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The Nature of Scientific Computing 

This course focuses on the use of computers to solve problems in chemical engineering.  We 
will learn how to solve the partial differential equations that describe momentum, energy, and 
mass transfer, integrate the ordinary differential equations that model a chemical reactor, and 
simulate the dynamics and predict the minimum-energy structures of molecules.  These 
problems are expressed in terms of mathematical operations such as partial differentiation and 
integration that computers do not understand.  All that they know how to do is store numbers 
at locations in their memory and perform simple operations on them like addition, subtraction, 
multiplication, division, and exponentiation.  Somehow, we need to translate our higher-level 
mathematical description of these problems into a sequence of these basic operations. 

It is logical to develop simulation algorithms that decompose each problem into sets of linear 
equations of the following form. 

a11* x1+ a12*x2 + ... + a1n*xn = b1 

a21*x1 + a22*x2 + ... + a2n*xn = b2 

. 

. 

. 

an1*x1 + an2*x2 + ... + ann*xn = bn 

A computer understands how to do the operations found in this system (multiplication and 
addition), and we can represent this set of equations very generally by the matrix equation Ax 
= b, where A={aij} is the matrix of coefficients on the left hand side, x is the solution vector, 
and b is the vector of the coefficients on the right hand side.  This general representation 
allows us to pass along, in a consistent language, our system-specific linear equation sets to 
pre written algorithms that have been optimized to solve them very efficiently.  This saves us 
the effort of coding a linear solver every time we write a new program.  This method of 
relegating repetitive tasks to re-usable, pre written subroutines makes the idea of using a 
computer to solve complex technical problems feasible.  It also allows us to take advantage of 
the decades of applied mathematics research that have gone into developing efficient 
numerical algorithms.  Scientific programs typically involve problem-specific sections that 
perform the parameter input and results output, phrase the problem into a series of linear 
algebraic systems, and then the program spends most of its execution time solving these 
linear systems.  This course focuses primarily on understanding the theory and concepts 
fundamental to scientific computing, but we also need to know how to translate these 
concepts into working programs and to combine our problem-specific code with pre written 
routines that efficiently perform the desired numerical operations. 
So, how do we instruct the computer to solve our specific problem?  At a basic level, all a 
computer does is follow instructions that tell it to retrieve numbers from specified memory 



locations, perform some simple algebraic operations on them, and store them in some 
(possibly new) places in memory.  Rather than force computer users to deal with details like 
memory addresses or the passing of data from memory to the CPU, computer scientists 
develop for each type of computer a program called a compiler that translates ãhuman-levelä 
code into the set of detailed machine-level instructions (contained in an executable file) that 
the computer will perform to accomplish the task.  Using a compiler, it is easy to write code 
that tells a computer to do the following : 

1. Find a space in memory to store a real number x 
2. Find a space in memory to store a real number y 
3. Find a space in memory to store a real number z 
4. Set the value of x to 2 
5. Set the value of y to 4 
6.	 Set the value stored at the location z to equal 2*x + 3*y, where the symbol * denotes 

multiplication 

In FORTRAN, the first modern scientific programming language that, in modified form -
commonly FORTRAN 77, is still in wide use today, you can accomplish these tasks by writing 
the code : 

REAL x, y, z

x = 2

y = 4

z = 2*x + 3*y


By itself, however, this code performs the desired task, but does not provide any means for 
the user to view the results.  A full FORTRAN program to perform the task and write the result 
to the screen is : 

IMPLICIT NONE

REAL x, y, z

x = 2

y = 4

z = 2*x + 3*y

PRINT *, 'z = ',z

END


When this code is compiled with a FORTRAN 77 compiler, the output to the screen from 
running the executable is : z = 16.0000.  Compiled programming languages allow only the 
simple output of text, numbers, and binary data, so any graphing of results must be 
performed by a separate program.  In practice, this requirement of writing the code, storing 
the output in a file with the appropriate format, and reading this file into a separate graphing 
or analysis program leads one to use for small projects "canned" software such as EXCEL that 
are ill-suited for technical computing; after all, EXCEL is intended for business spreadsheets! 

