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61 For any power n, Problem 6.2.59 proved ex> xnfor large 
x. Then by logarithms, x > n In x. Since (In x)/x goes below 
l/n and stays below, it converges to . 
62 Prove that y In y approaches zero as y -+ 0, by changing 
y to llx. Find the limit of yY(take its logarithm as y +0). 
What is .I.' on your calculator? 

63 Find the limit of In x/log,,x as x + co. 

64 We know the integral th-' dt = [th/h]Z = (xh- l)/h. 
Its limit as h +0 is . 

65 Find linear approximations near x = 0 for e-" and 2". 

66 The x3 correction to ln(1 + x) yields x - ix2+ ix3.  Check 
that In 1.01x -0099503and find In 1.02. 

67 An ant crawls at 1foot/second along a rubber band whose 
original length is 2 feet. The band is being stretched at 1 
footlsecond by pulling the other end. At what time T, ifever, 
does the ant reach the other end? 

One approach: The band's length at time t is t + 2. Let y(t) 
be the fraction of that length which the ant has covered, and 
explain 

(a) y' = 1/(t + 2) (b)y = ln(t + 2) - ln 2 (c) T = 2e -2. 

68 If the rubber band is stretched at 8 feetlsecond, when if 
ever does the same ant reach the other end? 

69 A weaker ant slows down to 2/(t + 2) feetlsecond, so y' = 
2/(t + 2)2. Show that the other end is never reached. 

70 The slope of p = xx comes two ways from In p = x In x: 
1 Logarithmic differentiation (LD): Compute (In p)' and 
multiply by p. 
2 Exponential differentiation (ED): Write xX as eXlnX, 
take its derivative, and put back xx. 

71 If p = 2" then In p = . LD gives p' = (p)(lnp)' = 

. ED gives p = e and then p' = . 

72 Compute In 2 by the trapezoidal rule and/or Simpson's 
rule, to get five correct decimals. 

73 Compute In 10 by either rule with Ax = 1, and compare 
with the value on your calculator. 

74 Estimate l/ln 90,000, the fraction of numbers near 90,000 
that are prime. (879 of the next 10,000 numbers are actually 
prime.) 

75 Find a pair of positive integers for which xY=yx. Show 
how to change this equation to (In x)/x = (In y)/y. So look for 
two points at the same height in Figure 6.13. Prove that you 
have discovered all the integer solutions. 

*76 Show that (In x)/x = (In y)/y is satisfied by 

with t # 0. Graph those points to show the curve xY= y'. It 
crosses the line y = x at x = ,where t + co. 

6.5 Separable Equations Including the Logistic Equation 

This section begins with the integrals that solve two basic differential equations: 

-- CY and -
dy - dy -- cy + s. 
dt dt 

We already know the solutions. What we don't know is how to discover those solu-
tions, when a suggestion "try eC"' has not been made. Many important equations, 
including these, separate into a y-integral and a t-integral. The answer comes directly 
from the two separate integrations. When a differential equation is reduced that far-
to integrals that we know or can look up-it is solved. 

One particular equation will be emphasized. The logistic equation describes the 
speedup and slowdown of growth. Its solution is an S-curve, which starts slowly, 
rises quickly, and levels off. (The 1990's are near the middle of the S, if the 
prediction is correct for the world population.) S-curves are solutions to nonlinear 
equations, and we will be solving our first nonlinear model. It is highly important 
in biology and all life sciences. 
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SEPARABLE EQUNIONS 

The equations dyldt = cy and dyldt = cy + s (with constant source s) can be solved 
by a direct method. The idea is to separate y from t: 

9= c dt and -dy -- c dt. 
Y Y + (sld 

All y's are on the left side. All t's are on the right side (and c can be on either side). 
This separation would not be possible for dyldt = y + t. 

Equation (2) contains differentials. They suggest integrals. The t-integrals give ct 
and the y-integrals give logarithms: 

In y = ct + constant and In (3) 

The constant is determined by the initial condition. At t =0we require y = yo, and the 
right constant will make that happen: 

l n y = c t + l n y o  and In y + -  3= c t + l n y o + - .( ( 3 
Then the final step isolates y. The goal is a formula for y itself, not its logarithm, so 
take the exponential of both sides (elny is y): 

y +:y = yoeC' and = (yo + :)ec'. 

It is wise to substitute y back into the differential equation, as a check. 
This is our fourth method for y' = cy + s. Method 1 assumed from the start that 

y = Aect+ B. Method 2 multiplied all inputs by their growth factors ec(' - ') and added 
up outputs. Method 3 solved for y -y,. Method 4 is separation of variables (and all 
methods give the same answer). This separation method is so useful that we repeat 
its main idea, and then explain it by using it. 

To solve dyldt = u(y)v(t), separate dy/u(y)from v(t)dt and integrate both sides: 

Then substitute the initial condition to determine C, and solve for y(t). 

EXAMPLE I dyldt =y2 separates into dyly2 = dt. Integrate to reach -l/y = t + C. 
Substitute t =0 and y = yo to find C = - l/yo. Now solve for y: 

- - =  1 
t - -

1 
and y=-. Yo 

Y Yo 1 - tYo 

This solution blows up (Figure 6.15a) when t reaches lly,. If the bank pays interest 
on your deposit squared (y' =y2), you soon have all the money in the world. 

EXAMPLE 2 dyldt = ty separates into dy/y = t dt. Then by integration in y =ft2 + C. 
Substitute t =0 and y =yo to find C = In yo. The exponential of *t2 + In yo gives 
y =yoe'2'2. When the interest rate is c = t, the exponent is t2/2. 

EXAMPLE 3 dyldt =y + t is not separable. Method 1 survives by assuming y = 
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I I blowup times r =l 
I I Yo 

0 1 2 0 1 

d y  d y  d y  dtFig. 6.15 The solutions to separable equations -= y2 and -= n-Y or -= n-.
dt d t t y t 

Ae' + B + Dt-with an extra coefficient D in Problem 23. Method 2 also succeeds- 
but not the separation method. 

EXAMPLE 4 Separate dyldt = nylt into dyly = n dtlt. By integration In y = n In t + C. 
Substituting t = 0 produces In 0 and disaster. This equation cannot start from time 
zero (it divides by t). However y can start from y, at t = 1, which gives C = In y, . The 
solution is a power function y = y, t ". 

This was the first differential equation in the book (Section 2.2). The ratio of dyly 
to dtlt is the "elasticity" in economics. These relative changes have units like 
dollars/dollars-they are dimensionless, and y = tn has constant elasticity n. 

On log-log paper the graph of In y = n In t + C is a straight line with slope n. 

THE LOGISTIC EQUATION 

The simplest model of population growth is dyldt = cy. The growth rate c is the birth 
rate minus the death rate. If c is constant the growth goes on forever-beyond the 
point where the model is reasonable. A population can't grow all the way to infinity! 
Eventually there is competition for food and space, and y = ect must slow down. 

The true rate c depends on the population size y. It is a function c(y) not a constant. 
The choice of the model is at least half the problem: 

Problem in biology or ecology: Discover c(y). 

Problem in mathematics: Solve dyldt = c(y)y. 

Every model looks linear over a small range of y's-but not forever. When the rate 
drops off, two models are of the greatest importance. The Michaelis-Menten equation 
has c(y) = c/(y + K). The logistic equation has c(y) = c - by. It comes first. 

The nonlinear effect is from "interaction." For two populations of size y and z, the 
number of interactions is proportional to y times z. The Law of Mass Action produces 
a quadratic term byz. It is the basic model for interactions and competition. Here we 
have one population competing within itself, so z is the same as y. This competition 
slows down the growth, because -by2 goes into the equation. 

The basic model of growth versus competition is known as the logistic equation: 

Normally b is very small compared to c. The growth begins as usual (close to ect). 
The competition term by2 is much smaller than cy, until y itselfgets large. Then by2 
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(with its minus sign) slows the growth down. The solution follows an S-curve that 
we can compute exactly. 

