CHAPTER 5

Integrails

I 5.1 The idea of the Integral NG

This chapter is about the idea of integration, and also about the technigue of integ-
ration. We cxpiain how it is done in principle, and then how it is done in practice.
Integration is a problem of adding up infinitely many things, each of which is infini-
tesimally small. Doing the addition is not rccommended. The whole point of calculus
15 to offer a better way.

The problem of integration is to find a limit of sums. The key is te work backward
from a hmit of differences (which 1s the derivative). We can integrate v(x) if it furns
up as the derivative of another function f(x). The integral of v = cos x is f=sin x. The
integral of v = x is f=4x? Basically, f(x) is an “antiderivative™, The list of /s will
grow much longer (Section 5.4 is crucial). A selection is inside the cover of this book.
If we don’t find & suitable f{x), numerical integration can still give an excellent answer.

1 could go directly to the formulas for integrals, which allow you to compute areas
under the most amazing curves. (Area is the clearest example of adding up inhnitely
many infinitely thin rectangles, so it always comes first. [t is certainly not the only
problem that integral culculus can solve.) But [ am really unwilling just to write down
formulas, and skip over all the idcas. Newton and Leibniz had an absolutcly brilliant
intuition, and there is no reason why we can’t share it,

They started with something simpie. We will do the same.

SUMS AND DIFFERENCES

Integrais and derivatives can be mostly explained by working (very briefly) with sums
and differences. Instcad of functions, we have n ordinary numbers. The key idea is
nothing more than a basic fact of algebra. In the limit as n — 2c. it becomes the basic
fuct of calculus. The step of “going to the limit™ is the essential difference between
algebra and caleulust It has to be taken, in order to add up infinitely many
mAnitesimals— but we start out this side of it.
To see what happens before the limiting step, we need twa sets of n numbers. The
first set will be v, v,, ..., »,. where ¢ suggests velocity. The second set of numbers
will be f1, f5,....f,. where f recalls the idea of distance. You might think d would
be a better symbol for distance. but that is needed for the dx and dy of calcuius. 177
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5 Inlegrals

A first example has n=4:
vy, Uy, U3, g =1,2,3,4 Ji.f2s S5, f4=1,3,6, 10

The relation between the v's and f's is seen in that example. When you are given
1, 3, 6, 10, how do you produce 1, 2, 3, 47 By taking differences. The diflerence
between 10 and 6 is 4. Subtracting 6 — 3 is 3. The difference f; - f; =3 —1is v, =2
Each v is the difference between two f’s:

v; is the difference {;—f;_,.

This is the discrete form of the derivative. I admit to a small difficulty at j =1, from
the fact that there is no f,. The first v should be f; —f;. and the natural idea is to
agree that f, is zero. This need for a starting point will come back to haunt us {or
help us) in calculus.

Now look again at those same numbers—but start with v. Fromv=1, 2, 3, 4 how
do you produce f= 1, 3, 6, 10? By taking sums. The first two v’s add to 3, which is f,.
The first three v’s add to f; = 6. The sum of all four v'sis 1 + 2+ 3 + 4= 10. Taking
sams is the apposite of taking differences.

That idea from algebra is the key to calculus. The sum f; involves ali the numbers
v, + v, 1+ - + v;. The diflerence v; involves only the two numbers f;— f;_,. The fact
that one reverses the other is the “Fundamental Theorem.” Calculus will change sums
to integrals and differences to derivatives—but why not let the key idea come through
now?

SA Fuwrdamental Theorem of Calewlus (before limits):
each =11, then v 3+ + = f, o

The differences of the s add up to f, — f;. All f°s in between are canceled, leaving
only the last f, and the starting f;, The sum “telescopes™

nto et re,=(-f)tL-f+ L+ H LoD

The number f; is canceled by —f;. Similarly —f, cancels f, and —f; cancels f;.
Eventually f, and —f, are left. When fj is zero, the sum is the final f,.
That completes the algebra. We add the v's by finding the ’s.

Question How do you add the odd numbers 14+ 3+ 5+ -+ + 99 {the v's)?
Answer They are the differences between 0, 1, 4,9, ... These f’s are squares. By the
Fundamental Theorem, the sum of 50 odd numbers is (50)%.

The tricky part is to discover the right f’s! Their differences must produce the v's.
In calculus, the tricky part is to find the right f{x). Its derivative must produce ¢{x).
It is remarkable how often f can be found—more often for integrals than for sums.
Qur next step is to understand how thke integraf is a limit of sums.

