16 = 29.
Hence, since there are 52 cards in the entire deck, and
since 52 - 29 = 23, it appears that the likelihood of
drawing either a heart or a face card is 29 chances in
favor, to 23 chances against. However, we have made an
error if this is our chain of reasoning. Certainly,
we do not deny that 13 + 16 = 29,or that 52 - 29 = 23,
We merely point out that we should not perform these
operations in arriving at the correct answer. Why?
To begin with, there are four cards that are counted both
as hearts and as face cards, namely, the Ace, King, Queen
and Jack of Hearts. In terms of a circle-diagram, letting
H denote the set of Hearts and F the set of face cards:

S = spades
D = diamonds
C = clubs

i
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More abstractly, let H and F be as in our diagram; then,
the answer to our problem is represented by N(HU F).

We see that N(H) = 13, N(F) 16, and N(H() F) = 4. The
formula now reads: N(H{ F) = 13 + 16 - 4 = 25,

In other words, an "intuitive" count might make one
think that he has 29 chances out of 52 of accomplishing
his objective, while a "proper" count shows that the
chances are only 25 out of 52. As we said, we shall
discuss this idea more later; for now we wish only to
point out one more use of the knowledge of the theory of
sets in solving problems in other branches of mathematics.

It is next our endeavor to extend these results beyond
the intersection and union of two sets. For example,
suppose we have three sets A, B, and C, and we wish to

compute
N(AU BUC).
We shall show that

N(AU BUC) = N(A) + N(B) + N(C) - N(aAN B) - N(A(NC) -
N(BN C) + N(&aN B[] C)

In line with our objection to the subjectivity of
intuition, we shall not call the above result self-evident,
but rather we shall show a few ways of visualizing this

result:
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(1) Suppose that A, B, and C were three lists containing
names of people, and we wished to amalgamate the three
lists into one, but never count the same name twice. Then

if we just "stapled" the lists together we would see that:

(i) If a name appeared on exactly one of the lists, it
was counted the correct number of times,

(ii) If the name appeared on exactly two of the lists, it
was counted once too many, and hence should be sub-
tracted once.

(1ii) If the name appeared on all three lists, then it
should be subtracted twice.

Thus, for example, if an element belongs only to A, it is
counted only once in the sum N(A) + N(B) + N(C). If it
belongs to just B and A it is counted twice in the sum
N(A) + N(B) + N(C), but it is subtracted once in N(A{) B).
Finally, if the element belonged to A and B and C, it is
counted three times in N(A) + N(B) + N(C), then subtracted
out three times in-N(A/) B) - N(Af) C) - N(BMN C). Now,
however, it isn't counted at all, hence, we add,

N(AN B N C) which counts it once.

(2) In terms of circle-diagrams, let us indicate by 1, 2,
or 3 the number-of times an element is counted in arriving
at the sum N(A) + N(B) + N(C). Thus:

y |
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If now we subtract out those that appear in the pairs of

intersections, we have

A B A B A B

e 6 C
(AN B) (B N C) (A MNc)

If we then add in those that belong to all three sets, we

have

and this is precisely what we desire, namely, each element

is counted once, no matter where it appears.

For more than three sets, there is a rather interesting
pattern that prevails, which we present without proof. For
example:

N(AU BUCWUD) = N(A) + N(B) + N(C) + N(D)

[N(AQB) + N(ANC) + N(AND) + N(BNC) +
N(BAD) + N(CND)]

- [N(AN BNC) + N(ANBND) + N(ANCD) +

N(BA CND)]

Il

+

N(ANBNCND)
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The pattern is that we alternately add and subtract all
possible combinations of intersections ranging from taking

the sets one at a time to all at one time.

We conclude this section with an example:

In a certain school it is required to take at least
one of the three languages, French, German, or Spanish,
in order to graduate. 1In a certain graduating class, we
find that 20 students took all three languages, 35 took
French and German, 40 took both Fr;nch and Spanish, 50
took both German and Spanish, 90 took French, 80 took
German, and 110 took Spanish. How many were in the graduating

class?

Solution:

We must be careful to curb our enthusiasm and not add
the given numbers. For if we do, we count certain students
more than once. One solution, letting F, S, and G denote
the set of students taking French, German, and Spanish

respectively, is to use our formula with

N(F) = 90, N(G) = 80, N(s) = 110, N(FNG) = 35. N(Fs) = 40,
N(GNS) = 50, and N(FAGNS) = 20. Then, the number in
the graduating class is N(FUGUS) (why?), and we have

N(FyYGUs) = 90 + 80 + 110 - 35 - 40 - 50 + 20 = 175

Thus, there were 175 members in the graduating class. It
might have been more intuitive had we used circle-diagrams.

In this event:

(i) since 20 take all three
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(ii) then since 35 take both French and German (be careful;
this number includes the 20 who take all three)

(iii) continuing in this way (the details are left to the

reader)

Not only does this give us the same answer, but since the
regions in the diagram are mutually exclusive, we can pick
off such other results as: There were 15 members of the
graduating class who took German but neither French nor

Spanish.
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Chapter III
AN INTRODUCTION TO FUNCTIONS AND GRAPHS

A. Introduction

Mathematics has been described as: the study of
relationships, the language of science, the basic tool of
technology, the logical quest for truth, the study of exact
measurement, More subjectively, it has been called a strict
discipline, a way of life, and a philosophy. In a sense,
the attempt to answer the question, "What is Mathematics?"
reminds one of the fable concerning the blind men and the
elephant. Each man touched a different part of the animal
and, depending on which part he touched, each gave a diff-

erent description of the elephant.

From an engineering point of view, however, one defini-

tion seems particularly appropriate. Namely:

Mathematics is the study of relationships.

Certainly this is a true statement. In geometry, for
example, one studies the relationship between the area of a
region and its various demensions. In the traditional "John
and Bill"-type algebra problem, one is usually investigating
the relationships of greater than and less than. In fact,

it is probably true that wherever we turn in mathematics,
somehow or other we are concerned with the study of

relationships.

However, it should not be difficult to see that to
define mathematics as the study of relationships would make
virtually every academic endeavor of man a branch of mathema-
tics. For, in physics, Galileo studied the relationship
between the distance that an object fell and the time during
which it was falling; Newton studied the force of attraction
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between two objects in relation to their sizes and the

distance between them. Such quantitative studies of rela-
tionships are well known in all of the physical sciences.
Indeed they are the backbone of many investigations. However,
an equally important point is that the study of relationships
is by no means restricted to mathematics and the physical
sciences, For example, the philosopher studies the relation-
ship between a concept and the word used to denote that concept,
the economist studies the relationship between various forms of
supply and demand, the student of literature studies writing in
relationship to the society of the times, the historian judges
the success of a particular society in relationship to the aims
upon which the society was formed, the psychologist studies

the scores in certain tests in relationship to the environ-

mental background of those who took the test.

Such examples are numerous, and the point we are trying
to make is that the phrase, "the study of relationships,"
permeates every, or nearly every, field of human endeavor.
Thus, it is in this sense it would seem that such a definition
of mathematics would be too comprehensive.

Notice, however, that such a definition of mathematics--
even though it does not separate mathematics from other
subjects--is rather worthwhile; at least in the sense that
it reflects a general trend in one prevalent form of mathe-
matical usage of the day. Namely, more and more subjects,
at one time only thought to have a minimal need for mathema-
tics, are beginning to require thé studying of relationships

in more precise guantitative ways. Such a study brings

mathematics into play as a very strong computational tool.

It shall be our aim in this chapter to exploit the idea
that mathematics is the study of relationships. While such

a definition might not apply to every aspect of mathematics,

and while such a definition may be much too comprehensive,

L 3



E

III-3

the fact is that this aspect of mathematics, perhaps more
than any other aspect, has been the unifying thread by which
man has tried to explore and to understand the "real" world

around him.

In this context, it is particularly easy to introduce
the meaning of a FUNCTION. Stripped of all embellishment,
a function is a RULE. In the classical sense, it was a
rule which assigned to one number, another number. In the
modern sense, it is a rule which assigns to an element of
one set an element of another set,

We shall study functions from both points of view. 1In
particular, we shall choose to introduce the topic from the

modern point of view. While this is not chronologically correct,

we prefer the generality of the modern approach. Afterwards,

we shall look into the classical viewpoint.

B. Functions and Sets

Since it is usually difficult to think in abstract terms,
let us pave the way for our present discussion by introducing

a trivial but concrete environment.

Consider a collection of salesmen Which we shall call
set A) who are having a convention at a particular hotel (the
rooms of which we shall call set B). The entire hotel has
been reserved for the salesmen and each salesman will reside
at the hotel for the duration of the convention. As each man

enters the hotel, he is assigned to a room by the room-clerk.

In the discussion that follows, we shall illustrate all
of our definitions in terms of the above "situation".

DEFINITION 1:

Let A and B denote sets. Then, by a function,
f, from A to B, written £:A + B, we mean that f is
a rule which assigns to each element a € A an element
b € B. The fact that £ assigns a € A to.b € B is
denoted by f(a) = b (read as: "f of a equals b")
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In terms of our illustration, the room-clerk plays the
role of the function from A to B; that is, he is a "rule"
which assigns to each element of A (each salesman) an element
of B (a hotel room).

DEFINITION 2:

If f:A > B then we call A the domain of £
(abbreviated as dom f or D_.) while B is called the
range of £ (also written Rf).
Again, in terms of our illustration, our domain is the

salesmen, and our range is the hotel rooms.

To motivate our next definition, let us observe that it
is possible that the salesmen do not completely £ill the hotel
rooms. In this sense, our notion of range is a bit deceptive
since it gives us no hint as to how much of the range is "used
up" by the function. In still other words, we might be more
interested in knowing what rooms are being used by the salesmen
than to know that all the rooms being used are in the hotel.

At any rate, with this in mind:

DEFINITION 3:

Given f:A + B, we define the image of £

(usually abbreviated by Im £ or I_) to be the set:

{f(a):a € A}. This set is also denoted by f£(a).
In other words, f£(A) is precisely that subset of B that is
"used up" by f. More precisely, if f(a) = b, we often call
b the image of a (with respect to f). 1In the context, £(Aa)
denotes that subset of B which consists of those elements of
B which are images of elements in A (with respect to f). 1In
terms of our illustration f£(A) is the set of rooms to which

salesmen are actually assigned.

In terms of a diagram:

This denotes an element in
the range which is not in
the image.
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Of course, it's possible that by the time all the sales-
men check in they have managed to use up all the hotel rooms.
That is, nothing excludes the possibility that if £:A - B,
then f£(A) = B. This leads to:

DEFINITION 4:

Given f:A + B, we say that £ is onto B if
and only if f£(A) = B (otherwise, the usual
vocabulary says that £ is a function from A into B).
In many situations, it is clear that one is more interested
in the image of £ than in its range. That is, given f:A - B,

we usually wind up concentrating on f£:A - £(a).

While the distinction between onto and into (or equiva-
lently, between range and image) is important, it turns out
that in many "real-life" situations the problem takes care of
itself. What happens in these cases is that we usually have
some set A and we define some rule which we apply to members
of A WITHOUT EXPLICITLY MENTIONING ANY OTHER SET B, For

example, suppose we let A = {xX:2 ¢ x € 3}. Suppose next we
decide to square each member of A. In this respect, we are
actually defining a function, say £, on A in which £(x) = x2

for each x £ A.

Notice that while we haven't said it in so many words,
we have induced a set B which is the image of £, That is,
f(a) = {f£(x):x € A} or £(Aa) = {x2:2 <& x £ 3}. Without verify-
ing the details it is not hard to conclude that £(A) in this
case is precisely the set {y:4 £ y ¢ 9} since as x takes on
all values from 2 to 3, xz takes on all values from 4 to 9.

In any event it would now seem natural to let B = {x:4 < x € 9}*

and in this case, we have f:A -+ B.

*Notice that {x:4 ¢ X ¢ 9} and {y:4 ¢y ¢ 9} denote the

~ -~ Y

same set. The name of the generic element (in this case, x r\y)

is irrelevant.
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By our very construction, £ is onto and thus it really
makes no difference whether we refer to B as the range or the
image of £. For this reason it seems to be an accepted
practice (although we don't condone it) to use the words
range and image interchangeably. The important point is that
they are different concepts, but in the case that B is to be
"induced" from A and £, it is most natural to choose B to
equal £ (Aa).

Returning once again to our salesmen, it is reasonable
to assume that we don't assign a salesman to more than one
room, However, it is equally reasonable that we might assign
more than one salesman to the same room.

This leads us to still another basic definition:

DEFINITION 5:

The function f£:A - B is called one-to-one
(often written as 1l-1) if no element of B is the
image of more than one element of A. More precisely,
f is 1-1 means that if a; and ap are elements of A
then a; # a, implies that f(al) # f(az); or from a
different emphasis:

f(al) = f(az) implies that a; = a,

Pictorially, Definition 5 has the following translation:

In (a) £ is depicted as 1l-1l. The point is that no
member of B is the image of more than one member of A, In

terms of a numerical example let R denote the real numbers
and consider f:R + R given by f£(x) = 2x for each x € R.

1
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Recall that f(xl) denotes the image of x while_f(xz)

L

denotes the image of x In this example, f(xl) - le while

2
f(xz) = 2x2. Then f(xl) = f(xz) means that 2x1 = 2x2, and
this can only happen if X, = X, Thus the function f defined
by f£f(x) = 2x is a 1-1 function. (In 'plain" English, unequal

numbers have unequal doubles.)

As for (b) we see here an example of a function which is

not 1l-1. In particular, b, is the image of both a, and a, in

our diagram. In terms of in example, if we definelf by f%x) = x2
we see that f is not 1-1 since x2 denotes the square of both

x and -x. In other words, for x # 0, £(x) = £(-x) = x2 but

X # =x, It is worth noting here that the idea of 1-1 depends

on the domain of the function. For example, in terms of an
earlier illustration, let A = {x:2 ¢ x ¢ 3} and let B =

{x:4 ¢ x £ 9}. 1If we define £ by‘f(xJ = xz, we see that

f:A > B is 1-1. In this case while x2 4 for both x = 2

and x = -2, the fact remains that -2 § dom f (that is, -2 ¢ A).

Il

We will have more to say about this in a later section

While we shall also say more about the following topic
later, a few words might still be in order now. Notice that
in our definition of £:A - B we insisted that f assign to

each member of A a (meaning one and only one) member of B.

In the classical treatment of functions no such restriction
was ever made. By way of an example which we shall explore

in more detail later, consider the idea of taking the sqguare
root of a number. In the old days, one said that the square
root of 4 was 2 or -2 since either 2 or -2 had its square
equal to 4. However to say that V4 = +2 would not allow the
square root to be considered a function by our "modern"
definition since the square root assigns to 4 two real numbers.
To avoid this problem, we could have let, say, R+ denote the
non-negative real numbers and then defined £:rY » RT by £(x) = Vx
for all x € Rf. In this event £(4) = /4 would be only 2 since

-2 doesn't belong to the image of £,
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At any rate the point we are trying to make is that what
we call a function by modern terminology would have been
called a SINGLE-VALUED function in' the classical terminology.
In the classical terminology if a function were not single-
valued, it was called MULTI-VALUED. In the modern language
there is no analog of a multi-valued function. As we have
said, we shall have more to say about this later, but for
now let us accept the fact that we shall, unless otherwise

specified, use function to mean single-valued function.

The important thing to keep in mind is that single-
valued and one-to-one are entirely different concepts. All

functions are, by our definition, single-valued, but not all

are 1l-1,

The following diagrams illustrate pictorially the meaning
of 1-1 and onto. Observe that a particular function can be
both, neither, or one but not the other. Thus:

These two A 5
£ B elements<g f

have the “‘_

. =
image

“rhis is not
the image onto but not 1-1
of anything
in A.

A B
£ A £ B
X
( ::%%% f 2 j\ i :(%%SEEEEE%%%?T :
X
X ,/ X

neither l1l-1 nor onto Both 1l-1 and onto

1-1 but not onto

i
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We would like to conclude this section by introducing
just enough more definitions so that we can begin to view

the study of functions as a mathematical structure.

In any mathematical system we must have a criterion
for equality* so that we may distinguish between the elements

of our system, To this end:

DEFINITION 6:

Given two functions £ and g, we say that £ = g
if and only if:

(1) dom £ = dom g
and

(2) £(a) = g(a), for each a €¢ A (where A = dom £ [or g])
That is:

(1) We insist that we don't even begin to compare
functions unless they "operate on" the same set of
elements.

(2) Once the domains are the same, we insist that the
images be the same, element for element.

Referring to our salesmen-hotel model, observe that
different groups of salesmen can come to the hotel at
different times. Moreover, for a given group of salesmen
there is more than one way for the room clerk to assign rooms.
If we now talk about equal functions (that is, in terms of
our model - equal room assignments) we insist (1) that each
assignment involves the same set of people and (2) each person
who receives a room by one assignment receives the same room

by the other assignment.

Notice especially well that we require more than just
that the same rooms be used in each assignment. In still

other words to say that for each a € A, f(a) = g(a) says much

*See Appendix I if more details about equality are
desired.
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more than just saying that £(A) = g(A). In terms of a more
specific illustration let A = {1,2,3} and let B = {4,5,6}.
Define f:A + B by:

£(1) = 4
£(2) =5
£(3) =6
and define g:A -+ B by
g(l) = 4
g(2) =6
g(3) =5

In particular, since both £ and g are onto, we have that
f(A) = g(A) = B, However, £ # g; for while they have the
same domain, £(2) # g(2). Pictorially:

Our next quest is to define how we may combine functions
to form other functions. To this end, suppose f:A - B and
g:B - C. f and g can be composed so as to "induce" a function
from A to C. For example, we can start with a € A and then
look at f£(a). This is an element of B, Let's call it b
(that is, b = f(a) ). Now by definition of g, g maps b into
some element of C, say c¢. That is, g(b) = c. Putting these
two separate operations into one symbol (specifically, by

replacing b by f(a) ), we obtain:

g(f(a) ) =c

3
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In terms of a picture:

This leads to

DEFINITION 7:

Let f:A - B and g:B » C be given. Then
by the composition of £ and g, written geof,
we mean the function h:A + C such that for each
ae€ A, h(a) = g(f(a) ).

In terms of the previous diagram:

!
[
1
|

B

o = = ot o

h-_—gof

Let us make a few comments about this last definition.

(1) Observe that by our definition gof has been defined
so that its domain is the domain of f£ and its image is the
image of g. In this sense, then, we must be very careful
not to confuse g(f(x)) with f£(g(x)). For example, by
definition of g, g(x) belongs to C, but C is not necessarily
the domain of £, 1In other words, f(g(x)) might not even
make sense, if £:A - B and g:B -~ C since we can't be sure
that g(x) € A.
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(2) While our definition refers to the sets A, B, and C,
nothing excludes the possibility that A = B = C. In this
event, the problem described in (1) cannot occur since the
domain and range of each function is then the same set, say, A.
Even then, however, we must not confuse fog with geof. By way
of illustration, let A = {1,2,3} and define f and g as follows:

£(1) = 1 g(l) =2
£(2) = 3 g(2) =1
£(3) = 2 g(3) =3
Then;
g(f£(1)) = g(l) = 2
g(f£(2)) = g(3) = 3
g(£(3)) =g(2) =1
while:
f(g(l)) = £(2) = 3
£(g(2)) = £(1) =1
£(g(3)) = £(3) = 2

Thus fog and gof are both 1-1 and onto functions from A to
itself, but they are not equal. (Why?)

(3) If f:A » B and g:B + C are both 1-1 and onto then
geof is also 1-1 and onto from A to C. This is an important
result, but it is not as self-evident as it might seem - at

least, in the sense that its converse is not true. That is,

gof can be 1l-1 and onto even though not both f and g are.

An example is shown in the diagram below.
Letting h = g,f, we
see that h(a,)=c, and

is indeed both 1-1 and
onto

Here ge¢f is both 1-1 and onto
(9(£(ap)=c; and g(fa,))=c,)
But £ is not onto ana g is not 1-1

In the next section, we shall explore a few properties

of functions which are both 1l-1 and onto.

h(a2)=c so ~that h= gof

t
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While our comments about composition of functions are
self-contained within the present context, we sﬁould mention
that such compositions play a very important role in the
study of calculus. Without delving into the calculus, the
idea is that in many physical situations we have a variable
y which is expressed in terms of (as a function of) a
second variable u, and u, in turn, is expressed in terms of

a third variable x. We then wish to study y in terms of x.

More symbolically, we might have that y = f(u) and u = g(x);
then v = £(g(x)). Another version of this idea is in the
guise of what is known as PARAMETRIC EQUATIONS. Sometimes
we wish to study the relationship between y and x when each
is expressed in terms of another variable (parameter) u.
This is precisely equivalent to our earlier example in the
sense that if u is expressed in terms of x, the implication
is that we may view X as being expressed in terms of u
(although there are a few sticky problems that we will
discuss shortly). A common illustration might be that we
want to study the relationship between the velocity and the
acceleration of a particle when all we have explicitly is
how each behaves as a function of time.

C. Application of Functions to Real Numbers

The study of calculus or, more generally, mathematical
analysis begins with the special case in which both the
domain and the range of our functions are subsets of the
real numbers. Before pursuing this idea further it might
be best to illustrate our ideas in terms of a concrete,
practical situation - especially in the light of how
abstract our earlier remarks about functions may have
seemed.
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Let us consider the classic problem of Galileo, con-
cerning a freely falling body near the surface of the earth
in the absence of air resistance. Recall that, in this
case, the body falls a distance of s feet at the end of t

seconds according to the rule

s = 16t2 (1)

Notice that we can interpret (1) as defining a function
whose domain is a set of numbers (representing time) and
whose image is a set of numbers (representing distance).
More pictorially, we may think of a "distance machine"
where the inputs are time and the outputs are distances,
and the machine generates an output for a given input by
squaring the input and multiplying the result by sixteen.
Thus:

"distance machine"

> square input {output (distance).

s = 16t2

input (time)
t

multiply by 16

In referring to (1), the traditional language is to
say that s is a function of t, and to write:

2%

s = £(t) = 16t (2)

*Since the letter £ in no way seems to suggest either
time or distance2 the convention used in many books is to
write s(t) = 1l6t”, where s(t) is an abbreviation for
saying that s is a_function of t; and for s given t, s is
determined by 16t2.

B
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With respect to (2), one often refers to t as the inde-
pendent variable and to s as the dependent variable. To
correlate this language with our function-machine, observe
that the independent variable plays the role of the input
while the dependent variable plays the role of the output.
Perhaps an easy way to remember the difference is that the

output depends on the input.

Of course the entire notion of independent variable
versus dependent variable hinges on the fact that one of

the variables is explicitly expressed in terms of the

other. For example, if we wrote

X +y=1 (3)

neither x nor y is explicitly stated in terms of the
other, even though there is clearly an implicit relation-
ship between the two variables. That is, once either x or

y is given, equation (3) determines the value of the other.

Notice that we can rewrite (3) in either of the
following equivalent forms:

W
]
=
1
»

(4)

or

x=1-y (5)

If we use (4), we would refer to x as the independent
variable and to y as the dependent variable, and we might

write y(x) = 1 - x. The associated function machine would
be:
input - y-machine output
X y =1-x
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Similarly, if we use (5), we would refer to y as the
independent variable and to x as the dependent variable.
We would also write x(y) = 1 - y, and the function machine

would be given by:

input x-machine output N
Y x=1-Y

It should be noted, however; that not only does the
role of independent and dependent variable depend on how
we elect to resolve the implicit relationship between the
two given variables, but also that there are many times
when it is eather extremely difficult or even impossible
to find one variable explicitly in terms of the other from

a given implicit relation. For example, consider

xB + x6y4 + yG = 3

To find y as an explicit function of X requires that we

be able to solve a sixth degree polynomial equation in y -
a feat which, if possible, would be extremely tedious.
Similarly, to find x in terms of y would require our
solving an eighth degree polynomial equation in x.

More important at this stage than which is the
dependent and which is the independent variable is the
question concerning the domain and image of our function.
For example, if we return to equation (1) it is quite
clear that any real value of t will yield a non-negative
real value for s. "Inversely," we can show that for each
non-negative value of s there is at least one real number
t such that s = l6t2. In fact, by elementary algebra we

see that s = 16t2 implies that t = iyf%. In still other

l

L 3
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=
)

words, if s = 0, t = 0, and if s > 0 then t = + /—
S

(and if s < O, /f% is imaginary). Notice that t 16
violates the modern definition of a function. In the "old

il
|+

days", we would have shrugged things off with the observa-
tion that we had a multi-valued function. The implications
of not allowing multi-valued functions in modern mathematics
are extremely profound but peripheral to our present
discussion. Consequently, further discussion of this point
is left to the next two sections of this chapter.

In any event, then, from (1) we could justifiably
deduce that if £(t) = 16t then the domain of £ is the set
of all real numbers, while the image of f is the set of
all non-negative real numbers. On the other hand, we know
that (1) doesn't tell the whole story. For example, it is
physically clear that s = 0 until the body begins to fall,
and that s = 16t2 applies only for the time that the body
is in free fall. More mathematically, if we let tG denote 5
the time at which the body strikes the ground, then s = 16t

is true only for the time interval 0 < t & t and once t

GI‘
exceeds t_, then s remains constant. In particular, for

G
t > tG’ s = lﬁté. Pictorially,

0 +— s; body here until released
at £t =0
ks = lﬁté; body here from the time
it strikes the

ground
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The point we wish to make is that equation (1) most

likely was meant to be an abbreviation for

s = 16t%, 0 < t (6)

N
ﬂ

If we rewrite (6) as f£(t) = 16t2, 0 £ t <& tG' we seem to

be saying that the domain of f is the time interval from
0 to tor which we write more mathematically as the set
{t:0 € t < tG}. Such a set is also referred to as the
closed interval from 0 to t. and is usually abbreviated

bY [0! tG] -

G

More generally, if a and b are any real numbers such
that a < b, we define the closed interval from a to b to

be the set {x:a £ x < b} and we abbreviate this set by

writing [a,b].

In a similar way, the open interval from a to b is

defined to be the set {x:a < x < b}. The open interval
from a to b is usually abbreviated by the notation (a,b).

In summary,

[a,b] {x:a € x € b}

(a,b) {x:a < x < b}

The only difference between the open and the closed
interval is the exclusion (inclusion) of the "end points".

Pictorially,

At from a to b b are included

closed interval} points a and
a b

——— Y ——— from a to b b are excluded

open interval} points a and
a b

L1 .1

1

Al

L1
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Notice here the difference between a "point" and a "dot".
Clearly, there is a difference between [a,b] and (a,b).
Yet, if we rely on a picture we cannot see the difference
since a point has no thickness. That is, merely from a
picture we cannot tell whether the points a and/or b have

been deleted. This is why we write £ 1 if we
a b
mean the closed interval and { } if we mean the
a b
open interval. Just how important the difference is between

open and closed intervals hopefully will be made clear as

our course progresses.

Notice, too, that one end point could be excluded and
the other included. That is, we can talk about half-open

or half-closed intervals. For example,

[a,b) = {x:a € x < b}

(a,bl {x:a < x € b}

Our main point is that in virtually every physical
situation we encounter, it turns out that a particular
relation holds only for some specific (time) interval. 1In
other words, while there is no requirement for the domain
of a function to be an interval, it turns out that in most
important situations, the domain will be an interval [as in
the present illustration exhibited by equation (6)] or else
it will be a union of intervals.

In fact, our s = 161:2

example may be viewed as a
function that is defined for all real numbers but which
behaves as if it were defined on a union of intervals.
More specifically, we can summarize some of our previous

remarks about the relation s = l6t2 by writing
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0 if t < 0

2

s = {1l6t“ if 0 g t ¢ t (7)

> TG

Z if t > . *

16tG G

While (7) might look as if it were defining three
different functions, it is in reality defining only one.
Namely, for each input, the function machine must decide
whether t < 0 or 0 g t ¢ t, or t > t;. Notice that

G
exactly one of these three conditions must prevail for a

given t, and then (7) tells what output the machine will
yield for the given input once the input is located in
the proper category. In terms of the more pictorial
number line we are saying that our domain will usually
be a "connected" portion (a line segment) of the number
line or perhaps a union of such segments.

With respect to the above remark, observe that we
may view both the domain and the image as subsets of real
numbers (pictorially as points on the number line). This,
in turn, might suggest the use of Cartesian coordinates
whereby we could use the X-axis to denote the domain and
the y-axis to denote the range.

This results in the concept of the graph of a function.

*Technically speaking, this is not an interval in the
sense of our definition of an interval since a and b were
always finite numbers. In spirit, however, since an
expression such as X > a defines a "continuous" set of x's,
it is customary to call such expressions intervals also.

To make things look a bit more uniform the mathematician
uses the symbol « (infinity) to his advantage by writing
X >a as a < X < » (and similarly, x < a is written as

© < X < a).
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D. Graghs

Even on a subconscious level, we frequently think of
non-geometric ideas in terms of a geometric picture. For
example, consider the expression "profits rose". The only
way profits can "rise" is, for example, if the office
safe blows up! Obviously what we mean when we say that
profits rose was that profits INCREASED. Why then did we
interchange rise (geometric) with increase (arithmetic)?

The answer centers around the idea of a GRAPH.

How is the concept of a graph related to the concept
of a function? The answer lies, at least for a first
approximation, in the concept of ordered pairs (which in
turn suggests the [Cartesian] Plane). Namely, our so-called
function machine is determined once we know the output for
each given input. In short, we "can abbreviate" our
function by using ordered pairs, where, for example, the
first member of the pair could name the input while the
second member of the pair could name the output. In terms
of the Cartesian Plane, this says we may use the x-axis to
indicate the domain of the function while we may use the
y—-axis to indicate the range of the functions. In still
other words, we are saying that we may use the point (x,f(x))
to represent the fact that for an input of x the output is
f(x). Conceptually the graph and the function are two
entirely different things. One is an analytic relation and
the other is a picture of it. What does the picture do for
us? Well, for example, suppose we know that for a certain
real number x, f£(x) is positive (this is an arithmetic
statement). But if f£(x) is positive, we know that the POINT
(x,£(x)) lies above the x-axis. In a similar way, if f(x)
is negative, the point (x,f(x)) is below the x-axis; and
if £(x) = 0, the point (x,f(x)) is on the x-axis. Thus, the
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idea of a graph replaces the analytic terms "greater than
0", "equal to 0", and "less than 0" by "above the x-axis",

"below the x=-axis", and "on the x-axis", respectively.

In a similar way, it replaces "increasing" by "rising",
"decreasing" by "falling" and "constant" by "horizontal"
(that is, if £(x) doesn't vary, the point (x,f(x)) always
has the same height above the x-axis. Hence, all such
points are parallel to the x-axis or horizontal if we

define the directicn of the x-axis as being horizontal).

Rather than continue to ramble on in abstractions, let
us now turn our attention to a specific situation. For
example, let us discuss the function £ given by:

f(x) = xz
We know at once that the input x yields the output x2. This

means that in terms of our graph, the input x will give rise

to the point in the plane (x,xz).

Among others then, some of the points on the graph
would be (0,0), (1,1), (-1,1), (1/2,1/4), etc. In terms of
a picture, we would have:

(-1,1) . . (1,1)

- (1/2,1/4)
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If we now use our "intuition" we might conjecture*

that the graph of f£(x) = x2 is given by
Y
I\
e
y = X
(-1,1) (1,1)
(17/2,1/4)
S X
-
(0,0)

We may study one-to-oneness and single valuedness very
nicely in terms of graphs. Namely, if each line parallel
to the y-axis and which passes through a point in the domain
intersects the graph at only one point then our function is
single-valued; and if each line parallel to the x-axis and
which passes through a point in the image intersects the
graph in only one point then our function is 1-1. By way
of illustration, the following diagram indicates that if
f(x) = x2 then f is single valued but not 1-1. In fact
every positive number in the image is yielded by two members
of the domain.

*Actually, we only have a conjecture no matter how
intuitive things may seem. That is, as long as we locate
points which have spaces between them, we are only conjec-
turing as to what goes on "in between". We shall have much
more to say about this later in the course.
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This is the
;gigexof Each value of x yields one,
and =x and only one, point on the
graph; but each non-zero
}/ value in the image comes
< from two numbers in the
domain.
I\ A
-X X

Do not confuse the graph with the domain and the image
of the function. Recall that the domain is located as a
subset of the x-axis while the image is a subset of the
y-axis. For example, referring again to our function f
where f(x) = xz, and the domain of f {x:2 & x £ 3}. Then
the image of £ in this case would be the closed interval
{x:4 ¢ x ¢ 9}. 1In fact, our picture also shows us that in

this example £ is both single valued and 1-1.

f(x) = %7, 2 253

£ix)
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While this result in no way depends on the graph, the
graph does, however, give us much important information
at a glance. For example, the fact that the graph is always
rising tells us that the "output" increases as the "input"
increases. That is, f(x) is increasing as X increases.
Notice also that the graph not only rises but it seems
to be "accelerating" - that is, it appears to be rising at
a faster and faster rate. To illustrate this more pic-
torially, observe that in each of the curves depicted below
we have that the curve is rising. However, in the first
case the curve seems to be rising faster and faster, while
in the second case it seems to rise more and more slowly.
We shall discuss this in more detail later, but for now
let us merely observe that the first case corresponds to
acceleration while the second case corresponds to decelera-
tion.

(1,1) (1,1)

(1) (2)
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Returning to f(x) = x2 observe that we do have a genuine
acceleration. For example when x changes from 1 to 2 f (x)
changes from 1 to 4; thus, in this case an increase in x by
1l unit produces an increase in y to 3 units. Yet when x
changes from 2 to 3 (which is still only a 1 unit change in x),

f(x) now changes from 4 to 9, or a change in 5 units.

Graphs also supply us with a nice answer to a deep
question; namely, as to why we may always aeal with single-
valued functions without loss of generality. The point is
that the graph of multi-valued function has the property of
"doubling back". 1In other words, this is what is implied when
we say that a line parallel to the y-axis intersects the graph
in more than one point, At any rate, for the purpose of an
illustration let us suppose that our graph is a "smooth" curve.
Intuitively, it should be clear that the places at which
the graph doubles back are those at which the curve possesses

a vertical tangent line. 1In terms of a picture:

The curves C, (from 0 to A),

One x value C3 D C, (A to B) land C, (B to D)
yields 3 y e it afe single valued “and our
values C2 original curve is
: c,uc,uc,
Cc A
0 N

Notice that these points of tangency partition the curve
into a UNION of single-valued curves. As a specific example,
we can now discuss the convention that says VX means +vX
unless otherwise specified. Let us start with the equation

y2 = x. The graph of this equation is:
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For positive values of x, we see that the curve is
double valued; and the curve possesses a vertical tangent
at the point (0,0). We can thus break the curve into two
mutually exclusive subsets. These two pieces are called
BRANCHES. One branch lies above the x-axis and the other
below. We shall denote the upper branch by y = +/X and the
lower one by vy = -YX. This is in accord with the usual
idea that if y2 = x then y = ifﬁ? At any rate once we know
one branch in detail, the other is just the mirror image

with respect to the x-axis. Thus:

g i}
Cl y = y = x% is then
given by C, U C,
where C, and C
are both szngle—
P~ X valued.
2
y = -/x

To summarize what we have said about one-to-oneness

and single-valuedness:
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(1) If the graph "doubles back" the function is not
single valued. In this case we can partition our function
into a union of single-valued functions by noting the points
at which the graph has vertical tangents.

(2) If the curve passes from rising to falling (and
for a smooth curve this is characterized by those points at
which we have a horizontal tangent) then the function is
not 1l-1.

(3) The upshot of these last two points is that if
the graph is either always rising or else always falling,
the function is both 1-1 and onto.

There is much more that we would like to say about
functions. But for our immediate purposes we have completed
our list of preliminary basic ideas, and we are now ready to
reinforce and expand these ideas in terms of the more con-
crete treatment given in the text.

E. Inverse Functions

The concept of inverse functions is usually associated
with functions that are both one-to-one and onto, and very
shortly we shall discuss this idea. First, however, we
want to emphasize that from an intuitive point of view the
concept of inverse ‘functions has been with us for quite
some time, in various disguises, in the traditional curri-
culum. Roughly speaking, we may associate inverse functions
with a "switch in emphasis". For example, when one refers
to subtraction as being the inverse of addition, one is,
in effect, saying that, for example, 3 + 2 =5 and 5 - 3 = 2
say the same thing but from a different point of view. 1In
this context, every subtraction problem can be paraphrased
as an equivalent addition problem. That is, we may think
of 5 - 3 as naming that number which must be added to 3
to give 5. More generally, we may define a - b by
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b+ (a-Db) = a
In a similar way, to form the inverse of, say
c = logba (1)
we would write
a = b° (2)

The point is that (1) and (2) are different ways for

saying the same thing; all that differs is that in (1) c
seems to be emphasized while in (2) a seems to be empha-
sized. (In the more familiar functional notation y = logbx
and x = bY have the same meaning but the roles of the

dependent and independent variables are reversed.)

The emphasis on one-to-oneness lies in the fact that
without it we can get into a bit of trouble when we try to

"invert." For example, when we try to switch the emphasis
in s = 16t2 to form t = + /f%-we wind up with a multi-

valued function, even though the original function was

single-valued.

In terms of a graph, as we have describeﬁ in the previous
section, if the curve which represents the equation y = f(x)
is "unbroken" then f is one-to-one if and only if the curve
never "doubles back"*. That is,

*If the graph consists of data which are made up of
separate points (more formally, this is called discrete
data) , the function may be one-to-one even though the graph
"doubles back". For example:

No two points lie
- : on the same hori-
zontal line (though
in other cases they
could have).

7 X

(Figure 2)
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Ay y = £(x)
Y1 oA >
K Y9 Y9
X }-x
X 2 %3
(Figure 1)

This curve is single-valued
but not 1-1. If we try to
"invert" the roles of x and
y and write the same curve
in the form x = g(y) we see
that g is not single-valued
since one value of y
determines several values
of" x.

In terms of circle diagrams it is rather easy to

describe inverse functions. Suppose f:A + B is both one-

to-one and onto. Then,

(Figure 3)

We can induce a function g:B -~ A merely by reversing

the sense of each of the arrows in Figure 3 (that is, by

interchanging the head and the tail of each arrow). Thus,
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(Figure 4)

Before proceeding further, let us observe that the
existence of g depends on f being both one-to-one and onto.
For example, if f is not onto, the induced function g does

not have B as its domain. Pictorially:

If we form g by
reversing the sense
of our arrows,

B # dom £. Rather
c = dom £. This
prevents g from
being a function
from B to A.

(Figure 5)

On the other hand, if f:A - B is not one-to-one, even
if it is onto, the induced function g does not exist since
at least one element in B has more than one image in A.

Again, pictorially,
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A B
f(al) B b1
f(az) = bl
Hence

g(bl) = a, and a,

(Figure 6)

In any event, however, if f:A - B is both one-to-one
and onto, then we can form the inverse function g. Notice
that there is, of course, a rather strong relationship
between f and g and for this reason g is usually denoted
by a very special symbol, namely, f-1 (read as "f inverse").
The reason for this notation is to emphasize the role of
"inverting". As seen from Figures 3 and 4, if we let g = f-l
then f(a) = b and a = f-l(b) are merely two different ways
of saying the same thing, but with a switch in emphasis (see
note at the end of this section for further clarification
of the notation f—l).