What are the numbers b and c for human population? Ecologists estimate the 
natural growth rate as c = .029/year. That is not the actual rate, because of b. About 
1930, the world population was 3 billion. The cy term predicts a yearly increase of 
(.029)(3 billion) = 87 million. The actual growth was more like dyldt = 60 millionlyear. 
That difference of 27 millionlyear was by2: 

27 millionlyear = b(3 b i l l i ~ n ) ~  leads to b = 3 10- 12/year. 

Certainly b is a small number (three trillionths) but its effect is not small. It reduces 
87 to 60. What is fascinating is to calculate the steady state, when the new term by2 
equals the old term cy. When these terms cancel each other, dyldt = cy - by2 is zero. 
The loss from competition balances the gain from new growth: cy = by2 and y = c/b. 
The growth stops at this equilibrium point-the top of the S-curve: 

c .029 
Y , = T ; =  - 3 1012 = 10 billion people. 

According to Verhulst's logistic equation, the world population is converging to 10 
billion. That is from the model. From present indications we are growing much faster. 
We will very probably go beyond 10 billion. The United Nations report in Section 3.3 
predicts 11 billion to 14 billion. 

Notice a special point halfway to y, = clb. (In the model this point is at 5 billion.) 
It is the inflection point where the S-curve begins to bend down. The second derivative 
d2y/dt2 is zero. The slope dyldt is a maximum. It is easier to find this point from the 
differential equation (which gives dyldt) than from y. Take one more derivative: 

y" = (cy - by2)' = cy' - 2byy' = (c - 2by)y'. (8) 

The factor c - 2by is zero at the inflection point y = c/2b, halfway up the S-curve. 

THE S-CURVE 

The logistic equation is solved by separating variables y and t: 

dyldt = cy - by2 becomes J dy/(cy - by2) = ) dt. 

The first question is whether we recognize this y-integral. No. The second question 
is whether it is listed in the cover of the book. No. The nearest is Idx/(a2 - x2), which 
can be reached with considerable manipulation (Problem 21). The third question is 
whether a general method is available. Yes. "Partial fractions" is perfectly suited to 
l/(cy - by2), and Section 7.4 gives the following integral of equation (9): 

Y Yo In-=ct+C andthen In-=C. (10) c - by c -  YO 
That constant C makes the solution correct at t = 0. The logistic equation is integ- 
rated, but the solution can be improved. Take exponentials of both sides to remove 
the logarithms: 

-- y - ect Yo 
c-by c-byo' 

This contains the same growth factor ec' as in linear equations. But the logistic 
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equation is not linear-it is not y that increases so fast. According to ( l l ) ,  it is 
y/(c - by) that grows to infinity. This happens when c - by approaches zero. 

The growth stops at y = clb. That is the final population of the world (10 billion?). 
We still need a formula for y. The perfect S-curve is the graph of y = 1/(1 + e-'). It 

equals 1 when t = oo,it equals 4when t = 0, it equals 0 when t = - co. It satisfies 
y' = y - y2, with c = b = 1. The general formula cannot be so beautiful, because it 
allows any c, b, and yo. To find the S-curve, multiply equation (11) by c - by and 
solve for y: 

When t approaches infinity, e-" approaches zero. The complicated part of the for- 
mula disappears. Then y approaches its steady state clb, the asymptote in Figure 6.16. 
The S-shape comes from the inflection point halfway up. 

1 2 3 4  1988 

Fig. 6.16 The standard S-curve y = 1/(1+ e - ' ) .  The population S-curve (with prediction). 

Surprising observation: z = l /y satisjes a linear equation. By calculus z' = - y'/y2. So 

This equation z' = - cz + b is solved by an exponential e-" plus a constant: 
Year US Model 

Population 

1790 3.9 = 3.9 
1800 5.3 5.3 Turned upside down, y = l/z is the S-curve (12). As z approaches blc, the S-curve 
1810 7.2 7.2 approaches clb. Notice that z starts at l /yo.  
1820 9.6 9.8 
1830 12.9 13.1 EXAMPLE 1 (United States population) The table shows the actual population and 
1840 17.1 17.5 the model. Pearl and Reed used census figures for 1790, 1850, and 1910 to compute 
1850 23.2 = 23.2 c and b. In between, the fit is good but not fantastic. One reason is war-another is
1860 31.4 30.4 
1870 38.6 39.4 depression. Probably more important is immigration."fn fact the Pearl-Reed steady 

1880 50.2 50.2 state c/b is below 200 million, which the US has already passed. Certainly their model 
1890 62.9 62.8 can be and has been improved. The 1990 census predicted a stop before 300 million. 
1900 76.0 76.9 For constant immigration s we could still solve y' = cy - by2 + s by partial fractions- 
1910 92.0 = 92.0 but in practice the computer has taken over. The table comes from Braun's book 
1920 105.7 107.6 DifSerentiaE Equations (Springer 1975). 
1930 122.8 123.1 
1940 131.7 # 136.7 
1950 150.7 149.1 ?Immigration does not enter for the world population model (at least not yet). 
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Remark For good science the y2 term should be explained and justified. It gave a 
nonlinear model that could be completely solved, but simplicity is not necessarily 
truth. The basic justification is this: In a population of size y, the number of encounters 
is proportional to y2. If those encounters are fights, the term is -by2. If those 
encounters increase the population, as some like to think, the sign is changed. There 
is a cooperation term + by2, and the population increases very fast. 

EXAMPLE 5 y' = cy + by2: y goes to infinity in afinite time. 

EXAMPLE6 y' = - dy + by2: y dies to zero if yo < dlb. 

In Example 6 death wins. A small population dies out before the cooperation by2 
can save it. A population below dlb is an endangered species. 

The logistic equation can't predict oscillations-those go beyond dyldt =f(y). 

The y line Here is a way to understand every nonlinear equation y' =f(y). Draw a 
" y  line." Add arrows to show the sign of f(y).  When y' =f ( y )  is positive, y is increasing 
(it follows the arrow to  the right). When f is negative, y goes to the left. When f is zero, 
the equation is y' = 0 and y is stationary: 

y' = cy - by2 (this is f (y))  y' = - dy + by2 (this is f (y))  

The arrows take you left or right, to the steady state or to infinity. Arrows go toward 
stable steady states. The arrows go away, when the stationary point is unstable. The 
y line shows which way y moves and where it stops. 

The terminal velocity of a falling body is v, = & in Problem 6.7.54. For f ( y )  = 

sin y there are several steady states: 

falling body: dvldt = g - v2 dyldt = sin y 

EXAMPLE 7 Kinetics of a chemical reaction mA + nB -+ pC. 

The reaction combines m molecules of A with n molecules of B to produce p 
molecules of C. The numbers m, n, p are 1, 1,2 for hydrogen chloride: H, + C1, = 

2 HCl. The Law of Mass Action says that the reaction rate is proportional to the 
product of the concentrations [ A ]  and [B] .Then [ A ]  decays as [C]  grows: 

d[A]/dt= - r[A]  [B]  and d [Clldt = + k [ A ]  [B] .  (15) 

Chemistry measures r and k. Mathematics solves for [ A ]  and [ C ] .Write y for the 
concentration [ C ] ,  the number of molecules in a unit volume. Forming those y 
molecules drops the concentration [ A ]  from a, to a, - (m/p)y.Similarly [B] drops 
from b, to b, - (n/p)y.The mass action law (15)contains y2: 
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This fits our nonlinear model (Problem 33-34). We now find this same mass action 
in biology. You recognize it whenever there is a product of two concentrations. 

THE MM EQUATION wdt=- cy/(y+ K) 

Biochemical reactions are the keys to life. They take place continually in every living 
organism. Their mathematical description is not easy! Engineering and physics go 
far with linear models, while biology is quickly nonlinear. It is true that y' = cy is 
extremely effective in first-order kinetics (Section 6.3), but nature builds in a nonlinear 
regulator. 

It is enzymes that speed up a reaction. Without them, your life would be in slow 
motion. Blood would take years to clot. Steaks would take decades to digest. Calculus 
would take centuries to learn. The whole system is awesomely beautiful-DNA tells 
amino acids how to combine into useful proteins, and we get enzymes and elephants 
and Isaac Newton. 