SUMS APPROACH INTEGRALS

Suppose you start a successful company. The rate of income is increasing. After
x years, the income per year is J; million dolars. In the first four years you reach
\/T, ﬁ, ﬁ, and \/Z million dollars. Those numbers are displayed in a bar graph
(Figure 5.1a, for investors). I realize that most start-up companies make losses, but
your company is an e¢xception. If the example is too good to be true, please keep
reading.
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Ag. 5.1 Total income = total area of rectangles = 6.15.

The graph shows four rectangles, of heights \/f, \/5, \/?‘,, \/Z Since the base of
each rectangle is one year, those numbers are also the areas of the rectangles, One
investor, possibly weak in arithmetic, asks a simple question: What is the total income
Jor all four years? There are two ways to answer, and I will give both.,

The first answer is \/1+./2+./3+./4. Addition gives 6.15 million dollars.
Figure 5.1b shows this total—which is reached at year 4. This is exactly like velocities
and distances, but now v is the iscome per year and fis the total income. Algebraically,
Srisstill o + - + v,

The second answer comes from geometry. The total income is the total area of the
rectangles. We are emphasizing the correspondence between addition and area. That
point may seem obvious, but it becomes important when a second investor (smarter
than the first) asks a harder question.

Here is the problem. The incomes as stated are false. The company did not make
a million dollars the first year, Aflter three months, when x was 1/4, the rate of income
was only ,/J—c = 1/2. The bar graph showed \/I = | for the whole year, but that was
an overstatement. The income in three months was not more than 1/2 times 1/4, the
rate multiplied by the time.

All other quarters and years were also overstated. Figure 5.2a is closer to reality,
with 4 years divided into 16 quarters, It gives a new estimate for total income.

Again tbere are two ways to find the total. We add Jm+ \/2_/2+ et /16/4,
remembering to multiply them all by 1/4 (because each rate applies to 1/4 year).
This is also the area of the 16 rectangles. The area approach is better because the 1/4
is automatic. Each rectangle has base 1/4, so that factor enters each area. The total
area is now 5.56 million dollars, closer to the truth.

You see what is coming. The next step divides time into weeks. Alter one week the
rate ,/.; is only ./1/52. That is the height of the first rectangle—its base is Ax =
1/52. There is a rectangle for every week, Then a hard-working investor divides time
into days, and the base of each rectangle is Ax =1/365. At that point there are
4 x 365 = 1460 rectangles, or 1461 because of leap year, with a total area below 54
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million doilars. The calculation is elementary but depressing—adding up thousands
of square roots, each multiplied by Ax from the base. There has to be a better way.

The better way, in fact the best way, is calculus. The whole idea is to allow for
continuous change. The geometry problem is to find the avea under the square root
curve, That question cannot be answered by arithmetic, because it involves a limit.
The rectangles have base Ax and heights \/Ax, V/2Ax. ...,V-/E. There are 4/Ax
rectangles—more and more terms from thinner and thinner rectangles. The area is

the limit of the sum as Ax — 0,

This limiting arca is the “integral.” We are looking for a number below 53.

Algebra (area of n rectangles): Compute ¢, + - + ¢, by finding [’s.
Key idea: If ¢;=f,—f;.., then the sum is f, — f;.

Calculus (area under curve). Compute the limit of Ax[t{A x)+ v(2Ax) + -]
Key idea: If v{x)= df/dx then area = integral to be explained next.

5.1 EXERCISES

Read-through questions

The problem of summation s 10 add ¢, ~ - + 1. [t 15 solved
if we find f°s such that v;=__a . Then v, + - ~t, equals
b__. The (i=fo)+ifa=fi)+ -+

canccllation  tn
(fo—/f-:)leaves only _ e . Taking sums is the _d  of
taking differences.

The differences between 0, 1,4, 9 are ¢, 05,6,= _ e

For lunctions, finding the integral is the reverse of __h
If the derivative of f{x} is o{x}, then the _ i of v{x) is f{x).
Ifeix)=10xthenfixj=_1 .Thisisthe __k ofatriangle
with basc x and height 10x,

Integrals begin with sums. The triangle under ¢ = 10x out
tox=4hasarea _ 1 . ltisapproximated by four rectangles
of heights 10, 20, 30, 40 and area __m___ It is hetter approxi-
mated by eight rectangles of heights _ n__ and area _ o
For n rectangles covering the triangle the area is the sum of

. As #- « this sum should approach the number

For f;— j* the difference between f,, and f, is vjp=_1
From thrs pattern 1 + 3+ 5+ - - 19 equals _g .

q . That is the integraf of v = 10x from 0 10 4,
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Problems 1-6 are about sums f; and differences ¢;.