Lest the preceeding discussion seem a bit too abstract,
let us once again return to the special case of functions
of real variables. Let us assume that the domain of f is
the closed interval [a,b] and that its range is the closed
interval [c,d]. We have already seen that if £ is to be
one-to-one the graph can never double back. In terms of

graphs,
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A y = £(x) A

f is 1-1 and
onto [c,d]

Again f is 1-1
and onto [c,d]

f is onto [c,d]
but not 1l-1 since
f(xl) = f(xz) =

fx3) =y,

|
|
| y=f(x)
]
Cc chk 4
:,-_-—_x I :
a b a b
(a) (b)
A
dfp — -— '-"'——'-'i Y=f(x)
|
/ |
¥y i |
|—,ﬁ-—-4-— Lo
o I i i
L.l N 1 4 - X
a xq X, x3'b
(c)
(Figure 7)

To see what it means for f£ not to be onto [c,d], we

need only observe that this can happen whenever our curve

has a "break" or a "jump" in it. That is,

"1 For any y, € (e,k)

s %—}(;3 there exists no

X) € [a,b]

b b such that f(xl)=yl
Y SE—— Hence y; ¢ domf 1
& b

a m b

(Figure 8)

The break in the
curve at x=m results
in £ not being

onto [c,dl]
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Thus, as we have mentioned before, if we wish to think
of an invertible function, its graph must be similar to

either Figure 7(a) or 7(b).

Let us now consider the case of a real function f for
which £ inverse exists. If we denote its graph by y = f(x),
let us observe that the graph is also denoted by x = f-lty).
That is,

y
A
y = f(x) We may view f as the
(o | A 5 5 f"l( ) function which maps X
: Y into y, or we may
Y1 bt | view £ ' as the function
S L which maps ¥y, 1into Xx,.
L ] \i_x
a xl b
(Figure 9)

The main obstacle in Figure 9 is that in trying to
"read" g1 we are not used to having the y-axis (vertical
axis) denote the independent variable [which it does when
we write x = f_l(y)]. We could rotate the system in Figure

9 through a positive 90° and this would give us:

y = £(x)
- X
or x = £ l(Y)Jk
N b
.xl
a
Y <
d Y, ¢
(Figure 10)
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Again, the problem with Figure 10 is that the sense
of the horizontal axis is the opposite of what we are used
to. This is easily rectified by reflecting the graph in

Figure 10 about the vertical (in this case, x) axis. Thus:

x
A
y = £(x)
x = £ 1(y)
xl'
a
c yi d =¥
(Figure 11)

It is important to observe and to understand that in
all three diagrams (Figures 9, 10, and 11) the functional
relation denoted by y = £(x) or x = f_l(y) are the same.
The only reason that the curves look different is that our
axes are labelled differently. In other words, we hope
that it is clear that while the relation y = f£(x) is inde-
pendent of any coordinate system, how the graph loocks will
certainly depend on how the axes are labelled. In terms of
our earlier remarks, Figure 10 is only an intermediary step
between Figure 9 and 11, and Figures -9 and 11 are two diff-
erent ways of saying the same thing with a different
emphasis. That is, if we accept the convention that the
independent variable must always be plotted along the hori-
zontal axis and in the left-to-right sense, then Figure 9

is the appropriate graph for y = £(x), while Figure 11 is
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the appropriate graph for x = f_l(y). Notice that nothing
forces us to accept this convention, and had we wished, we
could have deduced any properties of x = f_l(y) just by
looking at Figure 9.

The analog of these last few remarks in terms of
circle diagrams may be explained in terms of Figures 3 and 4.
Once we knew f we automatically could find g (as we did in
Figure 4) just by reversing the arrowheads. On the other
hahd, we might feel strange using a diagram that seemed to
suggest the notation A « B:g, suggested in Figure 4 since
the domain is listed to the right of the range.

This causes no trouble in the sense that if we insist
that the domain of the function appears to the left of the
range, we could recopy Figure 4 interchanging the positions
of A and B and obtain:

(Figure 12)

For your convenience, Figure 4 was:

t
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All we are saying is that the function is not changed
by changing from Figure 4 to Figure 12; what is changed is
that if we disregard how the domain and range are labelled
in Figures 4 and 12, the pictures look quite different, and
this difference is due to the fact that we have changed the

position of the domain and the range.

In any event, returning to our mainstream of discussion,
there may still seem to be one psychological drawback to the
diagram in Figure 11 and that is that we are not used to
calling the horizontal axis the y=-axis. If this is the case,
and we are bothered by this, then we can overcome this
obstacle by merely interchanging the rcles of the x- and y-
axes. In other words, we may "relabel" Figure 11 to form:

(Figure 13)

That is, the names we give to the X and y axes are
really immaterial, except that we must remain consistent in
a given application. To help clarify this idea, let us
consider a notation such as f(x) = xz. f is defined as the
rule which assigns to any number (x), its square (xz).
Clearly, this could just as well have been written as
f(y) = y2. More generally, we could have written
£([ 1) = [ 1%, where [ ] denotes the "input" to the

"f-machine".
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In a similar way, we may View an expression like
y = £(x) to mean that x is the generic name of the input

to the f-machine, while y is the name for the resulting
output. We could have denoted this by writing:

{ }=£([1)
Then, if we replace { } by vy and [ ] by x we obtain
y = £(x)
while if we replace { } by x and [ ] by y we obtain
x = £(y)

As far as defining £ is concerned, it makes no difference
whether we write y = £(x) or x = £(y) since each says

output = £ (input)
What does matter, of course, is that the graph of f will

depend on whether the independent variable (input) is

represented by the horizontal axis or the vertical axis.

This is precisely what happened in our transition from

Figure 9 to Figure 13 where we "transformed" the graph of

y = £(x) into the graph of y = f‘l(x) [or more suggestively,
perhaps, x = £(y)]. The point is that had we labelled our

coordinate system by:

Jkoutput
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> input
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then Figure 9 could have been used to denote either the
graph of y = £(x) or the graph of x = £(y), since in the
first case x is the input, while in the second case y is
the input. The problem occurs when we agree that the axes
must be "frozen" as they appear in Figure 9 but that we
still want the graph of the relation x = £(y).

With the convention that the horizontal axis is the
x-axis and the vertical axis the y-axis, there is an
interesting relation between the graphs of y = f(x) and
y = £ (x).

To see this, we may proceed as follows. Suppose (xl,yl)
satisfies y = f£(x), that is (xl,yl) is a point on tET curve
y = £(x). Since y = £(x) is another name for x = £ “(y),
it follows that (xl,yl
now agree to interchange the names of our variables so that

) also satisfies x = f-l(y). If we

we keep the desired orientation and names of the axes, then
we observe that (xl,yl) satisfies x = f_l(y) says the same

thing as (y,,x;) satisfies y = £71(x).* 1In this way, we see

that (xl,yl) belongs to the curve y = £(x) if and only if
with the same orientation of axes (yl,xl} belongs to the
curve y = £ (x) . [By the way, this type of observation

makes sense even if f-l doesn't exist; that is, as we have
tried to emphasize before, y = £(x) and x = £(y) are obtained
from one another merely by reversing the roles of input and
output. The point is that as long as f is single-valued

but not necessarily one-to-one, we may meaningfully write

x = f£(y) even though we cannot rigorously write y = f_l{x)].

" *It may not seem clear that y., is the input of the
machine. That is, it may seem unnatural to say things like
let x = y,. If this is the case, think, instead, of the
pair of p%ints, say, (a,b) and (b,a). All we are saying is_1
that the input of the f-machine (a) is the output of the £ "-
machine while the output of the f-machine (b) is the input of
the £~l-machine.
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We then observe that in a given Cartesian coordinate
plane the points (xl,yl) and (yl,xl) are symmetrically
located with respect to the line y = x (see Figure 14) and
hence that the curves y = f£(x) and x = £(y) (or equivalently

y = f—l(x) iE gL exists) are mirror images of one another
with respect to the line y = x.

AOBP = AOAQ .. OP = 0Q

y = X bisects X POQ and APOQ
is isosceles .. PR = RQ

and PR | OR, RQ | OR

(Figure 14)

These remarks can be concretely illustrated by super-
imposing Figures 9 and 13, whereupon it is easily seen that

(Figure 15)
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To see what happens if £ is not one-to-one, we may
consider the explicit case where f(x) = xz. If we plot
the graph and then reflect it with respect to the line

Yy = X, we obtain

y = x2 Y 2
Y 0 X ®m 5
A A or
...-—-x=y2 y = +/%
-
-~
7
r,
3 - X or - X
\
N
~

(Figure 16)

This is the curve x = y2 or, more familiarly, the double-
valued function y = +v/X.

Now, in the same way that we can decompose a multi-
valued function into a union of single valued functions, we
can decompose a non one-to-one function into the union of
one-to-one functions. (Notice that in terms of reversing
the roles of the variables, we can now relate single-valued
and one-to-one. Namely, if y = £(x) is not one-to-one, then

y = f_l(x), or x = f(y) is not single-valued.)

Again, with reference to Figure 16 we can see what
must be done if £ is not one-to-one. Namely, we decompose
the curve y = x2 into pieces say Cl and Cy each of which
1 and C

invertible, yielding Kl and K2 respectively. That is,

is one-to-one. Then, each of the curves C 5 A
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E 2
\ f, vy =%x", x 2 0 then
+/y is the inverse.

2

L
X

1 If y = x°, x § 0 then
X = -/y is the inverse.

\ K, (Notice that x = -/y

\ cannot be the inverse of

\ Yy = Xz: x > 0; among other
~ things, notice that C, and

\ respect to y = Xx.)

(Figure 17)

In many physical situations we can distinguish between
C, and C, in the sense that we might be given the informa-
tion that X must be positive, but if we are not given such
information, we have no way of knowing, without the risk
of ambiguity, whether it was 2 or -2 that yielded 4 as the
output.

We shall say more about inverse functions later in the
course in a more direct application of calculus. For now,
we only want you to feel at home with: (1) what is meant
by an inverse function, (2) what this means pictorially,
and (3) what goes wrong if our function is not both one-to-

one and onto.
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A NOTE ABOUT THE £ ' NOTATION
Many of us are used to the notation that a—l = é. In
this sense, there might be a tendency to confuse y = f'l(x)
with y = E%§T' To be sure, there are times when one might

write £ = to mean just this, but all other considerations
aside, it should be clear from context when such a thing
happens.

It may be interesting to note that £l is used to
denote the inverse of f for the same reason that a ' is
used to denote the inverse (reciprocal) of the number, a.
Observe that a(a_l) = 1, and 1 may be viewed as the
identity element for multiplication, meaning that with
respect to multiplication we do not change the "identity"
of a number when we multiply it by 1. In this sense, let
us define the identity function I to be the function which

does not change the identity of any input. That is, define

I by I(x) = x for all x. If we then agree to combine
functions by the usual rule of composition; that is, fog
means f (g(x)), we see that fof™l = 1.

Let us illustrate our remarks with a specific example.
Suppose f(x) = 2x - 7. In the language of graphs, we have

g = 2% -7 (1)

If we invert (1) (and in the precalculus curriculum, this

was known as solving for x in terms of y) we obtain

y + 7 (2)
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If we then employ our remarks about wanting x always

to denote the independent variable, we may rewrite (2) as:

+
y = E_E_l (3)
If we let g(x) = X ; 7, then it follows that g = f-l. As
a check, we then note:
| f(f'ltg)) = £ 5
X + 7
= A=~
..
- fof_l = T
f"l(fu_c_)) = £ ex - 7)
, _(2x - 7) + 7
; - 2
I =X
7l w T
In summary then, if f(x) = 2x - 7, then f_l(x) - B ; 7
¥

¥ 1
while m = ﬁ*_—?.

The relationships are:

1 [gy] =1 e # 0

£ lof (= Eof Yy = T
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Chapter IV
LIMITS

A. Introduction

Let us begin our discussion with the following contrived
experiment. We have three beakers filled with water. One
is filled with ordinary tap water, a second is filled with
hot water, and the third is filled with very cold water. We
place one hand in the hot water and the other in the cold
water, and after a while, we plunge both hands into the tap
water. It is clear that the hands transmit different sensa-
tions in that the hand that was in the hot water will find
the tap water quite cold, while the hand that was in the
cold water will find the tap water quite warm. From one
point of view both hands depict an inaccurate picture, yet
each hand "is telling the truth" based on its experience.

Now, in contrast to this approach of putting the
different hands into the tap water, suppose, instead, that
we place a thermometer in the tap water and the thermometer
yields a reading of 68°F. To be sure, 68°F may seem gquite
cold to one observer and guite warm to another, but the fact
is that 68°F is an objective measurement that transmits the
same knowledge to either observer.

With this example in mind, perhaps it will be easy for
us to understand what is meant when we say that a major
problem in scientific investigations is to translate a well-
known gqualitative concept into a more objective, well-defined
quantitative form. In any event this problem is at the very

foundations of calculus,
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For example, differential calculus is primarily con-

cerned with the concept of instantaneous rate of change.

That is, it concerns itself, for example, with how fast a
particle is moving at a given instant (as opposed to pre-
calculus mathematics wherein we talk about average rate of
change during a certain time interval). Certainly, we all
have some notion as what an instant is. While our manner

of wording our idea might differ from person to person, by
and large we would agree that an instant was a time interval
of "extremely short" duration - but "extremely short" to
whom? Clearly what might be "extremely short" to one
observer might seem only "moderately short" to another. Thus,
just as in our previous discussion when we saw the need of

a thermometer, we are now in need of some way of describing
an "instant" so that it will have the same quantitative
meaning to all observers - and at the same time, we must

make sure that in our gquest for objectivity we have not
destroyed our intuitive feeling about what we "know" an
instant is supposed to be. In summary, then, the fundamental
problem of differential calculus is to find an objective
definition of an instant that agrees with what our intuition

tells us an instant is.

It is in this environment that we must introduce the
notion of limits, Limits form the building blocks of calcu-
lus. From one point of view calculus is nothing more than
pre-calculus mathematics - AUGMENTED BY THE CONCEPT OF A
LIMIT.

In this course our approach toward introducing new
concepts shall be the following. Since most people can
think better in terms of concrete situations rather than in
abstractions, we shall always try to introduce a new concept
"intuitively". That is, we shall try to show in terms of our
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experience why it was crucial for the concept to have been
invented. Such an attempt relies heavily on subjective
interpretations. The problem is that it is difficult to
learn or to teach subjective ideas. So, in order that we

can better handle these new concepts we will try to "pin

them down" objectively once they have been properly intro-
duced. 1In other words, the second phase will be to treat the
new concept from a more objective point of view - a point of
view that is more independent of the subjective differences
we encounter in going from one student to another.

In particular, as far as the topic of limits is concerned,
we shall try to discuss the idea informally first and then
gradually develop a more and more refined objective treatment
which will seal in the flavor of the more intuitive approach
but at the same time eliminate those places which tend to be
ambiguous or otherwise highly subjective.

B. The Problem of Zero Divided by Zero (0/0)

Suppose a particle is moving along the line L and we
wish to compute its speed at the instant it is at the point
P on L. Thus:

Now in logical investigations our first approximation
is usually to try to reduce the new situation to a collection
of more familiar situations. In this case, recall that it is
assumed that we already know how to handle the problem of
average speed. For example, suppose instead of the given

problem we were told that there were two observers, 0, and O,/

.
on either side of P and we wished to find the average speed of

the particle as it moved from 0l to 02. Experimentally, we
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need only measure the distance between Ol and O2 and then

measure the time that it took for the particle to travel
from Ol to 02. By definition, then, the average speed of
the particle in going from 0, to 0O, is just the distance it

travels divided by the time it took to travel this distance.

The main problem is that we have found the RIGHT ANSWER
to the WRONG PROBLEM. We were not asked to find an average
speed, but rather an instantaneous speed. We could then

argue that as the distance between O, and 02 diminished the

1
average speed of the particle would seem to be a better

estimate of the instantaneous speed - at least in so far as

our intuitive notion of instantaneous speed is concerned. In

fact, we might even begin to believe, since the average

speed becomes a better and better approximation to the instan-

taneous speed as the distance between Ol and O2 is made less
and less, that the instantaneous speed would be determined
exactly when there was no distance between the two observers.
Alas, the rub is that if there is no distance between the
observers then the particle travels zero distance -in going
from 01 to O2 and this trip, clearly, takes no time. Thus,
in this case, if we were to keep our definition of average
speed, we would find that the average speed of the particle

in going from O, to 02 is given by 0/0.

1
Let us now digress and discuss the meaning of 0/0. Our

claim is that, as it stands, 0/0 is indeterminate, and we

shall try to illustrate what we mean from two entirely
different points of view. From a more "applied" point of
view, let us view 0/0 as the quotient of two "very small"

numbers (which captures the flavor of the two observers

£



¥

[ |

]

N

1

[

i

] W 0

IV=b5

being moved closer and closer together). Now it is not
difficult to imagine that when we add "very small" numbers
the result is still a "very small" number. In a similar way
the difference and product of "very small numbers" are

still "very small". (Notice that we are not going to get
too concerned over the subjective interpretation of "very
small" here. All we are saying is that if we add, subtract,
or multiply tiny amounts the result is a tiny amount and
leave it to the individual to interpret "tiny".) The point
we do wish to make, however, is that when we divide very
small amounts by one another, it is no longer clear what
size the quotient will be. It is in terms of division that
our intuitive idea of "small" causes trouble. By way of

illustration suppose our numerator is 10”12 and that our

denominator is also 10-12. In this case it is clear that
the quotient is 1. 1In this case the quotient of two "tiny"
amounts is still small but hardly as "tiny" as either of the
two numbers, On the other hand if our denominator is still
10"12 put our numerator is now 10~° our quotient is
10-6/10-12 = 106 = 1,000,000, and, in this case, by ordinary
standards we would agree that the quotient of two "tiny"
numbers was "very large". More specifically in this example,

6

we are noticing that while 10 ° may be considered small, it

is mammoth (one million times larger) when compared with
10_12. In any event this should indicate why from an objective

point of view we must steer clear of an expression such as 0/0.

To see this from a more abstract, mathematical point
of view, let us recall the basic definition that a/b denotes
that number which when multiplied by b yields a. That is,
a/b is defined mathematically by:

b x (a/b) = a
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(To see that this definition agrees with what we already
know, observe that by our definition 6/2 is defined by
2 x (6/2) = 6 whence it follows that 6/2 = 3.)

Now if we apply this definition to 0/0, we have that
0/0 is defined by:

0x 0/0 =0

In words, 0/0 is that number which when multiplied by 0
yields 0. The point is that any number has this property,
and in this sense 0/0 does nothing to determine a specific
number., That is why 0/0 is called indeterminate. (In still
other words, if we were trying to guess a number and we were
given as a clue that when multiplied by 2 the product was

6, we should have no trouble in deciding that the number was
3. If, however, the clue is that this number when multiplied
by 0 yields 0, we know nothing that we didn't already know.)

In any event, it should now be clear as to why in
mathematics we specifically exclude the expression 0/0. With
these remarks in mind we can safely return to the main stream

of our discussion.

It appears that our approximation to the instantaneous
speed gets better and better as we allow the observers to get
closer and closer together - but that we lose all our informa-
tion if we allow the two observers to coincide. Thus, somehow
or other, we are going to have to come to grips with the
problem of allowing the two observers to get arbitrarily
close - BUT NEVER TOUCH. Herein lies the whole kernel of the

problem, for if the two observers can be allowed to get
arbitrarily near to each other without touching there are
infinitely many positions they can be in., (Here we neglect
the "thickness" of the observer; geometrically, this corres-

ponds to the difference between a point and a dot.) That is,

8
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as long as there is a space between two observers there is

always room to fit in another pair of observers.

Thus the central problem of differential calculus turns
out to be that of translating the notion of "getting arbit-
rarily close to but never equal" into a precise, objective,
computational form. The resulting concept is known as the
limiting process and will be discussed more fully in the

next section.

What is most important to note is that we are not
saying that we can't define instantaneous speed because of
the 0/0 form. Rather we must come up with a different
definition of "instantaneous" that agrees with what we
believe intuitively to be the correct definition, but which

at the same time eliminates the 0/0 form.

C. A Semi-Rigorous Mathematical Approach to Limits

Let us revisit some of the ideas of the previous section
from a more quantitative point of view, Suppose we have an
object falling toward the earth, and we know that the distance

s (in feet) it has fallen at the end of t seconds is given by:
s = 16t2 (1)

Suppose we would like to find the speed of the object at the
instant that t = 1. (Notice that we still make no attempt

to define an instant rigorously, but rather rely on our intui-
tion that we know what is meant by an instant.) From a pre-
calculus point of view we could have solved a problem such as
that of finding the average speed of the object between the
time t = 1 and t = 2; or for that matter, more generally we

could have tried to find the average speed of the particle
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between time t = 1 and t = 1 + h,* where h is any real
number OTHER THAN 0 (since as we mentioned in the previous

section, we are in trouble if no time transpires).

Clearly
s(l + h) = 16(1 + h)2 = 16 + 32h + 16h2 (2)
and
s(l) = 16(1)2 = 16 (3)
2

Subtracting (3) from (2) shows us that As = 32h + 1l6h".
At the same time At = (1 + h) - 1 = h, and, accordingly,
the average speed of the object between t = 1 and t =1 + h

is given by
As/At, or (32h + 16h2)/h (4)

Since h # 0 we can divide through by it in (4) and
obtain the result that:

— = 32 + léh (5)

From (5) we can compute the average speed of the object on
any time interval between t = 1 and t = 1 + h. For example,
when h = 0.5 (which means that our time interval is from
t=1+to t=1,5) we see that the average speed of the object
during this time interval is 32 + (16) (0.5) = 40 ft./sec.

: *Notice that nowhere do we assume that h must be
positive except in how we worded the problem, All that would
happen if h were negative is that we would talk about the
time interval from t = 1 + h to t = 1. The important thing
to note is that none of the analytic statements that we make
depend on whether h is positive. What is important is that
h # 0.
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We next notice that the gualitative statement that we
want the distance between the observers to become smaller
and smaller but never equal to 0 translates, in this problem,
into the fact that in (5) we let the value of h get as close
to 0 as we wish but that h # 0. Making a chart of sorts, we

obtain from (5):

Time Interval: Average Speed

t=1tot=2 48 feet per second
t=1tot=1.5 40 feet per second
t=1tot=1.1 33.6 feet per second
t=1¢tot=1.01 32.16 feet per second

At the same time to emphasize that h need not be
positive, notice that the choices h = -1, -0.5, -0.1 and
-0.01 make (5) become:

Average Speed from t = 0 tot =1 is 16 ft. per second
t=0.5 tot=1 is 24 ft. per second
t=0.9 tot=1 is 30.4 £ft. per second
t =0.99 tot =1 is 31.84 ft. per second

Thus we see that the average speed seems to "tend" to
32 feet per second as h "tends" to 0. Indeed looking at (5)
directly and letting h approach the value of 0 we sense that
16h also tends to 0 and hence that 32 + 1l6h tends to 32. 1In

such a case, the "official" jargon is to say that "32 + l6h

approaches 32 as h approaches 0". We also say that "the
limit of 32 + 16h is 32 as h approaches 0". We write this
as:

lim _
el (32 + 16h) = 32 (6)
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(Notice especially the use of the equal sign. As h gets
closer and closer to 0, 32 + 1l6h gets closer and closer to
32, but the limiting value is EXACTLY 32.)

Finally, since we sense that our average speed serves
as a better and better approximation for the instantaneous
speed as At approaches 0, we define the instantaneous speed

to be this LIMIT of an average rate of speed as the size of

the time interval gets arbitrarily nearly equal to 0 but is

never allowed to equal 0. In terms of our illustration, the

instantaneous speed of the object when t = 1 is exactly (not
approximately) 32 ft,/sec. Notice that had we wished to
steer clear of calculus the fact that we don't anticipate
anything drastic happening between t = 1 and t = 1,01 would
make it rather easy for us to accept the fact that at the
instant t = 1, the speed of the particle is very close to
32,16 (the average speed in this time interval) = even
though from this information alone we would not be able to
claim that the instantaneous speed is exactly 32 feet per
second.

If we now return to (6), our intuition would tend to
tell us that all we did to form the limit was to replace
h by 0. By way of further examples, if we follow the type
of reasoning that led to (6), we would be tempted to con-
clude:

lim x2 -9 Notice here that 0 is

x+3 = not crucial. The expression
lim has meaning for any real

1im 2 Xra number, a.

253 (x© + 2x + 1) = 16

As far as we've gone, we would get what seems to be the right

answer merely by replacing x by 3. To generalize still

further, we might be tempted to define lim f£(xX) to be simply
X>a

f(a).
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The really serious problem exists when our "friend"

0/0 enters the picture. For example, let us define f by:

£x) = T3

and let us try to investigate £(3). Clearly we arrive at
0/0. Should we, therefore say that ii? f(x) = 0/0? The
answer is no. In particular, let us recall that in our
feeling that the time interval could not be zero, the notion
of h - 0 meant that h got as close to 0 as we wished but
that h could NEVER equal 0. In this spirit then our defini-
tion of x + a should mean that x gets as close to a as we

wish but it can never equal a.

In other words, it is true that if we replace x by 3

X2 - 9 Tim x2 - 9
+——3 Dbecomes 0/0. On the other hand, 1, —F/—7

does not mean that we replace X by 3. Rather we must see

then

what happens as x is allowed to get "as close to" 3 as we

wish without equaling 3,

From another point of view, then we may think of xx — g
as bein bets {x=3)
T

The key point now is that contrary to what you may have
believed:

(x+3) (x=3)

T=3) is NOT the same as x + 3,

for as we have discussed earlier we are not allowed to
divide by zero. That is, we may cancel (x-3) from both
numerator and denominator if and only if x - 3 is NOT EQUAL
TO ZERO. The point now is that the only time x - 3 is equal
to zero is when x = 3 AND THIS IS PRECISELY THE VALUE THAT x
IS NOT ALLOWED TO EQUAL WHEN WE WRITE x » 3, In other words,
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what is true is that for x # 3

(x+3) (x-3)
x-3

x+3

Therefore since iig implies that x # 3, we can say that

lim x2 -9 lim

x+3 X - 3 = X+3 (x+3)

; 2
lim x° - 9 _
e i

More formally, if we define f and g by:

x2 - 9

then f and g are not equal. In particular 3 belongs to the

domain of g but not to the domain of f. Still another way
of saying this is to observe that:

g(x) if x # 3
f(x) =
undefined when x = 3

Now since x » 3 excludes the possibility that x = 3,
it follows that even though f and g are not equal we can
say:

lim £ (x) lim g(x)
X+3 x-+3

Il

In terms of a picture:
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AY x? -9
The curve y = f(x)=x - 3
is the straight line y=x+3
with the point (3,6) deleted.
Yy = x+3 Notice from the picture that
when x is "near" 3, f(x) is
"near" 6.

(3,6)

&
/

Of course, it does turn out that if we are asked to

Y

A
1
»

compute iig f(x) it will frequently happen that iig f(x) =
f(a). In those cases, however, where we find that f£(a) = 0/0

we are in trouble. One might feel that given f at random it
is very unlikely that we will wind up with a 0/0 form. Yet
the point we have tried to make clear is that we will ALWAYS
wind up with 0/0 when we use limits to compute instantaneous
speed, since we will always be dividing a "tiny" distance by
a "tiny" time!

To write our results as generally as possible, let us
get away from the specific example of s = l6t2 and turn to
the more general form s = f£(t), where all we mean here is
that there is some "recipe" which allows us to express s for
each value of t.

Then if we want the instantaneous speed at time t = tl’
we compute the average speed over the interval from t = tl

to t = tl + h. This average speed is given by:

£(t,+h) - £(t,)
- 1 . 1 (7)

|
|
|
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Then by definition, the instantaneous speed at t = t., is

given by the expression:

1im f(tl+h) - f(tl)

h+0 h (8)

and it is crucial to see that in (8) we do not replace h by
0. For if we did, the bracketed expression clearly becomes

0/0.

The 'standard" technique which helps us prevent (8)
from taking on the form 0/0 is to observe that as long as
h is unequal to 0 we can divide through by it, say, in (7).
To help make this point a bit clearer, let us return to (4)
and (5) of our previous example. While we made no great
issue about it, we wrote that (32h + 16h2)/h was equal to
32 + 16h since h # 0. Notice that we carefully included in

our definition of lim the specific restriction that h # 0.
h-+0

Again returning to the more general expression (7) we

never say that

Lim |E(E FR) -£(E)) E(e#h) () | E(g))-E(gy)
h>0 B h 0
h=0

The great temptation to replace h by 0 has caused more than
one author to define differential calculus to be the study of
0/0. More precisely when we wind up with the form 0/0 what
we have done is the intuitive equivalent of having no dis-
tance between our two observers. From a more computational

point of view, what we do is form the quotient

f(tl+h) - f(tl)
h

9
0
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I
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and divide through by h BEFORE we take the limit.

As our course progresses it will be important to note
that this basic concept never changes. Essentially what
happens is that we develop the computational "know-how" to
handle the expression

idm f(tl+h) - f(tl)

h-+0 h

for a wide range of possibilities for f£(t). That is, the
basic concept remains the same but certain functions £(t)
are more difficult to handle in the above expression than
are others.

D. The Limit Concept in Terms of Graphs

The concept of instantaneous speed has a nice interpreta-
tion in terms of graphs. For example, if we take the graph
of s = £(t) we have that

a8 = £(8) £ (b+h) ~£ (b)
h is the
slope of the chord PQ
(Notice that our dia-
gram depicts h > 0.
; A The same interpretation
F(b+h)—f(b) exists if h < 0,)
5 SRR,
|
:*'h ==
1 : > t
b b+h

Thus, average rate of change may be identified pictori-
ally with the slope of the chord that joins two points on
the curve; while instantaneous rate of change may be
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identified with the slope of a tangent line to the curve.
That is:

s s = £(t)

A The closer Q gets to
P, the more PQ looks
like the tangent line
Q to the curve at P.
As Q gets close to
P, h gets close to 0

Q since h is the hori-
zontal distance between
P P and Q.

— - — ———— -

Y
o

This shows us still another advantage of analytic
geometry. Namely, if we so desire we may identify the
analytic concept of instantaneous rate of change with the
geometric notion of the slope of a tangent line to a curve;
and, conversely, we may identify the geometric notion of
slope with the analytic notion of instantaneous rate of change.
The point is that there will be times when one interpretation
will be preferred to the other.

As an application of this idea let us discuss the notion
of tangent lines, for it might well be that this geometric
approach is easier to visualize than the more analytic notion

of instantaneous rate of change.

To parallel our earlier discussion, notice that we all
have an intuitive notion as to what is meant by a tangent
line to a curve. Qualitatively we know that it is a line
which "touches" the curve at the point of contact. Yet how

can we objectively distinguish between a line which "touches"

k
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L
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a curve and a line which "crosses" a curve. For example, in
either of the two cases depicted below, the line L "meets"
the curve C at one and only one point. How do we distinguish

between these two cases objectively?

Y
»

P X

To complicate matters even more, consider the case of
the line tangent to a smooth curve at a point where the
curve changes its concavity. For example, the tangent line
lies above the curve if the curve "spills water" at the

point of contact, while it lies below the curve if the curve

"holds water". Pictorially:
; : T t Line
Tangent line lies above liggegelgénthe
the curve curve

Thus at a point at which the curve changes concavity
the tangent line lies above the curve on one side and below
the curve on the other side (a point at which the concavity
changes is called a point of inflection). At a point of
inflection the tangent line CROSSES the curve. That is:
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Curve changes
concavity here

c holds watejj/
on this

¥ side

Spills /

water on this
side

From a geometric construction point of view, notice
that in the usual plane geometry course the only "curves"
that are studied are circles and straight lines, and in these
cases the idea of a tangent is unusually simple. Namely, a
straight line is its own tangent and for a circle we can
construct a tangent line at a point on the circle simply by
drawing a line perpendicular to the radius at that point.
How, then, would we construct a tangent line at a point of
an arbitrarily given curve? Certainly, one way is the
subjective technique of placing a ruler on the curve at the
given point and sliding it around until the ruler seems to
"touch" the curve at the given point. Obviously such an
approach is subjective. It not only depends on the person
who is drawing the line, but even the same person may see

things from a different perspective at different times.

The point is that we can apply the idea of limits to
this geometric situation in a way that is completely analogous
to what we did analytically earlier. That is, suppose we
wish to locate the line tangent to curve C at point P (this
is tantamount to finding the slope of the line since the point

P is a point on the line). That is:

t

G m | am b
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y = £(x)
, L(?)

Y
w

We could pick a "near-by" point Q on the curve and find
the slope of the line PQ. This would again give us a
correct answer to a wrong problem since we are not interested
in the line PQ. As we allow the point Q to be chosen closer
and closer to P, however, the line PQ seems to become a
better and better approximation to the tangent line (if
indeed there is a tangent line). Thus we might define the
slope of the tangent line to be the limit of the slope of
PQ as Q is allowed to get as close to P as we wish PROVIDED
THAT P AND Q ARE NOT ALLOWED TO COINCIDE., For if P and Q
coincide, we have only one point; and it takes two points to
determine a line. (The notion that the points P and Q were
to be arbitrarily close but never equal reflects in an early
[seventeenth century] definition that a tangent line to a

curve is a line which "passes through 'two consecutive points'

on the curve'.)

Again in terms of a picture:
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_lim

_ _limf (b+h) ~£ (b)
L QP

( “h>0 h

)

mPQ

In summary we conclude this section with the result
that iig f(x) = L means that we can make the difference
between f(x) and L as small as we wish (but not necessarily
zero) by choosing x "sufficiently close to" but not equal to
a, and that we may visualize this either analytically or

geometrically.

In the next section we shall try to formulate this same
result in purely analytic language. That is, we shall try
to give a precise, rigorous, mathematical definition that
captures the meaning of our previous discussion but which

affords us an objective way of computing limits.

E. Limits - A Rigorous Approach

Somehow or other we would now like a way of saying
iig £(x) = L in a well-defined mathematical way which pre-
serves the mood that already prevails about limits.

Thus we must find some way of translating "the difference
between f(x) and L can be made as small as we wish" and "when
x is sufficiently close to a" in precise mathematical

language.
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We shall find that the use of absolute values helps us
immensely in this quest. To make f(x) as close to L as we
wish means that we should be able to make the DIFFERENCE
between f(x) and L smaller than any arbitrarily prescribed
value. Let us introduce the symbol € (epsilon) to generi-
cally name an arbitrary positive number, Then the mathema-

tical statement for "f(x) is within € of L" simple becomes
|[£(x) = L| < ¢

Pictorially:

|f(x) - Ll < g

means f(x) € (L-g, L+g)
J

To indicate that X must be sufficiently close to a,
we could say that we can find another number, generically
named by 8 (delta), such that |x - a] < §. Now to capture
the flavor that x # a, we observe that x = a if and only if
|x - a] = 0. Thus we impose the condition that |x - a| # 0.
Since absolute value cannot be negative this is the same as
saying that |x - a| > 0.

Putting this all together we now state the following
formal definition:

lim £(x) = L
X+a
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means that for each € > 0 we can find 6§ > 0 (where the choice
of § may depend on the choice of €) such that |[£(x) - L| < ¢
whenever 0 < |[x - a| < &, (2)

Again, from an informal point of view, this simply says
that for any given € > 0 we can find a number § such that
whenever x is within § of a (but not equal to a), £(x) will
be within € of L.

In terms of graphs, we are saying that:

Given € We locate § - f
\\‘/x y = £(x)
Li = oo o
L-g - — > —

|
|
Y
|
|
"
k
§ is the minimum of
these two distances

\n—-.‘._,—_

Rather than proceed abstractly let us consider a
particular example. Let f(x) = (2 + x) (3 - x), and let .
lim
us compute o £(x) .
Certainly, it seems fairly obvious that as x »+ 0,

f(x) approaches 6. Thus we might conjecture that lim f(x) =
x+0

What we would like to do is gain some experience with
the so-called "epsilon-delta" method for verifying this
result.

6.
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By way of review, recall that the limit of (2 + x) (3 - x)
as x approaches 0 is EXACTLY 6, not approximately 6. That is,
f(x) is approximately 6 for values of x which are "near" 0,
but not equal to 0; but the limiting value of f(x) as x + 0 is
6.

This suggests a rather interesting difference between
the "pure" and the "applied" worlds. For example, in the
"pure" world we can talk about a piece of string being EXACTLY
six inches long; but in the "real" or "applied" world we can
never measure accurately enough to ascertain whether some-
thing is exactly six inches long. Among other things, the
"lines" on our measuring device themselves have thickness and
if the string terminated on the marking called 6 on our ruler,
we would not be sure whether it was the beginning of the 6
mark, the end of the mark, etc. This is one reason that we
talk about SIGNIFICANT FIGURES, That is, to the "pure"
mathematician 6, 6.0, 6.00, 6.000, etc. are all synonyms (i.e.,
different numerals), all of which name the number 6; but to
the engineer these numerals are different ways of saying
"CLOSE ENOUGH!". In other words, when he writes that the
length of the string is 6.0 he is saying that he does not
know what the EXACT length is, but any error in his measure-
ment that would indicate that the length was not exactly 6
will not occur until at least the second decimal place.
Similarly, when he writes 6.000 he is asserting confidence
that any error must wait until at least the fourth decimal

place before it can occur.

This same idea 1is extended when one specifies TOLERANCE
LIMITS in indicating the dimensions of certain objects. Thus
when we write that the length of a certain pért is to be
6 + 0.001, we are really saying that anything that is made

to this specification is "close enough" for our purposes.
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Getting back to our immediate problem, in the real world
we might be content if we could only be sure that the difference
between f(x) and 6 was no greater than 0.0001. In this case
we would in turn be interested in knowing how much x could
deviate from 0 and still have f(x) in the required "range".

In other words, we might be interested from a practical point
of view in knowing how small x had to be in order to guarantee
that £(x) was "close enough" to 6. Of course, there is nothing
sacred about the choice of 0.0001. We could have chosen any
amount of "tolerance"; and we will denote this amount by ¢.
[While we observe that ¢ could be any size, from a practical
point of view we usually think of ¢ as being very small. This
is because in most problems where we would be interested in
finding a tolerance limit, it is clear that there is not too
much tolerance given. That is, to think of ¢ as being large
would correspond in practice to saying that we would like a
length of 6 inches give or take 10 yards!]

Correspondingly, we denote by § how close to zero x must
be chosen to guarantee that we meet the tolerance limits.

Thus from a practical point of view, when we are given
an expression such as (2), what we are really interested in
is for a given € to be able to determine § such that f(x) will
be within € of 6 provided that x is within 8 of 0.

While this is not too difficult a point to grasp from a
qualitative point of view, it does often turn out that it is
an exceedingly difficult problem from a quantitative point of
view. We feel that it is worth the experience of our "plowing
through" one such problem in the hope that you will get a
better feeling for what € and 6 mean from a practical point
of view.