Briefly, the enzyme enters the reaction and comes out again. It is the catalyst. Its 
combination with the substrate is an unstable intermediate, which breaks up into a 
new product and the enzyme (which is ready to start over). 

Here are examples of catalysts, some good and some bad. 

The platinum in a catalytic converter reacts with pollutants from the car engine. 
(But platinum also reacts with lead-ten gallons of leaded gasoline and you 
can forget the platinum.) 
Spray propellants (CFC's) catalyze the change from ozone (03) into ordinary 
oxygen (0J. This wipes out the ozone layer-our shield in the atmosphere. 
Milk becomes yoghurt and grape juice becomes wine. 
Blood clotting needs a whole cascade of enzymes, amplifying the reaction at 
every step. In hemophilia-the "Czar's diseasew-the enzyme called Factor VIII 
is missing. A small accident is disaster; the bleeding won't stop. 
Adolph's Meat Tenderizer is a protein from papayas. It predigests the steak. 
The same enzyme (chymopapain) is injected to soften herniated disks. 
Yeast makes bread rise. Enzymes put the sour in sourdough. 

Of course, it takes enzymes to make enzymes. The maternal egg contains the material 
for a cell, and also half of the DNA. The fertilized egg contains the full instructions. 

We now look at the Michaelis-Menten (MM) equation, to describe these reactions. 
It is based on the Law of Mass Action. An enzyme in concentration z converts a 
substrate in concentration y by dyldt = - byz. The rate constant is 6, and you see 
the product of "enzyme times substrate." A similar law governs the other reactions 
(some go backwards). The equations are nonlinear, with no exact solution. It is 
typical of applied mathematics (and nature) that a pattern can still be found. 

What happens is that the enzyme concentration z(t) quickly drops to z, K/(y + K). 
The Michaelis constant K depends on the rates (like 6) in the mass action laws. 
Later the enzyme reappears (z, = 2,). But by then the first reaction is over. Its law 
of mass action is effectively 

with c =.bz,K. This is the Michaelis-Menten equation-basic to biochemistry. 
The rate dyldt is all-important in biology. Look at the function cy/(y + K): 

when y is large, dyldt x - c when y is small, dyldt x - cylK. 
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The start and the finish operate at different rates, depending whether y dominates K 
or K dominates y. The fastest rate is c. 

A biochemist solves the MM equation by separating variables: 

S y d y =  -Sc dt gives y +  K In y =  - ct + C. 

Set t = 0 as usual. Then C = yo + K In yo. The exponentials of the two sides are 

We don't have a simple formula for y. We are lucky to get this close. A computer 
can quickly graph y(t)-and we see the dynamics of enzymes. 

Problems 27-32 follow up the Michaelis-Menten theory. In science, concentrations 
and rate constants come with units. In mathematics, variables can be made dimen- 
sionless and constants become 1. We solve d v d T  = Y/(Y+ 1) and then $witch back 
to y, t, c, K. This idea applies to other equations too. 

Essential point: Most applications of calculus come through dzrerential equations. 
That is the language of mathematics-with populations and chemicals and epidemics 
obeying the same equation. Running parallel to dyldt = cy are the difference equations 
that come next. 

6.5 EXERCISES 

Read-through questions 

The equations dy/dt = cy and dyldt = cy + s and dyldt = 

u(y)v(t) are called a because we can separate y from t. 
6 dy/dx=tan ycos x, yo= 1 Integration of idyly =1c dt gives b . Integration of 

1dy/(y + sjc) = i c  dt gives c . The equation dyldx = 7 dyldt = y sin t, yo = 1 
-xly leads to d . Then y2 + x2 = e and the solution 
stays on a circle. 8 dyldt = et-Y, yo =e 

9 Suppose the rate of rowth is proportional to & instead 
The logistic equation is dyldt = f . The new term -by2 of y. Solve dyldt = c&starting from yo. 

represents g when cy represents growth. Separation gives 
10 The equation dyjdx = nylx for constant elasticity is the idy/(cy -by2)= [dt, and the y-integral is l/c times In h . 

. The solution is In y = Substituting yo at t =0 and taking exponentials produces same as d(ln y)/d(ln x) = 

y/(c -by) = ect( i ). As t + co,y approaches i . That 
is the steady state where cy - by2 = k . The graph of y 11 When c =0 in the logistic equation, the only term is y' = 

looks like an I , because it has an inflection point at -by2. What is the steady state y,? How long until y drops 
y =  m . from yo to iyo? 

In biology and chemistry, concentrations y and z react at 12 Reversing signs in Problem 11, suppose y' = + by2. At 

a rate proportional to y times n . This is the Law of what time does the population explode to y = co, starting 

o . In a model equation dyldt = c(y)y, the rate c depends from yo = 2 (Adam + Eve)? 

on P . The MM equation is dyldt = q . Separating 
variables yields j r dy = s = -ct + C. Problems 13-26 deal with logistic equations y' =cy -by2. 

13 Show that y = 1/(1+ e-') solves the equation y' = y -y2. 
Draw the graph of y from starting values 3 and 3 .

Separate, integrate, and solve equations 1-8. 
14 (a) What logistic equation is solved by y = 2/(1 + e-')? 

(b) Find c and b in the equation solved by y = 1/(1 + e-3t). 

15 Solve z' = - z + 1 with zo = 2. Turned upside down as in 
3 dyjdx =xly2, yo = 1 ( 1  3), what is y = l/z? 
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16 By algebra find the S-curve (12) from y = l/z in (14). 

17 How many years to grow from yo =$c/b to y =#c/b? Use 
equation (10) for the time t since the inflection point in 1988. 
When does y reach 9 billion = .9c/b? 

18 Show by differentiating u =y/(c-by) that if y' =cy -by2 
then u' =cu. This explains the logistic solution (11) - it is 
u =uoect. 

19 Suppose Pittsburgh grows from yo = 1 million people in 
1900 to y =3 million in the year 2000. If the growth rate is 
y' = 12,00O/year in 1900 and y' =30,00O/year in 2000, substi- 
tute in the logistic equation to find c and b. What is the steady 
state? Extra credit: When does y =y, /2 =c/2b? 

20 Suppose c = 1 but b = - 1, giving cooperation y' =y +y2. 
Solve for fit) if yo = 1. When does y become infinite? 

21 Draw an S-curve through (0,O) with horizontal asymp- 
totes y = - 1 and y = 1. Show that y =(et-e-')/(et + e-') has 
those three properties. The graph of y2 is shaped like 

22 To solve y' =cy -by3 change to u = l/y2. Substitute for 
y' in u' = -2y'/y3 to find a linear equation for u. Solve it as 
in (14) but with uo = ljy;. Then y = I/&. 

23 With y =rY and t =ST, the equation dyldt =cy -by2 
changes to d Y/d T= Y-Y'. Find r and s. 

24 In a change to y =rY and t =ST,how are the initial values 
yo and yb related to Yo and G? 
25 A rumor spreads according to y' =y(N -y). If y people 
know, then N -y don't know. The product y(N -y) measures 
the number of meetings (to pass on the rumor). 

(a) Solve dyldt =y(N -y) starting from yo = 1. 
(b) At what time T have N/2 people heard the rumor? 
(c) This model is terrible because T goes to as 
N + GO. A better model is y' =by(N -y). 

26 Suppose b and c are bcth multiplied by 10. Does the 
middle of the S-curve get steeper or flatter? 

Problems 27-34 deal with mass action and the MM equation 
y' = -cy/(y + K). 

27 Most drugs are eliminated acording to y' = -cy but 

aspirin follows the MM equation. With c =K =yo = 1, does 
aspirin decay faster? 

28 If you take aspirin at a constant rate d (the maintenance 
dose), find the steady state level where d =cy/(y + K). Then 
y' =0. 

29 Show that the rate R =cy/(y +K) in the MM equation 
increases as y increases, and find the maximum as y -* a. 

30 Graph the rate R as a function of y for K = 1 and K = 
10. (Take c = 1.) As the Michaelis constant increases, the rate 

. At what value of y i s  R =*c? 