1 With e=1.2, 4, 8. the formula for r; is {not 24),
Find f,,f,. /3. f starting from f; = 0. What is f5?
2 The saing v=1,24.8 ... are the differences between

f=1,2,4.8,16, ... Now fy=1 and f,= 2%, (a) Check that
2% — 2% equals v5. (b) Whatis 1 +2+4+ 8% + L6?

3 The diflerences between f=1, 1/2, 174, 1/ are p=
- 1i2, —1/4, —1/8. These negative ¢’s do not add up to these
positive {'s. Verify that vy + &, + 3 =f; — f; is still true.

4 Any constant € can be added to the antiderivative fix)
because the of a constant is zero. Any C can be
added to f.f,, ... because the between the /75 is
not changed.

§ Show that /;=rfi{r — Y hasf; —f,_, =/ . Therefore the
geometric series [+r+ - +rf7' adds up to
(remember 10 subtract f;).

6 The sums f;=(r/—1)i(r— I} also have f;—f;_; =ri"%
Now f, = . Therefore 1 +7+ - +r/"" adds up to
f; The sum | +7+ - +#" equals

7 Suppose t{x) =3 for x < | and v(x)= 7 for x = L. Find the
area fix) from 0O to x, under the graph of v{x). (Two pieces.)

81Me=1~23 -4, .., write down the {’s starting from
Jo=0. Find formulas for r; and f; when j s odd and j is even,

Problems 9-16 are about the company earning \\ per year.

9 When time s divided in1o weeks there are 4 x 52 = 208
rectangles. Write down the first area, the 208th area, and the
jth area.

10 How do you know that the sum over 208 weeks is smaller
than the sum over 16 quarters?

11 A pessimist would use \: al the heginning of cach time
period as the income rate for that period. Redraw Figure 5.1
(both parts) using heights \,6 \T ' 2 3. How much lower
is the estimate of total income?

12 The same pessimist would redraw Figure 5.2 with heights
0,14, ... What is the height of the last rectangle? How
much does this change reduce the total rectangular arca 5,567

13 At every step from years to weeks to days 1o hours, the
pessimist’s area goes and the optimist’s aren goes
. The difference between them is the area of the last

14 The cptimist and pessimist arrive at the same limit as
years are divided into weeks, days, hours, seconds. Draw the
' x curve between the rectangles to show why the pessmist
is ulways too low and the optimist is too high.

15 (Important} Let f{x) be the area under the , / x curve, above
the interval from Q to x, The area to x + Ax is fix + Ax). The
extra area 15 Af = . This is almost a rectangle with
base and height \/’;‘ So AffAxisclose to

As Ax — 0 we suspect that dfidx =

16 Draw the Vf’(; curve from x =0 to 4 and put triangles
below to prove that the area under it is more than 5. Look
left and right from the point where \/T =1

Problems 17-22 are about a company whose expense rate
t{x) = 6 — x is decreasing.

. The total
. This is the area

17 The expenses drop to zero at x =
expense during those years equals
of

18 The rectangles of heights 6,5,4,3, 2, [ give a total
estimated expense of . Draw them enclosing the
triangle to show why this total is too high.

19 How many rectangles {enclosing the triangle) would you
nced before their areas are within 1 of the correct triangular
area?

20 The accountant uses 2-vear intervals and computes » =
5,3, 1 at the midpoints (the odd-numbered yeuars). What is
her estimate, how accurate is it, and why?

21 What is the area f{x) under the line t{x) = 6 — x above the
interval from 2 to x? What is the derivative of this f{x)?

22 What is the area f{x) under the line 1{x) = 6 — x above the
interval from x to 67 What is the derivative of this f{x)?