In what follows we shall be working specifically with

f(x) = (2 + x)(3 - x)

i

i a 0

i

t
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and we want to determine § so that for a given e, f£(x) will
differ from 6 by no more than € provided that x differs from

0 by no more than 6. In more formal language, given €, we want
to fina 6 so that |x| < & implies that |f(x) - 6| < Ee.

Graphical situation:

F’
Graph of y = £(x) = (2 + x) (3 - x)
£(x) is — A

"ciose to" 6
/

—_— e — e — — — = — — —— = - — —

. : > x
—}27 12\3

If x is

"close to" 0 (a)
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"Enlarged Scale"

Some Notes:

A (1) Notice a dif
erence between

There are two ne

e borhoods (one ne

If =

. where f£(x) is wi
‘Then f(x) 1s,ff"”" e of 6.
within € of 6 Py We are only inter-
A \ ested in what happens
| near 0. That's what
¢ ‘ i x >+ 0 means.
| i + (2) Note that §
Y v need not equal §
| I ‘ All we have to d
Y + "correct® this i
Y l let
vy | . o s I § = min (6,
L, : €2l
(1,0)
is in (-G:GJ/FGZ 3 4

Notice once again how helpful graphs are in helping us

"size up" what is happening. In the present example, diagram

(b) shows how to construct § given €.
We simply locate 6 + € and 6 - € on the y-axis and project
these horizontally until we intersect the curve. At the
points of intersection we drop perpendiculars to the x-axis
and we thus determine the intervals in which f(x) is within
€ of 6. In the present example we find two such intervals
one of which includes 0 and the other of which includes 1
(this is because f(x) = 6 for both x = 0 and x = 1); and
there are no other values of x for which f(x) differs from
6 by less than €. In terms of our specific problem we are

interested only in the neighborhood which includes 0.

f-

"Tocal" and "Global".

igh-
ar 0

and the other near 1)
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We are interested, however, in the analytical approach
and this is much harder, for now we want to determine ¢ as
a FUNCTION of € so that we can actually compute ¢ for the
given €, (In many real-life examples, the expression for x
is sufficiently cumbersome as to completely discourage us
from finding ¢ exactly for a given €. In such cases, we can
still use the geometric approach in the sense that we can
sketch f(x) with a sufficient degree of accuracy and employ
the technique of diagram (b) to pin down the required inter-

val pictorially, whereupon we merely measure what § is.)
At any rate, we could proceed as follows:

We want |£(x) - 6| < €.

Now £(x) - 6 ='(2 + X)(3 - X) - 6 = 6 + 3x - 2x - x° -
2
= X = X
S| E(x) - 6] < € means:

]x - x2] < g

Hence:

- < X - x2 < g (1)

Of course (1) is equivalent to the two equations:

X - x° < ¢ (2)

X - X > =g ' (3)

Working on (2), we would want to solve x - x2 < g,
which is equivalent to:

x2 - X+ e >0 (2%)

6
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A convenient device for handling (2') is to treat it as
if it were an equality rather than an inequality. Namely,
we solve

x2 - X + € 0 (2%)

to obtain by the quadratic formula:

x =1 £y =43¢ (4)

The "tough" thing is to interpret what (4) means. It
is not hard to see that (4) yields the two values of x for

which £(x) = 6 + ¢. (As a check let us look at x = 1 + /I=d¢
Then 2 + x = 2 + (1 + /I=24¢) 4
2
= 5 + /I=2¢
et

Similarly

3 -x = 5 - /T=2¢

2
L. (24x) (3-x) = (5 + yI=3g) (5 - yI=4g) = 25 = (l-4e) = 6 + ¢
2 2 4

A similar procedure shows that if x = 1 - /T=%¢, £(X) = 6 + ¢.
2
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Again, in terms of a graph:

£ (x) (1/2, 25/4)

6+€e

l
1
|
l
v
|
:
%3

(c)

Notice that since Xy < Xgy X, corresponds to 1 - vV1-4¢

while x, =1+ VI-14¢. “
2
(Recall we are interested in "small" values of «.
Hence we may assume that 4e¢ is also small .". 0 < l-4e < 1
.20 < vyI-4e < 1 ,. - /I-4e < + /I-4e. Also note that if
e > 1/4, 1-4e < 0. This means vI-4e is imaginary. This
merely verifies that £(x) £ 6 + 1/4 for all x [see graph].)

At any rate it is now clear from our graph that since

fl_-._z.-_e =6+€’

X < 1 = yl=-4e -+ f(x) < 6 + € (A)
2
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Our job is now "half-done". That is, we have an
UPPER BOUND on x. We also require a lower bound; and to

this end, we return to (3); which is equivalent to

X2 =x =g <0 (3')

Again, we elect to look at:

X" -x-€ =0 (3")

which leads to:

X =1 + /1+4¢ (5)

In a manner completely analogous to our previous treat-

ment, it is readily verified that the values of x determined

by (5) are precisely those for which f(x) = 6 - €. L = ;l+le
corresponds to the smaller value while l_i_%iigi_ corresponds

to the larger value. Again, in terms of a picture:

£ (x)

(a)
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i3 €1

S I S L E e

i1

L 3

s 8 w e




L

3

ha &m ¢

.

£ €3

£ £

N &m0

IV-31

Thus a glance at (d) tells us that

x > 1 - V1+4e + f(x) >6 - ¢ (B)

(Observe that in A and B we restrict our attention
only to the neighborhood of 0 since we are not, in. this

problem, interested in what happens as x + 1.)

If we now combine (A) and (B), we obtain

l - /IT+8e < x <1 - VI-4e » 6 - e <f(x) < 6 + €
2 2

(C)

+ |£(x) - 6] < ¢

Pictorially, we may superimpose diagrams (c) and (d) to
obtain the same result. Thus:

(e)




Iv-32

(By the way, a quick glance at (e) makes it clear that x

3
is negative while Xy is positive.
Thus lx3| = -x3 = ———— while |xl] =gy = et
It need not be true that |xl| = ]x3|. In any event the
required ¢ is merely the smaller of xl| and |x3 + More
symbolically

§ = min (|xl|,|x3l)
(You see, while 6 + € and 6 - € are symmetrically

locatea around 6, the slope of the graph of f(x) varies.
Hence there is no reason for |xl| = |x3| as would have been

the case had the graph of f(x) been a straight line [why?].)
lim

In summary, if £(x) = (2 + x) (3 - x) then %0

f(x) = 6.

Moreover, given £ > 0;

l -V1+de < x <1 ~=-yYI-4e » 6 - ¢ < f(x) < 6 + ¢
2 2

y = (2+x) (3-x)

:
\f
M
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In the remainder of this course, the concept of limits
will remain the underlying theme. For this reason it is
crucial that we recognize both the geometric (intuitive)
properties and the analytic properties of them. For obvious
reasons, we will spell things out geometrically whenever we
can. It must be observed, however, that there will be times
when only analytic methods will be applicable. In particular,
this will happen when we deal with functions of several vari-
ables. Our approach will be to capitalize on the geometric
picture whenever it is available. We will then "translate"
the picture into its equivalent analytic form (after all, this
is what analytic geometry is all about) and we will finally
extend this analytic form to those cases for which there exists
no geometric interpretation.
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Chapter V
MATHEMATICAL INDUCTION

A, Introduction

Mathematical induction is a rather powerful technique for

proving certain types of theorems, once we have a "hunch" as

to what the correct answer is. Let us illustrate what we mean

through the use of a specific problem.

Recall that in our discussion of sets, we proved by means

of circle-diagrams that for any three sets A, B, and C:

anNneUc =@aNB U @cdNc (1)

Suppose now that we have four sets A, B, C, and D. Can we some-
how make use of (1) to derive an expression for A /) (B C UD)?
To tackle this problem we proceed, as is so often the case in
mathematics, by trying to reduce an unfamiliar problem to a more
familiar one. Since we have already shown that union is associa-
tive, we may write that BU Cc UD is equal to (B U C) U D, and we
may rewrite AN (BUcUD asaN[((BUC UDl. The advantage
in this is that the bracketed expression is now the union of two
sets, (B UC) and D (that is, the union of two sets is a set, just
as 3 + 2 is a number, namely 5, not two numbers). Thus by (1), we
may write that

aNiBUo Upnl=mN@EUorUGND* (2)

*If this seems a bit vague the following intermediate steps
may prove helpful. Let E = B U c. Then by substitution,
AN[BUYUDI =aANI(EUD), and by (1) this is in turn equal
to (ANE) U (A/ND). Again replacing E by B U C, we obtain
AN ((BUCI U (RAND.
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Utilizing (1) in (2), we next obtain:
AN[(BUOUD =1aNeB UaNc]l UmNDb).

Finally recalling that [(A/B) U (ANC)] U(A D) is equal to
ANB)U (ANC) U (AN D), we obtain the result that:

AN BUcCUD =@NB U ANC)U (AND)* (3)

Equation (3) tells us that intersection is distributive over the
union of three sets, just as (1) told us that intersection was

distributive over the union of two sets.

At this stage, we might have a "hunch" that intersection
would be distributive over the union of any finite number of sets.
To state our "hunch" more mathematically, we might say the

following:

Let Al, A2,
proposition concerning the n sets. Specifically, let P(n) be

& e An be sets.** Then let P(n) denote a

the proposition that

Alﬁ(AZUABU...UAn} = (AlﬂAz)U(AlﬂA3)U...U(AlﬁAn) (4)

*At this point one might wonder why we couldn't obtain (3)
by circle-diagrams just as we did for (1). Circle-diagrams rapidly
become unwieldy (even impossible) for large numbers of sets. Try
for example to draw the proper circle diagram for four sets.
Notice that for n sets the number of regions in our circle-diagram
is 2R, (For example if n = 1 there are two regions, A; and A1';
if n = 2 there are four regions, A A',A.'N A, a 'NAaT,
and A, /) A,, etc.) Thus if n = 4 #e wofild hive 16 regions. “If
n = 20 we Would have over 1,000,000 regions since 22075 1,000,000,

**Note that, as we switch from three or four sets to n sets,

we are better off using subscripted symbols A,, A,, i ek,
rather than A, B, C, etc. Specifically, we do not want to use
A, B, C ... N which denotes exactly 14 sets!

B

:
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At this time it is crucial that we realize that P(n) is only a
conjecture. The mere fact that we have observed that P (n)
happens to be true when n = 3 and when n = 4, i.e. that P(3)
and P(4) are true, does not in itself mean that P(n) will be

true for every positive integer, n.

For example, consider the following: Let n denote any

positive integer, and consider the proposition, Q, defined by:
Q(n) means that n2 - n + 41 is a prime number¥* (5)

Let us compute Q(n) for consecutive integers starting with 1. We

obtain:

Q(l) = 12 - 1 + 41 = 41, and 41 is a prime number. Q(l) is true.
Q(2) = 2% - 2 + 41 = 43, and 43 is a prime number. Q(2) is true.
Q(3) = 3% - 3 + 41 = 47, and 47 is a prime number. Q(3) is true.
Q(4) = 42 - 4 + 41 = 53, and 53 is a prime number. Q(4) is true.

Q(5) =5 -5 + 41 = 61, and 61 is a prime number. Q(5) is true.

At this stage, we might be tempted to make the conjecture
that Q(n) will always be true. That is, for any positive integer,
n, n2 - n + 41 will denote a prime number. The interesting thing

about (5) is that Q(n) is true for all positive integers, n, from

1 through 40 inclusive, However, when n = 41, (5) becomes:

(41)% - 41 + 41 is a prime number,

and this is false since (41)2 - 41 + 41 = 41° = 41 x 41 which
certainly is not a prime number, thus our proposition is true for

n=1,2,..., 40; but false for n = 41,

*An integer n > 1 is called a prime number if the only whole
numbers which are divisors of n are n and 1 (1 is not called a
prime number) .
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How then can we rigorously establish the truth of our
conjecture (4) without worrying that things break down as in our
last example. Hopefully, we would recognize a scheme similar to
that of how we got from (1) to (3). For example, suppose that
we know that (1) and (3) are true and we wanted to investigate
ANBUCUDUE). We would write

aNBUcUpbp UE) =

AN(BUCUD] UE)*=

anN@EBUcUD) U BRNE) [by (1)] =

[(ANBU aNc)U aNDIU (ARNE) [by (3)] =
(ANB)U @A@NCc)U (AaND U (ANE)*

If we now switch to the notation of (4), we have a new
insight concerning A, N a,U...Ua) = ;N Az)U. U@ Na).
Namely, our procedure indicates that once we knew that P(n) was

true for n = 3, we could prove that it was true for n = 4. Once

we knew it was true for n = 4 we could prove it was true for n = 5,
and it begins to look as though we can continue this trend as

long as we wish - but how can we be sure?

Well, suppose we could prove that whenever P(n) was true for
n =%k, it must also be true for n = k + 1. (Notice we are not

saying that P(n) is true for n = k, but rather if P(n) is true for

n =k.) Then if we do know P (n) is true for n = 3, it must be true

for n = 4. But, if it is true for n = 4, it must then be true for
n = 5, and the truth of P(5) implies the truth of P(6) etc.

*Here we are assuming that union is associative for four
sets rather than only for three. If this is too much to accept
on faith, let us merely agree that unless otherwise stated tue
union of any number of sets implies that the union is in the
order in which the sets are written. That is, BU C U D U E means
[(BUCUD UE. With this convention BUC UDUE =
[BUC)UDIUES=[BUCUDIU E, etc.
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To this end, assume that

Aln (AZU UAk) = (Alﬂ AZ)U...U(AlnAk) (6)

(Notice, again, that we are not saying we know that P(k) is true.)

We must show that this implies

a, N @, V..U ) =@ Nayl...ua Na,) (D

Now :

Alﬂ (AZU vesll Br ) =

Alﬂ a, U ... UAkUAk+l) =

AN (AU ... Ua T U-A )=

@, N @, V...uanlU @ Na ) by (D] =

(@, Na)y ...U @, Na)1u @&, Na ) by (6] =

@, Nay v ... U0 @ Na) U@ Na,y)

We have just shown that the truth of (6) does imply the truth
of (7).

Ssummed up, we now know about our proposition that:

(a) P(n) is true when n = 3.
(b) If P(n) is true for n = k, it is also true for n = k+l.
These two facts are all we need. For if we now let k = 3 in

(3) (the one value for which we know P(n) is true), we immediately
learn that P(n) is true for k + 1 = 3‘+ 1l =4, That is, we now
know that P(4) is true. Then, taking this output and feeding it
back into the input, we let k = 4. That makes P(5) true, etc.
Notice that this cannot fail for P(41l) or any other finite number
and we have proved that (4) is true for §l£ integers greater than
or equal to 3, i.e. that P(n) is true for n 2 3. (In this case,

notice that for n < 3, P(n) doesn't make sense.)
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The discussion of (4) can be generalized as follows, and is
known as the principle of mathematical induction.

Let P(n) denote a proposition that is defined for each
positive integer n. Suppose that we know (a) that P(n) is true
for say n = m anda (b) that we can prove that whenever P(n) is
true for n = k, it is also true for n = k + 1. Then P(n) is true
for all integers which are greater than or equal to m. In our
A

example, P(n) was the proposition that for n sets, A A _,

1’ 72" *** "n

a,N@E,U ... UA) = (Alﬂ )V LU (Al/}AnJ

and m was equal to 3; we proved that (4) was true for all n 2 3.

While we shall talk more about this later, let us make a
few warning remarks. Notice that to use mathematical induction,
we must first be able to conjecture a proposition. In terms of
our present example, notice that we did not use induction to find
an equivalent expression for Alfq (Az(}  §is L)Ah). Rather it was
only after we were able to make the conjecture (4) that we used
induction. In still other words, we must have an expression for
both sides of the equation before we use induction. Secondly,
notice that induction applies to the positive integers and not to
the set of all real numbers. For example suppose we knew that
P(l/2) was true and that whenever P(k) was true so also was P(k+l).
Then we could conclude that P(1/2), P(3/2), P(5/2), etc. were all
true. But we couldn't make any statement about other values of n.

The point is that if n is an integer then there are no other
integers which exceed n but are less than n + 1. On the other
hand, there are many (infinitely many) real numbers which lie

between n and n+l.

We shall return to this discussion of limitations in Section C.
For now we prefer to reinforce our definition of induction by
applying the discussion of this section to another topic previously
studied in our course - limits. It is our hope that applications
to specific instances will help clarify the concept better than an

abstract, philosophical discussion.
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B. An Application to Limits

In the course of our studies about limits we proved that:
lim [£(x) + g(x)] = 1lim £(x) + lim g(x), provided lim f(x)
Xx+a x+a xX>a x>a

and lim g(x) exist.

X+a

To emphasize that we are dealing with the sum of two functions,

perhaps a better notation would have been:

lim [£, (x) + £5(x)] = lim £.(x) + lim £, (X) 0 1)
x+a 1 2 xra 1 x+a 2 -

Suppose now we were asked to find a similar formula for
%52 [fl(x) + fz(x) + f3(x)]. For the sake of our illustration let
us refrain from making any conjecture here and proceed instead

by mathematical logic.

Since fl(x) + fz(x) + f3(x) = [fl(x) + fz(x)] + f3(x) (why?)
we may write:

Lim (£, (x) + £,(x) + £5(x)) =
Xra

lim ([fl(x) + £,(x)] + f3(x))
X+a

But as we have already seen in our study of functions,

fl + f2 is also a function.




So by (1) we have

lim ([f (x) + f (x)] + f (x)) = lim [fl
X>a X*a x*ra

But by (1) lim [fl(x) 4+ fz(x)] = lim fl(x) + lim fz(x)

X-ra X-ra X->a

In summary:

lim (fl(x) + f (x) + £ (x)) =

X+a

lim ([f (x) + £,(x)] + f3(x)) =

X+a

lim «fl(x) + f (x)) + lim f (x) =

Xxra x+a

[lim fl(x) + lim f (x)] + lim f (x) =
X+a X+a x+a

lim fl(x) + lim fz(x) + lim f3(x)

X+a X+a Xra

Knowing that

lim [fl(x) + f (x) + f (x)] = lim fl(x) + lim f2
x+a X+a X>a X+a

*Recall the intermediate step that we used in the previous

section:
Let h(x) = fl(x) + fz(x)

lim (h(x) + f (X))

Th 15| £ b £
en xig ¢l l(x) + 2(X)] + 3(3))

X>a
By (1) 1lim (h(x) + f (x)) = lim h(x) + lim f3(x)
X+>a X+a X+>a
but by definition of h(x), lim h(x) = lim [f (x) + f (x)1]
X+a > a

o5 L3 ([f (x) + fz(x)] + f (x)) = llm [f (x) + f (x)] + 11m f (x)
X+a

(x) + f (x)]* + 1lim f (x)

(x) + lim f3{x)

g S Gy G E vt A =EE S8 S EE S e om

B -l = .

£ a




r3 gn

|

rs

rT s

1

|

¢

1 B3 BE .

[

we can show that:

[l

lim [fl(xJ + fz(x) + f3(x) + f4(x)] lim fl(x) + lim fz(x) +
¥>a X=>a X+a

lim f3(x) + lim f4(x)

- X->d X->a

Namely:

lim [fl(x) + fz(x) + f3(x) + f4(x)] =

X->a

lim [{fl(x) + fz(x) + f3(x)} + f4(x)] -

X+a

lim {fl(x) + fz(x) + f3(x)} + lim f4(x) (by (1)) =

X+a X+a

{lim fl(x) + lim fz(x) + lim f3(x)} + lim f4(xJ (by (2))

¥=+a X-»a X-»a X>a

and the result follows.

This procedure practically begs the mathematical induction
approach. Specifically if we let P(n) denote the proposition that

lim [£,(x) + ... + £ (x)] = lim £.(x) + ... + 1lim £ (x)
X+>a 1 n X-»a 2 X->a =

What we have already shown is that

P(2), P(3), and P(4) are true.

More importantly our procedure in going fromn = 2 ton = 3
and fromn = 3 to n = 4 seems to dictate a way of reducing P (k+1)
to P(k). Namely:

lim [£,(x) + ... + fk(x) + fk+l(x)] =

X=>a

lim [{f;(x) + ... + £, (xX)} + £ ,(x)] =

X->a

lim {£,(x) + ... + £, (x)} + lim fk+l(x) (by (1)) (3)
Xra X+a
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From (3) it should be clear that all we need now is that

lim [f.(x) + ... + £ (x)] = lim £ (x) + ... + lim £ (x) and this

x+a 1 k x¥a 1 x¥a k

outlines the entire apprcdach. In retrospect P(2) is true. We

now assume P(k) is true [that is, %ig [fl(x) + iew F fk(x) ] =

lim £ (x) + ... + lim £ (x)] and we must show that this implies

X*a 1 X+a Kk

the truth of P(k+l) [that is, lim [f.(x) + ... + £ (x) + £ (x)] =
+a 1 k k+1

lim £ (x) + ... + llm £ (x)] We then mimic what we did above.

X+a k+1

Thus: %ig [fl(x) + eea + fk+l{x)] = ,,. = %ig {fl(x) N fk(x)} +

lim £ (x) and by the assumption that P(k) is true, the result

x+a k+1

follows.

C. Limitations of Induction.

There are two major limitations to the use of induction.
For one thing, it is possible that some proposition P(n) is indeed
true for all n, but that structurally the truth of P(k+l) in no
way dependas on the truth of P(k). In still other words, both
P(k) and P(k+l) can be true but for completely independent reasons.
As a mild example, let P(n) denote the statement that any positive
integer n > 1 can be factored uniquely as a product of primes (this
is often called the fundamental theorem of arithmetic). While we
won't prove this theorem, it is not difficult to conjecture its
truth. Yet a glance at how the various integers factor into
primes also makes it plausible to believe that there is no
structural pattern whereby we can factor n+l just by knowing how

to factor n. For example:
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In fact in trying to determine whether a given number is a prime
we must use trial-and-error techniques and cannot tell too much

by looking at the numbers that come before it.

In summary, then, one limitation to mathematical induction
is that it is possible that P(n) can be true for all n but that

the result cannot be shown by induction.

A second weakness with induction is that it requires that
we have a conjecture. Notice that in both of the examples in the
previous section, we first speculated on what we felt was a
"sensible" conjecture and then tried the induction technique.
There are, however, situations that do not lend themselves that
easily to conjecture. By way of example, the following is a problem
that seems to appear in virtually every textbook that describes

induction:

Prove that for each positive integer n,

1+ 2+ cooo #n = Eigiﬂﬂ- (1)

Now once (1) is given, we certainly have a conjecture. Indeed we
can test (1) for various values of n and find that:
1 =1x2/2, 1 + 2 =2x3/2, 1 + 2 + 3 =3x4/2, 1 + 2 + 3 + 4 = 4x5/2

are true statements. (To reinforce the notation of P(n), what this
last statement says is that if we let P(n) denote the proposition
that 1 + 2 + .... + n = Ei%ill, then P(1l), P(2), P(3), P(4) are

all true and at least we see that (1) is a plausible conjecture.)
It is left as an exercise to show the truth of this conjecture

by mathematical induction.

The issue we wish to raise by (1), though, is: How likely is
it that if we had not been given the recipe in (1) we would have
discovered it by trial-and-error? In other words, suppose instead
of being given (1), we were asked to find a "convenient" expression

for computing 1.4+ 2 % 3 F wews ¥ N,



Certainly we could have looked at the sum of the first n

integers and found for n = 1,2,3,4,5, etc. that these sums were:
l, 3, 6, 10, 15, 21, 28, etc.

But is it likely that even with a large list of computed values
we would have hit on the hunch that the nth sum was simply

n(n+l) /2? 1It's possible but, for most of us, not likely. (For
this reason, such a textbook illustration is at best contrived.)

We can use this same problem to, make another point. There
is an anecdote connected with the famous mathematician, Gauss.

The story is told that as a punishment young Gauss was told to

e —— e —
compute the sum 1™+ 251‘3_+ 2 ¥ civin F 97~i”£g§_i,199-+200.

He observed that the first and the last terms formed a sum of 201,
as did the second and next to the last, and in this way he noted
that there were 100 pairs each of sum 20l1. Thus, he quickly con-
cluded that the required sum was 20,100,

This result is readily generalized (and you may recall seeing
it in high school algebra under the topic of arithmetic progressions)
as follows:

To compute the sum 1 + 2 + 3 + .... + (n-2) + (n-1) + n,
write the sum twice, but once in the reverse order. That is:

Let S =1 + 2 + 3 + (n-2) + (n-1) + n
3 } 0 ! 3 !
then S = n + (n-1) + (n-2) + 3 + 2 + 1.

Upon adding these two rows, we obtain:

2S (n+l) + (n+l) + .... + (n+l)

n(n+l) [since there are n terms being added each of
which yields n+l as a sum]

Dividing through by 2, we obtain:

S = n(n+l) /2,
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which is not only the correct and desired result but it in no
way depends on induction. That is, we can determine the sum of
the first 600 integers in this way without first having to know
the sum of the first 599 positive integers.,

In summary, in certain problems the proper conjecture is
difficult to come by (and certainly this is a subjective problem
in the sense that it might be difficult for one person but not for
another). Moreover, in those cases where we cannot sense the
proper conjecture the fact of life is that either we will construct
a more direct proof for determining the correct result as did Gauss
or else the problem will remain unsolved. By way of review, the
point we are making is that if we were given the problem of
forming the sum of the first n integers, we might never have stum-
bled on the proper conjecture; and that perhaps the original proof
of (1) was not by induction at all but rather by a method similar

to Gauss'.

At the same time that we point out this latter weakness,
however, let us also point out that in the two examples of the
previous sections, it seemed "almost natural" to guess not only
the conjecture but how one would proceed from P(k) to P(k+l).

The point is that in those real-life situations where induction
has the most significant use we find that it is precisely when the
conjecture and the construction of the inductive proof practically
dictate themselves. We shall see several examples of this through-
out the rest of this course; but for now we are content to let the
subject drop.
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Chapter VI
INFINITESIMALS AND DIFFERENTIALS

A. Introduction

It may be more than coincidence that one refers to

differential calculus rather than to derivative calculus

even though that branch of calculus deals with the concept
of derivatives. The point we are trying to make is that the
notion of a differential lies at the very foundation of

calculus.

While the concept of a differential is crucial to a proper
understanding of calculus, the fact remains that it is an ex-
tremely subtle concept, and unless great care is taken the true
significance of -a differential can be missed. In this chapter
our aim is to develop the notion of a differential slowly and
meaningfully in the hope that such a development will focus
attention on the makeup of calculus and what the real problem

is in dealing with 0/0.

We shall start with a rather simple problem. Suppose we
wish to evaluate, say, (2.00013)4. (Certainly, a less cumber-
some expression could have been used, but we want to emphasize
a certain amount of computational work that can be involved.)
The most direct attack, of course, is actually to compute
2.00013 x 2.00013 x 2.00013 x 2.00013 and obtain the result
16.00416040561757628561. Our claim is that by use of deriva-
tives we can obtain 16.00416 as a very quick approximation.

To this end, notice that from a geometric point of view, we
are trying to locate the y-coordinate of the point on the

curve y = x4 whose xX-coordinate is 2.00013.
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What is known to us at little more than a glance is that
(1) the point Pl(2,16) is a rather convenient (i.e., easily
located) "nearby" point to the one we seek, and (2) the slope
of the line tangent to y = x4 at (2,16) is 32 (i.e. the slope
is precisely g%, which in this case is 4x3, and at x = 2 this
is 32). We thus have the following picture (which is delib-
erately drawn with an exaggerated scale so that we can see

"what's going on").

JLY 4 — -
RS _ _ES
PIS .00013

= 32 =

32(.00013) = 0.00416

TS + RS

le + 0.00416

16.00416

Y
X

(Figure 1)

In terms of Figure 1, we are trying to find the coordinates

of Q. Since OT = 2.00013 we know the x-coordinate of Q. The
y-coordinate of Q is TQ (which we previously computed as
16.00416040561757628561 but which we now pretend we haven't).

What we are sure of is that RT is exactly 16.00416.
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Now the key idea here is that while RT is exactly
16.00416, it is also approximately equal to TQ. That is, we

suspect since Q is "close to" P that the length of TQ is
approximately the length of RT which, in turn, is exactly
16.00416.

In any event, this technique yields the result that:
4
(2.00013) A 16.00416 (1)

Again in terms of our picture we are saying that (2.00013,
16.00416) precisely names the point R on the line 1 [in fact
the equation of 1 is y = 32x - 48 (why?)] and R is being used
to approximate the location of Q.

To see how accurate (1) is, recall that (2.00013)4 =
16.00416040561757628561, so that the total error in our

approximation is:

0.00000040561757628561

Of course, total errors are misleading, so we instead estimate
the percentage error by observing that our total error is
about 0.00000041 parts in about 16, hence the percentage error
is about

(0.00000041) (100)

16 < 0.000003% (2)

We also recognize that the great degree of accuracy re-
flected in (2) depends on how close we are to the point of
tangency. For example if we tried to use Figure 1 to find
an approximate value for 34 we would obtain
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A
1
5
8lf— — — = Q, L11la Rl—sl = slope of 1
[ P151
484 - — — — Rl . g =
, .. RJ5; = 32
132 -
P, | o R7T, =48 % 3%y a8
| 1
| |
| T
///{ ' G P X
2 3

(Figure 2)

In this case Rl(3;48) is still a point exactly on 1 but

now R, is not a "good" approximation to the location of Ql'

d
Thus one problem which confronts us is that of determining

a fairly objective way for defining "reasonable" approximations.

Secondly, to find a percentage error it is required that
we know the exact answer and this isn't always easy or even
possible (if it were, the chances are we wouldn't be making
approximations in such cases). In fact we chose (2.00013)4
rather than, say, V16.00013 because cumbersome as it might
be we can compute (2.00013)4 exactly but, at least in decimal
form, we can only estimate VI16.00013.

Notice, of course, that our analytic process can still

1/4

be used in such a case. For example, letting y = x we see

3
dy _ 1 -
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3
gy_) 1 7 _ 1
. = 2(16) =
€% (dx x=16  ° o
Thus:
Y
1 ® La -l
S 1 32
Q,C-l"‘"’”" 5 = P15 00013
- 32 T 32
P “Tr
5 1 S & .000004
S, QT % 2.000004
T -.. ﬁ.—T % 2.000004
16 16.00013
.. v16.00013 4 2.000004

It is not our aim to focus attention on finding approxi-
mations. Basically, our aim was to help set the scene for
some more incisive observations that will be made in the next

section.

For now, let us sum up our results in as general a way
as we can. We assume that we have a curve C which is smooth
in a neighborhood of Pl(xl,yl) and we let Q denote another
point on C which exists in this neighborhood. We let R denote

the point at which the tangent line to C at P, (the existence

1
of the tangent line is implied by the meaning of "“smooth")

meets the line TQ (see Figure 4):
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(Figure 4)

Then TR and TQ are nearly equal in length.

Stated more mathematically, we may let Ay denote the
length of SQ and &Ytan denote the length of SR. We are then
saying that if Ax is small, the lengths of Ay and Aytan are
approximately equal.

It should also be noted that we can make the same
observations without reference to a graph and talk strictly
in terms of functions. Namely, suppose f is defined in some
and that f'(le exists. Then if x., + AX

1 1
denotes a number in N we may approximate f(xl+ax)-f(xl) by

neighborhood N of x

f'(xl)Ax, and the approximation improves as Ax -» 0.

What we want to do next is to show just how rapidly
kal)ax improves as an approximation for f(x1+ax)—f(xl).

B. Infinitesimals

As we have previously mentioned, the study of calculus
is a refinement of the study of 0/0. That is, we are often
interested in quotients of the form m/n where m and n both
approach zero as a limit. A variable which approaches zero

as a limit is called an infinitesimal. Thus, the study of

differential calculus involves the quotient of two infinitesimals.
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Moreover, since the quotient of two small numbers is rather
unpredictable, we must often require that the numerator be

a higher order infinitesimal than the denominator. That is,

if the numerator grows too rapidly compared with the growth
of the denominator the limit of the guotient may increase

without bound.

Our claim is that this problem was already present in
our discussion of the last section but it was not obvious
from the pictorial point of view. What we intend to do now
is revisit the material of the last section but from a more
quantitative point of view. First of all let us study the
difference between %%—and (g§9x=x

this difference (most books use e [epsilon] to denote the

by letting, say, k, denote

difference but our feeling is that such a symbol might
inadvertently make us think of the same epsilon that we used
in our discussion of limits. The point is that these two

epsilons represent different concepts).

At any rate, we have:

A fol _
E% - (5§J = k (1)

X=Xl

As a word of caution, observe that k is a variable and
its value usually will depend on the value of Ax. To see
i : i dy Ay
is fixed so is (dx T but T
and Q, and the

why, observe that once xl

is the slope of the line which joins P,y

location of Q certainly depends on AX.
We may now go one step further and establish the fact
that k is actually an infinitesimal. For if we take the limit

in (1) as we let Ax approach zero, we find that:

lim (g -2 ) _ lim k (2)
1

Ax~+0 AX dx’ x=x Ax+>0
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If we now use the fact that the limit of a sum [differencel]
is the sum [difference] of the limits (and as an important
aside, observe here that we are more interested in this
property of a limit than we are in finding an appropriate
delta for a given epsilon; in other words, we often use
epsilon-delta techniques to prove various theorems concerning
limits but once the theorems are established we usually use
them directly without reference to how they were derived),

we see that (2) becomes:

lim Ay _ 1lim dy
Ax+0 Ax Ax-+0

_ lim k
T Ax>0 (3)

Now since (%§Jx=x is a constant with respect to Ax, it

follows that the Tlimit of (SY) is precisely (%) ;
dx’ y=x dx X=X,
Also by definition of derivative,

lim Ay dy
( = (%)
Ax+0 “Ax__ ax’ __
X=X xaxl
Putting this into (3) we obtain:
11
2y, - (L, = limk
dx X= dx X=X 4x+0
| 1
L Aiig k o 0 and so k is an infinitesimal, as claimed.

With this information we can return to (1) and conclude:

lim k

Ax->0 =0 (4)

Ay = (gx) AX + kAX,where
X=X
1
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dy - .
If we now recall that (E§Jx=x Ax ﬂytan, (4) becomes:
1

limk _ (5)

Ay = &ytan + kAx, where )

At first glance (5) doesn't seem to do more than confirm
what we already sensed more intuitively in the previous
section - that AY ¢ an is a good approximation for Ay, if AX
is sufficiently small. However, (5) tells us much more
than that. If we read it correctly, it tells us that the
error in the approximation (kAx) goes to zero "faster" than
AX goes to zero. That is, for small values of Ax, both Ax

and k are small; hence, kAX is even smaller.

It is the fact that &ijg k = 0 that is essential to the
study of calculus. That is, even if lig k# 0, we would
: -
have that llm(k&x) = 0 as long as lfﬁck was finite. 1In

other words, regardless of whether ﬁ was an infinitesimal,

it would be true that Ay and AY ., Were nearly equal for
small values of Ax.

The key point lies in the idea that it is not enough
in most applications of the limit process to know that kAx
approaches zero, for in most cases we will be dividing k&x
by another infinitesimal and we must be sure that the quotient,

not just the numerator, is also an infinitesimal.

We shall begin to illustrate this idea more in the next
section. For now we conclude this section with two remarks:

(1) The notion of (gij Ax corresponds to the pre-calculus

X=X
1
notion of distance equals rate times time. Such a notion
utilizes constant speed and clearly (%%J is constant. In
X=X
1
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this context kAx is the "correction" factor to adjust for the
fact that speed was not constant.

(2) The Geometric significance of 1lim k = 0 is that Ay
Ax~+0
and ﬂytan seem to coincide long before Ax "looks like" zero.

That is:
f'.

Notice that the size of Ax

is quite noticeable, but QR,
which denotes &y—aytan, seems

9 like almost one "thick" point.
(Again, QR is not k rather
k = QR/AXx.)

x

\(

C. The Chain Rule

In this section we shall apply the idea of differentials
to arrive at the very important chain rule. On a non-calculus
level the chain rule is particularly easy to explain. Namely
if a first variable (y) can be expressed in terms of a second
(x), and the second can be expressed in terms of a third (t),
then the first can be expressed in terms of the third. Cer-
tainly there is nothing strange about this result as it
involves no more than an application of the idea of
substitution.

The chain rule takes on more meaning in terms of calcu-
lus. In this case, we add the condition that the first wvari-

able (y) is a differentiable function of the second (x), which

means that g%-exists. In a similar way, we also assume that
the second is a differentiable function of the third (t) -

that is, we also assume that %% exists. Under these condi-

tions it not only follows that y is a function of t (since
that much we saw was true regardless of differentiability) but

that y is a differentiable function of t. Of even more import-

is very strongly related to %ﬁ-and g% . Namely:
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dy _ d dax
T-3D G@ (1)

Equation (1) may seem "self-evident" since we merely seemed
to cancel a common factor from numerator and denominator.
It is important to understand, however, that at least for now

(%%) is not a gquotient of two numbers but merely one symbol.

That is, g%-is defined as a number obtained by taking a limit.

OF w  Tin [i—f{] {and, recall, this is not 070)
Ax-+0

Of course, had (1) turned out not to be true, it is quite
likely that we would not have invented the notation g% (we
would have stuck with f£') since this would tend to make us
misinterpret the symbol with properties possessed by common
fractions (such as cancellation).

How, then, do we establish the proof of (1)? To make

the result seem correct observe that QX = 1lim ézu Moreover,
dt AE~+0 At

we can write:

Ay _ (Ay) (Ax
L= (3D (5P (2)

In (2) Ax, Ay, and At are numbers which can be cancelled.

Thus, it appears that:

: AY: o . AY Ax . 4y _ dy, dx
() tin ¥ - Lim [SD]  [45)] or: & (G

While this makes (1) seem plausible, we should observe

that our derivation was not quite "legal." For one thing, it
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is possible that for a given At, Ax might be zero. If this
happens then the factor %% is undefined since we are never

allowed to divide by zero.*

While our intuition might support the truth of (1), we
have experienced enough trouble in trying to use our intuition
for such expressions as 0/0 that probably we should require a
more rigorous form of argument before accepting the truth of
(1). Before doing this, however, perhaps a few remarks con-
cerning notation are in order. When we talk about £'(x) we
are talking about a function of x. That is, we may think of
the f'-machine and see that for different x's there can be
different outputs. Thus to determine f'(x) as a specific
number, we must think of a specific value for x. This is why

we often write f'(xl) which is an abbreviation for [f'(x)] .
X=X;

At any rate, when we talk about y being a function of x, we
think of a specific value of y for a specific value of x. 1In

this vein, notice in the last section we wrote things like:

= (G
Yy = (dx) x=xlﬁx + kAx

to indicate that we were referring to the tangent to the

curve at a specific point.

Perhaps the following geometric interpretation will help
illustrate our point. Suppose we have two graphs, one of
which plots y versus x and the other of which plots x versus t.