31 With y =KY and ct = KT, find the "nondimensional" 
MM equation for dY/dT. From the solution erY= 
e-= eroYo recover the y, t solution (19). 

32 Graph fit) in (19) for different c and K (by computer). 

33 The Law of Mass Action for A + B + C is y' = 
k(ao-y)(bo-y). Suppose yo =0, a. =bo =3, k = 1. Solve for 
y and find the time when y =2. 

34 In addition to the equation for d[C]/dt, the mass action 
law gives d[A]/dt = 

35 Solve y' =y + t from yo =0 by assuming y =Aet + B +Dt. 
Find A, B, D. 

36 Rewrite cy -by2 as a2 -x2, with x =Gy-c/2$ and 
a =  . Substitute for a and x in the integral taken 
from tables, to obtain the y-integral in the text: 

1 Y--In- {A=-ln-
-a2-x2 2a a - xa ' x  cy-by2 c c-by 

37 (Important) Draw the y-lines (with arrows as in the text) 
for y' =y/(l -y) and y' =y -y3. Which steady states are 
approached from which initial values yo? 

38 Explain in your own words how the y-line works. 

39 (a) Solve yl= tan y starting from yo = n / 6  to find 
sin y =$et. 
(b)Explain why t = 1 is never reached. 
(c) Draw arrows on the y-line to show that y approaches 
7112 -when does it get there? 

40 Write the logistic equation as y' =cy(1-y/K). As y' 
approaches zero, y approaches . Find y, y', y" at the 
inflection point. 

6.6 Powers lnstead of Exponentials 

You may remember our first look at e. It is the special base for which ex has slope 1 
at x = 0.That led to the great equation of exponential growth: The derivative of 
ex equals ex. But our look at the actual number e = 2.71828 ... was very short. 
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It appeared as the limit of (1 + lln)". This seems an unnatural way to write down 
such an important number. 

I want to show how (1 + lln)" and (1 + xln)" arise naturally. They give discrete 
growth infinite steps-with applications to compound interest. Loans and life insur- 
ance and money market funds use the discrete form of yf = cy + s. (We include extra 
information about bank rates, hoping this may be useful some day.) The applications 
in science and engineering are equally important. Scientific computing, like account- 
ing, has diflerence equations in parallel with differential equations. 

Knowing that this section will be full of formulas, I would like to jump ahead and 
tell you the best one. It is an infinite series for ex. What makes the series beautiful is 
that its derivative is itself: 

Start with y = 1 + x.  This has y = 1 and yt = 1 at x = 0. But y" is zero, not one. 
Such a simple function doesn't stand a chance! No polynomial can be its own deriva- 
tive, because the highest power xn drops down to nxn-l. The only way is to have no 
highest power. We are forced to consider infinitely many terms-a power series-to 
achieve "derivative equals function.'' 

To produce the derivative 1 + x, we need 1 + x + ix2. Then ix2  is the derivative 
of Ax3, which is the derivative of &x4. The best way is to write the whole series at 
once: 

Infinite series ex = 1 + x + ix2  + 4x3 + &x4 + -. (1) 

This must be the greatest power series ever discovered. Its derivative is itself: 

The derivative of each term is the term before it. The integral of each term is the one 
after it (so j exdx = ex + C). The approximation ex = 1 + x appears in the first two 
terms. Other properties like (ex)(ex) = eZX are not so obvious. (Multiplying series is 
hard but interesting.) It is not even clear why the sum is 2.718 ... when x =  1. 
Somehow 1 + 1 + f + & + equals e. That is where (1 + lln)" will come in. 

Notice that xn is divided - by the product 1 2 3 * - . -  n. This is "n factorial." Thus 
x4 is divided by 1 2 3 4 = 4! = 24, and xS is divided by 5! = 120. The derivative of . 
x5/120 is x4/24, because 5 from the derivative cancels 5 from the factorial. In general 
xn/n! has derivative xn - '/(n - l)! Surprisingly O! is 1. 

Chapter 10 emphasizes that xn/n! becomes extremely small as n increases. The 
infinite series adds up to a finite number-which is ex. We turn now to discrete 
growth, which produces the same series in the limit. 

This headline was on page one of the New York Times for May 27, 1990. 

213 Years After Loan, Uncle Sam is Dunned 

San Antonio, May 26-More than 200 years ago, a wealthy Pennsylvania 
merchant named Jacob DeHaven lent $450,000 to the Continental Congress to 
rescue the troops at Valley Forge. That loan was apparently never repaid. 

So Mr. DeHaven's descendants are taking the United States Government to 
court to collect what they believe they are owed. The total: $141 billion if the 
interest is compounded daily at 6 percent, the going rate at the time. If com- 
pounded yearly, the bill is only $98 billion. 

The thousands of family members scattered around the country say they are 
not being greedy. "It's not the money-it's the principle of the thing," said 
Carolyn Cokerham, a DeHaven on her father's side who lives in San Antonio. 
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"You have to wonder whether there would even be a United States if this man 
had not made the sacrifice that he did. He gave everything he had." 

The descendants say that they are willing to be flexible about the amount of 
settlement. But they also note that interest is accumulating at $190 a second. 

"None of these people have any intention of bankrupting the Government," 
said Jo Beth Kloecker, a lawyer from Stafford, Texas. Fresh out of law school, 
Ms. Kloecker accepted the case for less than the customary 30 percent 
contingency. 

It is unclear how many descendants there are. Ms. Kloecker estimates that 
based on 10 generations with four children in each generation, there could be as 
many as half a million. 

The initial suit was dismissed on the ground that the statute of limitations is 
six years for a suit against the Federal Government. The family's appeal asserts 
that this violates Article 6 of the Constitution, which declares as valid all debts 
owed by the Government before the Constitution was adopted. 

Mr. DeHaven died penniless in 1812. He had no children. 

C O M P O U N D  INTEREST 

The idea of compound interest can be applied right away. Suppose you invest $1000 
at a rate of 100% (hard to do). If this is the annual rate, the interest after a year is 
another $1000. You receive $2000 in all. But if the interest is compounded you receive 
more: 

after six months: Interest of $500 is reinvested to give $1500 

end of year: New interest of $750 (50% of 1500) gives $2250 total. 

The bank multiplied twice by 1.5 (1000 to 1500 to 2250). Compounding quarterly 
multiplies four times by 1.25 (1 for principal, .25 for interest): 

after one quarter the total is 1000 + (.25)(1000) = 1250 

after two quarters the total is 1250 + (.25)(1250)= 1562.50 

after nine months the total is 1562.50 + (.25)(1562.50)= 1953.12 

after a full year the total is 1953.12 + (.25)(@53. 12) = 2441.41 

Each step multiplies by 1 + (l/n), to add one nth of a year's interest-still at 100%: 

quarterly conversion: (1 + 1/4)4x low = 2441.41 

monthly conversion: (1 + 1/12)" x 1Qh= 2613.04 

daily conversion: (1 + 1/365)36% 1000 = 2714.57. 

Many banks use 360 days in a year, although computers have made that obsolete. 
Very few banks use minutes (525,600 per year). Nobody compounds every second 
(n = 31,536,000). But some banks offer continuous compounding. This is the limiting 
case (n -+ GO) that produces e: 

x 1000 approaches e x 1000 = 2718.28. 
(1 + 

1 
1. Quick method for (1 + lln)": Take its logarithm. Use ln(1 + x) x x with x = -: 

n 
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As l/n gets smaller, this approximation gets better. The limit is 1. Conclusion: 
(1 + l/n)" approaches the number whose logarithm is 1. Sections 6.2 and 6.4 define 
the same number (which is e). 

2. Slow method for (1 + l/n)": Multiply out all the terms. Then let n + a. 

This is a brutal use of the binomial theorem. It involves nothing smart like logarithms, 
but the result is a fantastic new formula for e. 