23 With Ax =1/3, find the area of the three rectangles that
enclose the graph of t{x) = x.

24 Draw graphs of :.~=Vf§ and ¢=x? from 0 to 1. Which
areas add to 1” The same is true for r = x and v =

25 From x to x+ Ax, the area under e=x? is Af This
ts almost a rectangle with base Ax and height . So
Af7Ax is close to . In the limit we find dfidx = x°
and f{x) =

26 Compute the area of 208 rectangles under o{x) = \T from
x=0tox=4.
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D 5.2 Antfiderivatives NGNS

The symbol | was invented by Leibniz to represent the integral. It is a stretched-out
8, from the Latin word for sum. This symbol is a powerful reminder of the whole
construction: Sum approaches integral, S approaches |, and rectangular area
approaches curved area:
curved area= | v(x) dx = | J; dx. 1
The rectangles of base Ax lead to this limit—the integral of J; The “dx” indicates
that Ax approaches zero. The heights v; of the rectangles are the heights v(x) of the
curve. The sum of v; times Ax approaches “the integral of v of x dx.” You can imagine
an infinitely thin rectangle above every point, instead of ordinary rectangles above
special points.
We now find the area under the square root curve. The “limits of integration™ are
0 and 4, The lower limit is x = 0, where the area begins. (The start could be any point
x = a.) The upper limit is x = 4, since we stop after four years. (The finish could be
any point x = b.) The arca of the rectangles is a sum of base Ax times heights J;
The curved area is the limit of this sum. That imit is the integral of ./x from 0 to 4:

x=

4
5lirn0 [(, /AXYAX)+(/2Ax)(Ax)+ - + (\/Z}(Ax)] = j ﬁ dx. (2)
= x=0
The outstanding problem of integral calculus is still to be solved. What is this limiting
area? We have a symbol for the answer, involving { and ,/x and dx—but we don’t
have a number.

THE ANTIDERIVATIVE

I wish I knew who discovered the area under the graph of J; It may have been
Newton. The answer was available earlier, but the key idea was shared by Newton
and Leibniz. They understood the parallels between sums and integrals, and between
differences and derivatives. I can give the answer, by following that analogy. I can’t
give the proof (yet)—it is the Fundamental Theorem of Calculus.

In algebra the difference f; — f;_, is v;. When we add, the sum of the v’s is f, — fo.
In calculus the derivative of f(x) is v(x). When we integrate, the area under the 1{x)
curve is f(x) minus f{0). Our problem asks for the area out to x = 4:

§B (Discrete vs. continuous, rectangles vs. curved areas, addition vs,
integration) The integral of v(x) is the difference in f{x):

Ifdfjdx =/ then area =23 /x dx = fi4) — f(O). ()

What is f(x)? Instead of the derivative of ﬁ, we need its “‘antiderivative,” We have
to find a function f{x) whose derivative is ﬁ It is the opposite of Chapters 2-4, and
requires us to work backwards. The derivative of x" is nx" ! —now we need the
antiderivative. The quick formula is f{x)=x"*1/{{n + 1)—we aim to understand it.

Solution Since the derivative lowers the exponent, the antiderivative raises it, We
go from x!/? to x*?. But then the derivative is (3/2)x'/2. It contains an unwanted
factor 3/2. To cancel that factor, put 2{3 intc the antiderivative:

S1x)= 3x32 has the required derivative (x) = x'2 = /x.
7
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Fig. 5.3 The integral of v{x) = ,/; is the exact area 16/3 under the curve.

There you see the key to integrals: Work backward from derivatives (and adjust).
Now comes a number—the exact area. At x =4 we find x¥% = 8. Multiply by 2/3
to get 16/3. Then subtract fi0) =
x=4 2 N\ 2 -\ 2 16
. — 3;2 32 _ —
ki = _— 4 ie fa = =
L=O VX dx 3( ) 3{0) 3{3) 3
The total income over four years is 16/3 = 5% million dollars. This is f{4) — f{0). The
sum from thousands of rectangles was slowly approaching this exact area 54.

4

Other areas The income in the first year, at x=1, is (1)** =% million dollars.
(The false income was | million dollars.) The total income after x years is $x%2,
which is the antiderivative f{x). The square root curve covers 2/3 of the overall rectangle
it sits in. The rectangle goes out to x and up to \/;, with area x¥*, and 2/3 of that
rectangle is below the curve. (1/3 is above.)

Other antiderivatives The derivative of x° is 5x*. Therefore the antiderivative of x*

is x*/5. Divide by 5 (or n + 1) to cancel the 5 (or n + 1) from the derivative. And don’t
allow n+1=0:

The derivative 1(x) = x" has the antiderivative [(x)= x"*"j(n+1).

EXAMPLE 1 The antiderivative of x? is §x*. This is the area under the parabola
¥{x) = x%. The area out to x =1 is 3(1)* — $(0)%, or 1/3.