*Recall that in our previous discussion we talked about 0/0.
In the event that we have b/0 where b # 0, we find that there
can be no answer. For example, 3/0 would mean the number which
when multiplied by 0 equaled 3. There is no such number since
any number times 0 is 0. Thus 0/0 is indeterminate while 3/0
is undefined. 1In either event we exclude division by 0. In
terms of dividing by "small" numbers, we may think of 3/0 as
meaning the limit of 3/x as x approaches 0. In this event
3/x increases without bound. Perhaps it is for this reason
that one often finds the notation 3/0 = «.
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We can then match a value of t with a value of y as follows:
Given t = t, we look at the graph of x versus t to find the
corresponding value of x which we label X . We then go to
the graph of y versus x and find the value of y which corre-
sponds to X, . We call this Yq- (By the way, notice how we
make use of the concept of single-valuedness. We tacitly

assume that a value of t yields a unique value of y, etc.)

We next plot y as a function of t by locating the point (tl,yl)
in the y-t plane. Thus:
" The slope of this i lope
e slop
t ¥ line is (&5 of this
t 3 3
t=t, line is
Ly Frmurr = (QK)
1 dx
| e X=X
|
|
|
|
ty
(a) (b)
(xl is the same in (a) and (b))
y ~
h
| ; (1) claims that (g—g{i) i
from (b) | X=X
\1 PB: (25) ives the !
¥ I e I(tl,yl) is on curve of dt’ ¢ give
- | y versus t. < 1
| slope of the graph of y
| - Gy
' e versus t at P, ( (dt)t=t )
1

s L
same tl as in (a)
(c)
dy dy
Thus when we talk about, say, 3x We mean (EE . At

X=X
1
any rate, then, we may think of the problem described in

the chain rule as follows.
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We know that (%%J exists as does (%%) We wish
x=xl t=tl
to prove that:
(Qi) exists and equals (gzo (QE)
dat’ , _ dx’ _ _ dt’ .

To this end we invoke the result of the last section to

obtain:

lim k = 0 (3)

= (S
Ay = (dx) Ax + k&x, Mocee:

x=xl

From (3), we obtain, if At # 0,

lim k = 0 (4)

lim %% and using our limit
At>0
theorems, we see from (4) that:

Recalling that %% means

dy _ . : dy AxX Ax
ai = J1im = lim [(5%) = k1t
t At>0 At At~+0 [dx X=X, o £

= 1lim (%}%) i—f + 1lim [k%%]
At+0 X=Xy At~>0
=/| 1im (‘d%) i i—’t‘ +0 1im k| | 1im g—‘tf_
A£>0 x=x, | |5t>0 At>0 At+0
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Since (%%J is a fixed number, it remains unchanged

X=X
1
when we let At+0. Also the definition of x being

a differ-

entiable function of t means that 1lim Ax = 95. Thus (5)
ae»g B At
becomes:
dy - (&, O & [ Lim jof 9%
dt dx x=x, dt I:ﬂt-*o ] dt
or:
dy dy. dx i dx
() = (%) (= + lim k| (39
dt t=t, dx X%y dt t=t, [;t+0 ] dt t=t,

If we concentrate on 1l1lim k we see that it is zero.

At+0
since x is a differentiable function of t, Ax»0 as At-=0.
Therefore 1lim k = 1lim k* and this, by (3) is 0.
At+0 Ax~+0

*For a more rigorous derivation of this result we must

show that given £>0 there exists §>0 such that

0 < |At] < &6 » |k|] < €. Since we are given that 1limk = 0

Ax~+0
we know that for the given £ we can find 61 > 0 such that:
0 < |ax| < &, » |k|] < e ()
; : Ax i y Ax 1
But 1lim Ax = 0 (since Ax = EEﬁt, hence 1lim Ax = 1lim TE lim At
At-+0 At=0 At+0 At-+0
; dx : ;
lim Ax = =— 0 = 0) [Notice here that we used
A£+0 dt dx Ax
d—-t- = lim E. If x were
At~>0

not a differentiable function

B

of £, 1lim X3

At+0
.. Given 61 > 0, we can find § > 0 such that

0 < |At] < 8 » |ax]| < §,  (ii)

Combining (i) and (ii), we have:

0 < |at] < & » |k| < €

which establishes the desired result: 1lim k = 0.
At~0

For

(6)

might not exist.
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Hence (6) becomes
= some number
dy dx dx
(5%) (z2) + 0 ()
dx’  _ dt’ __ dE" .
x—xl t-tl t-—tl

(D
t=tl

But since any number times 0 is 0, we have:

& =& (&)
t=t, X=X Ty

which confirms our intuitive belief in (1).

; ; . A
The crucial point to observe is that k == approached zero

At
not because Ax became small (i.e. don't replace Ax by 0 and

say the result is 0, for when Ax = 0 so is At and we arrive

at 0/0 and in fact 1lim ax Qi) but because k becomes small
At dt
At-+0
as well. In other words if 1lim k # 0 then k ax need not

approach zero as At approaches zero.
This is precisely why it was crucial that k4x be a

higher-order infinitesimal.

We conclude this section on the chain rule with the
observation that the chain rule is directly connected with
the composition of functions. That is, when we talked about

y = f(x) and x = g(t), we were really saying that y = f£(g(t)).

In other words, if we let h = feg then y = h(t) and what the
chain rule says is that we may compute h'(to) by taking the
product of f'(xo) and g'(to) where £, ™ g(to).

The point is that in many applications of the chain
rule, we are not given the composition of two functions
explicitly. For example, consider the problem of finding

g% if we are given that y = &3 + 1)2. The chain rule comes
into play here if we make the substitution x = t3 + 1. We

then obtain that y = x2 and x = t3 + 1, whereupon the chain

rule seems to present itself. More explicitly in terms of

composition of functions, we may define £ by f(u) = u2 and

t

3 &= 0

¢
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g by g(v) = v3 + 1. Then y = (t3 + 1)2 can be written as
y = f(g(t)). In any event the chain rule now tells us that

- @ (& = 2o (3t?) = ext’s (7)

As a check notice that we could, in this case, solve
for y explicitly as a function of t, and obtain:

3 .12 =¢%4+2e3 41

y = (t

whereupon:

- Gk & Epe (8)

242

The equivalence of (7) and (8) follows from the fact that:

6t5 + 6t2 + 6t2(t3 + 1) and x = t3 + 1,

therefore

67 + 667 = 6% = Gxe”.

What was important to note was that when we want to
differentiate (t3 + l)2 with respect to t we must do more
than bring down the exponent and replace it by one less.

That is, the recipe that d(uz) = 2u implies that we are
du
differentiating with respect to the SAME variable that is

*In this case we explicitly can express x in terms of

t. That is, x = t3 + 1. Hence we could have written

2 . :
g%-= S(t2 + 1)t”. However in some cases X is at best an

implicit function of t in which case our explicit expression

for g% will contain both x's and t's.
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being raised to the power. Using brackets to represent

2
i ; d
the variable, we are saying that 5%%_+Tl =2[]. 1In

particular, replacing the brackets by t3 + 1, we see that:

ae® + 12

. = 2(¢° # 1)
d(t” + 1)

What the chain rule tells us is that:

aed + 1% _ [awd + 12 [dct3 - 1)] s
ak ae” + 1) o

263 + 1] [3¢] = 6e2e® + 1)

D. A Note About Inverse Functions

In the statement of the chain rule, when we say that if
y is a differentiable function of x and x is a differentiable
function of t then y is a differentiable function of t and
g—{ = (%) (gi;-) . nothing excludes the possibility that t might
equal y. In this event, the chain rule says that if y is a
differentiable function of x and if x is also a differentiable
i dy . () (9= - Y o i
function of y then dy (dx) (dy)' Since 3y 1, it follows
that g% and g% are reciprocals of one another - just as the

fractional notation seems to indicate.

To be sure, it is not always true that if y is a function
of x then x is a function of y. One major reason for this
problem is our insistence that functions be single-valued.

For example, if we let y = £(x) = x2 then y is certainly a

differentiable function of x. In fact, %% = 2x. On the

other hand, if we "“invert" the roles of x and y, we obtain
X = t/?. In other words, if we define f by f(x) = x2 and
+he domain of f is the set of all real numbers, then f is

single-valued but it is not 1-1 since both x and =-x have

3
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the same image with respect to £. 1In this case it is not
difficult to see that we can "partition" f into the union of
1 and fz, which
"look like" f except that the domains are different. Namely,

two other single-valued functions, say £

we define fl by fl(x) = x2 where dom fl is the set of non-
negative real numbers; and we define f2 by fz(x) = x2 where

the domain of f2 is the set of negative numbers.

In terms of a picture:

N J*
=g, (x)
y=£, (x) y=t, (x) e
> X -
y=g, (x)

In other words, 9, is the inverse of fl and 9, is the

inverse of fz, where 91 and g, are defined by:

g,y) = V¥ and g,({y) = =%

and the domain of both 91 and g5 is the set of non-negative
real numbers.

Of course, in this particular problem we were a bit
fortunate in that we could solve explicitly for X in terms
of y. There are many times when we cannot do this, or if
we can it is not very convenient. For example, if we were
given that y = x7 + 9x3 + 6x + 1 it would take a great deal
of arithmetic if we desired to specify the inverse relation

explicitly,
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At any rate, let us suppose we have avoided this problem
by having y = £(x) where £ is 1-1 in its domain of definition.
The next problem is that we have not yet shown that if f is
differentiable so also is f_l. From an intuitive point of
view, this is not too difficult a result to accept. If we
recall that the graphs of y = £(x) and y = f_l(x) are symmetric
with respect to the line y = x then it is easy to surmise that
if one curve is smooth so is its reflected image. In terms of
this idea, it is probably easy to see also why ay and ax are

dx dy
reciprocals. That is:

4—Curves are mirror images with respect
to y = x. Hence dy and dx are obtained

d
merely by reVersigé the r%les of x
and y.

7

There are two problems with using the picture. In the
first place, we would like to feel that analytic concepts can
be proved analytically. Thus, while a picture may be reassuring
or even helpful in getting us to visualize what is happening,
we do not wish to feel beholden to the picture. Of even more
importance, especially when we deal later with functions of
several variables, it will be impossible to draw pictures
and we will have only the analysis upon which to rely - so we

might just as well get used to it now!

To show what we mean by our last remarks, let us assume
that y = £(x) where dom £ = [a,b] and £ is both differentiable
and 1-1 in this interval. Our picture then indicates:

L

3
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2 y=£(x)
f(a)
£ (b)
—r | ' -
b a b =
> 0 (b) £'(x) € 0
Yy
A
y=£f (x)
. If £'(x) changes
Y, — : . sign then f is not
| [ 1-1. For example,
A ¥ —
| ;1 # X, but f(xl)
| - x (xz) .
xl Xz

(c)

For the sake of our demonstration we shall assume that
the case f'(x) » 0 prevails. (The first thing we would have
to do is to show that we can substantiate analytically the
result that if £ is differentiable in the interval [a,b] and
gt exists, then f'(x) is never equal to zero in this inter-
val. This is done in virtually every calculus textbook and
the analytic proof is particularly easy to follow if we keep

the picture in mind.)
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We would then turn to the definition of a derivative and

if g denotes f-l, we would write for any Yy in [f(a),£f(b)]

i E(y ) = g(y,)
g'(yl) _ lim 2 1 (1)

Y2+YlL yZ = Yl

Since f and g are inverse functions, we have that for a given
y in [f(a),f(b)] there exist one and only one x in [a,b]

for which £(x) = y. Thus, there exist unique numbers X and
X, in [a,b] for which f(xl) =¥, and f(xz) =Y,
Putting this into (1) we obtain:
g'(y,) = Llim = By (2)
1 Y2y, [ E(x,) - £(x])

and since Xy > Xg if and only if Yo > ¥Yqys (2) can be written

as:

%y = Ry

lim
Flxy) - E(xy) k)

9"y Ty ix

1

and since we know that f'(xl) exists, (3) together with the
definition of £' tells us that:

1

g'(y;) = Frx (4)

1)

Notice that (4) says in functional notation the same
thing as our conjecture that dy/dx and dx/dy are reciprocals.

The only problem with using the chain rule by itself was
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that all the chain rule told us was that if y was a diff-
erentiable function of x and x was a differentiable function
of y then dy/dx and dx/dy were reciprocals. It did not tell
us how we could tell that the inverse function existed
nor did it tell us that even if f and £71 existed the

differentiability of f implied the differentiability of f-l.

To put all our theory into action, let us find dy/dx if

we are given that x = y5 - y3. What we know from "way back"

is that dx/dy = 5y4 - 3y2. What we must now assume is that
there exists a 1l-1 function say y = f£(x) on a suitable domain
whose inverse is given by f'l(y) = y° - y°. (The conditions
which guarantee the existence of such a function require some
knowledge of calculus of several variables and that is why the
concept of implicit differentiation must be taken on faith
until later in the course. That is, a major problem is in
showing the existence of single valued branches of multi-
valued functions.) In any event once we assume that the
desired f exists, we may invoke the result that dy/dx and
dx/dy are reciprocals and that, therefore, dy/dx is equal to

l/(5y4 - 3y21. In the language of functions, we are saying

" that if x = g(y) = y5 = y3 then there exists a domain [a,b]

on which y = £(x) and £ is 1-1. Moreover in this case the
inverse of £, f-l, is a suitable single-valued branch of g,
say 9, where gl(y) = y5 B y3 and dom g, = [£E(a), £(b)] (or
[E(b), £(a)] if f£'(x) is always negative since then the graph

is always falling). Then for any x. in [a,b], f'(xl) exists

1
andzs

: = 1 . 4 _ 2
£'(x;) STy YD) 1/(5y 3y7)

where Yy, = f(xl) or equivalently, X, = g(yl).
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E. Differentials

As we mentioned earlier, such notations as dy could

dx
have been most unfortunate had results like
dy _ ,dy dt X : ;
i (HE) (dx) not been true. That is, unless the derivative

had properties similar to those of fractions we would have
stuck with such notation of f'(x) rather than to introduce

a misleading notation.

The fact that derivatives have such nice "fraction-like"
properties tempts us to try to define dy and dx as separate
entities in such a way that when we divide dy by dx we obtain
the same result as if we had found the derivative of y with
respect to x. More symbolically, we would like the express-
ions dy, dx and (%%J to be related by:

= (4
dy = (dx)dx (1)
Recall that we have already defined ﬁytan by:

Ay, = (§Dax (2)
If we now compare (1) and (2) it becomes clear that one way
of accomplishing our goal is to let dy mean aytan and dx
merely mean Ax. Then (1) and (2) are synonymous. Among
other things this would mean that we could interpret g%
either as a derivative or as a quotient and get the same
answer in either case. This, in turn, means that in any
situation in which g%-is involved we can treat it as a deri-
vative or as a quotient depending on which interpretation

better serves our needs.

From the point of view of approximations, dy is nothing
more than another name for &ytan' Consequently, other than

for a new notation, we gain nothing by replacing ﬁytan by dy.

i A Ea ¢
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From an analytical point of view, however, the fractional
notation is very important in that it is more suggestive
than the usual functional notation. For example, in terms
of an illustration from the last section, it seems easier to
interpret that dy/dx and dx/dy are reciprocals than it is to

see that if g = £ T then g'(y;) = 1/(£'(x)) where y, = £(x,).

Without worrying about the semantic difference between
dy and ﬂytan’ let us note that the key computational device
is that the error in replacing Ay by dy is a higher order
infinitesimal and as a result in any limit problem we get
the same answer using dy and dx as we would had we used the

derivative (g%d.

With respect to this course, our main exploitation of
this notation is that we will often elect to write such
expressions as g% = x2 in the form dy = xzdx. Notice that
this transformation may be viewed either as an algebraic

cross-multiplication or as an application of &Ytan = (%%) Ax.

However, we shall say more about this later in the
course., For now we will leave things as they stand with

additional reinforcement coming from the exercises.
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Chapter VII
THE TRIGONOMETRIC FUNCTIONS

A. Introduction

Judging from the usual way in which fractions are
taught there is ample reason to wonder whether fractions
would have been invented had not pies been invented! On
a much more subtle level it seems that the traditional
teaching of trigonometry leads one to believe that trigo-
nometry would not have been invented had not triangles
been invented. Yet the fact is that the concept of the
trigonometric functions is far more important than its

role in numerical geometry.

In this chapter it shall be our purpose to liberate
the full flavor of trigonometry and, at the same time,

to present a brief revisit with classical trigonometry.

Let us recall that, historically, the subject called
trigonometry was an outgrowth of geometry. In fact, the
very name "geometry" suggests the course which was tradi-
tionally called trigonometry. That is, "geo" is derived
from the Greek word for "earth" and "metry" is a deriva-
tive of "measure." Thus, geometry was the science of
measuring the earth. It seems, to put it in other words,
that what geometry did qualitatively, trigonometry did
quantitively. For example, in plane geometry one demon-
strates that a triangle is completely determined up to its
position in space once we know the measure of two sides
and the included angle (this is precisely what is meant
when one says that two triangles are congruent if two
sides and the included angle of one are respectively equal
to sides and the included angle of the other). On the
other hand, in trigonometry, by such devices as the Law of
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Cosines, one determines the measurements of the remaining

parts of a triangle once the measurements of two sides and
the included angle are known. It is in this sense that we

mean that classical trigonometry is numerical geometry.

We may also assume that the traditional study of the
trigonometric functions was based on the knowledge of
properties of right triangles. Among other things, trigo-
nometry was interested in showing how one could reduce the
study of angles to a study of lengths. Specifically, given
any acute angle, we could "imbed" it in a right triangle by
dropping a perpendicular from one side of the angle to the

other side. Thus:

o
ob--—-—- -

(Figure 1)
Of course, the above construction is subjective since
two different observers might choose different points from

which to drop the perpendicular. Again, pictorially:

P,Q,# P,0,, AQ; # AQ,

put_"19 _ 2%  etc.

%, 1,

Q Q,

(Figure 2)

From their knowledge of plane geometry, however, the
ancient Greeks knew that while the lengths of the sides of the
right triangle depended on the choice of the point P (see
Figure 2), the ratio between the lengths of any pair of sides
did not. This, of course, was a consequence of similar
triangles. In any event, then, by studying the ratios between
the lengths of each pair of sides in the "imbedding" triangle,

the study of trigonometry was born.
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We should also point out that from an informal point of
view, it is fair to say that trigonometry was born much ear-
lier. It was born as soon as man realized that he could, by
the principles of similar triangles, draw things to scale.
In other words, given two sides and the included angle, he
did not have to wait for the Law of Cosines to be invented
in order to measure the remaining parts. All he had to do
was use a ruler and protractor to draw the triangle to scale

and then directly measure the other parts.

Be this as it may, it is correct to say that initially
the trigonometric functions were functions whose domain was
the set of acute angles and whose range consisted of real
numbers. More specifically, given an acute angle, A, the
angle was imbedded in a right triangle (and this is why it
was crucial for the angle to be acute, otherwise it couldn't
be imbedded in a right triangle), say, ACB; whereupon sin A,
cos A, tan A, cot A, sec A, and csc A were defined by:

B
sin A = e csc A = .,
c a
b c
= — c =
cos A = a Sec A e Tl
tan A = 5~ cotA=-g—
b G

(Figure 3)

To be sure, our knowledge of arithmetic and geometry
showed us that our definitions were well-defined (that is,
the definition of the trigonometric function of the angle
depended only on the angle and not on the triangle in which
it was imbedded) and that there were certain relations that
existed between the various functions. For example, the
Pythagorean theorem led to such results as:

sinzA + coszA = 1

SECZA - tanzA

csczA - cotzA

I

: X

I
=
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These results do not have to be memorized. Each is an

2 2 2

almost immediate consequence of the fact that a“ + b® = c“.

The three relations given above can be obtained from this

2 2 2

equation by dividing both sides of it by ¢“, b“, or a

respectively. Thus:

2 2
a2+b2=c2 + (1) (3) +(%) =1 or sin2+coszA=l
g from the
a, 2 c,2 2 2 .
or (2) (E) +l=(BJ or tan“A+l=sec”A definitions
c 2 in figure (3)

b, 2 2 2
or (3) l+(3) =(E) or l+cot"A=csc’A

A b | 8

A second type of relation came about from the observa-
tion that in the right triangle'ACB, the side that was oppo-
site A (that is, a) was adjacent to B and vice versa, while
the hypotenuse was independent of which acute angle we
studied. Thus if we think of the sine of an angle as being
the ratio of the length of the side opposite and the hypo-
tenuse (rather than relying too heavily on the labels a, b, c)
and of the cosine as being the ratio of the side adjacent

and the hypotenuse, we see that:

sin A = cos(90° - A), sec A = csc(90° - A), tan A = cot(90° - A).

More specifically,

length of side opposite A_length of side adjacent to B
length of hypotenuse length of hypotenuse

sin A=
=cos B=cos (90°-A), since A+B=90°

In other words, if f denotes any trigonometric function,
£f(aA) = co-f (90° = BA).

[ - |
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Rather than belabor this part of review in more detail,
let us also note that other nice relations come directly
from the role of fractions. For example, referring to the
definitions given in Figure (3), we have sin A = a/c while
cos A = b/c. Hence sin A ¥ cos A = a/c & b/c = a/b and this
is precisely the definition of tan A. Thus, we have shown:

sin A _
oS B tan A
In a similar way we can show that sec A = SEE R G8c A =
1 L
3in & and cot A = T

Even the concept of limit was, at least subconsciously,
introduced into this study when one wished to talk about
such things as sin 0° or cos 0° or sin 90°, etc. That is,
neither 0° nor 90° can be viewed as acute angles in a right
triangle, yet we may think of studying what happens to sin A

as A is allowed to take on values arbitrarily close to 0°

(or 90°) but never equal 0° (or 90°) = since then the angle
A could not be imbedded in a right triangle. Thus, in terms
of the language of our present course, one defined sin 0° =
lim sin A, cos 90° = lim cos A, etc.
A+0°*t A+90°~

In this way, one obtained the additional results:
sin 0° = cos 90° = 0 (notice here that it is the number 0
not the angle 0°) while cos 0° = sin 90° = 1 (again this

is the number 1 not the angle 1°). Pictorially:
as A»0, a+0 and c=b and B+90° so sin B=%+§=l
. E+%=0 ' sin 90°=lim sin B=1
¢ B+90
w+sin A0 aBa,
wsin 0°=lim sin A=0
a0t c
. -
b C
(Figure 4)
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Once these results were obtained, it was then easy in
terms of the existing relations to define the remaining
trigonometric functions evaluated at 0. Namely:

tan 0°=§;28:= ?_ = 0 = cot 90°
cot O = g_grsl g:’= é - © = tan 90° (Here f; means
lim —
X-+0
_ ! ) (R
sec 0" = cos O =1 = csc oP \Technically, then,
1 1 cot (® and tan 90°
csc @ = sino® o0 _ ° T sec °P \are not defined.

These extended definitions agreed with our other "recipes"

such as: sinzA + coszA = 1, since:

sin20°+ cos?0°= (0)2 + ()2 = 1.

Still later, the results of trigonometry were extended
to include all angles, not just acute angles. This idea
utilized coordinate geometry. In terms of a brief review,
recall that we place the angle with its vertex at the origin
and its so-called initial side in the direction of the posi-
tive x-axis. We then see along what line the angle terminates,
measuring counterclockwise if the angle is positive and
clockwise if the angle is negative. We pick any point (x, y)
on the terminal side of the angle and define the trigono-
metric functions of A by: sin A = y/r, cos A = x/r, tan A = y./X,
etc., where r is the (positive) distance from tne origin to
the point. In this way we observe that our new definitions
agree with the old in the case that A is a first-quadrant

angle. In the other quadrants, the signs of x and y come into

play.
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In this Figure A terminates in
the second quadrant. Hence:
sin A = s e +
r +
X _ X _ = _ _
cos A = Fals 5 e
+
tanA:—X-—:—.—:—
x —
etc.
(Figure 5)

In other words, given any angle we can study the acute
angle that its terminal side makes with the x-axis and then
apply the acute-angle-trigonometry, subject only to the

adjustments for the signs of x and y.

The important point is that in this way we can bring
into play all the things we know about ccordinate (analytic)
geometry to extend our knowledge of trigonometry. These
things are standard parts of textbooks and consequently we
leave a further discussion of this idea to these textbooks

for the interested reader to pursue on his own.

At this stage in our review, it might seem to make more
sense if we found practical reasons for introducing further
trigonometric relations. However, in order that we better
pave the way for what follows, we prefer to leave this part
of the discussion to Section C of this chapter,; and for now
to mention what aspects of trigonometry will be most impor-
tant to our later needs. Moreover, whenever proofs are
supplied we shall be traditional and use plane rather than
analytic geometry. That is, we shall prove all our results
in the special case that we are dealing with acute angles
and leave the analytic geometry type of generalization to

other angles as an exercise for those who wish to pursue it.
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As a "starter," let us prove the Law of Cosines, if
for no other reason than the fact that we have already
talked about it.

The Law of Cosines states that if two sides (b and c)
and the included angle (A) are known, then the length of
the third side (a) is given by:

a2 = b2 + c2 - 2bc(cosA)

where we are restricting A to being an acute angle.

Pictorially: A

(Figure 6)

The approach is to find a way of utilizing right triangles,
since we do have some specific knowledge about properties

of right triangles. With this in mina, we "decompose" AABC
into two right triangles either by drawing the altitude from
B or from C (see Figure 7, where we elected to drop the per-
pendicular from C). We do not want to drop the perpendicular
from A since A is the only "known" angle in this problem

and we do not wish to "destroy" this information. In any
event:

& In I, since cos A = EE—, we have
AD = b cos A

s Since AB

—_—

c and BD = AB - AD,

c = b cos A

]

we have BD
c - b cos A

(Figure 7)
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Referring still to Figure 7, we may apply the Pythagorean
Theorem to triangles I and II to obtain:

Bc? = AC? - AD? (from I), and

BC% = BC? - BD? (from II)
Hence:

AC? - D2 = BC? - BD?

This, in turn, leads to:

2 2 _

(bcos A)2 = a (c - bcos A)Z, or:

b2 - bzcoszA = a2 - 02 + (2bc)cosA - bzcoszA, or:

a2 2 2 _ 2bc (cosA) (1)

o
I

= b~ + c

It is equation (1) that is known as the Law of Cosines,
or in some quarters, as the Extended Pythagorean Theorem -
this name coming from the fact that if A = 909 cos A = 0 and
Equation (1) then reduces to the usual Pythagorean Theorem.
As an interesting result concerning the idea of circular
reasoning, notice it would be wrong to say that we can prove
the Pythagorean Theorem from the Law of Cosines. For while
the Pythagorean Theorem follows from Equation (1), our proof

of Equation (1) required that we already knew the Pythagorean

Theorem. Nonetheless, the Pythagorean Theorem is still a
good check for Equation (1) (that is, if Equation (1) doesn't
reduce to the Pythagorean Theorem when A = 90° there is some-
thing wrong) . Moreover, if we could find a way of deriving
Equation (1) without having to use the Pythagorean Theorem

then we would not have circular reasoning.

Another fundamental "recipe" involves the sine of the
sum of two angles. Again we will limit our discussion to
the case in which A, B and A + B are acute angles. We show
that:

sin (A + B) = sin A cos B + cos A sin B (2)

Equation (2) might not seem very "natural" but it turns

out to be correct. While one might prefer to have had:
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sin(A + B) = sin A + sin B¥*

this recipe would be incorrect. Among other reasons, we
need only consider A = B = 90°to see that this would yield
the incorrect result that sin(90°+ 909 = sin 90°+ sin 90°
or sin 180°= 1 + 1 = 2, Not only is it false that sin 180°
equals 2, but for any angle, the sine is restricted
to values not in excess of 1 since the side opposite any
angle cannot exceed the length of the hypotenuse of the
right triangle.

In any event we have:

Q

sin(A + B) = sin§QPR =

3lls)

(Figure 8)

S0, somehow or other, we would like to be able to
form some right triangles that would have A and/or B as
acute angles and so that we could still utitize PQ as a

hypotenuse.

*It is indeed a very special type of function f for which

f(x +y) = £(x) + £(y). For if f has this property then
letting x and y both equal 0, we obtain £(0 + 0) = £(0) + £(0)
or £(0) = 2£(0), from which it follows that £(0) = 0. Next

observe that f£(1 + 1) = £(1) + £(1), or £(2) = 2£(1). Quite
in general for any whole number n, f(n) = f£(1+...+1]) = £(1) +
f(1) +.... + £(1). In other words, we can show by induction

that f(n) = nf(l). That is, it appears that the graph of £
would be the straight line which passes through the origin
and has its slope equal to £(1). We shall have more to say
about this much later in the course under the heading of
linear functions. With respect to our present topic all
we are saying is that if we define f by f(x) = sin x, this
f does not have the property of being a linear function.

the circled points all
belong to the graph
y = £(x).

If f(a + b) = f£(a) + £(b)
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One way of doing this is to drop a perpendicular from

Q to the extension of PS, meeting this extension at T.

Then at T we would drop a perpendicular to QR, meeting QR
at V. Thus:

cos B
PT sin B
sin A
cos A
(Figure 9)
sin(A + B) = ?f_ =QV__+_RV=Q_“'TU
PQ PQ Q
QT cos B + PT sin B
PQ
= (=) cos B + (—==—) sin B
PQ PQ

I

sin A cos B + cos A sin B

In similar ways, one can also derive the results:

cos(A + B) = cos A cos B - sin A sin B (3)
sin(A - B) = sin A cos B - sin B cos A (4)
cos(A - B) = cos A cos B + sin A sin B (5)
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(These equations can also be derived from (2)
together with some of our previous results. For

example, another way to derive (5) is:

cos (A - B) sin(90° - [A - B])

= sin([90° - A] + B), and by (2)
= s5in(90° - A) cos B + sin B cos(90° - A)
= cos A cos B + sin B sin A

= cos A cos B + sin A sin B

Equations (2) and (3) can be used to obtain some
important results known as the double angle formulas.
Namely we need only let A = B in both (2) and (3) to
obtain:

sin(A + A) = sin A cos A + cos A sin A, or
sin2A = 2 sin A cos A (6)
cos(A + A) = cos A cos A - sin A sin A, or

cos 2 A = cos?A - sin?a (7)

2A + coszA = 1, we have that coszA =

Recalling also that sin
1 - sin®A and sin2a = 1 - cos?A., We can combine-these
results with Equation (7) to obtain the equally important

half-angle formulas:

cos 2 A= (1 - sinzAJ - sinzA, or
(8)
sinzA = 1 — cos 2 A
2
and
cos 2 A = coszA - (1 - coszA), or
(9)
coszA -1+ cos 2 A

2
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Notice also that by adding, for example, Equations
(3) and (5), we obtain:

cos(A + B) + cos(A - B) = 2cos A cos B, If we let
X=A+ B and Y = A - B, we obtain:

cos X + cos ¥ = 2cos(§—§~z)cos(x E YJ (10)

Recipes like (10) allow us to replace sums of functions
by products, and in many equations the factored form is
more advantageous (i.e., xy = 0 tells us more about the
explicit value of x or y than does x + y = 0). At any
rate, it is not our purpose to rederive completely a

course in traditional trigonometry.

The above remarks then complete our revisit to
traditional trigonometry. What we would like to do next
(and we shall in the next section) is to free the trigo-
nometric functions from their dependence on angles. More
specifically we shall try to define the trigonometric
functions in such a way that their domain will be the set
of real numbers. In this way we can think of the trigono-
metric functions as being in the category of functions of
a real variable, which is after all, the main theme of
this course.

At the same time, we must take care to make sure that
our new and more general definitions do not destroy the
results that we already know are true for angles. In other
words we do not want to wind up with two completely differ-
ent sets of functions, each of which is called THE trigono-
metric functions.

B. Trigonometry Without Triangles

As we shall see in a later section, it is very
important that we be able to define the trigonometric

functions without any reference to angles or triangles.
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While it is very nice to be able to motivate any new con-
struction in terms of a practical application, we are now
at a stage where it is easier to talk about the construc-
tion than it is to motivate why we desire such a construc-
tion. At any rate, since we are at liberty to invent any
well-defined function whenever we please, let us use this

as an initial motivation for our procedure.

The key to our construction will be the unit circle.
In terms of coordinate geometry, unless otherwise stated,

the unit circle refers to the circle centered at the origin

with radius equal to 1 unit. In other words, by the unit
2 2

circle we mean the circle whose equation is x“ + y° = 1.
Pictorially: y
8
1=
\ R >x l | :
(Figure 10)

Next, let t denote any real number, Then we may
view t as a length. We take the length, t, and mark it
off along the unit circle starting at S(1,0) (see Figure
10). We move counterclockwise if t is positive and
clockwise if t is negative. We label the point at which
the length t terminates P. (Note t # PS since t is marked
off along the circle.)

Let us pretend for the moment that the words sine
and cosine have never before been invented (of course we

know they have been invented and this will certainly

affect what we are about to do next). We look at the point

(.23 t

b

1

t

R N e 3§ {

£ 3



(

1

b

N m 0

I &N N ¢

{

F

y

VII-15

P(x,y) at which the length t terminated and we define sin t
to be equal to y and we define cos t to be equal to Xx.
Again in terms of a picture:

sin t =y = 0P cos t = x = 0Q

P(x,y) ,
R (We use the arrows to indicate

t

Y
v ing forces us to insure that P

\\\\\hj; X Q S lies in the first qﬁadrant. In

directed distance. That is, noth-

other guadrants x and/or y need

not be positive.)

(Figure 11)

The most important thing to notice now is that we
have managed to define sine and cosine as functions in such
a way that both the domain and image of each of these func-
tions consist of real numbers. Moreover, we have accom-
plished our definition in such a way that sine and cosine
obey the same relationships in this new context as they did

in the traditional context.

For example, it is easy to show that for any real

number, t, sinzt + coszt = 1. Indeed since sin t = y and
cos t = x, the fact that x2 + y2 = 1 guarantees the desired

result.

At this point, it might be good to back off for a
moment and to consider the danger involved in having the
same word mean two different things. For example, we now
have two definitions of sin t, one when t is an angle and
the other when t is a number. Therefore, whenever we see
an expression such as sin t, how can we tell which defini-
tion of sine is being used? (This occured once before in
our course with the introduction of differentials dy and
dx. Namely after we "invented" dy and dx as separate

entities, the expression %% took on two meanings - one as the

derivative and the other as the quotient of dy and dx. We then
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had to take care that our new definitions were compatible
with the old, at least in the sense that the value of %%
did not depend on which of the two possible interpretations

were employed.)

In any case, let us now return to our unit circle

and study, for example, sin t for some number t.

In Figure 11, we notice that sin t is precisely _?.
At the same time, since OP = 1, it is also clear in the
traditional sense that sin (¥XPOQ) = 6?- In other words,
if we were to invent a new unit by which to measure XPOQ,
it is possible that we can write sin t so that no matter
which of the two interpretations we use, sin t will have
the same value.

With this in mind we invent the notion of a radian.
To measure an angle in radians, we imbed it in the unit
circle and measure the length of the arc* it subtends. If
this length is t units, we define the measure of the angle
to be t radians. Therefore, as long as it is understood

that the unit for measuring angles is radians, there is no

*It 1s crucial that we recognize that the length t is marked
off along the circle. It is not the straight-line distance.
Certainly, we have the right to invent such a function if

we wish. For example, we could have formed a function, say,
C as follows: Given the number t use S as a center and
swing an arc of radius t and let P denote the point at which
this arc meets the unit circle. We can then define C(t) as
being the x-coordinate of P. Of course, it is important to
note that if we elect to use such a definition then the
domain of C would be the set {t:0 ¢ t ¢ 2} since if t exceeds
2 the arc drawn from S will not meet the circle. That is:

With S as center an arc of
length in excess of 2 will
“ 2 -a/ not meet the circle.

/

2
More importantly, however, keep in mind that we can invent

functions in any way that we choose, but that if we have a
specific aim in mind some well-defined functions will ful-
fill this aim better than other well-defined functions.

8
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ambiguity in talking about sin t whether we think of t as
being a number or as being an angle. Moreover, we are then
free to use whichever of the two interpretations we prefer
in a given situation depending on which better serves our
needs without fear that we can wind up with contradictory
results. (This, too, happened with differentials. Namely
we could write either (%%) or dy # dx depending on which

of the two representations was the more convenient in the
given problem.) However, if our unit of angular measure
were still degrees, then certainly there is a difference
between saying sin 1 and saying sin 1°. That is:

P&
\1
Q

sin 1 = PQ = sin 1 radian

Sh““ﬂuﬁhh

This "very short" length
denotes sin 1°.

At this point let us take exception to a remark made
in most textbooks. It is often said that radians are a
dimensionless unit for measuring angles. While, from a
practical point of view, this works out to be the case,
the true fact is that radians are as much a unit for mea-
suring angles as are degrees. The main idea is that if
the unit is radian then the value obtained for the trigon=-
ometric function of the angle is the same as it would have
been for the pure number,

A final point that we wish to make in this connection
is that unless we were trying to identify angles with num-
bers there would have been no need to invent radian measure.

That is, why should we go to the trouble of having two
different ways to measure an amount of rotation (angular
measure) unless cone way offered us advantages not afforded

by the other? Moreover, with regard to angular measure,
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notice how much more natural degrees are than radians.
First of all, it seems fairly natural to talk about
dividing a circle into a whole number (360) of equal parts,
but to talk about 21 radians (which is the circumference of

the unit circle) is far from a natural concept.

In summary, then, we can invent the trigonometric
functions so that their domain is the set of real numbers
rather than angles, and if we also introduce the notion of
radian measure the two definitions of trigonometric functions

may be considered as being equivalent.

By way of additional practice, let us observe that
viewing sine and cosine as functions of numbers, we can

mimic the remaining definitions of the trigonometric functions

by letting tan t = %%%F%, and using the reciprocal relations
csc t = 1/(sin t), sec t = 1/(cos t) and cot t = 1/(tan t).
Pictorially:
sin t = RP
R e
2 cos t = OR
tan t = g% = PT
OoP Thus each of
8 the six trigo-
t -2 _ 55 nometric functions
‘\ QoL & = 55 QP maps the number
tradia (length) t into
— a number (length).
0 & o csc t = g% = 0Q
OP
sec t = &= = oT
; oP
If P is not in the

first Quadrant we must
merely adjust signs.

We also see that, since the circle has circumference 27,
if £ denotes any trigonometric function then £ (x+2m)=f(x).

(Notice here that we are not saying that x = x + 27. In

i
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terms of modern language we are only saying that these two
different elements in the domain have the same image with
respect to' f.)

We can also show that such results as sin 0 = 0,
cos 0 = 1, sin % = 1, and cos % = 0 follow merely by
reading the coordinates of P. Moreover, these results do
not depend on whether we are thinking of numbers or angles,
provided that the angles are measured in radians. In this

respect, notice that since the circumference of the circle

is 27, an angle of 90° corresponds to an angle of %1 - %
radians. We are not, however, saying that 90 = % . Indeed,

% is about 1.57 since m is about 3.14 (in terms of a very
elementary analogy, we do not say that 12 = 1, even though
it is true that 12 inches = 1 foot).

Since the trigonometric functions are now "legitimate"
functions of a real variable, it makes sense to talk about

such things as lim f(x), where f denotes any trigonometric
X+a
function. Not only can we apply our limit theorems to the

study of the trigonometric functions but we can apply our
entire study of derivatives to them as well. This we shall
do in the next section. It turns out that one of the key
pieces of information we shall need is the fact that:

lim sin x
_—_-=1
x+0 X

(and let us hope that none among us believes this result
is obtained trivially from 0/0, since the numerator and

denominator are equal. Recall that we arrive at 0/0
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"jillegally" by allowing x to equal 0, which is not permitted

in the definition of x-0.)

