
MATLAB Tutorial 

Chapter 8. MATLAB compiler 

The previous chapters have discussed programming within the MATLAB environment. It has 
been noted that MATLAB is an interpreted language, meaning that each command is converted 
to machine-level instructions one-by-one during execution. While this allows one to program in 
both interactive and batch mode, the extra overhead required to convert the commands at 
run-time is not desired. Also, any programs written in MATLAB can only be run on computers 
that have a copy of MATLAB, so portability is limited. MATLAB includes an optional compiler to 
circumvent these problems by converting m-files to C or C++ code, and optionally linking this 
code with its mathematics and graphics libraries to produce a stand-alone executable that may 
be run, without the interpretation overhead, on any machine with a compatible operating 
system platform. In this section, we demonstrate the MATLAB compiler to produce a stand-
alone executable from the simple example of section 6.4. Note that the program containing 
the main program has been rewritten from the previous script file version since the MATLAB 
compiler only works with function m-files. The first file, a script file called make_file.m, is 
executed from the interactive prompt to perform the compilation; alternatively, the command 
mcc ... can be entered manually. 

make_file.m 

This MATLAB script m-file calls the compiler to convert the MATLAB source code files for 

make_plot_trig to C, link the object files with the MATLAB graphics library, and then produce a 

stand-alone executable. 


Kenneth Beers 

Massachusetts Institute of Technology 

Department of Chemical Engineering 


7/31/2001 


mcc -B sgl ... 
make_plot_trig ... 
plot_trig_1 ... 
trig_func_1 ... 
get_input_scalar ... 
assert_scalar 

make_plot_trig.m (main program file) 

make_plot_trig.m 


This MATLAB m-file makes a plot of the general function 

f(x) = a*sin(x) + b*cos(x) 

for user-selected values of a and b. 


Kenneth Beers 

Massachusetts Institute of Technology 

Department of Chemical Engineering 


7/31/2001 


function iflag_main = make_plot_trig(); 

iflag_main = 0; signifies no completion 



disp('RUNNING make_plot_trig ...'); 

disp(' '); 

disp('This program produces a plot in [0,2*pi]'); 

disp('of the function : '); 

disp('f(x) = a*sin(x) + b*cos(x)'); 

disp('for user-input values of the real scalars a and b'); 

disp(' '); 


The following code asks the user to input values of a and b, and then uses plot_trig to plot 
trig_func_1 by including the function name as an argument in the list. 

prompt = 'Input a : '; 

check_real=1; check_sign=0; check_int=0; 

a = get_input_scalar(prompt, ... 

check_real,check_sign,check_int); 


prompt = 'Input b : '; 

check_real=1; check_sign=0; check_int=0; 

b = get_input_scalar(prompt, ... 

check_real,check_sign,check_int); 


We now call the routine that produces the plot. 
func_name = 'trig_func_1'; 
plot_trig_1(func_name,a,b); 

We now require the user to strike a key before exiting the program. 
pause 

iflag_main = 1; 

return; 

plot_trig_1.m 

function iflag = plot_trig_1(func_name,a,b); 

iflag = 0; signifies no completion 

First, create an x vector from 0 to 2*pi 
num_pts = 100; 
x = linspace(0,2*pi,num_pts); 

Next, make a vector of the function values. We evaluate the argument function indirectly 
using the "feval" command. 
f = linspace(0,0,num_pts); 
for i=1:num_pts 
f(i) = feval(func_name,x(i),a,b); 
end 

Then, we make the plot. 
figure; 

plot(x,f); 

xlabel('Angle (radians)'); 

ylabel('Function value'); 




return; 

trig_func_1.m 

function f_val = trig_func_1(x,a,b); 
f_val = a*sin(x) + b*cos(x); 

return; 