Practice for n = 3: 

Binomial theorem for any positive integer n: 

Each term in equation (4) approaches a limit as n + a. Typical terms are 

Next comes 111 2 3 4. The sum of all those limits in (4) is our new formula for e: 

In summation notation this is Z,"=, l/k! = e. The factorials give fast convergence: 

Those nine terms give an accuracy that was not reached by n = 365 compoundings. 
A limit is still involved (to add up the whole series). You never see e without a limit! 
It can be defined by derivatives or integrals or powers (1 + l/n)" or by an infinite 
series. Something goes to zero or infinity, and care is required. 

All terms in equation (4) are below (or equal to) the corresponding terms in (5). 
The power (1 + l/n)" approaches e from below. There is a steady increase with n. Faster 
compounding yields more interest. Continuous compounding at 100% yields e, as 
each term in (4) moves up to its limit in (5). 

Remark Change (1 + lln)" to (1 + xln)". Now the binomial theorem produces ex: 

Please recognize ex on the right side! It is the infinite power series in equation (1). 
The next term is x3/6 (x can be positive or negative). This is a final formula for ex: 

The logarithm of that power is n In(1 + x/n) x n(x/n) = x. The power approaches ex. 
To summarize: The quick method proves (1 + lln)" + e by logarithms. The slow 

method (multiplying out every term) led to the infinite series. Together they show the 
agreement of all our definitions of e. 



DIFFERENCE EQUATIONS VS. DIFFERENTIAL EQUATIONS 


We have the chance to see an important part of applied mathematics. This is not a 
course on differential equations, and it cannot become a course on difference equ- 
ations. But it is a course with a purpose-we aim to use what we know. Our main 
application of e was to solve y' = cy and y' = cy + s. Now we solve the corresponding 
difference equations. 

Above all, the goal is to see the connections. The purpose of mathematics is to 
understand and explain patterns. The path from "discrete to continuous" is beautifully 
illustrated by these equations. Not every class will pursue them to the end, but I 
cannot fail to show the pattern in a difference equation: 

Each step multiplies by the same number a. The starting value yo is followed by ay,, 
a2yo, and a3y0. The solution at discrete times t = 0, 1,2, .. . is y(t) = atyo. 

This formula atyo replaces the continuous solution ectyo of the differential equation. 

decaying 

Fig. 6.17 Growth for la1 > 1, decay for la1 < 1. Growth factor a compares to ec. 

A source or sink (birth or death, deposit or withdrawal) is like y' = cy + s: 
y(t + 1)= ay(t) + s. 

Each step multiplies by a and adds s. The first outputs are 

We saw this pattern for differential equations-every input s becomes a new starting 
point. It is multiplied by powers of a. Since s enters later than yo, the powers stop at 
t - 1. Algebra turns the sum into a clean formula by adding the geometric series: 

y(t)= atyo + s[at-' +at-' + + a +  1]= atyo + s(at- l)/(a- 1). (9) 

EXAMPLE 1 Interest at 8% from annual IRA deposits of s = $2000 (here yo = 0). 

The first deposit is at year t = 1. In a year it is multiplied by a = 1.08, because 8% is 
added. At the same time a new s = 2000 goes in. At t = 3 the first deposit has been 
multiplied by (1.08)2, the second by 1.08, and there is another s = 2000. After year t, 

y(t) = 2000(1.08' - 1)/(1 .08 - 1). (10) 

With t = 1 this is 2000. With t = 2 it is 2000 (1.08 + 1)-two deposits. Notice how 
a - 1 (the interest rate .08) appears in the denominator. 

EXAMPLE 2 Approach to steady state when la1 < 1. Compare with c <0. 

With a > 1, everything has been increasing. That corresponds to c > 0 in the 
differential equation (which is growth). But things die, and money is spent, so a can 
be smaller than one. In that case atyo approaches zero-the starting balance disap- 
pears. What happens if there is also a source? Every year half of the balance y(t) is 
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spent and a new $2000 is deposited. Now a = +: 

y(t + 1) = $y(t) + 2000 yields y(t) = (f)ty, + 2000[((+)' - I)/(+- I)]. 

The limit as t -,co is an equilibrium point. As (fy goes to zero, y(t) stabilizes to 

y, = 200qO - I)/($- 1)= 4000 = steady state. (1 1) 

Why is 4000 steady? Because half is lost and the new 2000 makes it up again. The 
iteration is y,,, ,= fy,, + 2000. Ztsfied point is where y, =fy, + 2000. 

In general the steady equation is y, = ay, + s. Solving for y, gives s/(l - a). 
Compare with the steady differential equation y' = cy + s = 0: 

S S 
y, = - - (differential equation) us. y, = -(difference equation). (12)

c 1 - a  

EXAMPLE 3 Demand equals supply when the price is right. 

Difference equations are basic to economics. Decisions are made every year (by a 
farmer) or every day (by a bank) or every minute (by the stock market). There are 
three assumptions: 

1. Supply next time depends on price this time: S(t + 1)= cP(t). 
2. Demand next time depends on price next time: D(t + 1) = -dP(t + 1)+ b. 
3. Demand next time equals supply next time: D(t + 1)= S(t + 1). 

Comment on 3: the price sets itself to make demand = supply. The demand slope -d 
is negative. The supply slope c is positive. Those lines intersect at the competitive 
price, where supply equals demand. To find the difference equation, substitute 1 and 
2 into 3: 

Difference equation: -dP(t + 1)+ b = cP(t) 

Steady state price: -dP, + b = cP,. Thus P, = b/(c + d). 

If the price starts above P,, the difference equation brings it down. If below, the 
price goes up. When the price is P,, it stays there. This is not news-economic 
theory depends on approach to a steady state. But convergence only occurs if c < d. 
If supply is less sensitive than demand, the economy is stable. 

Blow-up example: c = 2, b = d = 1. The difference equation is -P(t + 1)+ 1 = 2P(t). 
From P(0) = 1 the price oscillates as it grows: P = - 1, 3, -5, 11, .... 

Stable example: c = 112, b = d = 1. The price moves from P(0) = 1 to P(m) = 213: 

1 3 5  2 
-P(t + 1)+ 1 = -

1 
P(t) yields P = 1' - - - 2' 4' 8' "" approaching -.

2 3 

Increasing d gives greater stability. That is the effect of price supports. For d = 0 
(fixed demand regardless of price) the economy is out of control. 

THE MATHEMATICS OF FINANCE 

It would be a pleasure to make this supply-demand model more realistic-with 
curves, not straight lines. Stability depends on the slope-calculus enters. But we 
also have to be realistic about class time. I believe the most practical application is 
to solve the fundamentalproblems offinance. Section 6.3 answered six questions about 
continuous interest. We now answer the same six questions when the annual rate is 
x = .05 = 5% and interest is compounded n times a year. 
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First we compute eflective rates, higher than .05 because of compounding: 

compounded quarterly ( 1 + - = 1.0509 [effective rate .0509 = 5.09%].:T 
compounded continuously eno5= 1 .O5 13 [effective rate 5.13%] 

Now come the six questions. Next to the new answer (discrete) we write the old 
answer (continuous). One is algebra, the other is calculus. The time period is 20 years, 
so simple interest on yo would produce (.05)(20)(yo). That equals yo -money doubles 
in 20 years at 5% simple interest. 

Questions 1and 2 ask for the future value y and present value yo with compound 
interest n times a year: 

y = e(~OS,(20)yo1. y growing from yo: y = (1 + yonyo 
2. deposit yo to reach y: yo = (1 + :F20ny 

yo = e-(-05)(20)y 

Each step multiplies by a = (1 + .05/n). There are 20n steps in 20 years. Time goes 
backward in Question 2. We divide by the growth factor instead of multiplying. The 
future value is greater than the present value (unless the interest rate is negative!). As 
n + GO the discrete y on the left approaches the continuous y on the right. 

Questions 3 and 4 connect y to s (with yo = 0 at the start). As soon as each s is 
deposited, it starts growing. Then y = s + as + a2s+ --. 