At any rate, for a review of both the trigonometric

functions and limits, let us try to derive the above limit.

While we are thinking of x as being a number, we
shall utilize our remarks about radian measure so that we

can take advantage of the geometry of the situation. What
lim lim
4, and _
x>0 x+0
for this is that near 0, sin x is positive for positive

we shall do is to compute . The reason

values of x and negative for negative values of xX. Since
we will use inequalities in arriving at the correct answer
we will distinguish between these two possibilities, since,
as we have seen, multiplying an equality by a negative

number reverses the direction of the inequality.
with this in mind, we proceed as follows:

We first let x be a small positive number. Our picture

becomes:

ans

Now, since the area of the unit circle is w, the
L) .
area of sector POS is (%%J 7 because XPOS is g? of the measure

of the entire circle. (Notice that we do not say 5%5 .

B

& Gtm ¢

3

ad & ¢

L
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We must use radian measure if sin x is to be unambiguous.)

We now construct PQ perpendicular to O0S and TS
perpendicular to 0S. Thus:

The point is that APOQ ¢ sector POS < AOTS.
Hence:

Area of APOQ < Area of sector POS < Area of AOTS
v ®ED < (3) <3 @@

But PQ = sin x, 0Q

I

al
Il
Sl
Il
-

cos X, TS = tan x and

1 . 574 1 1l sin x
’ =8in X cos X <€ % < = tan x = =
) R 2 cos X
. F sin X
. in X cos x < X € —}mM— 1
S cos X (11)
. X I
cos x < . <
.8 sin X cos X (12)

(Notice that in going from (11) to (12) we required
that sin x be positive, otherwise the inequality would be
reversed.)
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5 By the "sandwich theorem":

lim lim x lim 1
cos X < —_— & — 13
x»0t : x+0f sin x x0T cos X (13)
However llm+ cos x = 1, hence (i3) yields:
x 0
lim 3
) i s 1 (14)
x+0+ sin X
lim x .
From (l1l4) we see that T Y [ (15)
x+0
. lim 1 lim
and since f(x) = ———— as long as £(x) # 0,
R lim 1 we
x+a f(X)
(15) yields
Hm sibx_ 2o (16)
x>0

If we assume that x is now negative, and sufficiently
small, our diagram yields the fourth guadrant. Leaving the

details as an exercise, the same sequence of steps as before
(except we reverse the sign of the inequality when we divide

by sin x) yields:

lim sin x _ 1 (17)

£ 1

G2 (ah 2 fm A A Ea -

S 2 0 0 G vem e
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Combining (16) and (17) yields the desired result.

Notice that if we wished to use degrees we could

lim sin x
x50 but the result would not be 1.

More specifically, if the sector is a "slice" of x degrees,

still compute

we have ?%ﬁ of the entire circle. Hence the area of the

sector is(?%ﬁ)“‘

In this case our inequality is:

7 (FQ) (@) < I <1(T9) (58)

Thus (11) could be replaced by:

Lip: S sin x
180 cos X

sin X cos x < (1.1.%)

or 180 Cos X < —x < 180 .
T sin X TCOS X
this leads to the result that:

for small positive x and

lim X _ 180

x>0 sin x° m
or

lim sin x° _ 7

x>0 X ~ 180

At any rate, the fact that if x is a real number
lim sin x
x+0 b 4
of the trigonometric functions. Just how this occurs is

= 1 plays the key role in finding the derivatives

the subject of our next section.

C. Derivatives of the Trigonometric Functions

Given that f(x) = sin x, it makes sense to try to find

f'(x). The important point is that, regardless of how f
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is defined, f' is always defined by:

lim | f(x + Ax) - f(x)
1 -
£l = in [HE g ] (1)
In the special case f(x) = sin x, (1) becomes:
. _ lim sin(x + Ax) - sin x
E1(x) = pxs0 [ Ax ] (2)

To handle (2) we must invoke results concerning the
trigonometric functions. For example (and there are other
approaches), the recipe for sin(A + B) yields:

sin(x + Ax) = sin X cos Ax + sin Ax cos x (3)

Putting (3) into (2), we obtain:

£1(x) = Lim [sin x cos AX + sin Ax cos X - sin x]
Ax+0 & Ax
_ lim[sin x (cos Ax - 1) + sin Ax cos X :l
ol Ix (4)

_ lim [éin " (cos ix -1 ) " (512 ax) —_ %]
Ax-+0 * *

If we now apply our limit theorems to (4) (and again
notice that these theorems do not depend on the specific

functions in question), we obtain:

L3

6

[

€3

Gl Gaa ¢

L3 €3 €3 L1
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lim _. lim [cos Ax - 1 lim sin Ax) lim
g {a — x) Ax+0 ( Ax )+(&x+0 A ‘)Ax+o coR &
- lim [cos &x -1 lim sin Ax 5
= sin XE&}HO ( )] Eﬁ.x-*{) — ] cos X (5)

Equation (5) supplies us with the hind-sight motivation
lim sin x
x~+0 3%

section. Pedagogically, it was to our advantage to introduce

this limit before we needed it, so that we would feel at
home with it when we did need it. Pragmatically, it is fair

to assume in "real life" that one might have tried to find

as to why we wanted to investigate in the previous

f' (x) where f(x) = sin x and then arrived at (5). At this
point, he would have had ample motivation for investigating
lim sin x lim 1 - cos x

<30 e and its associate w6 w ‘

Now, in the last section we showed that ii% 55%—5 =5
(Again notice that x is not important here. What is

lim sin []

important is that[] 0‘___T__ In particular,
lim sin Ax _ lim 1 - cos x _ g
Aol — R ™ 1.) and that s 0 (See exercise

3.1 1(2))

Putting these results into (5), we obtain:

£f'(x) = (sin x) (0) + (1) cos x

In other words, we have now proved:

If f(x) = sin x, then f'(x) = cos x
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Our next observation is that we may now apply all of
our calculus theorems to this result to obtain even more

information.

For example, we may invoke the chain rule to conclude
that if y = sin u(x), where u(x) is any differentiable

function of x, then g% exists and is given by:

dy _ du
Ix = COs u zx (6)

(That is: g& = g% %% = cos u %%)

If we couple (6) with the fact that cos x = sin (% - x),

we also obtain:

dlsin | = - x af(l-x

d d . _|[m ( [f :l) (7

x (cos x) = = 51n(f - x) = T o e )
2

= cos (% - x) (-1)
= = cos (% - x)
= - sin X
and invoking the chain rule again, we obtain:

a%(cos u) = - sin u %% ¢2)

From results such as (6) and (7) we may apply the
sin x

——— to obtain:
cos X

guotient rule to, say, tan x =

i s

[N |

G A U G2 s e Em

Bl I S S E e

L1




1 I

rN

1 Bl

i1 Iu B

F1 rn

VII-27
sin x d(sin x) _ _. d(cos x)
d (tan x) _ (cos x) ¥ s & dx Rk o8 dx
dx - dx 2

cos X

2 . F
cos“ x - sin x(- sin x)

2
cos X

cos2 X + sin2 X

2
cos™ X

2
or sec X

cos X

More results are obtained as standard material in any
calculus book and such reading will be assigned to supple-

ment the results derived here.

Our main purpose here was to show how the knowledge

that ii% 55%—5 = 1 leads in a very neat way to the calculus

of the trigonometric functions.

There remains, however, one major demonstration which
must be shown if we are to keep our promise of motivating
the trigonometric functions without regard to angular

measure.

To this end, let us lock at
Xx = A sin (wt + a) (8)

where A, w, and o are constants.
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Taking the derivative in (8) with respect to t, we
obtain:

*
Aw cos (wt + o)

g% = A cos (wt + a) w

and
d2x d [dx 2
—2- = a-E(a-E) = - Aw sin (UJt + Ot.) (9)
dt
Recalling from (8) the fact that x = A sin (ot + a), (9)
yields:
2
d™x 2
—5 = - WX (10)
dt

Now, in the subject called differential equations, one
starts with (10) and derives (8). (We shall do this as
an exercise later in the course.) This is more difficult
than starting with (8), as we did, and deriving (10). (In
a manner of speaking, this comes under the adage that it
is more difficult to unscramble an egg than to scramble
one.) For our purposes, however, let us pretend that we
started with (10). Let us think of a particle moving
along the =x-axis and let t denote time. Then (10) says

* 0
Again we use the chain rule: d 51né:t + o) is not cos(wt + a).
d sin u d sin (wt + a)
—— 3 + .
Rather = cos u means that SGE T o cos (wt o)
Hence by the chain rule, g Slnéit ta) .

d sin(wt + o) d(wt + o)

IGE T o) IE = cos(wt + o) w

i Il

1

| &

L |
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2
that at any time t the acceleration of the particle,é—g ’
dt

is proportional to its displacement (x), but with the

opposite sign (mz is positive hence - w2 is negative.
2
Therefore g—; and x have opposite signs).
dt

Thus (10) is just the statement that the particle is

moving in simple harmonic motion and one needs no knowledge

of classical trigonometry to understand the physical

situation depicted by (10). The solution to (10) (that is,

the solution of x as an explicit function of t), however, is

(8), and (8) certainly makes use of the trigonometric
functions. In other words, x = A sin(wt + o) is a real
solution to a real problem which involves no angular
measure. In still other words, in the expression x = A
sin(wt + a), wt +a is not an angle!

To put it still differently, had the trigonometric
functions not yet been invented and one had arrived, for
some reason or another, at equation (10), then one would
have had to invent the trigonometric functions to obtain
X explicitly in terms of t.

This completes our attempt to motivate trigonometry
without triangles.

D. Circular and Hyperbolic Functions

Later in this course we shall give practical reasons
for inventing the hyperbolic functions introduced in this
section. For the time being, we would like to point out
that once we liberated the so-called trigonometric func-

tions from the study of angular measurement, there was no

real reason to keep calling them the trigonometric functions,

at least in the traditional sense of trigonometry.
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Since the construction of the non-triangular trigono-
metric functions uses the unit circle, it is customary to
refer to these functions as the circular functions rather
than as the trigonometric functions. To be sure, in many
ways this is merely a question of semantics, but in other
ways we can show that the extended definition of trigono-
metric functions goes beyond their usage as circular
functions.

In particular we would like, in this section, to
introduce the hyperbolic functions although we will not
treat these from a calculus point of view until later in
our course. In the same way that the circular functions
are based on the curve whose equation is x~ + y2 = Ly
the hyperbolic functions are based on the curve whose
equation is x2 - y2 = 1. This curve is a hyperbola, which,
for purposes of identification, we may call the unit hyper-
bola. In terms of the calculus we have already studied,

it is not difficult to sketch the graph of x2 - y2 = 1.

Namely:

We first observe that x2 - y2 = 1 is symmetric with
respect to both the x-and y-axes. Hence it is sufficient

to know the graph in the first quadrant. To this end, we

study x2 - y2 = 1 where x, y > 0.

. x 3 1 otherwise y would not be a real number

L i
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/ 11/
iy / / i } X
Next % = _._2.}_5.___. = _x_.__.

a
X

se X >0~ > 0 -+ curve rises in first guadrant

i d bl
Finally <X = >
dx 72 !
x° -1

x =1 -1
x“ -1 (x2-1)3/2

es Curve spills water in first quadrant




VII-32

4
"

(1,0)

Hence, by symmetry, the graph of x2 - y2 = 1 is given
by :

P PQ = sinh t
cosh t

(ad
o
(@]
I

Unlike the circle, the hyperbola has two disconnected
sections. We agree to use the section for which x is
positive. Letting S denote (1,0), we mimic our procedure
for the circular functions. Namely, given the real number
t, we mark if off, starting at S, along the branch of
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x2 - y2 = 1 for which x is positive. We mark t off along
the upper portion if t is positive and along the lower
portion if t is negative. If t terminates at P(x,y) we define

x = cosh t, (hyperbolic cosine) and y = sinh t (hyperbolic

sine). In a rather obvious way we may now define
_ sinh t 1 >: ==«
tanh t = T T coth t = Tanh T’ sech t = e and
1.

CSCht=—s-1‘m .

Whereas the basic identity for the circular functions

was sinzt + coszt = 1, for the hyperbolic functions it is

coshzt - sinhzt = 1, since x2 - y2 =1,

We can also visualize these functions pictorially.
For example, pick a real number t,, (in the diagram which
follows we assume t1 is positive but this is not crucial).
Then, if Pl(xl,yl) denotes the point at which the length ty
terminates, we have X = cosh =1 and Yy, = sinh ty.

v
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Let us now find the equation of the line tangent to

x2 - y2 = 1 at Py Differentiating x2 - yz = 1

implicitly we obtain:

2x -~ 2y =0

X
1
Therefore at Pl the tangent has slope §I : hence its
equation is:
Y_yl xl
X=X ¥

2

.- YY) 11 * N1
or = XX, - 1 since (x ) satisfies x2 - 2 =1
¥¥y 1 1Y1 Y g

If x =0, yy, = -1 /» the y intercept of this line is
l - ""l . e = g . .
- §I = EIEH_EI and if y = 0, xx, i 0 /. the x intercept

. . 1 . 1
of the line is EI = EEEEufl .

Thus, given t, we have constructed both sech t, and
csch tl. In terms of our last diagram we have:

E3 L3
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QlPl = sinh t
061 = cosh t
OT = sech t

R.O = c¢sch t

The hyperbolic functions, while perhaps not quite as
familiar, are as real as the circular functions, and they
shall play an important role in what comes later.

If we so desired we could introduce hyperbolic radians
merely by talking about the arc length on the hyperbola

subtended by an angle centered at the origin.

The connection between the circular and the hyperbolic
functions becomes even more amazing if we allow ourselves
to think in terms of complex rather than real numbers,

For example

can be written as

x2 + (iy)2 = 1

Thus, a hyperbola in the x-y-plane would be a circle in
the x-iy plane.

It will be shown later that both sinh t and cosh t
satisfy the differential equations

dzx 2
dt
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(That is, the acceleration is proportional to the displace-
ment and in the same direction. That is, the acceleration
increases without bound!)

However, our immediate aim was to show that the concept

of trigonometry is restricted to neither angles nor circles
and that we may invent other "trigonometrics" which are
quite consistent with the real world.

E. The Inverse Circular Functions

In this section we would like to introduce the inverse
trigonometric functions and to discuss how one finds the
derivatives of these functions. Before doing this, however,
it might be wise to take a few minutes and reinforce some

of our previous studies of inverse functions.

We have already discussed the fact that if f:A-B
is both one-to-one and onto we can talk about f_l:B+A.
We now want to investigate this idea with respect to those
functions of mathematical analysis which are differentiable
in some interval.

So suppose f is defined on [a,b] and differentiable
on (a,b). (Actually it is not crucial that we restrict our
attention to finite intervals. It is possible that f is
differentiable for all real x. Our restriction is merely
for the sake of being able to draw a better picture.)

Recall that since we assume f to be single-valued, we
can conclude that for each ¢ in [a,b] there exists a unique

(meaning one and only one) real number c' such that f(c) = c'.

We cannot conclude, however, that c' lies in [f(a), f£(b)].

For example:

I N =a

.
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b'd
p
o ol H
f(b) "ZFTﬁ\_/,y = f(x)
£la) -
3 1 LY
acb 7%
(Figure 12)

Of course, it is true that if d' lies in [f(a), f(b)]
then there exists a number 4 in [a,b] such that £(d) = d'.*
This follows from the INTERMEDIATE VALUE THEOREM about
continuous functions. Namely, if f is continuous on [a,b]
and if c' lies between f(a) and f(b) then there exists a
c in [a,b] for which f(c) = c¢'. If this were not true, in
terms of a graph, there would be a "gap" in the curve in

the sense that it "jumps over" the height c¢'. That is:
Y
A
- [ SO -
” h//’__—ff:;ap" here indicates that there
£(a) :;i;;;/ : exists no ¢ in [a,b] for
: 1 which f(c) = ¢!
1 | — 4
a b 4
(Figure 13)

x

We should be a bit more careful with our notation. By
convention [a,b] implies that a < b. Unless more is given
about f we do not know whether f£(a) < f£(b). Thus to con-
form with our convention we should write [min {f(a), f(b)},
max {f(a), £(b)}] but this is much too cumbersome and the
reason we took the above liberty.
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The key point now in terms of inverse functions hinges
on the fact that, while for each c¢' in [f(a), f£(b)] there
exists a number c in [a,b] for which f(c) = ¢', IT IS BY
NOW HOPEFULLY CLEAR THAT c NEED NOT BE UNIQUE. For example:

A c #cy # c, but f(c)=f(clJ =
£B) b — —— —— -
t\-.ji |
f@ - A A
A
a— —>» X
a ccy c,b
(Figure 14)

In the above diagram we have a situation wherein f is
single-valued but not one-to-one. The fact that f is not
one-to-one means that if f_l is to exist it must be multi-
valued, and we have previously agreed to exclude such
functions from our studies.

What happened pictorially that describes why our
function was not one-to-one? Evidently the curve doubled
back. That is, the curve was allowed to change from
rising to falling. 1In terms of derivatives this is
analytically equivalent to saying that f'(x) was allowed
to equal 0 for at least one x in (a,b). This motivates,
hopefully, our next restriction that not only is f differentiable
in (a,b) but also that for each x in (a,b) ,£'(x) # 0.

Again to emphasize the picture, this restriction
guarantees us that the curve is either always falling or

else always rising. The analytical counterpart of this

I A =
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statement is to say that f(x) is either monotonically

decreasing or else monotonically increasing. More

specifically, f'(x) always positive implies that if
Xy < X, then f(xl} < f(xz), and this is what is meant
by monotonically increasing.

The key now is that if £ is monotonic (either increas-
ing or decreasing) on [a,b] then f-l exists and has as its
domain [f(a), £(b)] if f(a) < £(b) or [£(b), f(a)] if
f(b) < £(a). Again, in terms of pictures:

X

y
f(bf y=f (x) Since f'(x) > 0, c € (a,b) -
PESSEEES =S S S5y f(c) = c'e (f(a),f(b)). Moreover,
: cy # c+f(cl} # c'. Thus there is
c'=f(c) " a 1-1 correspondence between
( points in [a,b] and points in
|
1
b

N
/

(Figure 15)

(In words f_l: [f(a), £(b)] = [a,b] is defined as follows:
pick c' e[f(a), f£(b)] then there exists one and only one
number c €[a,b] for which f(c) = c'. Define f * by

£1 (¢') = ¢c. 1In this way £ 1o £ is the identity map on
[a,b] since for each ¢ e[a,bl], f"l(f(c) = £ 1) = ¢. In

a similar way fof — is the identity map on [f(a), f£(b)].

The same observations apply if f'(x) < 0 for all
x e[a,b]. The only difference is the role of f(a) and
f(b). That is
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f(a) |-

\
c' T y = £(x)

! \

£b) Loy
] |
1 |
1 |
a c b

(Figure 16)
(Technical Note:
1

We do not say that fof — = f_lof since they may have

different domains. (That is, [a,b] need not equal [f(a),f(b)])
More specifically, f-lo f is the identity map on [a,b] while

fof L is the identity map on [f(a), f£(b)] .)

Let us now apply these results to the trigonometric
functions so that we may see how to "invent" the inverse
trigonometric functions. For one thing, if f:A+»B and if
g1 exists, then the domain of £l must be B. 1In other
words, if f:A-»B then f_1:B+A. In the case f(x) = sin x,

the domain of f would be the set of all real numbers while

the image of f would be the interval [-1,1], th&at is,
B = {y:-1 <y g 1}. Thus, if the inverse of the sine
function exists, its domain must be B = [-1,1].

However, the sine function far from satisfies the

one-to-one property that is so vital if an inverse function

is to exist. Indeed, since f(x) = f(x + 27m), we see that
infinitely many numbers have the same image with respect
to £f. That is, f(x) = £(x + 27) = £(x + 4m) = ... =

f(x + 2km) where k is any integer. Pictorially, this is
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reflected by:

f(x) = £(x + 2m)
o AN N
™ : | X
Q\\\\L//, X w\\\“‘/g/x+2w

(Figure 16)

~

N

So it appears that unless we invent a new function
which "looks like" sin x but which has a more restricted
domain, we will be unable to talk about sin"lx, especially
if we insist on our earlier convention that all functions
must be single valued.

Referring to Figure 16, we observe that if we restrict
il
2
the sine is taken on once and only once. In still other

the domain of sin x to the interval —%, , each value of

words, let us invent a new function, say Sl' which looks
exactly like sine except that it has a different domain.

That is:
T m

such that if x € [—1} ? -g-]then s, (x) = sin x.

Again, in terms of a picture:
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Y
N
Heavy line denotes
the graph of y=Sl(x)
(0,1)
_Tr r l Y
2 [ N X
% T _'1; 2 ’ 7
\'\._: 2‘ “._ol
(0,-1)
(Figure 17)

The point now is that Sl possesses all the attributes
necessary for having an inverse. 1In fact, from Figure 17,
we can readily deduce that the graph of y = Sil(x) is given
by:

A? Graph of y = Szl(x)
That is:
S (1,3) If S;: _12’_,%:] > [-1,1]
(-1,0 (1,0) > X then s'l"l, =143 _,[_%'%J
(—1,-—%)‘\._
(Figure 18)

Theré are still a few remarks we should like to make
here:
(1) In terms of our earlier remarks that the graphs of
y = f(x) and y = f-l(x) are symmetric with respect to the
line y = X, notice that a comparison of Figures 17 and 18
shows that y = Sl(x) and y = SIl(x) satisfy this criterion.
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(By the way, there might be some confusion between
y = Szl(x) and X = SIl(y). If S, has an inverse, then what

is true is that y = S;(x) and x = Sll(y) are two different
ways of saying the same thing. However, if we keep in mind
the convention that y denotes the dependent variable and
x the independent variable, then it is customary to graph
Sl1
kept in mind, the entire idea of comparing the graph of

in the form y = Szl{x). In fact, if this idea is not

y = £(x) with the graph of y = £l (x) would be unnecessary.
That is y = £(x) and x = f"l(y) are the same graph since they

are but two different ways of stating the same relationship.)

(2) The configuration in Figure 18 is but one of several
ways in which we could have invented a function S to be a
suitably restricted version of the sine function. For
example, y = S(x) as described in Figure 19 has the prop-
erty that S*'l exists. In fact S-1 is depicted in Figure
19b. One reason for shying away from such a definition of
S is that S T would then have a very serious discontinuity
in a neighborhood of x = 0. That is if x is near 0 but
positive then s™1(x) is near 0, but if x is negative and

near 0, s™1(x) is near 2m.

Y Heavy line denotes graph of
N y = S(x) where domain of

s =10, v -321 , 2113 with

either 0 or 217 deleted since
s(0) = s(2w) = 0.

M:l
N

(Figure 19)
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 § Graph of y = S_l(x). 5'1(0) equals
A both 0 and 271 ;
//”fh Hence either 0 or 27 must be
3nt . deleted from the image of S '.
(-1,-35] e ) |

W

(Figure 19b)

While nothing prevents us from inventing S as above,
it should be clear that S, as defined previously is "nicer"
than S.

Be this as it may, let us define the "new" function Sl
by Sl(x) = sin x for all x € -% : % . A crucial observation
is that sin x and Sltx) are DIFFERENT FUNCTIONS, SINCE THEY
HAVE DIFFERENT DOMAINS. For further emphasis, the domain

of sine is (-»,») while the domain of Sl is [—g- i g-] 5

This restriction is not very serious but it is extremely
important that you understand that there is such a restric-
tion. It is not serious in the sense that we can define an

"entire sequence of functions Sy each covering a different
period of the sine function, and such that the union of this
family is indeed sine.  For example, we could define 82 by

Sz(x) = sin x for all x ¢ [gw —%1 , etc.

On the other hand, while the assumption is not too
constraining, if we don't make it then we must forfeit the
right to talk about the inverse functions. Without going
into a philosophical discussion of values, suffice it to
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say that the overwhelming judgement was to make sure that
we could define the inverse trig functions, and for this
reason we had to introduce the notion of PRINCIPAL VALUES,

which of course corresponds to our discussion of Sl(x}.

In still other words, then, when we talk about
g(x) = sin_lx we are referring NOT to the inverse of sine
but to the inverse of Sl; and if for some physical reason
this domain is not acceptable to us we have the right to
bring into play such other functions as 52' 83, etc, but in
a sufficiently orderly way that sin "x is a well-defined
function at any given time. Once this restriction is made
sin-l(sin(x)) becomes a well-defined unique number - namely
X itself.

At this stage of the development, it is now important
to see that the properties of f_l (once it exists) do not
depend on the physical properties of f. That is, given
that y = f_l(x) we may "paraphrase" this as x = f(y). This
follows immediately from the definition of f-l. Namely, if
y = f—l(x) then f(y) = f(f_l(xj) [by substitution]; and
f(f-l(x}) = x [by definition of f_l]. Hence f(y) = x.

As a particular example this means that we can rewrite
y = sin_lx as x = Sl(y) [or in the language of the usual
textbook, x = sin y where - %-s y < % ]. AGAIN, THE MAIN
POINT IS THAT IF WE DON'T USE Sl or its equivalent, the

inverse, since it is multi-valued, is not defined.

In terms of previous knowledge, the above restrictions
are analogous to what happens if we would like to have an

inverse to the operation known as squaring a number. A

number has one and only one square, but two different numbers
can have the same square. This problem is precisely why

one talks about a principal square root., Certainly, the
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negative square root of a positive number is as good a
"citizen" as the positive square root. Indeed, -2 is a
well-defined number whose square is 4, just as is +2.

Why then are we allowed to insist that /X means + vX for

x > 0? The answer is that f(x) = x2 defines a function
that is not one-to-one unless we restrict our attention to
an interval in which f'(x) is never 0. This means that

we must have an interval which does not contain 0, and this
in turn means that we must either restrict £ to a positive
domain or else to a negative domain; and we arbitrarily
chose the positive domain (the other would have done as well,

but we could not choose both if we insist on one-to-one-ness).

Pictorially we have:

fy=f(x}=x2 £ is 1-1 if its domain is
restricted to either x > 0
or x < 0; otherwise it isn't.

¢ %2
(Figure 20)
and when we now write f_l we are not thinking of £ being
defined by f(x) = x2 but rather as f(x) = x2 FOR ALL POSI-

TIVE x. That is, we have changed the domain of £ if we

want the inverse of the squaring function to exist.

on the other hand, if we let £, and f, possess inverse
functions we can then study the function f(x) = x” for all

real x merely by observing that £ is the union of fl and f,.
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In still other words, this is what we were doing when we
talked about the two separate branches of the curve
y = xz. Again, in terms of a picture:

y=t, (x) =x*
3{1’\ y=£, (x)=x }’\
b= _ =1
| / y=Jx = £, (x)
> X - > X
- . i
_.2 2 - .
f(x)=x" is not 1-1; but y" =xory=-JX is then
each of the functions fl th ; £ _ f-l a
and £, is 1-1. SRS B =y A
y = £, (x).
(Figure 21la) (Figure 21b)

The key computational device in handling inverse

functions lies in our previous observation that if y = f-l(x)

then x = f£(y). Thus a knowledge of f(x) is sufficient for
us to determine the structure of f“l(x). By way of an
elementary example, when we talked in grade school about
subtraction being the inverse of addition, we meant that we
could solve any subtraction problem by an appropriate
addition problem. Thus, for example, we could view 5 - 3 =
as () + 3 = 5.

()



VII-48

With respect to the inverse trigonometric functions,
suppose that we were given y = sin_lx and we wished to

y d =
determine 3% . Well, the definition of y = sin lx implies
that x = sin y where - % £y < % .

From this we can obtain that dx cos y, whereupon

d dy
our result that E% =_H%__ (see solution to Exercise 2.3.9)
dy

tells us that %% = secC Y.

This is the correct answer, except that when y is
given in terms of x, it is expected that we find in
terms of x. To this end, the fact that x = sin y leads us
to the "reference" triangle:

khe

1 X sin y = x

v (radians)|

Vi -

From this triangle we see that cos y =J& - x2.
Actually, we have drawn the angle x in the first quadrant
while it could have been a fourth quadrant angle. That is,

while the reference triangle suggests _cos y = = x2 the
fact is that it can really equal % /1 - x2 . The saving
grace is that for the range - % <y < % ; Cos y is non-

negative so that we need not worry about the minus sign.
However, had we chosen a different range for y we might well
have been in the predicament of having an ambiguous sign.
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Note that we never have to use the reference triangle,
except that it is a very convenient visual aid. Had we
wished to proceed in a purely analytical way, we know that

sinzy + coszy =1

whence:

coszy =1 - sinzy =1 - xz

and consequently:

+J1 - x2

and we discard the minus sign since cos y is non-negative
. m T

- — < & s
f-g5¥83:-

cos y

In summary, then, we can determine that if y = sin_lx

then %% - L merely by understanding how to differentiate
N 1-x2

the sine function and knowing what we mean by an inverse
function. Other examples are contained in the reading mater-

ial from the text as well as in the exercises.

Before leaving this topic, however, it is worth observ-
ing that in terms of the antiderivative we have shown that:

L . dx = sintx+ €
J1-x?
-x

The interesting point is that the integrand has nothing

to do with trigonometric functions and we shall also say
more about this later in the course.

But for now, this completes our reunion with trigo-
nometry.
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CHAPTER VIII
INTEGRAL CALCULUS

A. Introduction

There is a tendency to think of integral calculus as
being the "inverse" of differential calculus. Such a
tendency is natural in light of the fact that we introduced

the terminology, the indefinite integral, as a synonym for

the "inverse" of differentiation. Yet, the fact is that
integral calculus was being studied by the ancient Greeks as
early as 600 B.C., while differential calculus was not
developed until 1680 A.D. This is why we tried to shy away
from, or at least play down, the phrase "indefinite integral"
in favor of "the inverse derivative." The point is that, in
the truest sense, the study of the indefinite integral is not
part of what is called integral calculus but rather a part

of differential calculus. For pedagogical reasons, one
usually starts with the study of differential calculus and
then proceeds to the study of integral calculus, whereas in
“real life" the order was the reverse. This inversion tends
to blur the true meaning of integral calculus, which has an
existence in its own right, completely independent of dif-
ferentialcalculus. It is this existence together with its

relation to differential calculus that we wish to develop in
this chapter.

Our procedure shall be to begin by recounting the ancient
Greek contribution to the subject which came in the form of
the study of areas of non-rectilinear figures (figures whose
boundaries consisted of other than straight line segments)
and to generalize the subject so that it becomes independent
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of area. In much the same way, we earlier found it geometri-
cally convenient to visualize the derivative as the slope of
a curve, while recognizing that the general definition of

derivative transcends its restriction to slopes of curves.

In our development, we shall pay homage to the proper
chronology by assuming throughout the initial phases of our
presentation that the concept of differential calculus does
not exist. This will give us still another way of redis-
covering the limit concept and, in fact, will afford us a
completely new approach to calculus. Once this mission is
completed and we have given the subject of integral calculus
proper recognition in its own right, we shall develop the
rather remarkable relationship which exists between the two
apparently disparate branches of calculus known as differen-
tial and integral calculus - a relationship that in terms of
hindsight offers a most interesting justification for such
terminology as the "indefinite integral" instead of "inverse
differentiation."

We shall make no further attempt here to explain this
intriguing relationship. Rather, we shall now begin to
unfurl our story, one segment at a time, beginning with a

"revisit" to the study area.

B. A Discussion of Areas of Non-Rectilinear Figures

As is well-known, the ancient Greeks, using some rather
elementary results from plane geometry, were able to deter-
mine the area of any rectilinear figure. What is not quite
so well known is how they proceeded from this to find the
areas of more general regions. It is this procedure that

we shall study in this section.

_

3

£Ea

F

£

t

£

¢

3

{



]

f

r

VIIT-3

We shall assume that our region is enclosed by a
fairly arbitrary curve. For example, our region R might
be as depicted in Figure 1. Notice that we do not insist
that our curve be smooth but we have assumed that the curve

is continuous.¥*

Boundary is not "smooth"
at points A, B, and C.

A

(Figure 1)

We shall make some more specific remarks about the form
of our region R as we go along, but for now let us be content
to emphasize the logic of how we proceed from our knowledge
of rectilinear regions to obtain some knowledge about the
less familiar case of non-rectilinear regions. To begin with,
we must, as is in the case of all logical systems, agree on

certain properties of area that we are all willing to accept.

*It is interesting to note that for finding areas we do
not require that the boundary curve be differentiable
(smooth); all we need is that the curve is unbroken (contin-
uous) (and even continuity can be waived in some cases as
we shall see later). For example, among other things, we
can find the area of rectangles and triangles, and clearly
these figures have boundaries which contain "corners" (that
is, points at which the curve is not smooth). This, then,
is one very important reason for stressing continuous
curves. Namely for finding areas, we do not have to insist
on curves being anything more than continuous. In this
sense, finding areas is more general (less restricted) than
finding instantaneous rate of change, where by definition
we require differentiability.
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To begin our logical quest, let us observe that there
is one region for which we could easily define area in an

objective way; acceptable to all: namely,
Rule 1:

The area of a rectangle is the product of the
length of its base and the length of its height.
In symbols, A = bh.
We next observe that it seems non-controversial enough*
to assume that as a region gets larger so does its area.

(Intuitively, this is precisely the definition of "gets

larger".) At any rate, stated more formally,

Rule 2:
3 Ap denotes the area of region R and if AS
denotes the area of region S, then if R CS,
AR < As. In words, if one region is contained

within another, the area of the "containing"
region is at least as great as that of the
"contained" region.
Finally, we invoke the well-known result of elementary
geometry that "the whole equals the sum of its parts." Again,

more precisely,
Rule 3:

If a region is the union of regions that share
no points in common, other than possibly boundary
points, then the area of the region is the sum
of the areas of the constituent parts. T

*Technically speaking, the notion of "non-controversial"
or "self-evident" is highly subjective. What we are really
leading up to is that without assumptions there can be no
proof. Thus in any logical system we must invoke certain
"rules of the game" from which we logically derive the rest
of the properties we desire. The idea is that since we want
our derived results to be realistic we start with rules of
the game which seem realistic, and this is why we mention
the idea of "non-controversial rules."
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Before proceeding further, it is probably a valuable
aside to observe that Rule 3 is really "loaded." For,
while it may seem rather obvious, notice that it gives us
a very powerful property of area. If we start with a parti-
cular region there are infinitely many ways of partitioning

it into the type of union mentioned in Rule 3. Rule 3 says
that no matter how we perform the partitioning, area must
be defined in such a way that the sum of the areas of the

pieces is independent of the partitioning! For example:

Here R is
the unit
square,
hence

AR =1

(Figure 2)

Thus, no matter how area is defined, to satisfy Rule 3,
we must have: A + A + A + A + A + A =

Ry Ry Ry Ry Re < "Ry
A + A + A + A + A + A + A (=1). Or in
S5, 5, S3 S4 S5 Sg S,
more compact notation
6 7
A = A
Z : Ry ; : Sx
K=1 K=1
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Now, in the event that one is still not convinced of
the power of our three rules, let us show that these three
rules, together with a few other mathematical concepts which
we have already discussed either implicitly or explicitly,
are enough to determine the solution to our problem of

generalizing the concept of area.

For example, we can now show that we can restrict our
study of area to a rather simple special case without any
loss of generality. Namely, let our region R be bounded
below by the x-axis, above by the curve y = f(x) where f is
continuous and non-negative, (that is f(x) > 0 for all x)
on the left by the line x = a, and on the right by the line
X = b, That is,

4 LY
\ —
y = £(x) y = fix)
R oF R
Sy K M X
a b a b .
(a) (b)
(Figure 3)

You see, the idea is that if we are now given a region
such as, say, in Figure 1, we can "superimpose" it onto our
coordinate plane so that it never goes below the x-axis.
Thus,

i

Y
"

(Figure 4)
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We then locate the points at which the curve "doubles
back." Where the curve is smooth, this will occur when we
have a vertical tangent, that is, when dx/dy = 0. But, since
there is no guarantee that our curve is smooth, we must also
check those points where there are "sharp" edges. We can
look at the boundary as a union of single-valued curves.

In our particular example, we have

I\ By Rule 3, "

since Rl = R R2

and R d R

P 3 d an 2
share only the
boundary

W X Y=fB(x):

s
2 b A, =A_ +A, .

Y Q ; = .
J ' AR ARl A

and Rl and R2

R,

are of the type
a B * discussed in
Figure 3.

(Figure 5)

Of course as our boundary becomes more "frilly" we must

become a bit more careful in keeping track of things, but
basically, things remain the same. For example,

(Figure 6)
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We subdivide R "advantageously" (and there are usually
several options at our disposal) so that we get a union of
regions of the type we can already handle.

N

R4

|

l

| Ry

|

| x
(Figure 7)

It is not our purpose here to explore the various cases
which might occur, but rather to indicate how Rule 3 allows
us to focus our complete attention on what seems to be an
over-simplified special case: namely, the situation depicted

in Figure 3.

In fact, our three rules give us even more freedom in
undertaking our investigation. For example, we may assume
that on the interval [a,b], £(x) is an increasing function.
(Why we might want to make such an assumption will, hopefully,
become clear later.) That is, we may assume that our region

has the form:

4

K

r etc.
or

R

.
e

(a) (b)

(Figure 8)
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Rather than justify this last assumption from an abstract

point of view, let us use a specific example. Suppose our

region R is as in Figure 9.

Y
N
y = f(x)
R
! S K
a b r
(Figure 9)

We may partition C into a union of curves each of which

is either always rising or always falling. Thus,

i
y = £(x)
Ry R, R, R, Rg
.
a b -

(Figure 9a)

In this way, R is partitioned into a union of regions
Rl' R2' R3, R4, and R5
common. Hence, we may find the area of R simply by consid-

which share only boundary points in

ering regions in which the "top" is either an always rising
or an always falling curve. 1In our example, Ry, Ry, and RS
have "tops" which are rising, but R4 and R2 have "tops"

which are falling. However, if we "flip" R, or R, over we

get a new region, say R& or Ré whose top is always rising.
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Thus,
y T Rr
B Since R, = Rér Ap =A
Top is Top is 2
"falling"  "rising" Thus we may replace R
,/ | by R! without loss 2
y | of génerality in
| findi A.
R, R} | inding Ay
L er
(Figure 10)

In summary, then, we may study area in general by
focusing our attention on the special case in which our
region R is bounded above by the continuous, always rising,
curve y = f(x), below by the x-axis, on the left by the line
x = a, and on the right by the line x = b,

The problem that now remains, however, is that of finding
the area of such a region. Our technique will be what the
ancient Greeks called the "method of exhaustion" wherein we
"squeeze" the desired region between rectilinear regions
whose areas we can determine, and, in this way, we can obtain
upper and lower bounds for the area of the desired region.