Remark on . /x and x* The 2/3 from \/; and the 1/3 from x? add to 1. Those are
the areas below and above the \/; curve, in the corner of Figure 5.3. If you turn the
curve by 90°, it becomes the parabola. The functions y = \/; and x = y? are inverses!
The areas for these inverse functions add to a square of area 1.

AREA UNDER A STRAIGHT LINE

You aiready know the area of a triangle. The region is below the diagonal line v = x
in Figure 5.4, The base is 4, the height is 4, and the area is $(4)(4) = 8. Integration is
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Fig. 5.4 Triangular area § as the limit of rectangular areas 10, 9, 84, ...

not required! But if you allow calculus to repeat that answer, and build up the integral
fx)=}x? as the limiting area of many rectangies, you will have the beginning of
something important.

The four rectangles have area 1 + 2+ 3+ 4 = 10. That is greater than 8§, bccause
the triangle is inside. 10 1s a first approximation to the triangular area 8, and to
impreve it we need more rectangles.

The next rectangles will be thinner. of width Ax =12 instead of the original
Ax = |. There will be eight rectangles instead of four. They extend above the line,
so the answer is still too high, The new heights are 1/2, 1, 3/2,2, 5/2, 3,72, 4. The
total area in Figure 5.4b 1s the sum of the base Ax=1/2 times those heights:

area=3(3+ 1+ 3+ 2+ -+ 4)=9 {which is closer to §).

Quesfion What is the area of 16 rectangles? Their heights are 1. 3. ..., 4.
Answer  With base Ax=4%theareais {3 +3+ - +4) =83

The eflort of doing the addition is increasing. A formula for the sums is needed, and
will be established soon. (The next answer would be 81.) But more important than
the formula is the idea. We are carrying out a limiting process. one step at a time. The
area of the rectangles is approaching the area of the triangle, as Ax decreases. The
same limiting process will apply to other areas, in which the region is much more
complicated. Therefore we pause to comment on what is important.

Area Under a Curve

What requirements are imposed on those thinner and thinner rectdnbks” It is not
essential that they ali have the same width. And it is not required that they cover the
triangle completely. The rectangles could lic below the curve. The limiting answer
will still be &, even if the widths Ax are unequal and the rectangles fit inside the
triangle or across it. We only impose {wo rules:

I. The largest width Ax,,, must approach zero.

2. The top of each rectangle must touch or cross the curve.

The area under the graph is defined to be the limit of these rectangular areas, if that
limit exists. For the straight line, the limit does exist and equals 8. That limit is
independent of the particular widths and heights—as we absolutely insist it should
be.

Section 5.5 allows any continuous r{x). The question wili be the same— Does the
fimit exist? The answer will be the same— Yes. That limit will be the integral of v(x).
and it will be the area under the curve. It will be f{x).



5.2 Anfiderivatives

EXAMPLE2 The triangular area from 0 to x is j(base)(height) = (x)(x). That is
fix)=1x2 Tts derivative is o(x) = x. But notice that 4x + 1 has the same derivative.
So does f=4x? + C, for any constant C. There is a “constant of integration™ in f(x),
which is wiped out in its derivative o(x).

EXAMPLE 3 Suppose the velocity is decreasing: o(x) =4 — x. If we sample v at x=
1, 2, 3, 4, the rectangles lie under the graph. Because » is decreasing, the right end of
each interval gives v.;,. Then the rectangular area 3+ 2+ 1+ 0= 6 is less than the
exact area 8. The rectangles are inside the triangle, and eight rectangles with hase §
come closer:

rectangular area =3(33+ 3+ +4+0)=7.

Sixteen rectangles would have area 73, We repeat that the rectangles need not have
the same widths Ax, but it makes these calculations easier.

What is the area out to an arbitrary point (like x =3 or x=1)? We coulid insert
rectangles, but the Fundamental Theorem offers a faster way. Any antiderivative of
4 — x will give the area. We look for a function whose derivative is 4 — x. The derivative
of 4x is 4, the derivative of 1x? is x, so work backward:

to achieve dffdx = 4 — x choose f{x)=4x — {x2.

Calculus skips past the rectangles and computes f{3) = 73. The area between x =1
and x = 3 is the difference 75 — 35 = 4. In Figure 5.5, this is the area of the trapezoid.

The f-curve flattens out when the v-curve touches zero. No new area is being added.