Other compiled programming languages exist, most being more powerful than FORTRAN 77, a 
legacy of the past that is retained mostly due to the existence of highly efficient numerical 
routines written in the language.  While FORTRAN 77 lacks the functionality of more modern 
languages, in terms of execution speed it usually has the advantage.  In the 80's and 90's, C 
and C++ became highly popular within the broader computer science community because 
they allow one to organize and structure data more conveniently and to write highly-modular 
code for large programs.  C and C++ have never gained the same level of popularity within 
the scientific computing community, mainly because their implementation has been focused 
more towards robustness and generality with less regard for execution speed.  Many scientific 
programs have comparatively simple structures so that execution speed is the primary 
concern.  This situation is changing somewhat today; however, the introduction of FORTRAN 
90 and its update FORTRAN 95 have given the FORTRAN language a new lease on life. 



FORTRAN 90/95 includes many of the data structuring capabilities of C/C++, but was written 
with a technical audience in mind.  It is the language of choice for parallel scientific 
computing, in which tasks are parceled during execution to one or more CPU's.  With the 
growing popularity of dual processor workstations and BEOWOLF-type clusters, FORTRAN 
90/95 and variants such as High Performance Fortran remain my personal compiled language 
of choice for heavy-duty scientific computing. 

Then why does this course use MATLAB instead of FORTRAN 90?  FORTRAN 90 is my choice 
among compiled languages; however, for ease of use, MATLAB, an interpreted language, is 
better for small to medium jobs.  In compiled languages, the "human-level" commands are 
converted directly to machine instructions that are stored in an executable file.  Run-time 
execution of the commands does not take place until all of the compilation process has been 
completed (run-time debugging not excepted).  In a compiled language, one needs to learn 
the commands for the input/output of data (from the keyboard, to the screen, to/from files) 
and for naming variables and allocating space for them in memory (like the command real in 
FORTRAN). Compiled languages are developed with the principle that the language should 
have a minimum amount of commands and syntax, so that any task that may be 
accomplished by a sequence of more basic instructions is not incorporated into the language 
definition but is rather left to a subroutine.  Subroutine libraries have been written by the 
applied mathematics community to perform common numerical operations (e.g. BLAS and 
LAPACK), but to access them you need to link your code to them through operating system-
specific commands.  While not conceptually difficult, the overhead is not insignificant for small 
projects. 

In an interpreted language, the developers of the language have already written and compiled 
a master program, in our case the program MATLAB, that will interpret our commands to the 
computer ãon-the-flyä.  When we run MATLAB, we are offered a window in which we can type 
commands to perform mathematical calculations.  This code is then interpreted line-by-line 
(by machine-level instructions) into other machine-level instructions that actually carry out the 
computations that we have requested.  Because MATLAB has to interpret each command one-
by-one, we will require more machine-level instructions to perform a certain job that we would 
with a compiled language.  For demanding numerical simulations, where we need to use the 
resources of a computer as efficiently as possible, compiled languages are therefore superior. 

Using an interpreted language has the benefit; however, that we do not need to compile the 
code before-hand.  We can therefore type in our commands one-by-one and watch them be 
performed (this is very helpful for finding errors).  We do not need to link our code to 
subroutine libraries, since MATLAB, being pre compiled, has all the machine-level instructions 
it needs readily at-hand.  FORTRAN 77/90/95, C, and C++ cannot make graphs, so if we want 
to plot the results from our program, we need to write data to an output file that we use as 
input to yet another graphics program.  By contrast, the MATLAB programmers have already 
provided graphics routines and compiled them along with the MATLAB code interpreter, so we 
do not need this additional data transfer step.  An interpreted language can provide efficient 
and complex memory management utilities that, by operating behind a curtain, shield the 
programmer from having to learn their complicated syntax of usage.  New variables can 
therefore be created with dynamic memory allocation without requiring the user to understand 
pointers (variables that point to memory locations), as is required in most compiled 
languages.  Finally, since MATLAB was not developed with the principle of minimum command 
syntax, it contains a rich collection of integrated numerical operations.  Some of these routines 
are designed to solve linear problems very efficiently.  Others operate at a higher level, for 
example taking as input a function f(x) and returning the point x0 that has f(x0)=0, or 
integrating the ordinary differential equation dx/dt = f(x) starting from a value of x at t=0. 