More specifically, we proceed as follows:

Partition [a,b] into n equal parts, each of size

Ax = 9%1 and label the points of subdivision

a = Xor X Xor eeer X % b. Next inscribe rectangles on

ll‘

*While it is probably "self-evident" that congruent
regions have equal areas, the fact is that we may deduce this
result from Rule 2. Namely R = S means that if superimposed
properly R and S "coincide." More formally, R C S and S CR.
But R € S implies that Ap ¢ Ag, while S C R implies that
R but, since AR and AS are numbers, AR < AS and

g € &
R 7 Bg

together imply that Ap = Ag.

E X

L2 | 1
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each partition of heights f(xo), f(xl), ..,f(xn_l).* That
is:

N

(Figure 1lla)

(Figure 11b)

*The idea is that in each [xk_l,xk] we pick that number

¢, for which £(c,) ¢ £(x) for all x € [xk_l,xk]. Such a ¢

always exists by virtue of the fact that f is continuous.
In our special case in which y = f(x) is always rising, we
have the computational simplification that ¢, = x _,, that

is the lowest point on each subinterval occurs at the left
end-point.
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Now the "shaded" region is, by construction, contained
in R; hence, its area is no greater than that of R. Let us
denote the area of the shaded region by Ln (L to suggest
that we have a lower bound on AR and n to suggest that the
area of the shaded region depends on the number of rectan-

gles (n) we inscribe).

In any event, for all n,
L <A (1)

Moreover, our shaded region is the union of rectangles,
each with base Ax and heights of f(xo), f(xl), P f{xn_l).
Since we know how to find the area of a rectangle and since
the area of a region is the sum of the areas of its consti-

tuent parts, we may conclude that

Ln = f(xOJﬁx + f(leAx + f(xz)ﬂx L e f(xn_l)&x
In a similar way, we may pick the highest point of
each partition and circumscribe rectangles which enclose

R. That is,

<
|
by
4,
N

¢
7
7/, | 7/,
0
AR 5
a £4 ;ﬂ Qﬂ ...;E ;Z b = xn S
%0

(Figure 1llc)

E 3

E 3

E d
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If we let Un (U representing Upper Bound) denote the
area of the region shaded in Figure llc, we have

Ap € U (3)

and

U = £(x))Bx + £(xy)Bx ...t £(x ;) 0x + £(x_)ox  (4)

If we combine (1) and (3) we see that for every positive

integer, n:

L € A €U (5)

Moreover, from (2) and (4) we see that

U_-L

f(xl)ﬂx + f(xz)Ax +...+ f(xn_l)ﬁx + f(xn)ﬁx

n n
- [f(xo)éx + f(xl)Ax + f(xz)ﬁx +oaet f(xn_l)ax]
= f(xn)Ax - f(xo)Ax
= [f(xn) - f(xo)]Ax

or since X, = b, Xy = a, and Ax = —%3, we may write

= (£() - £(a)] 222 (6)

Now, since f(a), f(b), a, and b are constants so also

is

[E(b) - £(a)] [b-a]. Let ¢c= [f(b) - £(a)] (b-a).
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Then (6) becomes:
= &
U L = = (7)

y o
Since ﬁ-+0 as n?®, we sense* that

lim(U_ - L) = 1im€ =0 (8)
In-+co n n n-bmn
Again, assuming** that lim(Un =L ) = 1limU_ - limL_,
n—+r« o n-+r« n n-w n

equation (8) yields

llan = l:LmUn (9)

n-+w n>o

Since Ap is a fixed number and is always "caught between"

L and U, it would appear from (9) that

lian < AR & limUn, and, therefore:

n--c n--c

*We say "sense" since, technically speaking, we have
not studied limits of discrete sequences. That is, when
we wrote lim f(x) it was assumed that x denoted any real

X>C
number in a deleted neighborhood of c¢. When we write limUn
n+w

n is not any real number but rather any positive integer.
Limits of discrete sequences will be discussed in Block VII
more rigorously. For now we rely on our intuition and
previous experience concerning limits.

**Just once more for emphasis, when we proved that
the limit of a sum (difference) was the sum of the limits,
we used the fact that our "inputs" were connected sets of
real numbers (e.g. dom £ = [a,b]). Here, our inputs are
restricted to positive integers and we have not "officially"
proven such theorems in this case.

I3 ka3 L1

s i

|

i a

3
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AR = limL_ = 1limU (10)
n-+w a n-+rw I

Equation (10) not only gives us the "recipe" for com-
puting AR' but it also shows us that, before proceeding

further, we must come to grips with the notion of lim a -
n--co

Thus it seems that replacing our study of instantaneous rate
of change by a study of area has in no way helped as avoid
the concept of limit. At best we have replaced the limit of
a "continuous" variable by the limit of a "discrete"
variable.

At any rate, lest our present presentation seem too
abstract, let us illustrate our results in terms of a
concrete, familiar example.

Let us consider the region R where

g
v,
[ i)
y = x
R
(0,0) 1,00’ =
(Figure 12)

Clearly, since R is a triangle for which b = h =1, AR = %.
(We pick such an example so that we may have a "standard"
by which we may compare the new method of this section.

For example, if we picked a region whose area was not known
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to us, how could we check the validity of the answer which
was obtained by the new method?)

In any event, from (4), we recall that

U = f(xl)ax +...+ f(xn)Ax.

n
In our particular example a = 0, b =1, f(x) = x.
Hence, Ax = E%E = %. Thus, in our example,
X X X, *to..t X
U =_l+._.+_n = l n
n n n n
1 2 3 , 1 1 1
and X) = 3r Xy = =, Xy = =i etc. that lSI n n.n -
n n n n
. LI
Sy =10 n n
n n

2 1l + 2 ;...+ n (11)
n

Now, in our treatment of Mathematical Induction we have

already seen that 1 + 2 +...+ n = El%ill . Putting this
into (11) we obtain
_n(n+l) _ n+l _ 1 I
Un = 2n2 ~  2n 7 0 +3 (12)

whence limUn = %y whence by (10) A % which checks with

n-o
our previous result.

R

G A Ga n =N am em

Gy n Gm S Em A bhm pm Ew

LA €23 (23
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While we omit the details, it can easily be shown that

Ln in this case is given by

) (13)

= ¥l o

Iy 1 _
L, =3 1

whence

: 1
llan = -

n+w«

as it should be, according to (10).

For those of us who may still "mistrust" limits, notice
that equations (12) and (13) are derived without any refer-
ences to limits. In other words we may conclude from (12)
and (13) that for each n

I 1 1
(1-2) <Ay <3 @1+3) (14)

S

12

For example when n = 10 (a large but certainly finite

number) , equation (14) yields

1 -12 1 -12

= (1 = 10 ) < AR < > (1L + 10 )
or

% (0.999999999999) < AR < % (1.000000000001)
and we "get the feeling" that AR = %.

As a final example in this section, let us modify our
region R by "just a little." Namely, now let R be the
region
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2
Y y =X
K
(1,1)
R
(1,0) *
In this case, a =0, b =1, Ax = %, f(x) = xz, X; = %,
z_n; LR Xn n- nce:
Un = f(xl)ﬁx *aat f(xn)Ax
_ 1 1 n, 1
= [f(ﬁo] = x SR, f(HJ =
2 2
=& & oL
= (D) (@ Q@
2 2
-1 +.é.+ n (15)
n

Recalling (see exercises for another way of obtaining

this result) that 12 +...+ n® = n(n+l)é2n+l),

. n(n+l) (2n+1)
n Gn3

- é(nzl) (Zﬁrl)

i 1 1
g(l + H) (2 + H)

w+

. _ 1 _

R (16)
n-+w©

(15) becomes:
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Notice in this example that once we had the proper
n

expression for ':E: k2 it was not any more difficult to
k=1

find Ap than in the previous example. Yet the "easy" method

for the first problem (area of a triangle) cannot be adapted

to the new problem.

This completes our introduction to integral calculus
except for a few asides:

(1) It was important to ‘find both Ln and Un in order
to "sandwich" Ap. This was the only way we could be sure
that all the error was "squeezed out" when we went to the
limit. For example, if we return to the region R of our first
example and try to use the same technique for finding the
length of the hypotenuse of the triangle we could say that
As ¥ Ax for small Ax. Yet the Ax's add up to 1 while the
As's add up to ¥2. That is

y

I\
These

lengths Ax
(Ax) add

up to

Y
X

In essence R CS + A, ¢ A, does not apply when we

R ™ S
replace area by length (perimeter). For example
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R C S yet P, > Pg (where P denotes perimeter)

The point is that we need

L\AR Va

limy_ = limL
I'l"'*”n n+°°n

to guarantee that we have located Ag exactly.

(2) We could have picked any sum between Un and Ln, say

Sn and defined AR = iﬁsn' where Sn = f(cl)fsx R f(cn)aﬁx
where ¢, is any number (point) in [xk_l,xk].

Namely, if

Then

S G o Oy M En G S Gk b aw b e on G w S e e
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f(x0)+...+ f(xn_l) & f(cl) +o..F f(cn) < f(xl)
-
s TUR, f(xn)
il [f(xD) +...+ f(xn_l)]Ax < [f(cl) +...+ f(cn)]ﬁx
S [f(xl) +...+ f(xn)]ﬂx
or
Ly € S, ¢ Un
L. limL_ = limU_ = A, guarantees by the "sandwiching
-0 n-+o n
principle" that limS_ = limL_ = limU_ = AR.
n-o n-co n n-c =
Pictorially,
y = £(x)
i For each k
|
| | | f(xk_l).{\x§ f(ck)ﬂx§ f(xk)ﬂx
| |
AL I
a : : i : I b
c1 C2 a8 & 8 cn

*Here we are invoking the fact that £ is an increasing
function. Thus, for example, X, < ¢ < X, >

£(xy) € f(cy) € f(x;). Obviously if £ is not an increasing

function this need not be true. Example:

a<b
f(a) > £(b)
: v
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(3) It is not important that [a,b] be divided into n
equal parts. What is important is that the size of the
biggest interval approaches 0 as n»«, That is, suppose we
make any partition of [a,b] into n parts not necessarily
equal. Say

a = XD < Xy g wwe & xn =b
and let Ax, = [x_,,x.].
Let
Un = f(xl)&xl C R f(xn)Axn
Ln = f(xo)ﬁxl +...+ f(xn_l)axn_l
Then
Un - Ln = f(xn)f_\xn - f(xo)axl

f(b)ﬁxn - f(a)axl

0, provided each Ax=0.

o Y@ - 59
n n

n-—>w

Pictorially,

Solid region represents

Un - Ln' These pieces

can be stacked to form
a rectangle of dimensions

[£(b)-£(a)] by *lgi %l

. _ b-a
.. Un-Ln = [£(b)-f(a)] (-E-J

(Case 1: All Ax's are equal)

S u Oy G A G m o om

i 2

E3 ¢33 9 ¢ £33

i 2
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Solid region is ﬁ; - fﬁ.
We may slide these onto
the largest interval to

form a rectangle
[E(b)-f(a)] by maxAx

whose_area exceeds
U = T
n n

k

>X o ¥ maxAxk

+0 +1im(U_-L_)
n+oo n n

o = llan = l:.mUn + A = 11mUn = llan

Note: From an abstract point of view this result is not
obvious. Namely L  and Eﬁ are different since they denote
areas of different regions. How then can we be sure that

limL = limfn? The abstract proof is fairly sophisticated

n-c Jolnad

and requires the concept of uniform continuity (this is

developed in the text). From an intuitive point of view,
however, AR is well-defined. Hence if AR = lian and
n>o
at the same time Ap = limL_ then 1limL_ = limL_.
N+ a n-—+o n n-+o n

(4) While area gives us a nice geometric model, notice
that we can define limUn etc. without reference to it. For

I+
example let f be continuous, dom f = [a,b],
X < X, > f(xl) < f(xz). Then we may form the partition
a = x0 < Xy L we S X, = b,

0
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choose Cy £ [xk_l,xkl, and form:
A
f(ck) xl +,..+ f{cn)&xn

and look at

lim [f(c,)lx, +...+ f(c_)Ax_ ]
maxﬁxk+0* 1 1 n B

Of course, such limits may be extraordinarily difficult
to compute, and it may also be difficult, devoid of geometric
interpretation, to prove that such limits are independent of
the method of partitioning, but despite these difficulties
the concept of such a limit exists in its own right apart

from the interpretation as an area.

(5) Even the condition that f is continuous on [a,b]
can be "weakened." For example, suppose f has a finite number
of "jump" discontinuities on [a,b] (in which case f is called

piecewise-continuous on [a,b]). Pictorially,

% /Y=f(x}
A

Y
X

a ¢ ¢, c3 b

*Notice that maxAx, +0 says more than n+». For example,

k
we can leave one interval intact and subdivide the others so
that n-»« yet maxAxk doesn't approach 0.

S & S w e
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Technically speaking, such a region, not being "enclosed,"
has no area. However, since a line having no thickness has
no area, we could "close up" the region and still talk about
area. That is

To be sure y = £(x) is not single valued at the "jumps"
of y = £(x) but while y = £(x) and y = f(x) are different
curves they enclose the same area.

(6) If we think about the concept of net area rather
than total area we may even remove the restriction that f(x)
be non-negative. For example, if

Then f(ck) < 0 for any ¢, € [c,d]. Thus for this part

of the partition f(c, )Ax, is negative. More specifically,
P %k’ ¥k
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n

the idea is that in this case if we form lim jz
maxﬁxk+0 k=1

R R R, °

f(ck)Axk we find A + A - A
1 3 2

In summary, then, the ancient Greeks may be viewed as
the fathers of integral calculus in that they were the
first to come to grips with an expression of the form:

n

lim z f (ck) Ax
n-)m
k=1

To be sure, their usage of such limits were restricted
to geometry in the quest for areas, volumes, and arc lengths.
In the more general sense, such sums can represent more
"practical" physical concepts such as distance, velocity,
work, etc. These ideas are developed in the text in great
detail, and we shall treat them in due course. For now, it
is our purpose only to emphasize that the concept of integral
calculus as the limit of an infinite sum requires no a priori

knowledge of differential calculus.

With the hope that this point is very clear, we devote
the remainder of this chapter toward showing the wonderful
relation between integral calculus and differential calculus.

C. Area as a Differential Egquation

While it may not be apparent, at least at first glance,
why one might have been motivated to "invent" integral
calculus as a sequel to differential calculus (had differ-
ential calculus been invented first), it is not difficult to

imagine how one might have been motivated to "invent"

i A a

£

S s m



E

-m

1

f

T

]

f

3

iy

VIII-27

differential calculus as a natural consequence of integral
calculus (although this did not happen in the true course

of events.)

For example, let us again imagine that the function £
is continuous and non-negative, and merely for the sake of
convenience we shall assume that the domain of £ is the set
of all real numbers. We consider the region R which is
bounded above by the curve y = f(x), below by the x-axis,
on the left by the line x = Xy where X is a specifically
chosen constant for our investigation (had the domain of
f been [a,b] then X would have been restricted to this
interval but otherwise nothing different would occur), and
on the right by the line x = t. It is clear that the size
of R depends on t and hence that the area of R, AR' is,
therefore, a function of t. Thus, it is not at all far-
fetched to ask how the area changes as t changes.
Obviously, the change is negative if t decreases and positive
if t increases. For the sake of simplicity, however, we

shall investigate how the area increases as t increases.

Before continuing, let us pause for a mcment and
observe that if the non-negative restriction on f is
removed, our investigation remains the same, provided only
that we replace "area" by "net area" in accordance with our
remarks of the previous section. Notice also, as we dis-
cussed in the previous section, that the continuity require-
ment on f can be weakened to the extent that we need only
assume that f is piecewise-continuous. At any rate, we have:

Y y = f(x)

X i
o t

- (Figure 1)
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Let us denote the area of R by A(t) rather than by AR

in order to emphasize that the area is indeed a function of

t. We could then have discussed (as we did in our treat-

ment of differential calculus) the change in A as t changed

from tl to tl + h, denoted by A(tl + h) - A(tl), from which

we could have proceeded to a discussion of the average rate
A(tl + h} = Af{ty)

of change h L , and finally to the limit of

this quotient as h approached zero. In this way, we would
have "invented" the concept of A'(t); and it is in this sense
that differential calculus could have been a sequel to what

was called integral calculus.

Now,

=2
I

At

(Figure 2)

A(tl+&t) - A(tl) denotes the area of the region S which we
have shaded in Figure 2. Let m denote the value of

X € [tl, t1+At] for which f(x) is minimum. (Locating m is
trivial pictorially; from the more abstract point of view,
the existence of m is guaranteed by the fact that a con-
tinuous function on a closed interval assumes its minimum
and maximum values on that interval.) Then the rectangle

of area f(m)At is inscribed in S. Hence:

£(m)At § Ag (1)

A B Eam e .

2 . 3
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Similarly, if M denotes the value of x ¢ [ty, tl+ﬂt]

at which £ (x) is maximum then

£(M) At > Ag (2)

Recalling that Ag = AA = A(t;+At) - A(t;) we may

combine (1) and (2) to conclude

£(m) At < A(t +At) - A(t)) < £ (M) At

(m, M ¢ [tlr tl+At]) (3)
Dividing through by At in (3) we obtain

A(t,+At) - A(tl)

£(m) ¢ —— < £00* (4)

Letting At-+0 in (4), the fact that m and M are in
[tl' tl+&t] guarantees that both m and M*tl. Now, however,
since £ is continuous, we have that f£(m) - f(tl) as At-0
and £ (M) - f(tl) as At0**_, Thus if we let At-0, (4)

becomes

A(t,.+At) - A(tl)

At

1

f(tl) <€ lim

< £(t)) (5)
At+0

*Notice that we are assuming that At > 0, for if At were
negative the sense of the inequality would be changed. That
is if a < b < ¢ then ta > tb > tc if t is negative. 1In
effect, when we are finished we will not have found 1lim AA

At+0 At
but rather 1im+é§.. A result similar to (4), however, can
At-+0 At ‘
be easily obtained when At < 0 so that our final stated result
will be true.

**Notice that continuity is indeed required here. We

are saying, essentially, that lim f(m) = f(tl), and this is
m~>t
1

precisely the definition that f is continuous at tl'
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Hence:

lim
At~+0

A(tl+At) - A(tl) o B
At
and therefore:

A'(tl) = f(tl) (6)

A(tl+at) - A(tl)

where A'(tl) is, of course, 1lim XE .
At-+0

Since t, could have denoted any point in the domain of

1
f, we may remove the subscript and rewrite (6) as

A'(t) = £(t) (7)

Equation (7) gives us a rather remarkable expression for
A(t) as a differential equation. It also says that the

rate of change of area at a given instant is numerically
equal to the height of the curve above the x-axis at that
instant. At least part of this result should not come as
too big a surprise since it seems intuitively clear that
A'(t) should at least be a direct function of f(t); what may
be surprising is the simplicity of the relationship.

If we now recall our earlier treatment of the inverse
of differentiation, we may see in (7) a hint of things to
come, Namely, suppose we assume that G is any function for
which G' = £, Then, since G' = A', it follows that:

A(t) = G(t) + ¢ (8)

and since A(xo) = 0 (since a region of zero width has zero

area), we obtain from (8) that:

= — — — — —_—

i 0 A W Ea §

3

s ¢

.

b

£

£

- 2

N
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0 = A(xo) = G(xo) * &y
whence,
c = —G(xo)
and putting this result into (8), we finally obtain:
A(t) = G(t) - G(xo),where G' = £ (9)

It turns out that equations (7) and (9) are the keys
to the remarkable interrelation between integral and differ-
ential calculus.

We shall explore this relationship further in the next
section, but for now we would like to connect these last

results with the results of our previous section.

In the previous section we considered a region R
bounded above by y = f(x), below by the x-axis, on the
left by x = a and on the right by x = b and we studied AR.
Notice that R in this case corresponds to our present treat-
ment in which we let x, = a and t = b, That is, to relate
R of the previous section to the R of this section, all we
need do is observe that we may consider our area under the
curve as a function of t where t takes on all values from
a to b. Another way of saying this without reference to the
previous section is to observe that if we now pick a value
of t greater than X,r say t = Xq then

A_ = G(x

R - G(xo), G' = £,

1)

where
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Ay
y = £(x)
R
> X
xo xl
(Figure 3)

As a quick check we can re-investigate A_ where

R

Y

K
(1,1)
Y = Xg
R
Se:
0 1 .
In the last section we showed that AR = %. At that time we

n
2
used the fact that AR = lim z; Eju
n-e n
k=1

According to our newly derived result, we have that

A, = G(1) - G(0) where G'(x) = x2

1

x3

I
W+

W=

S S A S S G th e e
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It thus appears that inverse differentiation gives us
a rather neat way for evaluating sums of the form

n
lim :E: f(ck)axk. Actually, the result of (7) is
maxAx, +0

k k=1
far more important than this, and we shall continue this
discussion in the next section. For now, relish the luxury

of being able to compute AR by G(b) - G(a), G' = £ where

Je’ry:f(x

i 4
x

D. The Fundamental Theorems of Integral Calculus

The fact that a fairly involved infinite sum can be
computed rather simply by means of an inverse derivative
is a remarkable result, at least in the sense that the con-
cepts of infinite sum and inverse derivative are apparently
quite independent. For this reason, this result is given a

very special name: THE FIRST FUNDAMENTAL THEOREM OF INTEGRAL
CALCULUS.

Actually, this theorem refers to a more general situa-
tion than area under a continuous non-negative curve (even
though this is the only case for which we supplied the
rigorous details, it is not too difficult, especially with
access to the text, to supply the "missing links" for the
more general case) and it states:
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First Fundamental Theorem of Integral Calculus

Let f be piecewise=-continuous on [a,b] and let

a = X X} S el XS b be any partitioning of [a,b].
Let ¢, € [xk_l,xk] and let ﬂxk = X = Xp_q- Then:
n
lim zi f(c )&xk exists and is unique (that is, it is

maxAx, >0 K

k k=1
invariant with respect to the partitioning). Moreover, this
limit is precisely G(b) - G(a) where G' = £. Notice that

in the special case in which f is non-negative on [a,b], the
limit denotes the area under the graph of £, and this is the
case we investigated in detail in the last section.

It might also be interesting to observe at this point

b
that historically the symbol‘jﬂ f (x)dx was invented to
a
n b
denote lim f(ck)&xk. In other words,‘]ﬂ f(x)dx,
maxﬂxk+0 k=1 a

which is called the definite integral of £ from a to b, was
invented to denote an infinite sum not an inverse derivative.

The fact that we didn't get into "trouble" in our treatment

of inverse derivatives when we wrote

b b
f f(x)dx = G(x) , G' £
a

a

is equivalent to the result stated in the first fundamental
theorem.
Also, in this same context, notice how u[;S an

"elongated S" is a rather logical symbol (if symbols need

be logical) for denoting an infinite sum,

E® £

[

t

i
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Aside from the fact that the "integral sign" is better
motivated in terms of an infinite sum rather than as an
inverse derivative, there is yet another flaw in trying

b
to view‘fa f(x)dx as meaning G(b) - G(a) where G'(x) = f(x).
a

b

The point is that as an area the number‘/ﬂ f(x)dx may exist
a

independently of whether we can exhibit a function G for
which G'(x) = f(x).

't
For example, let us consider Jﬂ %% (t > 1). We could
1
t
certainly say that‘jq %E = G(t) - G(1) where G is any
1
function for which G'(t) = %. The problem is that, at least

at the present stage of our course, we cannot explicitly
produce a function G such that G'(t) = %*.

o
On the other hand,'jﬂ %? is exactly the area of a
1

region R where:

*In a "revisited" course such as ours there is the danger
that we anticipate the function G for which G'(t) = %—since
we have learned it when we first took the course. Should

o t
2
this be the case, replace‘]ﬂ %? by, say,‘/ﬂ e® dax or
. 1 1

£
sin x .
‘jﬂ = dx. These latter integrals lend themselves to
3

€

the same discussion as‘/ﬂ %? but they are not integrals
1

that were "solved" in the usual calculus course.
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Certainly we are not about to argue that R has no
area merely because we do not know a function G for which
1

G'(t) = EI

b
In summarytlu f(x)dx, where £ is continuous on [a,b],
a

is a well-defined number which can be found as a limit of

a sum (or if worst comes to worst, can at least be approxi-
mated to as a great a degree of accuracy as we may require)
regardless of whether we can exhibit a function G such

that G'(x) = £(x). To be sure, if we can exhibit G then

b
h{, f(x)dx can be computed very conveniently by G(b) - G(a).
a

(Even if we can't exhibit G explicitly, it is still correct

b

to say that‘]ﬂ f(x)dx = G(b) - G(a), but now we are not
a

helped at all because we dont' know more about G.)

Of even more importance, notice that in computing
the area we actually explicitly produce a function whose
derivative is f. Namely, (7) yields the desired result.
That is, to find a function whose derivative is f(t) where
f is piecewise continuous, we need only consider the region
R, where

Il B EBa

1
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¥
vy = f(x
! >— X
xo t
£
Then A(t) (= AR) =‘fﬂ f(x)dx, and as we have seen
%5
from (7) A'(t) = £(t).

For example, to construct a function G for which

L o
G'(t) = % (t > 1), we compute‘/ﬂ %? = A(t).
%o
By (7)
t
& dx | - 1
dt 5 X £

It is extremely important to notice that A(t) gives
us more than just the name of a function whose derivative
is ¢°1, Namely, A(t) can be computed either exactly or
to as close an approximation as we wish in terms of area.
In other words, A(t) provides us with an explicit expression

for a function whose derivative is the desired function.

Let us notice also that the function A(t) as we con-
structed it is not unique! The reason is that we chose
the initial point X, at our convenience. If we change X
we can still talk about A(t) but all we are saying is that
A is actually a function of both t and Xoe How does
changing X change the property of A(t) that A' = £f? The



VIII-38

answer is that it doesn't. To see this more intuitively,
let us use the result of the first fundamental theorem as
well,

=
We observe that‘f‘ f(x)dx = G(t) - G(xo) while

X
o]

t
f(x)dx = G(t) - G(Eo) where G' = £,
L
Now in either case the derivative of the right hand
side is G'(t) = f(t); hence, our assertion follows.
t
By the way, the fact that‘f; f (x)dx depends on X

&)
t

allows us to think of‘jﬂ f (x)dx as being an indefinite
%o

integral in the sense that the derivative will be f (t)

regardless of the choice of X, but A(t), for a given t,

changes by a constant as we change X Pictorially:

t
f(x)dx andijq f(x)dx is
X
o

The difference between Jﬁ
X

precisely Ag.
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In any event, our discussion can now be summarized as
follows.

Second Fundamental Theorem of Integral Calculus

Let f be piecewise continuous on [a,b] and let

t g ]

G(t) =f f(x)dx for t ¢ [a,b] (where nowf f(x)dx
a a

denotes a particular infinite sum, not an inverse derivative).

Then G is differentiable on [a,b] and in particular
G'(t) = £(t) for each t € (a,b).

In summary, the two fundamental theorems show us how
integral calculus and differential calculus are related. By
the first theorem we see how certain infinite sums can be
evaluated if we know enough about inverse differentiation,
and by the second theorem we see how we can find inverse
derivatives by computing suitable infinite sums.

The remainder of this block is devoted to applying the
principles of this chapter to various "real" situations. We
shall leave the further development to the text, exercises,
and lectures. Our hope is that these three sections have
provided the underlying threads that unite integral and
differential calculus, and that we now fully understand that,
conceptually, these two branches of calculus, while marvel-
ously related, are still independent.






Chapter IX
LOGARITHMS REVISITED

A. Logarithms Without Exponents

In our earlier treatment of trigonometry, we stressed
the fact that one could have invented the trigonometric
functions even if there had been no such things as angles.
Later we showed that there was a natural relationship
between the "new" trigonometry and the "traditional"
trigonometry. In this chapter, we shall do a similar
treatment of logarithms. More specifically we shall show
how logarithms could have been invented entirely within the
framework of calculus, and in the next section we shall

show how the "new" approach is actually completely equivalent

to the old. Our main hope is that the "new" approach will
give us a new insight into the nature of logarithms and
make us feel a bit more at home with them. In particular,

we hope to make the base of the natural logarithm system

seem really natural.

Since it is often helpful to introduce a new concept
in the form of a meaningful physical situation, let us
consider the following plausible situation. In a certain
experiment, it is observed that the rate of change of a
certain quantity is proportional to the amount present. It
is our wish to express the amount present at any time by
an explicit mathematical formula.

The point is that we have a rather simple differential

equation that tells the story. Namely,
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= km (1)

o &

Separating the variables in (1), we obtain

a[g

= kdt (2)

If we integrate (2), we have that:

m

The interesting point is that, while there is nothing
at all strange about the situation depicted by (1), it turns
out that the resulting solution (3) requires us to come to
grips with an integral which, at least at the moment, is
one that we have not learned to handle.

In fact, from another point of view, notice that
= is the form x'dx with n = -1. Thus, whether it is
to solve (3) or to find a formula for fxndx when n = -1,

we are required to construct a function, which we shall for

now denote by L, such that L'(x) = %.

From an intuitive point of view, the most obvious
"evidence" that such a function exists lies in the realm
of differential calculus. Specifically, if we are told to
sketch the curve y = L(x) where L'(x) = 1/x, we have at
once that L" (x) = —l/xz. This tells us that we know the
slope and the concavity at any point on the curve, and this

L

1
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is certainly enough information to sketch the curve up

to the constant of integration; that is, as usual, once
one curve fills the bill, an infinite family also does.

In this case, once we find one curve of the form y = L(x),
any other curve y = L(x) + C will also fill the bill.

In fact, if we restrict the domain of L, for the moment,
to positive values of x (the main thing is that we do not
want x = 0 in the domain of L since 1/x and -l/x2 are not
defined for this value of x), we see almost at a glance that
our function L has the form

(Figure 1)

Of course, while the differential calculus approach
makes the existence of L plausible, it is not too conducive
towards making a more "exact" quantity out of L. 0QOne way
of constructing L is through the second fundamental theorem

of integral calculus. What we do in this approach is pick



a number ¢ which is greater than zero. We then can define

L(x) by:

c
Clearly L(c) =.f- 2; 0 and by the second
e

fundamental theorem L' (x) = %.
Pictorially,

Y

AN

X
L(x)=A(x)= dt
% EN

c X

(Figure 2)

Why will L ultimately be called a logarithmic function?

To begin with,a function f is said to be logarithmic if for
f(x) + £(y). Notice that
this describes "ordinary" logarithms since for any base b,

all x and y in its domain, £ (xy)

logb(xy) = logbx + logby. As we shall see, every computation
that makes use of ordinary logarithms takes advantage of

this single property. The main question for us, however, is:

R |
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what does all this have to do with our function L? To
answer this, we shall show that L is, at least, "almost-

logarithmic." What this means is the following. Let us
see how L(ax) and L(a) + L(x) are related. If it were to
happen that for each constant, a, that L(ax) = L(a) + L(x),

then, by definition, L would be a logarithmic function.

Now, we know that L'(x) = 1/x. This is precisely the
definition of L. By use of the chain rule, it follows
that

dL(u) _ dL(u) du
dx du dx

- i 2 (4)

u dx

From (4) it follows that, for the case u = ax,

dL(ax) _ 1 e Al
=5 (af)a'z G
On the other hand,
d(L(a)+L(x)) _ 1 : ;
= = £ (since L(a) is constant) (6)

Keeping in mind the corollary to the mean value theorem,

a comparison of (5) and (6) shows that L(ax) and L(a)+L(x)

can differ by at most a constant. Thus:

L(ax) = L(a) + L(x) + C (7)
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To evaluate the constant in (7), it is quite judicious to
let x = 1 since we can then cancel the L(a) terms in

equation (7). With this in mind, we find that (7) becomes:

L(a) = L(a) + L(1) + C (8)

From (8) it follows that C is zero if and only if
L(1) = 0. 1In other words, L will be logarithmic (from (7))
if and only if L(1) = 0.

Armed with this information, we now add the following
restriction to our sought-for function L. Namely, we now
require, as before, that L'(x) = 1/x, but now we also

require that L(1) = 0. We shall give this particular member

of our family a special name. We shall call it 1ln x (where

ln is read as the natural logarithm).

As far as we are concerned, at least in this section,
it is not necessary that logarithm refer to exponent. That
is we use the word logarithm to indicate that 1ln has the
general logarithmic property, and we use the word natural
to indicate that the birth of 1ln came from a rather common

occurence of nature - that the rate of change was proportional

to the amount present.

In summary, then, 1ln is defined as follows:
(1) the domain of 1ln is the set of positive real numbers

(2) for any positive x,

d(ln x) _
— =

Wl

[

3
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(3) In1 =0

Pictorially:

/=1n X
, X or

N

(Figure 3)

Let us now turn our attention to common properties
shared by all logarithmic functions (including, of course,

ln x).

Recall that the only property required of f to be
logarithmic is:

£ix) + £ly) (9)

[l

f (xy)

Property #1

Fix2] = 2£{x)

Proof:

Let x = y in (9) - That's it!




IX-8
Corollary
For any positive integer n, f(xn) = n f(x)
Proof:

Use Induction on Property #l. More informally,

£f(x™) = flxex...x] = £(x) +...+f(x) = nf(x)
LW'—’ L o )
n times n times

Property #2

If x = 1 is in the domain of f, then £{(1) = 0.
Proof:
Let, for example, y = 1 in (9)'

We obtain:
f(x) = £(x) + £(1)

whence, £(1) = 0

Property #3

If % is in the domain of £, then f(%) = -f(x)
Proof:

Use (9) with y = =. Then:

f(x-%) = f(x) + f(%)

1

wl=

at the same time, since x-% =1, f(x-;) = £(1) = 0 (Property #2)

il S a E s
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f(—) f(xy) f(x)-l-f(y) £(x) - £(y)

The point is that, by and large, these properties of
logarithmic functions are what we use in computations. 1In
this same vein, since 1ln has these same properties, we can
use the natural logarithm to aid us in calculus computations.
Specifically, by the use of 1ln we can convert products to

sums, quotients to differences, etc.

By way of illustration, let us rederive the quotient
rule using the natural logarithm. Suppose we are given that

y = % where u and v are differentiable functions of x. Then

u u *
Y - = lny = 1n(§)= lnu-1lnv (Property #4)

:. Qé%ﬁi) = é% (lnu-1nv)

LoyEed

9k

o
v

e

Technically speaking, ln u requires that u>0. If u<0
we can ignore the minus sign until the end of the problem, just
as in our treatment of traditional logarithms. For example to
compute (2) (-3) by base-ten logarithm, we might let N=(2) (-3)=

-1[(2)(3)]. We would use logarithms to compute 2x3 and then

affix the minus sign.
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dy _ y du _y dv i a =
dx u dv v dx ' and since y v '
%1 _1ldu _u dv
X v dx 2 dx
du _ dvy
_ vV Ix U ax
v2

We shall save other computations for the exercises.
For now, we would like to make mention of the rather special
number, e, which either directly or indirectly, suggests
itself here.

The idea is that if 1ln has genuine logarithmic
properties it must also possess the analog of a base. Notice
that in base b, b is characterized by logbb = 1. In this
context, let us define e by 1In e = 1. In this way, we
make an artificial connection between ln x and logex (which
we shall explore in more detail in the next section).

Geometrically, the number e is defined either by

Y
A
y = 1ln x
. . /
Y
) X
/A e
(Figure 4)

or

G S By S S G S b S S E S E EE Eam

e e

L2




N S h N G bn EBn D b ew e

- BN um e

s m i,

IX-11

or by

.
rd

(Figure 5)

From Figure 5 it is easy to show that the number e
defined by 1In e = 1 indeed exists. 1In fact, for the same
price we can show that

2 < e < 4

Namely,

ln 2 = A(R)

1(%)< A(R) < 1(1)

%—<ln2<1 (10)
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In particular, 1n 2 < 1 (11)
On the other hand 1ln 2 > % + 2 1ln 2 > 1, but

2 1n 2 = 1n 22 = 1n 4 (Property #1)

In 4 > 1 (12)

Combining (11) and (12) with the fact that ln e = 1,

we obtain:
ln 2 < 1ln e < 1n 4 (13)

Finally the fact that 1ln is 1 - 1 and increasing,
allows us to conclude from (13):

2 < e < 4
(Notice how we need the 1 - 1 property here. 1In

general f(xl)<f(x2)<f(x3) tells us nothing about the

ordering of X1 Xy and X3. For example,

in the above diagram f(xl)<f(x2)<f(x3) but it is neither true

that xl<x2<x3 nor xl>x2>x3.)

Gl S S A O S E m s
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In Summary,

The function y = 1ln X is a natural outgrowth of the
problem g% = km. In fact, the solution is precisely

...J’@=kt+c
m

- *
- 1ln|m| =kt + ¢

Without the physical application, we have

At no time during our presentation are we required
to acknowledge the traditional concept of logarithms. 1In
the next section, we shall attempt to unite the "new" and
"o0ld" logarithms.

*
Again ln x requires that x be positive. If X<Oﬂlé§ makes
sense but 1ln x doesn't. In this case we argue as follows: If

%<0 then x = -u where u>0. Then dx = -du
... d_xzfﬂ P fé&: ln u + ¢ (since u>0)
X -u u
= 1ln(-x) + ¢, but x<0~+|x|= -x
‘. dx_ 1n|x|+c
X
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B. A Note on the Connection Between ln x and logex

For those of us who would like to see a more concrete

demonstration that 1ln x = logex, we may use the following

approach. Let f(x) = logbx where b is some arbitrary base

and logbx is the "traditional" logarithm.
Then, as usual:

-

lim | 199p (%1+Ax)-logyxy

£1(x1) = ax»0 %3 L
Now:
x1+&x
logb(xl+ﬁx)-logbxl = logy %
_ Ax
= logb(l * g) (2)
Putting (2) into (1) yields:
‘ Ax
: + =
£'(x,) = lim IOgb(l Xl)
1 Ax~0
Ax
1
_ lim 1 Ax
= aml & log, (1 + 5{-1-) (3)
Then recalling that c logbu = logbuc, we may rewrite
(3) as:

Bl 0SS A e S E b m
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" Ax
£1(x lim | 3o (1 + éﬁ) (4)

1) = Ax>0

(Using hindsight in the sense that we suspect that

f' (x) should involve %, we might be tempted to try a sub-

Ax

stitution such as u = — in the hope of obtaining %, as

a factor.) 1
. _ Ax _ 1 _ 1
Letting u = EI we have Ax = ux, Or —jp= = X, , and
also that u+0 as Ax»0. Putting these facts into (4), we
find:
5
lim By
1 —_
£ (xl) = 50 logb(l+u)
ﬁ
1 N1
_ lim u \x
= ide logb (1+u) i i (5)

Equation (5) gives us our chance to obtain % as a factor.

Namely i

1

X

i 1
Hence, (5) becomes

1
_ lim| 1 u
£'(xy) = | sy logy (1+w) (6)

and since X, is a constant, (6) becomes:

1
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1
_ 1 1lim u
fl(xl) = ;I us0 logb(l+u)
*
1
_ 1 lim u
= EI log 10 (1+u) (7)

Among other things, equation (7) shows us that the
basic limit problem in developing the calculus of traditional
logarithms lies in evaluating

1
lim u
oo (1w (8)

In essence, this limit is to the development of
logarithms what iig 55%—5 was to the development of the

(circular) trigonometric functions.