3. y growing from deposits s: y = s[ 
(1 + .05/n)20n- I] 

.05/n 

y = s  [e(.05)(20) - I] 

.05 

4. deposits s to reach y: 

Questions 5 and 6 connect yo to s. This time y is zero-there is nothing left at  the 
end. Everything is paid. The deposit yo is just enough to allow payments of s. This 
is an annuity, where the bank earns interest on your yo while it pays you s (n times 
a year for 20 years). So your deposit in Question 5 is less than 20ns. 

Question 6 is the opposite-a loan. At the start you borrow yo (instead of giving 
the bank yo). You can earn interest on it as you pay it back. Therefore your payments 
have to total more than yo. This is the calculation for car loans and mortgages. 

5. Annuity: Deposit yo to receive 20n payments of s: 

6. Loan:. Repay yo with 20n payments of s: 

Questions 2 ,4 ,6  are the inverses of 1,3,5. Notice the pattern: There are three num- 
bers y, yo, and s. One of them-is zero each time. If all three are present, go back to 
equation (9). 

The algebra for these lines is in the exercises. I t  is not calculus because At is not dt. 
All factors in brackets [ 1are listed in tables, and the banks keep copies. It might 
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also be helpful to know their symbols. If a bank has interest rate i per period over 
N periods, then in our notation a = 1 + i = 1 + .05/n and t = N = 20n: 

future value of yo = $1 (line 1):y(N) = (1 + i)N 

present value of y = $1 (line 2): yo = (1 + i)-N 

future value of s = $1 (line 3): y(N) = s~~= [(I + i)N- l]/i 

present value of s = $1 (line 5): yo = a~~= [l- (1 + i)-']/i 
To tell the truth, I never knew the last two formulas until writing this book. The 
mortgage on my home has N = (12)(25) monthly payments with interest rate i = 
.07/12. In 1972 the present value was $42,000 = amount borrowed. I am now going 
to see if the bank is honest.? 

Remark In many loans, the bank computes interest on the amount paid back 
instead of the amount received. This is called discounting. A loan of $1000 at 5% 
for one year costs $50 interest. Normally you receive $1000 and pay back $1050. 
With discounting you receive $950 (called the proceeds) and you pay back $1000. 
The true interest rate is higher than 5%-because the $50 interest is paid on the 
smaller amount $950. In this case the "discount rate" is 501950 = 5.26%. 

SCIENTIFIC COMPUTING: DIFFERENTIAL EQUATIONS BY DIFFERENCE EQUATIONS 

In biology and business, most events are discrete. In engineering and physics, time 
and space are continuous. Maybe at some quantum level it's all the same, but the 
equations of physics (starting with Newton's law F = ma) are differential equations. 
The great contribution of calculus is to model the rates of change we see in nature. 
But to solve that model with a computer, it needs to be made digital and discrete. 

These paragraphs work with dyldt = cy. It is the test equation that all analysts use, 
as soon as a new computing method is proposed. Its solution is y = ect, starting from 
yo = 1. Here we test Euler's method (nearly ancient, and not well thought of). He 
replaced dyldt by AylAt: 

The left side is dyldt, in the limit At +0. We stop earlier, when At > 0. 
The problem is to solve (13). Multiplying by At, the equation is 

y(t + At) = (1 + cAt)y(t) (with y(0) = 1). 

Each step multiplies by a = 1 + cAt, so n steps multiply by an: 

y = an= (1 + cAt)" at time nAt. (14) 
This is growth or decay, depending on a. The correct ectis growth or decay, depending 
on c. The question is whether an and eczstay close. Can one of them grow while the 
other decays? We expect the difference equation to copy y' = cy, but we might be 
wrong. 

A good example is y' = -y. Then c = - 1 and y = e-'-the true solution decays. 

?It's not. s is too big. I knew it. 



The calculator gives the following answers anfor n = 2, 10,20: 

The big step At = 3 shows total instability (top row). The numbers blow up when 
they should decay. The row with At = 1 is equally useless (all zeros). In practice the 
magnitude of cAt must come down to .10 or .05. For accurate calculations it would 
have to be even smaller, unless we change to a better difference equation. That is the 
right thing to do. 

Notice the two reasonable numbers. They are .35 and .36, approaching e- ' = .37. 
They come from n = 10 (with At = 1/10) and n = 20 (with At = 1/20). Those have the 
same clock time nAt = 1: 

The main diagonal of the table is executing (1 + xln)" -, e" in the case x = - 1. 

Final question: How quickly are .35 and .36 converging to e-' = .37? With At = .10 
the error is .02. With At = .05 the error is .01. Cutting the time step in half cuts the 
error in half. We are not keeping enough digits to be sure, but the error seems close 
to *At. To test that, apply the "quick method" and estimate an= (1 -Atr from its 
logarithm: 

=ln(1- Atr = n ln(1- At) z n[- At -+ ( ~ t ) ~ ]- 1-fAt. 

The clock time is nAt = 1. Now take exponentials of the far left and right: 

The difference between anand e- ' is the last term *Ate- '. Everything comes down 
to one question: Is that error the same as *At? The answer is yes, because e-'12 is 
115. If we keep only one digit, the prediction is perfect! 

That took an hour to work out, and I hope it takes longer than At to read. I wanted 
you to see in use the properties of In x and e". The exact property In an= n In a came 
first. In the middle of (15) was the key approximation ln(1 + x) z x -fx2, with x = 
-At. That x2 term uses the second derivative (Section 6.4). At the very end came 
e " x l + x .  

A linear approximation shows convergence: (1 + x/n)" -,ex. A quadratic shows the 
error: proportional to At = l/n. It is like using rectangles for areas, with error propor- 
tional to Ax. This minimal accuracy was enough to define the integral, and here it is 
enough to define e. It is completely unacceptable for scientific computing. 

The trapezoidal rule, for integrals or for y' = cy, has errors of order (Ax)2 and (At)2. 
All good software goes further than that. Euler's first-order method could not predict 
the weather before it happens. 

t).Euler's Method for -dy = F(y, t): Y(' + At)-y(t) = ~ ( ~ ( t ) ,
dt At 



276 6 Exponentials and Logarithms 

6.6 EXERCISES 

Read-through questions 

The infinite series for e" is a . Its derivative is b .The 
denominator n! is called " c " and it equals d .At x = 
1 the series for e is e . 

To match the original definition of e, multiply out 
(1 + l/n)" = f (first three terms). As n + co those terms 
approach Q in agreement with e. The first three terms of 
(1 + xln)" are h . As n + co they approach 1 in 
agreement with ex. Thus (1 +xln)" approaches I . A 
quicker method computes ln(1 +xln)" x k (first term 
only) and takes the exponential. 

Compound interest (n times in one year at annual rate x) 
multiplies by ( I )". As n -+ co, continuous compounding 
multiplies by m .At x = 10% with continuous compound- 
ing, $1 grows to n in a year. 

The difference equation y(t + 1)=ay(t) yields fit) = o 
times yo. The equation y(t + 1) =ay(t) +s is solved by y = 
atyo+ $1 + a + -.-+at-']. The sum in brackets is P . 
When a = 1.08 and yo =0, annual deposits of s = 1 produce 
y = q after t years. If a =9 and yo =0, annual deposits 
of s = 6 leave r after t years, approaching y, = s . 
The steady equation y, =ay, +s gives y, = t . 

When i = interest rate per period, the value of yo =$1 after 
N periods is y(N) = u . The deposit to produce y(N) = 1 
is yo = v .The value of s = $1 deposited after each period 
grows to y(N) = w . The deposit to reach y(N) = 1 is s = 

x . 

Euler's method replaces y' =cy by Ay =cyAt. Each step 
multiplies y by Y . Therefore y at t = 1 is (1 + cAt)ll'yo, 
which converges to as At -+0. The error is proportional 
to A ,which is too B for scientific computing. 

1 Write down a power series y = 1 -x + .-.whose derivative 
is -y. 

2 Write down a power series y = 1 + 2x + .--whose deriva- 
tive is 2y. 

3 Find two series that are equal to their second derivatives. 

4 By comparing e = 1 + 1 +9 +4 + + -.. with a larger 
series (whose sum is easier) show that e < 3. 

5 At 5% interest compute the output from $1000 in a year 
with 6-month and 3-month and weekly compounding. 

6 With the quick method ln(1 +x) z x, estimate ln(1- lln)" 
and ln(1 + 2/n)". Then take exponentials to find the two limits. 