251 -

zero slope
4 61
[~ Af=4
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by
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K. R S SS———
2T -
10 =[ @ -0dx=4x- 1r
zero velocity
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: S . : = , L
1 p 3 4 | 2 3 4

Ag.5.5 The area is Af= 74— 35 =4. Since v(x) dccreases,f(x} bends down.

INDEANITE INTEGRALS AND DEFINITE INTEGRALS
We have to distinguish two different kinds of integrals. They both use the antideriva-
tive f{x). The definite one involves the limits 0 and 4, the indefinite one doesn’t;
The indefinite integral is a _function f(x) = 4x — $x*.
The definite integraf from x =0 to x =4 is the sumber f{4) — f(0).

The definite integral is definitely 8. But the indefinite integral is not necessarily
4x — 4x2. We can change f(x) by a constant without changing its derivative (since the

185
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derivative of a constant is zero). The following functions are also antiderivatives:
fixy=dx—$x7+1,  fix)=4x—1x*-9, fi)=4x-§x*+C.

The first two are particular examples. The last is the general case. The constant C
can be anything (including zero), to give all functions with the required derivative.
The theory of calculus will show that there are no others. The indefinite integral is
the most general antiderivative (with no limits);

indefinite integral f(x}=[v(x) dx =4x —ix? + C. (5)

By contrast, the definite integral is a number. It contains no arbitrary constant C.
More that that, it contains no variable x. The definite integral is determined by the
function o(x) and the limits of integration (also known as the endpeoints). It is the area
under the graph between those endpoints.

To see the relation of indefinite to definite, answer this question: What is the definite
integral between x =1 and x=13? The indefinite integral gives f(3) =74+ C and
fil)= 34+ C. To find the area between the limits, subtract { at one fmit from [ at the
other limit:

ot dx=f)—fiN=(1%+ C) -3+ Ci=4, (6)

The constant cancels itself! The definite integral is the difference between the vaiues
of the indefinite integral. C disappears in the subtraction.

The difference f(3) — /(1) is like f, — f. The sum of v; from 1 to n has become *‘the
integral of v(x) from | te 3. Section 5.3 computes other areas from sums, and 5.4
computes many more from antiderivatives. Then we come back to the definite integral
and the Fundamental Theorem:

h h -
j vix) dx= j ? dx = flb) — fla). (7

i a dx

5.2 EXERCISES

Read-through questions

Integration yields the __ @ under a curve y = p{x). It starts
from rectangles with base __b__ and heights #{x) and areas

definite integral jé, vx)dx = f{1) = fl0).

a3 3 2
© . As Ax— 0 the area ¢;Ax+ - +v,Ax becomes the 1527+ dx 2 x +_12x
d__ of efx}). The symbol for the indefinite integral of v(x) is 3 IV: for x™ 'Y 4 (/x) for x*'2)
€ § x93 4 (2x)"3 6 133
The problem of integration is solved if we find f{x) such 7 2 sin x +sin 2x 8 secix + 1

Find an antiderivative {{x) for {x} in 1-14. Then compute the

that __f . Then fis the _ag of ¢, and j";’ vix} dx equals

b minus __i__.Thelimits ofintegrationare __ i This
isa__k integral, whichisa _ 1 _ and not a function fix}.

The example vix)=x has f{x)=_m . It also has fix) =
n . The area undervix)from2to61s @ . The constant
is canceled in computing the difference _ o minus __q
If p(x} = x® then fix}=_ ¢

The sum ¢, + - + ¢, =f, ~fy leads to the Fundamental
Theorem Jf: vix)dx=_s The __t  integral is fix) and

the _ 4 integral is f{b) — flu). Finding the __ v under the

v-graph is the opposite of finding the _ w __ of the f~graph.

9 x cos x (by experiment) 10 x sin x (by experiment}

11 sin x cos x 12 sin®x cos x

13 0 (find atl f) 14 —1 (find all f)

15 If dfidx = v(x) then the definite integral of o(x) from a 10
b s . If fi—fi_y=v; then the dcfinite sum of
vy+ -+ ls .

16 The areas include a factor Ax, the base of cach rectangle.
So the sum of v’s is multiplied by to approach the
integral. The difference of s is divided by 10
approach the derivative.
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17 The areas of 4, 8, and 16 rectangles were 10, 9, and 84,
containing the triangle out to x =4. Find a formula for the
area Ay of N rectangles and test it for N=3 and N=6,

18 Draw four rectangles with base 1 below the y = x line, and
find the total area. What is the area with N rectangles?

19 Draw y =sin x from 0 to #. Three rectangles (base =/3)
and six rectangles (base n/6) contain an arch of the sine func-
tion. Find the areas and guess the limit.