When f and g are continuous, iiﬂ f(g(x)) = £(1im g(x)).
x+a
lim B . . lim _ lim
Namely, S g(x) = g(a) implies that oo f(g(x)) = g (x)+g (a)
= f(g(a)) = £(limg(x)). While we may be tempted to interchange

X~+a
the order of operations as it suits us, we must learn to be
cautious (as we shall see especially in Block VII) and to
make sure that the interchange is valid.

flg(x))

i

T

g

i

¢

1
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To maintain our flow of thought here, let us assume,
without taking time out to prove our assertion, that the
limit in (8) exists. As an interesting aside, let us observe
in (8) that if we "illegally" replace u by 0 we wind up with
1” which is another indeterminate form.

At any rate, again using hindsight, let us define the
number e by:

1

lim u
€ = 50 (1+u) ~(9)

Using (9) in conjunction with (7) we now have the
following fundamental result:

Let £(x) = log, x (x>0). Then f is
differentiable, and, in particular

£'(x) = % log, e (10)

Equation (10) now tells us how b must be chosen if we

desire that f'(x) = %. Namely, from (10) f'(x) = é if and

only if logbe = 1, and this in turn requires that b = e.

E3
It is sometimes difficult to think of 1° as being
indeterminate since we might view 1 = 1x1xl... . If this

were the case 1~ would equal 1. The fact is, however, that i
was arrived at by looking at an endless product whose factors
approached 1 as a limit. For example, in regard to (8) if we let

u=0.01, (l+u)1/u = (1.01)100. Granted that 1.01 is near 1

it is still greater than 1; hence, raised to the 100th power,
it might bf Sppre01ably greater than 1. 1In fact, if
N = (1.01) , then log; N = 100 1log,,1.01=100(.0043)=0.43

‘e N= 2.69
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We are now ready to identify ln x with 1ogex. More
specifically, both ln x (as seen in the previous section)
and logex (as seen from (10)) have % as their derivative.
Hence, they differ by a constant. That is:
In x = ldgex + c (11)
Letting x = 1 in (11), we find

In 1 = logel + ¢ or0=0+c

. c =0 and (11) becomes:

In x = logéx g : (12)

The connection between ln x and logex may now be

stated as follows: Suppose we seek a function L(x) subject

to the two conditions (1) L(1)=0 and (2) L'(x)=x, x>0.
Then:

L(x) = logex

i Bm |

8

¢ 1

£

&

L 3

]

¢

E
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In summary, let us observe that in the previous section
we named the above L(x) by ln x and in this context there was

no need to understand traditional logarithms. In this section,

we showed that we might just as well talk about traditional

logarithms since 1ln x was a synonym for logex.
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As a final note on this topic, let us observe that the
choice of e was not crucial other than in the sense it helps
us avoid keeping track of a cumbersome constant. For
example, if y = 1oglox then %E = % logloe = ; where k in
this case equals logloe or approximately 0.43. No matter
what the base b, if y = logbx then g% = fl , wWhere cl=1ogbe
This, in turn, yeilds the equation *

dx _ dy _

which is basically the same form as before.







Chapter X
Sequences and Series

A. Introduction.

The concept of infinity defies our intuition, if only
because our intuition is unable to tell us about infinity.
That is, every man-made operation is finite, and we tend
to associate infinity with an extremely large but finite
number. Yet, unless we are extremely carefui, we get into
tremendous difficulty if we do not separate the concepts

of extremely large and infinite.

For example, let us denote by M an extremely large
number. Perhaps M would take several years to write if
we were to use place value notation. But, no matter how
large we choose it, M would be followed by M + 1, M + 2,
etc., and we would be no closer to the "end" of our num-
ber system than when we started. 1In fact, it seems that we
are still at the beginning of the system with M as our new
reference point. In other words, perhaps the first point we
should come to grips with is that no matter how large a
finite number we have, it is no "nearer" to infinity than
one at the beginning of the number system. In still other
words, compared with infinity, any finite number is "small."

We may illustrate this point in other ways. For example,
it is intuitively clear to us that there are as many even whole num-
bers as there are odd whole numbers. Suppose we now agree to
- kist the whole numbers by starting with the first two odd num- -
bers, then the first even number, and continue in this way.

We obtain

LeBr2sDsil v 449,11 ,6,13,15,8,:17:19,10,21,23,L2; s
Notice that, no matter what even number we stop at, there

will always be twice as many odd numbers in our list as
even numbers, AND YET WE WILL NOT RUN OUT OF ODD NUMBERS



BEFORE WE RUN OUT OF EVEN NUMBERS. The paradox that there
now seem to be twice as many odd numbers as even numbers

is immediately resolved if we observe that we said "no
matter what even number we STOP at." 1In other words, hope-
fully, this example shows the difference between going

on FOREVER and going as far as we want provided that we
eventually stop. Notice that the variations on the theme
here are endless. We could have "proved" that there were
twice as many even numbers as odd ones by writing

2,4,1,6,8,3,10,12,5,.c...
or that there were five times as many odds as evens by
writing

1,3,5,7,9,2,11,13,15,17,19,4,....
etc.

In terms of ordinary arithmetic, we can also show
the difference between large and infinite. For example,
in adding any finite set of numbers we may change the
order of the terms (in the "new" language, addition is

commutative) , and once the terms are in a given order we

can group them in any way we wish (addition is associative).

The amazing thing is that these properties, as "self-evident"

as they may seem, are not always obeyed by infinite sets
of numbers. As a simple illustration consider the sum

1L+ (=1) + 1+ (=1) + 1 + (=1) + eeue
If we assume the "voice inflection" (grouping)
(L + (-1)] + [1 + (-1)] + [+ (-1)] + «c.o
we obtain 0 as our "sum."
On the other hand, if we use the grouping
14 [(=1) + 1] % [1=1) + 1] * ssus

we obtain 1 as our "sum."

4
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There is no contradiction here. Rather, what we
have shown is that the sum of an infinite amount of num-
bers may well depend on how the numbers are grouped.

As a final example, let us consider the notion of
dividing one polynomial by another. As a specific illus-
tration, let us divide 1 by 1 - x. If we carry out the
division through n steps we find that

n+l
1 = 2 n X
TR =l ¥xdR & sse X Y T3 (1)

The point is that equation (1) is true for any value
of x, no matter how great n is, provided (as we have done)

we eventually stop and "tack on" the remainder term.

For example:

100
1 = 2 99 X
I—_-i— l +x + x + wsa T X +m .

On the other hand, if we were now to carry out the divi-
sion forever (that is, without ever stopping and "tacking
on" the remainder term), we would obtain:

li-x=l+x+x2+x3+...+xn+-c.- (2)

But equation (2) is no longer an identity. For
example, if we let x = 2, the left hand side of (2) becomes
-1 while the right hand side becomes 1 + 2 + 4 + 8 + 16 + ...
or infinity.

At any rate, it should now be clear that if we are to
come to grips with the arithmetic of infinite sets of num-
bers we are going to have to "revisit" the elements of
finite arithmetic in order to decide what remains valid
and what doesn't, and this will be the concern of the re-
mainder of this chapter. As to why we would want to invest-
igate "infinite arithmetic," it is hoped that our previous
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experience in the course, especially with regard to the
infinite sums defined by definite integrals, is sufficient

to make the answer to this query obvious.

B. (Infinite) Sequences.

In most of the important mathematical operations, we
utilize the fact that we may accomplish our mission in a
finite number of steps, even though this finite number
might be very large. For example, suppose we wanted to
arrange a billion numbers according to size. To find the
smallest we could compare the first two members and dis-
card the greater. We could then compare the "survivor"
with the third member and again discard the greater. We
proceed in this way making a billion (less one) compari-
sons, and the last "survivor" is the smallest number in
the collection. We could then, of course, repeat this pro-
cedure with the remaining numbers to find the next smallest
number, etc., but the key point is that while it might
take a long time to arrange these billion numbers, it can

be done and in a finite number of steps.

The crucial point is that the above procedure does
not apply to infinite sets, since we never run out of
elements to be compared. Notice, especially in terms of
some earlier remarks, that this is a much stronger state-
ment than saying it might take several years to complete

making the necessary comparisons.

In other words, the problem with infinite sets is
that, by definition, no matter how we elect to order the
members, there is no last member. Yet, somehow or other,
we would like to have the analog of a "last term" even
when we deal with the problem of ordering an infinite set.
(By the way, when a set is arranged so that its members
appear in a given order, we refer to the elements in the
given order as a sequence. In particular, an infinite
sequence is a listing on an infinite set.)
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While we shall, in a moment, talk about this more
generally, notice that we come to grips with this pro-
blem in our study of area when we form areas with in-
scribed and circumscribed rectangles. We called these
sums L_ and Un respectively, and we then investigated
what happened as n was allowed to increase without

bound. It was in this context that the notations lim U
n-»c
and lim L, were introduced, and our definition of limit

was Such that, from a practical point of , it played
the role of a "last term! We can generalize this notion

without reference to area.

For example, suppose a, denotes the nth element of

set A where Ay = % ; n any positive whole number. Accord-
ing to the implied listing A1r 857 Ags eeey Apgee. WE
have
‘ 1 L. L .1 L
A = {l' i; 3‘, Z, '5'; CRCIE A ] H' .- e } -

Notice that according to our above listing, A has no

last member. To be sure lim % = 0, but 0 is not the last
n-+w :
term in A if only because 0 ¢ A! That is, there exists
1

no whole number n such that - 08 2 1%

Here is where the notion of limit helps us resolve

the dilemma of a "last term" for an infinite sequence.

Namely, with respect to the given example, lim B, = lim %

Nn-»oco IN->co
This, in turn means that if we choose any positive number

e and look at the interval (=-e, €),

Ll b gty s A
T.ffffé!ff’” .
E -

That "after a while" every a, belongs to (-e¢, €). By
"after a while," of course, we mean that, for the given
€ , we can find a number N such that n > N implies

a € (e, €). How large N must .be depends on the size

0.
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of €. The important point is that, no matter how small
we choose €, the desired N is still finite even though
it might be very large. For example if we desire that

(0 <) % < 10_6 then we must choose n > 106. In other

words, all but the first million terms of {%} belong to
-6

(=10

we are concerned with infinitely many terms.

, 107°%) and a million terms is "negligible" when

To explain this idea further, suppose we wanted to
"keep our eye" on every term of the sequence {%} .
Picking, say, € = 10 ° we have:

"only™ {1; %, & —lg} are not in here
10

= |

(At}
-10°°® o 1o

-6 .

In other words we now have'{%} "under surveillance"

in the sense that we have a finite number of specific

terms (namely 1, %, e —lg ) and the "rest" of the

10
terms squeezed into the "narrow" interval (=10~%, 1075).*

In fact, if we wish to get more geometrical in our
approach, we may again talk about dots versus points.

Notice that (-10_6, 10—6) may be viewed as a dot (a "thick

point") while 1, %, %, wis w g —ig may be viewed as points.

10
Thus, the concept of limit allows us to replace infinitely

many points by a finite number of points plus one "dot,"
with the actual finite number of points being dependent
upon the thickness of the "dot." (The "dot," of course,
is the geometric analog of the e-neighborhood of 0 .)

More generally, by way of review, a sequence {an},

lim a, = L (or that the sequence {an} converges to L).
N

I 3=

*Notice in this example that n > 0 implies that > 0
Thus no a, is in (—10-6, 0). However, since (-10 6, 10—6)

contains (-10"%, 0) as a subset no harm is done by our

notation.

E

E
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means that for each € > 0 we can find a number N (which,
in general, depends on ¢) such that n > N— [a - Ll ©& .

Pictorially,

After a certain term (the "Nth")
all the rest-are in (L - €, L + €).,

In other words, to find upper and lower bounds for

the convergent sequence'{an} (recall that if lim a_
n-o

exists we call the sequence convergent), we need only
check the finite* sequence of numbers:

al, a2' seeyp a L"'E;L'i'g. .

nf
We shall explore some of these ideas more computa-
tionally in the exercises, but for now, as long as we
have come this far, we would like to establish a few
precise definitions and notions about bounds - especially

those which will be of help to us later in this chapter.

In what follows, let S denote any set whose numbers

are real numbers.

Definition 1

M is called an upper bound for S«—s <M, for all
s € S .

*Notice that it is crucial that only a finite number of
terms be outside the interval (L - €, L + €). This is
much stronger than saying infinitely many terms are in
(T - €, L + ). For example, in the sequence 3
1,-1,1,-1,1,-1,... infinitely many terms lie in (ﬁ, 5):

namely, each odd-numbered term is 1 and % <1l < % . Yet,

infinitely many terms also lie outside this interval,
since =1 ¢ (%, %).



Definition 1!

m is called a lower bound for S «—>m < s for all
s €8 .

Definition 2

S is said to be bounded above if it has an upper

bound, (Notice that not all sets are bounded above; for
example, since there is no largest whole number, the
whole numbers are not bounded above.)

Definition 2!

S is said to be bounded below if it has a lower
bound. (The set of negative integers is not bounded
below.)

Definition 2"

S is said to be bounded if it is both bounded above
and bounded below. More symbolically, S is said to be
bounded if there exists mumbers m and M such that
m £s €M for all s € S .

Note:

The notion of bounds is trivial for finite sets.
For example, if S has N elements, we may arrange them

according to size, say,

( {I.-
a \az.\ -saN_lsa

& N

whence a; is a lower bound for S and ay

for S. Indeed, S is bounded since

a; £s < aN for all s € S :

In the case that S is finite, as above, we can even
go one step further, Namely, any number less than ay
cannot be an upper bound for S (since ay is in S and ex-

ceeds it) while any number greater than a, cannot be a

is an upper bound

i i
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lower bound for S. This leads to:

Definition 3

M is called a least upper bound (lub) for S if
(a) M is an upper bound for S, and

(b) if K <M then K is not an upper bound for S.

Definition 3'

m is called a greatest lower bound (glb) for S if
(a) m is a lower bound for S, and
(b) if k > m then k is not a lower bound for S.

Pictorially:
at least one at least one
member of S member of S is
is in here in here
no member of S no member of S
is to the left is beyond (to
of m the right of)
/
m K KM
glb for S lub for S

These results are not so obvious for infinite sets.
In fact we have already seen that infinite sets need not
be bounded, either above or below. In terms of addi=-

tional examples, consider:

s = (0,1) = {x: <0 <x <1} .

Clearly, if M > 1 then M is an upper bound for S, while
ifm €0, m is a lower bound for S. It is also easy to

see that any number less than 1 is not an upper bound
1 is the 1lub for S

for S. Therefore 0 is the glb for S .

Yet neither Onor 1 belong to S! In other words for an
infinite set the least upper bound and/or the greatest
lower bound need not belong to the set itself.
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The basic idea that we shall invoke here as an
axiom stated without proof, but which is self-evident
for finite sets, is:

If S is bounded above (below) then it possesses
a least upper bound (greatest lower bound). However,

neither the lub nor glb need be members of S.

We shall return to these concepts later.

C. Cauchy Seguences.

In a manner of speaking, this section should have
been included as part of the previous section. Our text-
book, however, does not treat this particular topic, and,
as a result, we felt that because the material is new,
it should be accentuated in the form of a separate section.

The key point that motivates this section is the
fact that there are many times when we want to know that
a sequance converges, even if we do not need to know
what the limit is explicitly. For example, in terms of
a trivial but real-life illustration, we often have to
use /2 in some type of computation, and we must express
it in decimal form. Now /2 cannot be expressed explicitly
as a decimal, but it can be defined as the limit of a
sequence of rational numbers. Namely, 1, 1.4, 1.41, 1.414,
1.4142, ..... each approximate ¥2 to one more decimal
place, and by one technique or another, we can compute
each succeeding member of the sequence. The point is
that since we know that the sequence converges to V2,
we can "chop off" the sequence anywhere we want, once
we are certain that we have the desired degree of accuracy.
Thus, i1if we determine that we do not need more than two

am 3

{
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decimal places, it is of little consequence that we can-
not compute V2 exactly as a decimal, since in our appli-

cation it would be indistinguishable from 1.41 .

If we desire a less familiar and, hence, more chal-
lenging application of this idea, we may consider the
following sequence:

al ™ l' a2 — l E' a3 m— 1 2 + 3’ a4 o l 2 + 3 a‘ LI

Q (—l)k+l *
a, = 5 HH— .
k=1

In this case, our sequence becomes

;L 5 7 41
l?r g‘r ﬁr QP s

Let us convince ourselves that the given sequence
converges. Perhaps the easiest way is geometrically,

in terms of the number line. We have:

1 7 47 5
0 1Tz WE 1
32 a4 a5 a3 al

While we haven't proved the validity yet (but the
proof is intuitively obvious as we shall soon see), a

pattern seems to be emerging. The odd numbered term =

*While it may look complicated the factor (—1)k is a
"sign-alternator." That is, (-1)K is -1 when k is odd
and +1 when k is even. In our example, we want the
positive terms to occur in the odd-numbered positions;
that is, when k =1, 3, 5, ... We merely observe that
when k is odd, k+1 is even. Thus, (-1)X*l is positive
when k is odd and negative when k is even.
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aj, a3y g, e form a decreasing sequence (i.e., the
points a,, a3, ag, ... MOVe "steadily" from right to
left) while the even numbered terms form an increasing

sequence. Moreover, these two sequences are "segregated"

in the sense that no odd numbered term ever comes between

two even numbered terms and vice versa.

That is,

N
7

l vss By 8p 83 Ay
1

£
-

"no man's land"

Finally, notice that, since we go from a, to a

n+1l
. . i : . 1
by adding or subtracting E—:fi;and, since iig T " 1

the size of our "no man's land" approaches 0 as n approaches
infinity. That is, there is some number (point) L to

which the sequences ajr A3r 8gy ees and Aoy ur Bgy een

both converge, and this number L (even if we can't express
it explicitly) is the limit of our sequence.*

To see this result from another point of view, notice
that, because of the alternating signs, each even numbered
term must appear to the left of the immediately preceeding
odd numbered term (since we subtract the even numbered
terms), and, similarly, each odd numbered term must appear
to the right of the immediately preceeding even numbered
term. Moreover, since % decreases as n increases we see
that each "shift" (in magnitude) is less than the previous
one, and this is why the odd-numbered and even-numbered

sequences are "segregated." That is:

*We will prove it later in this chapter but the limit of
1 5 n (—l)k+l .
our sequence 1, Trgr v EE —% " e+ 18 actually
k=1
In 2! For those of us who did not already know this,
how likely is it that we would have discovered this no
matter how many terms in the sequence we inyestigated?
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Finally, since a4 a, =TT (the sign depends og
whether n is even or odd, but unamb1guously|an+l - an[= H—:—I),
we have lim (an+l - an) =0 .

n-roo

Thus, since either n or n+l is even and the other is
odd, we see that the size of our "shifts" approaches 0 as
n increases without bound. That is, our sequence "zeroes-in"

on some limit L. In terms of a final schematic representa-

tion we have: ‘zééég;:d

3
L

Now, the fairly lengthy preceeding example is merely
meant to focus our attention on the crucial point that we
might want to test a sequence for convergence even when
we do not have an explicit guess as to what the limit, if
it exists, is. It is in this context that one talks about

a Cauchy sequence or the Cauchy Criterion for Convergence.

Definition:

The sequence"hn} is called a Cauchy sequence if for
each € > 0 we can find a number N (which in general will
depend on the choice of €) such that for every n and m
for which n > N and m > N, |a - a

m' < € . The key point
is that

A sequence of real numbers converges if and only if

it is a Cauchy sequence.

This key result is probably the single most important
result on the study of sequential convergence. Among other
things, it allows us to study convergence whether or not we

have any idea as to what the limit is. That is, [an - a <eg

"
never requires reference to the limit L.



From the most intuitive point of view, assuming that
we now have mastered the geometric interpretation of ab-
solute values, it is easy to see why a Cauchy sequence
is a convergent sequence. Namely, what the definition
of a Cauchy sequence says is that, beyond a certain term,
the difference, (i,e., the distance) between any two of
the the remaining terms (points) can be made as small as
we please. If we call this arbitrarily=-small number €,
then there is a "band-width" of size € into which all
the remaining terms must fit. Since & was chosen arbi-

trarily, L must be somewhere in this band-width.

Conversely, if we know that the sequence {a } con-
verges to L, we can reverse the preceeding process.
Namely, given € > 0, we let €, = £/2 . Then we can find

N such that n > N implies that [an - L| < €, « Pictorially,

L !

L+-§:

B> N—3a b= L +5)
n 27 b g . .

anr ap el = 50 L + E)-—e

=

la, - a | <e

€ £
m>N—a, e(L = >, L + ?).

(Geometrically, the distance between a, and ay cannot

exceed the distance between L - % and L + % . J

While we do not think it is important for our pur-
poses to "beat this idea to death" rigorously, it is im-
portant that we recognize that all of our intuitive
(geometric) ideas can be developed analytically. For
illustrative purposes, let us translate our last result

into more analytic terms.

We are given that lim a, = L, and we want to show
IN—+co

that, given € > 0, we can find N such that n, m > N —

T

S fm m s o

Il S N =S s =

L

8

t
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Now, by the analytic properties of absolute values,

we have

la. - a

. m['=|(an-L)+(L-am)|slan-Ll+lL'a

m

=[a-L|+!am-L[ .

n
Thus |a - am] will be less than € as soon as, for example,
|a, = L| and |a - L| are each less than % . But by def-

inition of 1lim a_ = L, given € > 0, let €, = %; then,
n-—+® n l

there exists N such that k > N—|a, - L| <g; = % .
Hence, n > N, m > N—|a_ - L| and |a_ - L| are each less
£

tha.n.i'o

Restated, with all motivation ommitted, we have

Given lim ak* =L
ke

To prove Given € > 0, there exists N such that n, m > N—

la, = a.] <& .

£ . ,
Proof Let €, = ¥ . Then lim a, = L means we can find N

k=
such that k > N——ﬁlak - L| < €, - Thus n > N and
m>N—|a -L| <e; and |a - L| <& .

*Notice that our subscript is a dummy variable. We
switched from the dummy variable n to dummy variable k
so that n would not be used to stand for two different
things in the same problem. Namely we use n as an
index and we also talk about n and m > N .,



s If n >N, m > N, we have:

|an -a | = |(an - L) + (L-a)

m m

n- Ll +|L-al=|a

N
o]

g.e.d.

We shall, at least for the time being, not pursue
the analytic aspects of Cauchy sequences any further.
Our main point was that we wanted to emphasize that one
did not have to suspect what the limit of a sequence was
in order to test the sequence for convergence. Later,
we shall investigate still other tests for convergence

that do not require knowledge of the limit.

More importantly, not only is the idea of Cauchy
sequences used extensively in more advanced analysis
courses (ané therefore this would be reason enough to
be familiar with the concept) but there will be occasions
in the remainder of our discussion when it will be to
our advantage to be able to use the Cauchy criterion
rather than the more "conventional" definition of con-

vergence,

At any rate, this completes our introduction to the

concept of sequences,

D. Series.

The process of addition may be viewed in terms of a
sequence - a sequence of partial sums. For example, to
compute 1 + 2 + 3 + 4, we, consciously or otherwise, com-
pute the partial sums: 1, 1 + 2, (1 + 2) + 3, [(1 + 2) + 3]
or 1, 3, 6, 10 .

+ 4,

£
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The actual sum is our last partial sum which, in this

case, is 10.

We must, of course, be careful not to confuse the
sequence of partial sums with the sequence of numbers
being added. That is, the sequence of numbers being
added is 1, 2, 3, 4, . The sequence of partial sums is
1, 3, 6, 10 . We may picture the difference in terms
of a simple desk calculator. For example 1, 2, 3, and
4 are successively "punched in" and in the "answer slot"
we see the successiveé sums 1, 3, 6, 10 .

Also, notice that 1 + 2 + 3 + 4 is one number (10)
not four numbers; it is the sum of four numbers.

At any rate, with these ideas in mind, let us now
turn our attention to infinite sums. The point is that,
with an endless number of summands (terms), our sequence
of partial sums becomes infinite and consequently there
is no last term in this sequence. We, therefore, invoke
the analog of a last term in a finite sequence. (namely
the limit), and we define the sum of an infinite number

of terms to be the limit of the sequence of partial sums.

Before pursuing this idea further, let us make sure

that we can distinguish between sequences and series.

Simply identify (infinite) sequences with listings
while series correspond to adding an infinite sequence
of terms. The connection between the two is that the
sum of a series is the limit of the sequence of partial
sums. In still other words, the study of series is a
special case of the study of sequences-sequences of par-
tial sums.

While our discussion may seem rather formal, let
us recall that we were dealing with series (even though
we didn't call them that) when we were studying areas

(the definite integral).



For example, suppose we are given the series

+ +J-+ “-ww +}'—‘_+ " s
8 n

o
PN

8]

We proceed as in the finite case by listing the sequence
of partial sums. Thus:

1
By
- 1 3
B = FTT™1
3.1 3. 1.7
BymFrgvamgEgesg -

With luck, we would now begin to suspect that the denom-
inator of Sh is 2™ and the numerator is one less than

the denominator. That is:

& = ] 1
n 2n 21'1

The validity of this observation may be verified by

mathematical induction.*

We may spot check (1) for specific values of n.

For example, if n = 10, we find:

1 1 1 1 _ 1023 _ _ 1
stz tg?t e Y 107721027 — 1 o B

The point is that if we stop after the nth term, equation

(1) gives us the exact sum of the n numbers %, %, vesys lﬁ
2

and this follows from the fact that (1) yields S, which

is the nth partial sum.

If we want the sum of the series, then the sequence
of partial sums becomes infinite. We then define the

sum to be lim s_ .
-+

*Later in this section, we shall give a more general way
of evaluating the given type of series which requires no

guess work.
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In other words:
*
1 + 1 + s.. + L + e is defined to mean
277 on
TS Y- | 1 . o S s | 1
lim (I + 7 + as _H) or lim sn where sn = + T + Lae * ==
n-o 2 n-co 2
Since lim iﬁ = 0, we see in this case that
n+e 2
lims_ = Lim (1 - &9 =1 - 1im &= 1™ |
n-o n-ro 2 n>e 2
Hence:
1 1 1 y 1 I 1
+ + hee + =+ ... = 1lim (5 + e R
2 7 on oo 2 s on
= lim (1 - =)
n+e 2
=l -
S YL SR D e | - l l l
Thus, by definition, the sum of the series FHFE eee #i==
2

is 1 - not approximately 1, but exactly 1. What is

"approximately" 1 is s, for large [but finite] wvalues of n.

*As usual, one is not required to "prove" a definition. It
should be noted, nowever, that there are often several ways
of "inventing" a definition and we chose, wherever possible,
a definition that agrees with what we believe to be reality.
In this respect, notice that our definition of the sum of
an infinite series is in agreement with our "method of
exhaustion" for finding areas whereby we "squeezed" the
given region between rectangular networks.

**We have been using limit theorems concerning sequences
without proving them according to the definition of lim a_.

00
(All our proofs were for continuous variables, that is, for
%ig f(x).) We shall supply the more rigorous proofs, for

discrete sequences as part of our exercises.
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o0

If we now introduce the notation E: lﬁ to

n=1 2
O | 1 o -
denote + + oo ¥+ — + .. . (that is, = = lim
2 7 on on i~
n=1 k=

we would write:
(==}
Zl_=l :
n=1 2n

Perhaps now, with the present illustration in mind,

it might be wise to generalize our discussion:

Given the sequence of real numbers {an}, we may

elect to form their "sum." That is, a, + aen * ap t e

= Z a, - We define the "sum" to mean

o0

n
lim (al + o0 * a, ) or lim ay .
n-)-m - k=

a; + .o. +ay is the nth partial sum of the terms and if
we denote this by s, we have:
Definition

. o0

By E: a, we mean lim Sh where S, = a; * ... # Ay

n-o
n=1

provided the limit exists. If the limit exists, the

o0

limit is called the sum of the series,E: a, In still

- n=1

other words, E: a_ = L means lim (a1 + oo + an) =L .
n=1 i nre

Note:

We bring the notion of a Cauchy sequence into_our

discussion of series. Namely the convergence of E: ay
k=1

involves the convergence of'{sk} where S = a4 * wag Ay .

e e -— — e e T ————

€31 ¢ 32 £33 .3

8
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In turn, by the Cauchy criterion, the convergence of’{sk}

requires that for each € > 0 we can find N such that n > N
i i - -5

and m > N implies [s - s | <e . However, s/ »

= (al s S an) - (al 2 R am) . If we now assume,
without loss of generality, that n > m, we have Sh ~ Sn
n
=a + ess F a, = A - This leads to
k=m+1

00

The series 2: a) converges if and only if for each

e > 0 there exis%zla number N, depending on €, such that

n
| a,| <e whenever n >m > N* .

k=m+1

We shall have occasion to use the Cauchy criteron

later, but for now our note is complete.

Before closing this section, we would like to say

=]

a few words about the generalization of the series E;--H
ney “
Back in high school algebra, we usually studied the topic

called "Geometric Progressions." Recall that a geometric

progression was one in which the ratio between any term
and its immediate predecessor Wwas the same. Thus, if
this ratio is denoted by r and the first term by a, the
geometric progression(sequence) is given by:

2 n
A; BT A" ey AET v

*We should not take the symbol m+l too literally. Since
m denotes a "sufficiently large" number so also does m+l.
For this reason, one often finds the definition of
"Cauchy-convergent" given in the form ".....

n
| E:ak| < e whenever n > m > N."

K=m
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With this notation in mind, a geometric series

is one of the form

o0

n *
Zar =a+ar+ar2+...+arn+...
n=0

In this case, we have

S=

0 a

= -
Sy a ar

_ 2
sz-a+ar+ar
2 n

s, =a+tar +ar + ... +ar ,

and we wish to compute lim s_ .
n+oo

*Do not be alarmed that we have suddenly switched from
z to Z . For example we have ten fingers and this
n=1 n=0

does not depend on whether we enumerate them from 1
through 10 or 0 through 9. In fact the ten digits are
o, 1, 2, 3, 4, 5, 6, 7, 8, 9, without belaboring this

point, the idea is that we choose Z or Z depending

n=1 n=0 -
on which is the more convenient. For example, Z ar™
n=1
= ar + ar2 + ... + ar’ + ... and this is not the same
o
as a + ar + ... + ar’ + ... while Z ar” is. Had we
o0 n=0 -]
insisted on the form Z , we would have to write Z arn-l
n=1 n=1
(= a+ ar + ... ) and this would be okay but slightly more

[+ <]

n

cumbersome than Z ar- .
n=0

E

‘

t
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It turns out there is a particularly "cute" way of

computing lim Sy (other less cute ways are also available)
In-rco

if we are dealing with a geometric series. The "cute way"
is a generalization of "tacking on a zero" in our deci-
mal arithmetic when we want to multiply by 10. The key

idea is that when we multiply s_ by r we "almost get"

n
Sn+l « That is:
T -
s =a+ar + ... + ar .
n
Therefore
+
rs, = ar + ar? + e ar™ 1 g
Hence:
8, — s = (a + ar + ... + arn)—(ar £ aen ALY + arn+l)
B arn+l
=a(l - ™
But, B, = R, = (L - r)sn .

Therefore:

(1 -x)s_=a(l- Aty

Thus, if r # 1*we obtain

. - a(l - rn+l)

n L= -
*If r = 1 the series is a + a + ... + a + ... which
clearly diverges unless a = 0 . That is sn =a + ... + a,= na

e
n times
Ha # 0= lim s_ = lim na = « ,
n-+w n-—+ow
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The next key point is that lim 2= 0 if x| <1.
n--o
(If r > 1 lim r®1 = «» |) Hence if [r| < 1 then
n-—+w
lim s_ = i
nso B 1=
In summary

If |r| <1, then the sum of the series EE ar® is

l -r

Again, there is no need to memorize the abstract

derivation. For example, suppose we were given

2+%-+%-+%7+...+-2;ﬁ+...=22(%)n .
n=0

This is a geometric series with a = 2 and r = % . The

key is that:

_ 2 2
Sn—2+§+ e +';ﬁ
. 1 _ 2 2 2
Olgsn— 3"‘ L +""ﬁ"+ n+l
3 3
1 _ _ 2
LR L
2 2
or-g-sn=2 —;m
! : _ 3 _
& lim s = 2 -0=2 or lim s, =% X 2 =3
n-+>w -+
2 2
2+§'+...+'3—H+ ese = 3

and this checks with with a = 2, r = %, namely:

a
1 -

a 2 _

- -l -
e IS ATEE T ¢

1

[ I
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We shall explore geometric series further in the
exercises. We wish to conclude this section with the
remark that while geometric series are highly special-
ized they do, nevertheless, play an important role in

the general theory of series.

E. Absolute Convergence and Rearrangements.

Note:

Much of the material in this and subsequent sections
is not in the text. Thus, to supplement the lectures,
the new ideas are discussed rather informally and in
more generality than in the lectures. Since the inter-
ested student might desire a more formal treatment (for
example, in terms of having theorems and proofs made
available) while other students might only be distracted
by such a procedure, we have elected to leave the theorems
and their proofs for the end of each section. In this
way, the student who wishes to omit the proofs can move
on to the next section without loss of continuity, while
the student who wants to see the various proofs then has
the opportunity to do so. 1In any event we want only to
emphasize that proofs are included only to make the
course self-contained.

So far we have stressed positive series. Obviously,
however, a series need not be positive. The aim of this
section is to discuss series which may have negative
terms and to show how such series are related to appro-
priate positive series.

To introduce our topic, let us observe that if our
series has both positive and negative terms then there
are two basically different ways in which the series can
converge. On the one hand, it might be that the magni-

tudes of the terms themselves get small fast enough
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to cause the series to converge. On the other hand, it
might be that the magnitudes do not get small fast
enough but that positive terms and negative terms can-

cel one another to bring about the convergence.

Let us discuss the first case. If the magnitudes
of the terms get small fast enough, then to all intents
and purposes we are saying that the series would still
converge even if we replaced every term by its magni-
tude. This, in turn, means that we leave the positive
terms alone and "delete" the minus signs on the negative
terms. More mathematically, we are saying to replace by

o o
z a , by E!an| :
n=1 n=1

It can be shown (for the proof see Theorem 1 at the
end of this section) that the convergence of Ez}an[

n=

o0

implies the convergence of Ei a, . With this in mind,
n=1

we have:

Definition

The series 22 a, is said to be absolutely convergent

n=1
if S lan| is convergent. (Notice it is z a ., which
n=1 n=1

we are calling absolutely convergent.)

The significance of absolute convergence is that if

jgan converges absolutely then the sum of the series does
not depend on how the an's are rearranged (see Theorem 2).
At first glance, this result might seem trivial, since,
in fact, the result is trivial in the case of the sum of
a finite number of terms. That is, when we add a finite

number of terms, the sum does not depend on how the terms

Em 8

N

8
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are grouped or rearranged. Consequently, we might
"expect" the same to be true when we deal with the sum of

infinitely many terms. It turns out, however, that
oo

it a  converges but not absolutely, we can change

n=1
the sum merely by changing the order of the terms!

More surprisingly, we can find rearrangements in which

the resulting series actually diverges.

More specifically, what we shall show is that if
a series converges but not absolutely, then the sub-
series which consists of the positive terms and the
subseries which consists of the negative terms each
diverge to infinity (see Theorem 3)! Given any num-
ber M, we add the positive terms until the sum exceeds
M (which must happen since the positive series diverges
to infinity). We then annex the sum of the negative
terms until the sum falls below M. We then take up
the positive terms where we left off until the sum ex-
ceeds M again (and this must happen since the positive
series diverges to infinity and we have only used up
a finite number of (finite) terms so that what remains
must still be infinite) and then we annex negative terms
until the sum falls below M again, We continue in this
way, ad infinitum, and we converge to M as the limit.
The proof that M is the limit lies in the fact that
both the positive and negative terms must approach zero

in magnitude otherwise :E a, wouldn't converge (recall

n=1
that for a series to converge its nth term must approach

zero as a limit). Thus every time we again exceed or
fall below M we do it by smaller and smaller amounts
since the size of each "jump" approaches zero as n ap=

proaches infinity.
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Pictorially,

Using the above discussion as motivation, we have:

Definition
(=]

EE a, is said to be conditionally convergent if

n=1

EE a, is convergent but zzlan| diverges (to infinity).
n=1 n=1

The key point is that while a conditionally
convergent series is a bona fide convergent series, we
must be sure to form the sequence of partial sums in the
precise order in which the terms are given. If we re-
arrange the terms (and observe that such a rearrangement
certainly changes the sequence of partial sums, and from
that point of view it is not quite so surprising to ob-
serve that different sequences can have different limits)
we get a different series which may not only have a
different sum than that of the original series but may
not even converge. Again, this does not negate the con=-
vergence of the given series, but it forces us to take

no liberties with it.

On the other hand, if the series converges absolutely,
we can rearrange the terms to suit our convenience with-
out changing the sum.

In other words, the chief benefit of an absolutely
convergent series is that we may treat it in just the
same way, with respect to rearranging the terms, as we
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would any finite number of terms.

In still other words:

Lee]
If Ei a, converges absolutely, the sum is
n=1

independent of the order in which we arrange the terms.

oo

If, however, EE a  converges conditionally and if c¢

n=1
denotes any real number then there is a rearrangement

oo o = e]
of z a,, say z r . such that Z Ly =€ .
n=1 n=1 n=1

Theorem 1

If 22 [ak| converges, then so also does zz LI
k=1 k=1

Paraghrase

If a series converges absolutely then it converges.

At first glance, this may sound like a truism but the
point is that the definition of absolute convergence of
2] o0
ay utilizes only properties of ]ak]. To be sure,
k=1 k=1
it is very likely that if Theorem 1 were not true, we

would never have invented the notion of calling

oo

o0
z a, absolutely convergent if 5 |a, | converged.

k=1 k=1
Strategy behind the proof
n n
We know that | z a | < z |ag| « We also know
- k=m k=m

that since j; |ak| converges we can find N such that

k=1 n
for a giveneg > (Q,n > m > N — |ay| < e . Therefore

k=m
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n n
n, m >N— | z ak| < z |ak| < €, and this is precisely
k=m k=m -
the Cauchy condition that a, converges .
k=1

Formal Proof

We shall show that, given € >0, we can find N such

n
that n > m > N— | 22 a | <e .
k=m

oo
Since 5 |a |converges, we can find N such that
k=1

n >m > N implies

n

Zlakl“": ’

k=m

n n
But | z ak| < z | ay |
=In|

k=m k
n
a.on ; m > N_',l z akl < £ qoe.d.
k=m

Theorem 2
[=-] ‘m
Suppose 2 a =L and that Z ap is absolutely
k=1 k=1
0
convergent. Let 5 Ty denote any series obtained by
1

co
's . Then r, =L .

k
k k
k=1

rearranging the a

Paraphrase:

If a series converges absolutely then its sum is
independent of the order in which the terms are added.