7 With the slow method multiply out the three terms of 
(1 -$)2 and the five terms of (1 -$I4.What are the first three 
terms of (1 - l/n)", and what are their limits as n -+ oo? 

8 The slow method leads to 1 - 1 + 1/2! - 1/3! + -.-for the 

limit of (1 - l/n)". What is the sum of this infinite series -
the exact sum and the sum after five terms? 

9 Knowing that (1 + l/n)" -+ e, explain (1 + l/n)2n-+ e2 and 
(1 + 2/N)N-+e2. 

10 What are the limits of (1 + l/n2)" and (1 + l/n)"*? 
OK to use a calculator to guess these limits. 

11 (a) The power (1 + l/n)" (decreases) (increases) with n, as 
we compound more often. (b) The derivative of f(x)= 
x ln(1 + llx), which is ,should be (<0)(> 0). This is 
confirmed by Problem 12. 

12 Show that ln(1 + l/x) > l/(x + 1) by drawing the graph of 
llt. The area from t = 1 to 1 + l /x is . The rectangle 
inside it has area . 
13 Take three steps of y(t + 1) =2y(t) from yo = 1. 

14 Take three steps of y(t + 1)= 2y(t) + 1 from yo =0. 

Solve the difference equations 15-22. 

In 23-26, which initial value produces y, =yo (steady state)? 

23 y(t + 1) =2y(t) -6 24 y(t + 1) =iy(t) -6 

25 y(t + 1)= -y(t) + 6 26 y(t + 1)= -$y(t)+ 6 

27 In Problems 23 and 24, start from yo =2 and take three 
steps to reach y,. Is this approaching a steady state? 

28 For which numbers a does (1 -at)/(l-a) approach a limit 
as t -+ oo and what is the limit? 

29 The price P is determined by supply =demand or 
-dP(t + 1) + b =cP(t). Which price P is not changed from 
one year to the next? 

30 Find P(t) from the supply-demand equation with c = 1, 
d =2, b = 8, P(0) =0. What is the steady state as t -+ co? 

Assume 10% interest (so a = 1 + i = 1.1) in Problems 31-38. 

31 At 10% interest compounded quarterly, what is the effec- 
tive rate? 

32 At 10% interest compounded daily, what is the effective 
rate? 

33 Find the future value in 20 years of $100 deposited now. 

34 Find the present value of $1000 promised in twenty years. 
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35 For a mortgage of $100,000 over 20 years, what is the do you still owe after one month (and after a year)?
monthly payment?

41 Euler charges c = 100% interest on his $1 fee for discover-
36 For a car loan of $10,000 over 6 years, what is the monthly ing e. What do you owe (including the $1) after a year with
payment? (a) no compounding; (b) compounding every week; (c) con-

tinuous compounding?37 With annual compounding of deposits s = $1000, what is
the balance in 20 years? 42 Approximate (1 + 1/n)" as in (15) and (16) to show that

you owe Euler about e - e/2n. Compare Problem 6.2.5.
38 If you repay s = $1000 annually on a loan of $8000, when
are you paid up? (Remember interest.) 43 My Visa statement says monthly rate = 1.42% and yearly

rate = 17%. What is the true yearly rate, since Visa com-39 Every year two thirds of the available houses are sold, and
pounds the interest? Give a formula or a number.1000 new houses are built. What is the steady state of the

housing market - how many are available? 44 You borrow yo = $80,000 at 9% to buy a house.

40 If a loan shark charges 5% interest a month on the $1000 (a) What are your monthly payments s over 30 years?
you need for blackmail, and you pay $60 a month, how much (b) How much do you pay altogether?

I 6.7 Hyperbolic Functions

This section combines ex with e - x. Up to now those functions have gone separate
ways-one increasing, the other decreasing. But two particular combinations have
earned names of their own (cosh x and sinh x):

ex + e - x
hyperbolic cosine cosh x- 

ex -
= hyperbolic sine sinh x 

e-x
= -

2 2

The first name rhymes with "gosh". The second is usually pronounced "cinch".
The graphs in Figure 6.18 show that cosh x > sinh x. For large x both hyperbolic

functions come extremely close to ½ex. When x is large and negative, it is e- x that
dominates. Cosh x still goes up to + 00 while sinh x goes down to - co (because
sinh x has a minus sign in front of e-x).

1 1 1 1
cosh x = eX+ e-x sinh x = -ex e

2 2 2 2
\ /I

1 1e-X 1 ex2 2

-1 1

Fig. 6.18 Cosh x and sinh x. The hyperbolic Fig. 6.19 Gateway Arch courtesy of the St.
functions combine 'ex and ½e- x. Louis Visitors Commission.

The following facts come directly from ((ex + e - x) and ½(ex - e-X):

cosh(- x) = cosh x and cosh 0 = 1 (cosh is even like the cosine)

sinh(- x) = - sinh x and sinh 0 = 0 (sinh is odd like the sine)
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The graph of cosh x corresponds to a hanging cable (hanging under its weight).
Turned upside down, it has the shape of the Gateway Arch in St. Louis. That must
be the largest upside-down cosh function ever built. A cable is easier to construct
than an arch, because gravity does the work. With the right axes in Problem 55, the
height of the cable is a stretched-out cosh function called a catenary:

y = a cosh (x/a) (cable tension/cable density = a).

Busch Stadium in St. Louis has 96 catenary curves, to match the Arch.

The properties of the hyperbolic functions come directly from the definitions. There
are too many properties to memorize-and no reason to do it! One rule is the most
important. Every fact about sines and cosines is reflected in a corresponding fact about
sinh x and cosh x. Often the only difference is a minus sign. Here are four properties:

1. (cosh x)2 - (sinh x)2 = 1 instead of (cos x)2 + (sin x)2 = 1]

- 22x+2 -e x
x e- 2 = e2 ex+2+e-2x 

Check: ex e-x 2 

2. dx d (cosh x) = sinh x instead of dxd (cos x) - sin x

3. d (sinh x) = cosh x like d sin x = cos x

4. f sinh x dx = cosh x + C and f cosh x dx = sinh x + C

t, sinh t)
t)

Fig. 6.20 The unit circle cos 2t + sin2t = 1 and the unit hyperbola cosh 2t - sinh 2t = 1.

Property 1 is the connection to hyperbolas. It is responsible for the "h" in cosh and
sinh. Remember that (cos x)2 + (sin x)2 = 1 puts the point (cos x, sin x) onto a unit
circle. As x varies, the point goes around the circle. The ordinary sine and cosine are
"circular functions." Now look at (cosh x, sinh x). Property 1 is (cosh x)2 - (sinh x) 2 =
1, so this point travels on the unit hyperbola in Figure 6.20.

You will guess the definitions of the other four hyperbolic functions:

sinh x ex - e-x cosh x ex + e-x
tanh x - - coth x - - -

cosh x ex + e - x sinh x ex - e - x

sech x 1 2 csch x 1 2

cosh x ex + e-x sinh x ex - e-x

I think "tanh" is pronounceable, and "sech" is easy. The others are harder. Their
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properties come directly from cosh2x- sinh2x= 1. Divide by cosh2x and sinh2x: 

1 - tanh 2x = sech2x and coth2x - 1 =csch2x 

(tanh x)' = sech2x and (sech x)' = -sech x tanh x 

sinh x1tanh x dx =S=dx = ln(cosh x) + C. 