20 Draw an example where three lower rectangles under a
curve (heights m;, m;, m;) have less area than two rectangles.

21 Draw y = §/x? for 0 < x < 1 with two rectangles under it
{base 1/2). What is their area, and what is the area for four
rectangles? Guess the limit.

22 Repeat Problem 21 for y = 1/x,

23 (with calculator) For v{x) = 1;’\/; take enough rectangles
over 0 < x <1 to convince any reasonable professor that the
area is 2. Find f{x) and verify that {1}~ f10)=2.

24 Find the area under the parabola v=x* from x=0 to

x = 4. Relate it to the area 16/3 below /.

25 For v, and v, in the figure estimate the areas f[2) and f{4).
Start with T =0.

v (x)
1 1R 0,00

=

—_

5.3 Summation versus Integration

Uy (x}

Din
4

0 10 1 \_/

26 Draw y = o{x} so that the area f{x) increases until x=1,
stays constant to x = 2, and decreases to f{3)=1.

27 Describe the indefinite integrals of ¢, and ¢,. Do the areas
increase? Increase then decrease? ...

28 For v,(x) find the area f{d) — f1). Draw f,(x).

29 The graph of B(t) shows the birth rate: births per unit time
at time t. D{t) is the death rate. In what way do these numbers
appear on the graph?

1. The change in population from : =0 to ¢t = 10.

2. The time T when the population was largest.

3. The time t* when the population increased fastest.

30 Draw the graph of a function y,(x) whose area function
i8 v4(x).

31 If v,(x) is an antiderivative of y,(x), draw y,(x}.

32 Suppose o{x) increases from v{0) =0 to v{3) =4, The area
under y=uv(x) plus the area on the left side of x=rv"(})
equals .
33 True or false, when f{x) is an antiderivative of o(x).

(2) 2f[x) is an antiderivative of 2v(x) (try examples)

(b) f12x) is an antiderivative of n{2x)

(c) fix)+ | is an antidenivative of o(x) + 1

(d) filx + 1} is an antiderivative of v{x + 1).

(e) (f{x})* is an antiderivative of (tv{x))2.

This section does integration the hard way. We find explicit formulas for f, =
v; + - +v,. From areas of rectangles, the limits produce the area f{x) under a curve.
According to the Fundamental Theorem, dffdx should return us to #{x)—and we

verify in each case that it does.

May I recail that there is sometimes an easier way? H we can find an f{x) whose
derivative is «(x), then the integral of v is f. Sums and limits are not required, when f
is spotted directly. The next section, which explains how to look for f{x), will displace
this one. (If we can’t find an antiderivative we fall back on summation.) Given a
successful f, adding any constant produces another f—since the derivative of the
constant is zero. The right constant achieves f{0) = 0, with no extra effort.
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This section constructs fix) from sums. The next section searches for antiderivatives.
THE SIGMA NOTATION

In a section about sums, there has to be a decent way to express them. Consider
17+ 2%+ 32 + 4% The individual terms are v; = j*. Their sum can be written in sum-
mation notation, using the capital Greek letter £ (pronounced sigma):

3
124224+ 37 + 4% is written Y j2.
=1
Spoken aloud. that becomes “the sum of j* from j= 1 to 4.” It equals 30. The limits
on j {written below and above X) indicate where to start and stop:
I 9
ot Fr,= Y voand syt ot =Y . {n
i=1 k=23
The k at the end of (1) makes an additional point. There is nothing special about the
letter j. That is a ~“dummy variable.” no better and no worse than & (or {). Dummy
variables are only on one side (the side with ), and they have no eflect on the sum.
The upper limit 1 is on hoth sides. Here are six sums:

k=1

=1, I only one term]

4
PIRE
f-1
0
Z i
(=0

5
> 2i-h=1+3+-5+7+9=5"
i=1

-

] . i l I
jr= [meanmg]cssf’ Y =1+ _+

|

- =1 [inﬁnite series
- k )
, K5 2 2 4 '

i

The numbers 1 and 1 or } and 4 (or 0 und <) are the fower fimit and upper limit.
The dummy variable i or j or k is the index of summation. 1 hope it seems reasonable
that the infinite serigs 1 4+ 3 + 3 4+ -+ adds to 2. We will come back to it in Chapter 10.7

A sum like Z7_, 6 looks mcaningless, but it is actually 6 =6+ +6=6n.
It follows the rules. In fact E?_ .7 18 not meaningless cither. Every term is j* and
by the same rules. that sum is 4;%. However the i was probably intended to be ;.
Then the sum is 1 + 4+ 9+ 16 =30,

Question What happens to these sums when the upper limits are changed to »?
Answer  The sum depends on the stopping point n. A formula is required {when
possible). Integrals stop at x. sums stop at n. and we now look fer special cases when

fixyor f, can be found.