-l a

By Uy Ba EE B e ou b

e aa o
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Strategy

Given € > 0, we know that we can find N such that

o0 o0

Z la, | < e (since Z |a) | converges). We then look

k=N+1 k=1

at the rearrangement Lir Tor e and proceed until all

the terms ays @gr .., ay appear in the list. (This must

happen since the rk's are merely a rearrangement
ak's; hence, the finite set of numbers {al, I

of the

aN} must

eventually appear in the rearrangement.) Let's suppose

ay, +e.p @y are contained among r

17 M

00

look at E: |rk| . Since {a;, ..., ayl ¢ {ry,
k=M+1
it follows that TM+1? TM+27
By+1r A2
A' denotes the complement of A. In our example,
- 1 1

Y cesl} = {al, 4 $5ip aN} while {rM+l' LY,
= {rl, Sae rM}'}.) Therefore,

oo

Z |ry | < i |a, | and

Z; Iak|
k=M+1 k=N+1 k=M+L

=2}

This proves that§:rk is at least absolutely
convergent and gives us some experience with new

tial notation.

The remainder of our strategy is as follows:

Using the same notation as before, we have:

oo

Ll M
Zrk=zlrk+z ry .
k=1 k= k

=M+1

essepy X o We then

" sy I'M}

etc. must be included in

ees}. (That is if A c B then A' O B' where

{ags1
cosl

essen=-
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The point is that'{al, v 5 a.N} C {rl, T rM}F hence,
M ¥
Zl r, = a plus (M = N) terms chosen from {aN+l'
k= k=1

Let us label these by a. , a, , a. (the
i, i -

2 M=-n
double subscript is used to indicate that we have (M - N)
ak's, but we do not know how they are ordered among the

aN+2' L }t

M=N ®
r,'s) and that Zl la; | < Z la, |
1= J k=N+1
=] M= oo
Z rk = i ak + i ai- + Z r‘k
k=1 k= i= J k=M+1
X N M=N x
o z ry - Z‘l a | <| a; + r |
k=1 K= i= I k=M+1

1
8

< ): la, | + Z .
k=N+1 ) k=M+1

But since Z |a | and Z |r, | are convergent both
k=1 k=1

o0

E: |ay | and 5: |r,| can be made as small as we wish
k=N+1 r=M+1
just by taking N (and hence M since M > N) sufficiently
large. That is:

I B o oy BEn b BN @ e

E 3

L 3

Hl B aa Ga =m .
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=Zak
k=1
= I, -
Formal Proof
We must show that
(=] oo
re - 5: a = 0o .
k=1 k=1

Let € > 0 be given. Set €, = %. Then we can find
N such that

]ak| <gg . (1)
k=N+1

We can then find M such that'{al, p— aN} € {rl, wiamp rM}

o 0 0

2 Z |z | < e, (since z lry | < Z la ) e
k=M+1 k=M+1 k=N+1 (2)
Therefore:
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oo M 00
E: Iy = e ¥ E: Tx
N M=-N =
=Z a + zla + r, where ai_e{a
k=1 iz I k=M+1
o N - *
| B, = Zlak] = | a; + ry |
K= k= =1 I k=Mn1
M_ [+-]
sSlag I+ Y Ixd
I= J k=M+1
< E: Iakl + E: |rk'
k=N+1 k=M+1
< g+ g (by (1) and (2) )
< g ;

s+ For each € > 0 there exists N such that

® N

|z r - Zl a | <e
k=1 k=
N =]
S Xim a, = z Iy g.e.d.
N> = k=1

Theorem 3

o0

Suppose Z a, converges conditionally, Then
n=1

43 v v ey Uy &y Gm G o B e @8 s Sm D D Em e
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and = =» (where a, means the sum of all

a
n
an<0 an>0
positive terms and E: a  means the sum of all negative
a_ <0
n
terms. More generally if S denotes any set of numbers
E: s is used to denote the sum of the elements in S.)
SeS
Paraphrase
The sum of the positive terms in a conditionally
convergent series is infinite. Likewise, the sum of the

negative terms is negative but infinite in magnitude.

Proof

a, + |ag| a_ - |a

Let Py = =g and q, = ——g—

since |a | = a if a > 0  while |a | ==-a if a, <0 we see
that Py ={an if a, >0 while gq =)0 if a >0

0 if a_ < 0 a, if a < 0 .
Therefore:

Z P, = Z a, (since p, = a if a > 0 while
a, 0

P, = 0 if a, s 0 .)

v

e

jo )
g
e}
e |

I

T oa -
an<0

We now show that neither E: p, nor z: q, can converge.

B n=1 n=1
For example, suppose Z q, converges. Well, we know that
n —
E: a, converges and therefore EE (---E qn)
n=1 n=1
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* . a . lanl
converges . Since q, = —3—— Wwe see that

@ |a, |
‘e —3— converges
n=1

o0
:,Z la | converges
=1
0
,',Z a, converges absolutely - but this contradicts the
n=1 @
hypothesis that Z a, is conditionally convergent.
n=1
oo

Similarly, if Z p, converges, we conclude that

n=1
=) an oo I
Z (pl:1 - =) (= Z L ) converges and the same contradiction
n=1 =1
follows.
[+2] o0
Hence Z Py (= Z an) and Z qn(=Z an) both
n=1 an>0 n=1 an<0
diverge.
*Recall that lim (a_ + b_) = lim a + 1lim bn . Thus, in
n-+w B a n-+w n-ro

terms of sequences of partial sums

0 0
z a s Z bn both convergent —
n=1 n=1

L=2] (2] 0
Z (an + bn) is convergent and is equal to Z a, + Z bn .
n=1 n=1 n=1

- .
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F. Sequences of Functions.

Up to now, we have considered sequences of numbers.
We can generalize our consideration rather nicely by
replacing numbers by functions. For example, let fl' f2' e
denote a sequence of functions and suppose that the domain
of each is [a,b]*. We now pick any number c € [a,b] and
look at the sequence fl(c), fz(c), f3(c), - fn(c), SR
The key point is that this sequence is a sequence of numbers,

and as such it makes sense for us to investigate lim fn(c).
n+W

Moreover, we can make this study for each ¢ € [a,b]. The
limit may exist for each ¢, or for some but not for others,
or for none of the c's. By way of illustration, consider

the following examples:

Examples

(a) Let fn(xJ - xn, dom fn = [0,1] . Then for
c e [0,1] we have fl(c) = q, fz(c) = c2, f3(cJ = c3, i
fn(c) = cn, - More concretely, let c = % . Then our
sequence fl(c), fz(c), ... becomes %, %, é, seep lﬁ .

2
Now, if ¢ = 1, lim ¢™ = 1 while if 0 sc <1
n-+w

lim c® =0 . Thus, in this example, lim f_(c) exists for
n+rw n-—+ow

each ¢ € [0,1] .

*It is really not important that each function in the
sequence has the same domain. What is important is that if
we pick a number c then fl(c), fz(c), f3(c), ... Mmust all

be defined. In more precise language, c¢c must belong to

the intersection of the domain of £.,, the domain of £,, etc.
In more symbolic language when we s%udy a sequence of func-
tions we consider as our "inputs" only members of

=]

N dom fn = dom £

n=1

N dom £, N ... M dom fnrﬁ i

1 2
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(b) Let fn(x) = xn, dom fn = [0,2] . As we have
just seen lim fn(xJ exists if 0 € x <1 . Now let c > 1.
IN-+co
Then fn(c) =P implies lim fn(c) = o , (In other words,
et 0, if 0 cc <1
. ; n o g =1
we are = =
making use of the fact that iig c @ if g > 1 o)

Here, the point is that for ¢ > 1, c" is well~defined no

matter how large n is as long as it is finite, but lim c® = .
In this example, then, lim fn(xJ exists if x anTg,l],

but it doesn't exist if x ¢ TITZ] .
(c) Let £ (x) = x", dom £, = [2,3] . Then iﬂ £ (x) ==

for each x € [2,3] . For example, if we let x = 2, our
sequence 1is 2,4,8,16,32,64,128,...2n, ‘ee

While our three illustrations are simple and very
similar to each other, they serve to illustrate the three
possibilities we have described.

A natural consequence of our discussion of sequences
of functions is the notion of a limit function. That is,

if we return to our general form where the sequence is
denoted by fl, fz' a5als fn,
each n, we may "induce" a new function f as follows. We

.++ and dom fn = [a,b] for

choose any x € [a,b] and let f£(x) = lim fn(x) . Of course,
as we have just discussed, it is posgzgle that for some

of our choices of x, lim f_(x) need not exist. Since we
N

require that the "output" of f be a real number, such an
X is not allowed as a member of dom £. In other words,

we may define f as follows:

Let A = {x: 1lim £ _(x) exists, x ¢ [a,b]} .
n-+oo 4
(In other words, A is a subset of [a,b]). Then for each
X € A let £(x) = lim fn(x) .
I+

£ 3

2 g3

4

[ S |

4

E3 ¢33

L3 3

3

'

Lt 3 £ 23

e b

E 3
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Again by way of examples, let us return to our

earlier example. We have already seen that lim ¢ = 0
n-—+w

if 0 s c <1 while lim 1" = 1. Thus, if we let f(c)

n—b-m

= lim £ (c) = lim cl for each ¢ € [0,1], we have that
n->o n-o

lim £_(c) = 0 = £(x) if ¢ # 1 while f (1)=1 = £(1) .
I+ n n

Written in the more usual notation:

0, i€ 0. €% < .1
f(x) =

I, 4df ¥ = 3 8

As a second example, let fn be defined by

I'IXZ

Fax) = gm5 1 -

and, just for the sake of argument, suppose dom £ = [0,1].
(Actually, in this example, the domain of each fn could
just as well be any set of real numbers since for each n,

fn(x) is defined for every real X.)

2
; _ _ _ no
If we pick x = 0, we see that fn(x) = fn(O) = ST
=0 . Hence £(0) = 1lim £ (0) = 1im 0 = 0. If we pick
n-roo n n-—rowo L 2 -
x = 1, we see that fn(x) = fn(l) I P i il o hence,

'_l

[

£(1) = lim fn(c) = lim

n-—+w«= n—+«

SR )
2n + L 2 °

More generally, in this example, if we let x = c,
we see that
; ; : : 2 1
f(c) = 1lim £_(c) = lim s = (lim 2 ) (1im c7) = C
now D sy 2n + 1 - 2n + 1 — 2
In other words, in this example, f is defined by

2
f(x) = X, for each x ¢ [0,1] .
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For those of us who would like to view the discussion
more pictorially, we may look at the last example (and the
method will apply equally well to any other example) as
follows.

For each n, fn is defined by fn(x) = nxz/(Zn + 1) w

Hence, fl(x) = x2/3, fz(x) = 2x2/5, f3(x) = 3x2/7, etc.
We may then sketch eac:i of the curves y = fn(x). That
is, we draw y = x2/3, y = 2x2/5r y = 3x2/7, etc. Finally,

we sketch the graph of the limit function y = x2/2 .
Thus, we have

A
=f(x)=%x2
1
'(lfi‘)
(1,3)
(1,8)
(1,3)
> X
0 1

We then "freeze" on a point (c¢,0) in [0,1] and
draw the line x = c. We then get a sequence of numbers
which consist of the y—coordinates of the points on
y = fl(x), y = fz(x), etc. where the line x = ¢ meets
the curve. That is:

Gl S E o8 s S = s e

S s Oy e a s

iy @2 mm

£ 2
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What lim £ (c)
n+oo

~means pictorially

— .

1s that we may view

X=c as the number

line which contains

{ the sequence of points

Y a fl(c), fz(c), f3(CJr

y=£, (x)

f4(c), «es and lim £_(c)
n

y=f3(xJ n-wo

y=£, (x) is simply the limit
| y=f. (x) of this sequence.
]

(c,0) (1,0)

In this regard, then, notice that the limit function

consists of the set of points (c, lim fn(c)). That is,; for
N>

each ¢ ¢ [0,1] we can make the height denoted by If(c) - fn(c)]
smaller than any prescribed amount merely by choosing n to
be greater than some number N/ where by this notation we

merely mean that the choice of N will usually depend on

the choice of ¢ (this will be the crucial point of our later

discussion of uniform convergence) .

In summary, then, from a pictorial point of view,
each member of our sequence involves "freezing" n and
looking at the curve y = fn(x) on [0,1], while the limit
function involves our "freezing" x and looking at the
sequence fl(x), fz(x), etc.

At any rate, with all the preceeding discussion as
motivation, we are now ready to define what it means for

a sequence of functions to converge to a limit. Namely,



Definition:

The sequence of functions'{fn}is said to converge
(pointwise) to the function £ on [a,b] if for each
x € [a,b], lim fn(x) = f(x) .

n+o

Let us also notice at this point that our discussion,
while emphasizing the concept of sequences, applies equally
well to series. The reason for this is that every series
may be viewed as a sequence of partial sums. For example,
suppose we are now given the seguence of functions

£ E f «es, etc. and we wish to find the sum:

lf 2’ . vy n!

[+ =]
£ (30 # Eyil) # wau B LAY ¥ an Z £ {x)
: n=1
where x € dom fn for each n .

Well, just as we did in the case of numbers, we

define a new sequence, say, sltx), sz(x), ... Where:
s (x) = £, (x)

sz(x) = fltx) + fz(xJ

SB(X) fl(x) S fz(x) + f3(x)

sn(x) fl(x) + £ (%) ¥ eae F fn(x) 5

2

We then define Z fn(x) to be S(x) where S(x)
n=1

= lim sn(x), provided that the limit exists. In this
n-Mn
way, we may talk about a series of functions convergeing

to a limit in the sense that we look at the limit of the

sequence of partial sums.

As an illustration that is well within our scope,

let us return to the notion of a geometric series. Recall

3 L3

[

| =

€

Gl eom o=

4

¢
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£ 3 &
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£ 3
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o]
that we have already seen that z: %" converges to Tir—;
n=0
if |x| <1 . wWhat this says in terms of our present
discussion is that we may define, say, P, by P (x) =1+ x

+ x2 + vu. + xX* for each x € (=1,1), and if we then define

P by
P(x) = lim Pn (x) r

n-+o

then P(x) = T E = -

(Notice that if x = 1, lim Pn (x) = = )

n-+c

Again pictorially:




G. Uniform Convergence.
We have seen that e* is represented by the power
series 1 + x + x2/2! + x3/3! + e P xn/nl * ans LOY

all real numbers, x. If we are now a bit clever, we

can get an idea for a new attack on such integrals as

-[ e™® dx . Recall that this is a well-defined definite

Q
integral, but in terms of the first fundamental theorem

of integral calculus we do ngot know (explicitly) a func-

tion g such that g'(x) = e X . In other words, we can
R
. 52
write that -j. e dx = g(l) = g(0) where g'(x) = e ”
0
but we do not have a "hold" on g.
Well, since
e =1+ u+ ud/2! + ... + 00l + ..., (1)

is valid for any real number u, and since u is just a
symbol to denote a real number, (1) must remain valid
if we replace the symbol u by, say, -x2 . If we do this,

we obtain:

2

e X =1 - x% +x%21 - x8/31 + %841 + L.+ (1P x®P/mr o+ ...

(2)

Consequently,

(3)

Now, in (3), if our integral were the sum of a finite

number of terms we already know that we could integrate
term by term. Thus, we might expect that the same result
holds for an infinite sum (although by now we hope you're
suspicious of any example in which we try to predict what
happens for the infinite based on our knowledge of the

finite).

2
j- e ¥ dax =-[ (1L - x2 + cen * i:&l——f—— + ...)dx
0
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In any event, to compute
i

, 4 6 8 10
f(l'x+1'z+41'“5""r+"')d"' (4)
0

Nlpd
X
IN

we might be tempted to write:
; o i 2 x4 x6
fldx-!xdx+!§-l—dx-f§-7dx+... . (5)
0

Notice, however, from a conceptual point of view
(4) and (5) are completely different. In (4) we must

sum the series first and then integrate while in (5)
we must integrate each term first and then sum the

resulting series.
From a different (notational) point of view let

2n
- i e g2 -1" x

Then (4) asks us to compute
1

j’ lim Pn(x) dx . (4')

n-»o
0

On the other hand, (5) is equivalent to computing
1
lim I P_(x)dx . (5")
nre 4 B

To see this, notice that for any n (since n is

finite)J

1 t 2 (_l)n X2n
'an(x)dx=f [l - X" + .40 +-—--I-1-T--—-]dx
0 0
1 1 1 .
=f 1 dx—f x%dx + ... +[ (-l)n'x
0 0 '
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1 1 1 (hl)n x2n
sJolim an(x)dx =f ldx + ... +j _—'r_x—l_dx+

n-—+wo 0 0 a

The crucial point is that it need not be true that
b b
j' lim fn(x)dx = lim fn(x)dx (6)

-+ n"m

no matter how natural such a result may seem.

On the other hand, the ease of evaluating (5) or (5')
compared with the problems in computing (4) or (4') makes
it clear that we would like to know when (6) is true. The
truth of (6) is connected with the topic of this section -

uniform convergence. Before tackling this topic, however,

let us show that (6) need not be true in every case.

By way of example, let us define the sequence of

functions'{fn} by:

n

£ (x) = nx(l - x°) where dom £ = [0,1] .
' , : 2. n
Let £(x) = lim f_(x) = lim nx(1 - x7)° = 0%,
-+ n n-—+e«
*1f |c| <1, then lim nc® = 0 . That is c® — 0 much

faster than n—s ®%  One "easy" way of proving this is
to show (as we did in the last unit) that if |c| <1

nc’ converges. We then use the fact that if a,

converges then lim 8, ™ 0 . In this case " converges
n—’OO
— lim nc® = 0 . The point is that since dom fn = [0,1],
n—+eo 2
xe dom fn——ﬂ 0 £x €£1—0 €1 -x" <1 . Hence, if

¢33 €3 £E2 a2 &2 3

Gl e Gm o

¢ 3 €3 €12

£ 3

0 <x < l‘ nx(l - xz) £ n(l - xz) < nc2 where ¢ = 1 - x2 < L ..

Notice that this discussion does not hold for x = 0. Fortu-

nately, however, when x = 0, lim nx(l1 - X2)n = 0 since nx(l—xz)n = 0.

t 23

>0

s

£

| S |



X=-47

At any rate we obtain:
1

1
flimfn (5¢) dx=f0dx=o

On the other hand

(7)

1 1
-[fn(x) dx = ,[ nx(l - xz)n dx (let u =1 - xz)
0 0
0
”‘j # un (-du)*
1
3
= %-Hf un du
0
1
o ( i n+l |
~ 2 '‘n+ 1
0

i 1

=3 GFT

= I

=3 &7

1
. I 1 n e L 44 n _ 1
wlin [og00 ax = lin GG =3 ln Fp =7 . @)

0

*Note the change in the limits of integration.
now integrating with respect to u, not x .

Since we are
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Since 0 # %, a comparison of (7) and (8) shows that

1 L

[ 1im £, (0 dx # Lin [ £ (x) ax . (9)
0 n->w n-+ow 0

Thus, whether we like it or not, (9) establishes
the fact that (6) need not be true.
To motivate uniform convergence, let us see if
' b

we can see pictorially what it might require for lim £_ (x) dx
b n-+>o
a

to equal iiﬁ Jﬁ fn (x) dx .
a
First of all, to view fn(x) as being within € of
f(x) for all x e [a,b] means that we draw the three curves
y = f(x), v = £f(x) + € and y = f(x) - €. Thus,
= f(x) + €

y = f(x)
Ay = £(x) - €

N

T

Yy

(Figure 1)
Now, if we can find N such that n > N implies

f(x) - fn(x)|< e for every x € [a,b] it means, pictorially,
that for n > N, y = fn(x) lies is the shaded region.

In particular, suppose we now pick € so small that,
as a length, it is less than the thickness of our pencil

point. Then,

Gl G e o 8 Ul = e e

s s Gu e s .

€3 €123 12



1

{ €

]

r

¢33 &

1 ) n N e om

|

I [ | { i

X=-49
Y
N
' | y=£ (x)
t2e |
I
i '
| R i
! |
1 ]
a b
(Figure 1')

Our argument now is that since for n sufficiently
large y = fn(x) lies "within" the curve y = £(x), in

computing the area of R it makes no difference whether

we use
b b
_f £{52) dx or J’ fn(x) dx once n is sufficiently
a a
b b
large. That is, lim df f,(x) dx = .[ f(x) dx .
Il—+oo a a

The crucial point is that the convergence does not
have to be as depicted in Figure 1. That is, the fact

that lim fn(x) = f(x) for each x ¢ [a,b] does not guaran-
I+

tee that there exists one number N such that n > N —
En(x) - f(x)| <& for every x € [a,b]. To be sure, it
means that we can find one N for each x, but there are

infinitely many x's in [a,b].*

*For a finite number of x's say Xis sees ¥ WE could find

Ny, «.., Ni such that n >.Ni —_ |fn(xi) - f(xi)l < g (i=1l,x.k}.
We could then let N = max -Nl, e+, N} whereupon n > N —y
|fn(xi) - f(xi)| < g for each x; . With infinitely many

Ni's, however, the selection process whereby we construct

the maximum never terminates.
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Pictorially, For example, define fn by
= 1
£,00) =|n%, if 0 <x <3
¥ 1 2 —nx+2n2,:|.f—<x <%
1 (""rn) 2

» X
12 ?
n n
In particular: 1
(534)
¥ y
L A
(1,1)
: ?x . ‘} X
0 i 4 2

1
(55,400)

A (Not drawn to scale.)

y = 30

Sl
g7

~
]
o
X
~
[
R
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The idea here is to notice that as n increases the
"peak" of y = fn(x) occurs closer to the y-axis (x = 0).
That is, while it might not be too obvious at first glance,

notice that lim f_(x) = 0 for every x € [0,2]. Yet
n-+w
y = fn(xJ has such a great peak for large n that we can

never find a large enough n so that all the curves
y = fn(x) lie within € (where £ is small) of y = f(x)

for every X.

To top off this example, observe that

2 2
j' lim fn(xJ dx =.j' 0dx = 0 (10)

0 T

while:

n-+ro n-w

& lim J' fn(x) dx = lim n = . (11)

A comparison of (10) and (1ll1) establishes most vividly
the fact that in this example:

2 2

j. lim fn(x) dx # lim JF fn(x) dx .
0 n-—+wo n-rwo 0

Thus, "ordinary" convergence may not take place

"smoothly enough" to guarantee certain "nice" results.

With this in mind, we now define uniform convergence:
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Definition:

The sequence of functions‘{fn} is said to converge
uniformly to £ on [a,b] if (l) it converges pointwise
and (2) for each € > Q0 there exists a positive integer
N (which depends on € but not on X) such that
|fn(x) - £(x)| < ¢ for every x ¢ [;,b], provided only
that n > N .

Thus, uniform convergence is "stronger" than
ordinary (pointwise) convergence (that is, uniform con-
vergence implies pointwise convergence, but the converse
need not be true).

The importance of uniform convergence lies in the
following three theorems (which need not be true if the

convergence is not uniform).

Theorem 1

If the sequence of continuous functions {fn}
converges uniformly to £ on [a,b], then f is also contin-
uous. (Note that in the example fn(x) = xn, dom fn = [0,1],
f(x) was given by 0 if x # 1,1if x = 1. Thus, each fn
was continuous at x = 1 but f wasn't. This shows that
uniform convergence is necessary if the theorem is to

be true.)

Theorem 2
If the sequence of continuous functions {fn}converges
uniformly to £ on [a,b], then for each x ¢ [a,b]:

X X
lim f (t) dt = lim £_(t) dt
00 f a f -+« n

n a a

and this convergence is also uniform on [a,b] .

It would turn out to be nice if there were a theorem
analogous to Theorem 2 but which pertained to differentia-

tion instead of integration. Surprising as it may seem,

G S Goa =

-l N 9 e e 8 .
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~ there is no exact analog, although, as we shall soon
state, there is a reasonably close substitute. Again,
from a more intuitive point of view, differentiation
requires more "smoothness" than does integration. As
a result, fn being a good approximation for f allows
certain theorems to be true about continuity and integra-
tion (which is associated with continuous functions)
but false about differentiation. In fact, even though
both the proof and the example itself are beyond our
needs, it turns out that there exist uniformly conver-
gent sequences of differentiable functions whose limit
function, while continuous, is not differentiable at

any point. What is true, however, is

Theorem 3:

Suppose {fn} is a sequence of continuously differ-
entiable functions (that is, not only is each function
differentiable, but the derivative is also continuous)
which is pointwise convergent to f on [a,b]. Then IF
the sequence {f'n} converges uniformly on [a,b] it fol-
lows that:

(a) f' exists for each x ¢ [a,b], and

(b) £'(x) = lim £' (x)

I+

The proof of each of these theorems is rather
straightforwardonce we observe the key idea. For example

to prove Theorem 1 we have to show that lim £(x) = f(xl)
X+X
1
for each Xq in dom £ . This, in turn, means that given

an arbitrary € > 0 we must be able to find 6§ > 0 such
that |x - xl| < § implies that |f(x) = f(xl)l < E o

By uniform convergence, what we do know is that for
any given € > 0 we can find N such that n > N implies
that both |f(x) - fn(x)| and lf(xl) - fn(xl)]
than €. With this in mind we rewrite |f(x) - f(xl}| 1.

are less

the following "clever" way:
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|E(x) = £(xq) | = [£(x) = £,(x) + £ (x) = £ (%) + £ (x;) - £(x;) |
< [£(x) - fn{x)] + |fn(x) - fn(xl)[ + Ifn(xl)

- £(x,) | ;
1 (1)

Thus, as soon as, for example, each of the numbers
|£(x) - fnéxj|, |£,(x) = £,(x)) |, and |£ (x;) - £(x;)] is
less than = then | £(x) - f(xl)| <€ . As we have just

mentioned, however, given € we can find N such that n > N

implies |£(x) - fn(x)| and [fn(xl) - f(xl)| are each less
than % . (In fact, by the way of review, by the uniform

convergence we know that for this €, n > N implies

]fn(x) - f(x)| < € for each x € [a,b].)

At any rate, putting this information into (1) we

see that if we choose a fixed m > N then:

[£x) = £xp) | < 55 + [£,00 - £.(x) | .(2)

Since each fn is continuous, so, in particular is
the function £ in (2) . By definition of continuity,
given % we can find § > 0 such that [x - x;| <§—

= £
|fm(x) fm(le[ <3 "
For this choice of §, (2) yields:

Given ¢ > 0, we can find § > 0 such that |x - x| <8
3 ; 2 ;
implies |f(x) - f(xl)| < —% + % = ¢, and the result is
proved.

As for the proof of Theorem 2 we must show that for

any € > 0 we can find N such that

X X
| [ £.0) at - [ £(0) ag| <e
a a

whenever n > N for all x € [a,b] .
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Our analysis then takes the following lines:

X

X X
o |J £ (t) dt - f f£(t) dt| = lf [£, (t) - £(t)]dt]

a _ a a

3%
< [lfn(t) - £(t)| dt
a
and since a < x < b, it follows that
X b < b
| [ £a000 at - [ £(0) at| < [[£,(0) - £(0)] at
a a a

s(b = a) max|f (t) - £(t)]
(14)

With (14) as hindsight we may now say that if we are
given € > 0 we can find N such that n > N implies
|£ (£) = £(8)] < b_g_a for all t € (a,x), by definition
of uniform convergence. Putting this into (14) we find
that:

Given € >0, then for N as above, we have:
n > N implies that

X X
£
| [ £,8) at - [ £ at] < - a)pEgl = ¢
a a

and consequently, Theorem 2 is proved.

Theorem 3

Let g denote the limit functions to which "' _}

converges uniformly. Then we have
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b4 X
| gy at = [ lim £ () a& . (15)
n-—+o
a a
Henée, by Theorem 2:
X X
f g(t) dt = lim | £ '(t) at . (16)
n-re

a

But by the 2nd fundamental theorem of integral
calculus

X
_f £,' () dt = £ (x) - £_(a) . (17)
a

(This is where we invoke the fact that fn' is continuous.)

Now substituting (17) into (16), we obtain:

X
g(t) dt = 1lim [f_(x) - £ _(a)]
J- Saw W n
= f(x) - f£(a) .

X
And since f(x) - f£(a) = jﬂ f(t) dt, we may differ-
a
entiate both sides with respect to x, and using the first

fundamental theorem of integral calculus, we obtain:

£' (x) = £(x) (= lim fn(x))

n-—+«
and the theorem is proved.

Uniform convergence, as we shall see in the next
section, plays a vital role in the application of power
series. In closing this section, then, we should take
a moment to make sure that it is clear that since a

Gl 5 E e 8
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series may be viewed as a sequence of partial sums, that

the entire theory of uniform convergence of sequences

carries over in its entirety tomseries. More specifi-

cally, given the power series S; anxn, we may view this
s

n=4y

n

as being lim EZ akxk, or, without the sigma-notation,
a + a;x + + a x™ + . = 1lim (a. + a.Xx + ... + a x
O l L n L o 1 n

n-+ow

H. Uniform Convergence of Power Series.

In the previous section, we discussed the concept
of uniform convergence. In this section we shall apply
these concepts to power series. Before doing this,
however, we would first like to obtain a more objective
way of being able to decide whether a given convergence
is uniform or not. To this end, we discuss what is
known as the Weierstrass M-Test. '

The test is the following:

(=2 ]
Suppose jz D%lis a convergent series of positive numbers

n=0

and that ES fn(x) is a series of functions for which
n=0

|£,(x) | § M, for each n and for each x ¢ [a,b]. Then

=]

22 fn(x) is uniformly (and absolutely) convergent on
n=0

[a,b].

The proof of the M-test begins with the comparison

test for positive series. Namely, since |fn(x)| <M

(=]
for each n and z M,  is a convergent positive series,
n=0

0

thenj§: |fn(x)| also converges. This, in turn, says
n=0
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[=-]
that :E fn(x) converges absolutely for each x € [a,b].

nzo [+]
Let £, defined by f(x) = :2 fn(x), denote the function
- h n=0
to which {zz fk(x)} converges. So far, all we are sure
k=0

of is that we have pointwise convergence. To prove that
the convergence is uniform we must be able to show that

n-+o

n
lim |£(x) - 20 £ (x)| = 0 independently of the choice
k=

of x. Thus, the next phase of our proof takes the form

= s}

[ z fk(x)l

k=n+1

el
| £(x) = £ (x) |
kZO

==l

IREACT

n

k=n+1
) © n
€D M=) Mt DM
k=n+1 k=0 k=0

=2l

n n
sln ) - S g € ln () o - > m) =0,

n-+o n-+ow

k=0 k=0 k=0

independent of x.

n
But lim |f(x) = EE fk(x)l > 0 since absolute values are
n+cw
k=0 %
non-negative. Hence lim |f£(x) - ES fk(x)| = 0, indepen-
e k=0
dent of x.

G G 69 a8 60 =8 =8 e e
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We shall apply the Weierstrass M-test to power

series, but as a "warm up" example, let us consider
r P r

e 2
*
£(x) = zz Effi%}iﬁ .~ (That is, £(x) = lim £_(x)
n -+«
n=1
n 2
_ cos k™'x
where f (x) = Zl = .)
k
k=
cCOosS n X 1 i . .
Clearly [——;2——-| £ ? (= MnJ for each n since
cos u| s 1 for all real u.
[==] l oo
Since z =5 (= z Mn) converges, we conclude
n=1 “ m=1"
cos kzx >
from the M-test that 541 ——>—— converges uniformly to
k
k=

o0

£(x) = E E—ciz-il—-?£ . Suppose we now wish to compute

n=1 B

-

0 n=1

preceeding section it follows that, since the conver-

X
© 2
f £(t) dt = 1 9-9-5-—121-—3 dt . By Theorem 2 of the
n
0

gence is uniform,

X X « 2 o X 2
[ Ewrae= [ ¥ 2EDRZEaea Yy [ RE2FE g
0 0 n=1 =" n=1 0 B
X
= Z sin 5% ‘
ni
n=1 0
y o
_ sin n“x
Y einpx
n
n=1
sin 4x sin 9x sin n2x
= s1inx + 16 + 8T + saa +-—-—;:Z——-—+ csn
* = 2 @ 2
z cos n'x _ z cos (n+l) “x
n=1  n? n=0 (n+1)?
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X
This looks as though we had integrated -[ Ez

0 n=1

term by term. In effect, we did, but notice that this is

cOs n2t
n

legitimate only because the infinite series of terms con-

verges uniformly.

The major result that we shall prove in this section
extends a result which we proved for power series concern-

ing absolute convergence. The result is

dt

For any power series EE anxn, there exists a
n=0
non-negative number R (R = 0 and R = «» are included as
special [extreme] cases) called the radius of convergence

of the series such that
(a) the series converges (absolutely) if |x| < R, and
(b) the series diverges if |x| > R, and

(&) Sk Ry is any number for which 0 <R; <R then

zz anxn converges uniformly for all x e[-Rl,Rll.

L n=0

Actually, only (c) is new since (a) and (b) have
been established in our discussion of absolute convergence.

The proof of (¢) brings the M-test into play. Out-
lined, the proof goes like this:

Suppose jz anxon converges. Then the nth term must
n=0

approach 0. That is, lim anxon = 0. Now, any convergent
n-+o

sequence is bounded. In particular, then, there exists

an upper bound M such that |anx0n| & M for all n =1,2,3,...

Thus, if |x;| < |x%,| we have:

E3 £33 &3
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X X
1 1
la %, "] = |an(§3} x| = | (a, xon)(§33n|
1 n
x n
sM=l .

(This last step establishes the previous result that

4] X n
z anxln converges absolutely since z Mlx—];| is a
n=0

. . . 1
geometric series which converges because |§—| < 1.)

Finally, if we now pick any x for which |x| < |x1| then
n n = n ;
lag x| < |a x; | so that a X converges uniformly
» D0=0

by the M-test since z [anxln[ converges.
n=0Q

This proves ourmassertion that if R is the radius
of convergence for z anxn and 0 < Rl < R, then for
2=0
all x e [-Rl,Rl], Z anxn "behaves like" a polynomial.
n=0

More specifically,

Theorem 2' (since this is Theorem 2 of the previous section
restated for power series) &
If the power series F(x) = 5 anxn has radius of

n=0
convergence R, thgn for any numbers a and b such that

-R <a <b <R, f F(x) dx exists. Moreover,
a

b b = o =) b n & anxn+l
f F(x) dx (= f z a x dx) = z f a x dx = Z —1
a a n=0 n=0 a n=0
pntl _ n+l
= an( n+l ) :

o |
1]
o
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(Our notation may not be the wisest even though it is
quite standard. Do not confuse a with a . a is an

endpoint of our interval of integration while a is the

;o : I R
coefficient of x  in the power series.)

Theorem 3'
———————— o0

If the power series F(x) = :z anxn has radius of

n=0

convergence R, then F'(x) exists for each x € (-R,R)

o0 ]

and F'(x) = Z n anxn-l (= z n anxn‘l since when
n=0 n=1

n=20,na xn-1 =0).

n

Again, by way of review, a power series may be
integrated or differentiated term by term without

affecting the radius of convergence.
We can now tie up all loose ends in terms of our

n (k)
sequence {Pn} where Pn(x) = Z _f__E,T_(Q)_ xk .

k=0
& k
Since zz a x  is continuous, we may conclude:
k=0

=]
if the radius of convergence for :Z anxn is R then

-] n=
- 0

a x (= F(x)) is a continuous function for |[x| < R .

n=0
Moreover F' exists for |x| <R and it is given by

o0

n

F'(x) = EE n a_x" ~. Since the radius of convergence

n=1
is still R we may repeat this process with F'(x) to

conclude:

) .
Px) = Y onlm- 1) s x"2, |x|<r
n=2

| B
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We may continue this process indefinitely, and after k
applications we have:

oo

R (x) = z nm=1)ses (o ~ [k = 1]) anxn-k
n=k
if |x| <R : £1)
In particular:
p&) 0y = nln = 1) ees (n =k # 1) ano“'k .

n=k
Now On-'k = 0 unless n = k. Putting this into (1) (that is,
letting n = k) we find:

F(n) (0) =nn-=-1) ... (n = [n - 1]) a, = n! a,
(n)
..an = n!. - (2)

Equation (2) looks like a previously-obtained result
from our discussion of polynomial approximations. Actually,
it is the converse of this result. Namely, here we started
with a-power series having a known radius of convergence
and showed that the coefficients of the limit function must

be given by (2). If we now want to combine these two parts
we obtain:

If a given function f can be represented by* the

oo
power series Z anxn for all x ¢ (=R,R) then f must

n=0
possess derivatives of all orders for x ¢ (-R,R). In
@0
particular, f(k) (x) = j; nn-1) ... (n -k + 1) an:n:n"k .
n=k
Moreover, the coefficients a, are uniquely determined by:
£ (o)

an._-——-r-lT--— -

= oo
*We say that Z anxn represents f(x) if f(x) = z a x?
n=0 N s | =0
that is, if f(x) = lim :Z akxk 5
k=0

n-+oe




Notice that this result does not tell us whether

oo

there is a series EE anxn which represents a given

n=0
f(x) . That must be determined by, for example, Taylor's
Remainder Theorem. What we have proved is that if f
if representable by a power series then (1) £ must
have derivatives of all orders for x £ (~-R,R), and (2)
there is only one such series representation of f - the

(n)
one in which a_ = 2———Tigl .
n n!

Thus , for example, f(x) = /X cannot be represented

by a series:lanxn since f'(0) implies f'(0) does

2/0

not exist. That is, if f£(x) = VX, £ does not have deriva-
tives of all orders at x = g. In still other words if

f is to be represented by jz anxn it is necessary (but

* n=0
not sufficient ) that f possess derivatives of all
orders in which case a = =—F+— .

With all this as background, we may now return to
our problem which was used to motivate uniform convergence,

namely ' i} 2
f e ®* ax .
0
2 (=1)B <20 :
We now know that 22 Pl CONVEIGOS uniformly to
n=0
e ® . (Before our discussion of uniform convergence,

we could only be sure that we had absolute convergence.)

*Even if f has derivatives of all orders there is no
guarantee that f can be representeg by a power series.

-1/x x#0
A classic example is f(x) = 0 x=0 * It can be
shown that f(k)(x) exists for each k. However f(k)(O) =0,

0

(n)
hence Z -f---r-l-—!ig-)—xns 0 not £(x) .

n=0

-
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Therefore,
1l = n _2n o) 1 n _2n
{2 Thr—as ) [ e
! 4 nl
0 n=0 n=0 0

and we are, thus, allowed to use the procedure outlined

in Section G. In other words:

1 2 © Ll +vR.2n PR G T, 3 D |
feordaa S e o § U

0 n=0 0 n=0

1]
NL
T
L
o ]

(Zn+1)n!

n=0

1 A 1

1

1
g2y ~ ITen TR

= - g - +
I(o1)y — 37Ty " 52y 7(3T)

(where 0 £ R g T§%§TT since we have an

-~

alternating series)

-1 -, _ 1 . 1 _ 1
=leg¥q " ¥Yoie " 13 TP
1
0. s.R. ¢ g3p ‘

. 1 T T
Since 3360 0.0001+, 1 3 + 10 15 -

is correct to at least three decimal places a
I 2

]- e-x dx .

0

Hence, to three decimal place accuracy

1 _.2
fex dx = 0.747 .
0

1_ . I
216 1320
s a value of

In any event, this completes our discussion of

uniform convergence and also of power series.

applications are left for the exercises.

Additional
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