INVERSE HYPERBOLIC FUNCTIONS 

You remember the angles sin-'x and tan-'x and sec-'x. In Section 4.4 we 
differentiated those inverse functions by the chain rule. The main application was to 
integrals. If we happen to meet jdx/(l+ x2), it is tan-'x + C. The situation for 
sinh- 'x and tanh- 'x and sech- 'x is the same except for sign changes -which are 
expected for hyperbolic functions. We write down the three new derivatives: 

y = sinh-'x (meaning x = sinh y) has 9= 
1 

dx J 2 T i  

y = tanh-'x (meaning x = tanh y) has 9= -
1 

dx 1 - x2 

-1 
y = sech -'x (meaning x = sech y) has d y  = 

dx X J i 7  

Problems 44-46 compute dyldx from l/(dx/dy). The alternative is to use logarithms. 
Since In x is the inverse of ex, we can express sinh-'x and tanh-'x and sech-'x as 
logarithms. Here is y = tanh- 'x: 

The last step is an ordinary derivative of 4 ln(1 + x) - ln(1 - x). Nothing is new 
except the answer. But where did the logarithms come from? In the middle of the 
following identity, multiply above and below by cosh y: 

1 + x - 1 + tanh y cosh y + sinh y eY 
- e2y.

1 - x 1- tanh y cosh y - sinh y e-y 

Then 2y is the logarithm of the left side. This is the first equation in (4), and it is the 
third formula in the following list: 

Remark 1 Those are listed onlyfor reference. If possible do not memorize them. The 
derivatives in equations (I), (2), (3) offer a choice of antiderivatives - either inverse 
functions or logarithms (most tables prefer logarithms). The inside cover of the book 
has 1% = f l n [ E ]  + C (in place of tanh- 'x + C). 

Remark 2 Logarithms were not seen for sin- 'x and tan- 'x and sec- 'x. You might 
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wonder why. How does it happen that tanh-'x is expressed by logarithms, when the 
parallel formula for tan-lx was missing? Answer: There must be a parallel formula. 
To display it I have to reveal a secret that has been hidden throughout this section. 

The secret is one of the great equations of mathematics. What formulas for cos x 
and sin x correspond to &ex+ e-x) and &ex- e-x)? With so many analogies 
(circular vs. hyperbolic) you would expect to find something. The formulas do exist, 
but they involve imaginary numbers. Fortunately they are very simple and there is 
no reason to withhold the truth any longer: 

1 1 .
c o s x = - ( e i x + e i x )  and s i n ~ = - ( e ' ~ - - e - ' ~ ) .  ( 5 )2 2i 

It is the imaginary exponents that kept those identities hidden. Multiplying sin x by 
i and adding to cos x gives Euler's unbelievably beautiful equation 

cos x + i sin x = eiX. (6) 

That is parallel to the non-beautiful hyperbolic equation cosh x + sinh x = ex. 
I have to say that (6) is infinitely more important than anything hyperbolic will 

ever be. The sine and cosine are far more useful than the sinh and cosh. So we end 
our record of the main properties, with exercises to bring out their applications. 

Read-through questions 

Cosh x = a and sinh x = b and cosh2x - sinh2x= 

. Their derivatives are d and e and f . 
The point (x, y) = (cosh t ,  sinh t )  travels on the hyperbola 

g . A cable hangs in the shape of a catenary y = h . 

The inverse functions sinh-'x and t a n h l x  are equal to 
ln[x + ,/x2 + 11 and 4ln I . Their derivatives are i 
and k . So we have two ways to write the anti I . The 
parallel to cosh x + sinh x = ex is Euler's formula m . 
The formula cos x = $(eix+ ePix) involves n exponents. 
The parallel formula for sin x is o . 

1 Find cosh x + sinh x, cosh x - sinh x, and cosh x sinh x. 

2 From the definitions of cosh x and sinh x, find their deriv- 
atives. 

3 Show that both functions satisfy y" = y. 

4 By the quotient rule, verify (tanh x)' = sech2x. 

5 Derive cosh2x + sinh2x = cosh 2x, from the definitions. 

6 From the derivative of Problem 5 find sinh 2x. 

7 The parallel to (cos x + i sin x r  = cos nx + i sin nx is a 
hyperbolic formula (cosh x + sinh x)" = cosh nx + . 
8 Prove sinh(x + y) = sinh x cosh y + cosh x sinh y by 

changing to exponentials. Then the x-derivative gives 
cosh(x + y) = 

Find the derivatives of the functions 9-18: 

9 cosh(3x + 1) 10 sinh x2 

11 l/cosh x 12 sinh(1n x) 

13 cosh2x + sinh2x 14 cosh2x - sinh2x 

15 tanh ,,/= 16 (1 + tanh x)/(l - tanh x) 

17 sinh6x 18 ln(sech x + tanh x) 

19 Find the minimum value of cosh(1n x) for x > 0. 

20 From tanh x = +find sech x, cosh x, sinh x, coth x, csch x. 

21 Do the same if tanh x = - 12/13. 

22 Find the other five values if sinh x = 2. 

23 Find the other five values if cosh x = 1. 

24 Compute sinh(1n 5) and tanh(2 In 4). 

Find antiderivatives for the functions in 25-32: 

25 cosh(2x + 1)  26 x cosh(x2) 

27 cosh2x sinh 

sinh x ex+ ePx
30 ~ 0 t hx = ----

29 1 +cosh x ex - e-" 

31 sinh x + cosh x 32 (sinh x + cosh x)" 
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33 The triangle in Figure 6.20 has area 3cosh t sinh t. 
(a) Integrate to find the shaded area below the hyperbola 
(b)For the area A in red verify that dA/dt =4 
(c) Conclude that A =it + C and show C =0. 

Sketch graphs of the functions in 34-40. 

34 y = tanh x (with inflection point) 

35 y =coth x (in the limit as x 4 GO) 

36 y =sech x 

38 y=cosh-lx for x 3 1 

39 y =sech- 'x for 0 c x d 1 

40 = tanh-'x = - In - for lxlc 1 : (i':) 
41 (a) Multiplying x =sinh y =b(ey -e-Y) by 2eY gives 

(eq2-248)  - 1=0. Solve as a quadratic equation for eY. 
(b)Take logarithms to find y =sinh - 'x and compare with 
the text. 

42 (a) Multiplying x =cosh y =i ( 8  +ebY) by 2ey gives 
( e ~ ) ~-2x(e") + 1=0. Solve for eY. 
(b)Take logarithms to find y =cosh- 'x and compare with 
the text. 

43 Turn (4) upside down to prove y' = - l/(l -x2), if y = 
coth- 'x. 

44 Compute dy/dx = I/,/= by differentiating x =sinh y 
and using cosh2 y -sinh2y= 1. 

45 Compute dy/dx = l/(l -x2) if y =tanh- 'x by differen- 
tiating x = tanh y and using sech2y + tanh2y= 1. 

46 Compute dyldx = -l / x J E ?  for y =sech- 'x, by 
differentiating x =sech y. 

From formulas (I), (2), (3) or otherwise, find antiderivatives in 
47-52: 

54 A falling body with friction equal to velocity squared 
obeys dvldt =g -v2. 

(a) Show that v(t) =&tanh &t satisfies the equation. 
(b)Derive this v yourself, by integrating dv/(g -v2)=dt. 
(c) Integrate v(t) to find the distance f(t). 

55 A cable hanging under its own weight has slope S =dyldx 
that satisfies dS/dx =c d m .  The constant c is the ratio of 
cable density to tension. 

(a) Show that S =sinh cx satisfies the equation. 
(b)Integrate dyldx =sinh cx to find the cable height y(x), 
if y(0)= llc. 
(c) Sketch the cable hanging between x = -L and x =L 
and find how far it sags down at x =0. 

56 The simplest nonlinear wave equation (Burgers' equation) 
yields a waveform W(x) that satisfies W" = WW' -W'. One 
integration gives W' =3w2-W. 

(a) Separate variables and integrate: 
dx=dw/(3w2- W)=-dW/(2- W)-dW/W. 
(b) Check W' =3W2-W. 

57 A solitary water wave has a shape satisfying the KdV 
equation y" =y' -6yy'. 

(a) Integrate once to find y". Multiply the answer by y'. 
(b) Integrate again to find y' (all constants of integration 
are zero). 
(c) Show that y =4 sech2(x/2) gives the shape of the 
"soliton." 

58 Derive cos ix =cosh x from equation (5). What is the 
cosine of the imaginary angle i = 

59 Derive sin ix = i sinh x from (5). What is sin i? 

60 The derivative of eix =cos x + i sin x is 
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