For these reasons, one can code more efficiently in interpreted languages than in compiled 
languages (McConnell, Steve, Code Complete, Microsoft Press, 1993 and Jones, Capers, 
Programming Productivity, McGraw-Hill, 1986), at the cost of slower execution due to the 
extra interpreting step for each command.  But, we have noted before that execution speed is 
an important consideration in scientific computing, so is this acceptable?  MATLAB has several 
features to alleviate this situation.  Whenever MATLAB first runs a subroutine, it saves the 



results of the interpreting process so that successive calls do not have to repeat this work. 
Additionally, one can reduce the interpretation overhead by minimizing the number of 
command lines, a practice which incidentally leads to good programming style for FORTRAN 
90/95.  As an example, let us take the operation of multiplying a M by N matrix A with an N by 
P matrix B to form a M by P matrix C.  In FORTRAN 77 we would first have to declare and 
allocate memory to store the A, B, and C matrices (as well as the counter integers i_row, 
i_col, and i_mid), and then, perhaps in a subroutine, execute the code : 

DO i_row = 1, M 
DO i_col = 1, N 

C(i_row,i_col) = 0.0 
DO i_mid = 1, P 

C(i_row,i_col) = C(i_row,i_col) + A(i_row,i_mid)*B(i_mid,i_col) 
ENDDO 

ENDDO 
ENDDO 

If we simply translated each line, one-by-one, from FORTRAN 77 to MATLAB, we would have 
the code segment : 

for i_row = 1:M 
for i_col = 1:N 

C(i_row,i_col) = 0; 
for i_mid = 1:P 

C(i_row,i_col) = C(i_row,i_col) + A(i_row,i_mid)*B(i_mid,i_col); 
end 

end 
end 

This code performs the task in exactly the same manner as FORTRAN 77, but now each line 
must be interpreted one-by-one, adding a considerable overhead.  It would seem that we 
would be better off with FORTRAN 77; however, in MATLAB the language is extended to allow 
matrix operations so that we could accomplish the same task with the single command : C = 
A*B.  We would not even have to pre allocate memory to store C, this would be automatically 
handled by MATLAB.  The MATLAB approach is greatly to be preferred, and not only because it 
accomplishes the same task with less typing (and chance for error!).  The FORTRAN 77 code, 
relying on basic scalar addition and multiplication operations, is not very easy to parallelize.  It 
instructs the computer to perform the matrix multiplication with an exact order of events that 
the computer is constrained to follow.  The single command C = A*B requests the same task, 
but leaves the computer free to decide how to accomplish it in the most efficient manner, for 
example, by splitting the problem across multiple processors.  One of the main advantages of 
FORTRAN 90/95 over FORTRAN 77 is that it also allows these whole array operations (the 
corresponding FORTRAN 90/95 code is C = MATMUL(A,B)), so that writing fast MATLAB code 
rewards the same programming style as does FORTRAN 90/95 for producing code that is easy 
to parallelize. 

MATLAB also comes with an optional compiler that converts MATLAB code to C or C++ and 
that can compile this code to produce a stand-alone executable.  We therefore can enjoy the 
ease of programming in an interpreted language, and then once the program development is 
complete, we can take advantage of the efficient execution and portability offered by compiled 
languages.  Alternatively, given the tools of the compiler, we can combine MATLAB code and 
numerical routines with FORTRAN or C/C++ code.  Given these advantages, MATLAB seems a 
strong choice of language for an introductory course in scientific computing. 

MATLAB Tutorial Table of Contents 

This tutorial is presented with a separate webpage for each chapter.  The commands listed in 
the tutorial are explained with comment lines starting with the percentage sign %.  These 



commands may either be typed or pasted one-by-one into an interactive MATLAB window. 
Further information about a specific command can be obtained by typing help followed by the 
name of the command.  Typing helpwin brings up a general help utility, and helpdesk provides 
links to extensive on-line documentation.  For further details, consult the texts found in the 
Recommended Reading section of the 10.34 homepage. 