A SPECIAL SUMMATION FORMULA

How do you add the first 130 whole numbers? The problem is to compute

L)
2 i=1+2+3+ - +98+99+100="

i=1

tZeno the Greek belicved it was impossible 1o gel anywhere. since he would only go halfway
and then hall again and half again. Infinite sertes would have changed his whole [ife.
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If you were Gauss, you would sce the answer at once, (He solved this problem at a
ridiculous age, which gave his friends the idea of getting him inte another class.) His
solution was to combine 1 + 100, and 2 + 99, and 3 + 98, always adding to 101, There
are fifty of those combinations. Thus the sum is (50)(101) = 5050.

The sum from ! to n uses the same idea. The first and last terms add to n + 1. The
next terms n — 1 and 2 aiso add to n + 1. If n is even (as 100 was) then there are in
parts. Therefore the sum is 1n times n+ 1:

ij=1+2+---+(n—l)+n=*21-ﬂ(ﬂ+1}- (2)
=1

The important term is 1n?, but the exact sum is tr? + in.

What happens if n is an odd number {iike n = 99)? Formula (2) remains true. The
combinations 1 + 99 and 2 + 98 still add to n+ 1=100. There arc $99) = 495 such
pairs, because the middle term (which is 50) has nothing to combine with. Thus
1+ 2+ +99 equais 494 times 100, or 4950.

Remark That sum had to be 4950, because it is 5050 minus 100. The sum up to 99
equals the sum up to 100 with the last term removed. Qur key formula f, — f, -, = v,
has turncd up again!

EXAMPLE Find the sum 100 + 102 + -+ + 200 of the second hundred numbers.

First solution  This is the sum from 1 to 200 minus the sum from 1 to 1{0:

200 200 1400

Z_f=z.f—§j- (3}

101 1

The middic sum is $(200)(201) and the last is $(100)(101). Their difference is 15050.
Note! 1 left out “*j=""in the limits. It is there. but not written.

Second sclufion  The answer 15050 is exactly the sum of the first hundred numbers
{which was 5030} plus an additional 10000. Believing that a number like 10000 ¢an
never turn up by accident, we look for a reason. It is found through changing the
limits of summation:

200 100
Y. jis the same sum as Y (k + 100). 4
j~101 k=1

This 15 important, to be able to shift limits around. Often the lower limit is moved
to zero or one, for convenience. Both sums have 100 terms (that doesn’t change). The
dummy vaniable j is replaced by another dummy variable k. They are related by
Jj=k+ 100 or equivalently by & =j— 100,

The variable must change everywhere—in the lower limit and the upper limit as
well as inside the sum. If j starts at 101, then & = — 100 starts at 1. If j ends at 200,
k ends at 100. If j appears in the sum., it is replaced by k + 100 (and if j appeared it
would become (k + 100)%).

From equation (4) you see why the answer is 15050. The sum 1+ 2+ --- + 100 is
5050 as before. 100 is added to each of those 100 terms. That gives 10000.

EXAMPLES OF CHANGING THE VARIABLE (and the limits)

[~

a4
2'cquals 3 277! (here i=j—1). Both sumsarc | +2+4+8
=1

0

[ r-3
Y wv,equals Y t,.3 {herei=j+ 3 andj=i—3). Both sums are v; + =~ + v,.
i=3 i=0

189
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Why change n to n — 3? Because the upper limitis i=n. Soj+3=nandj=n—13.

A final step is possible, and you will often see it. The new varigble j can be changed
dack to i. Dummy variabies have no meaning of their own, but at first the result
looks surprising;

) & ]
Y 2'equals ) 2/7'equals ) 271
i<h = (=1

With practice you might do that in one step, skipping the temporary letter j. Every
i on the left becomes i — 1 on the right. Then i=0, ..., 5 changes to i=1, ..., 6. (At
first two steps are safer.) This may seem a minor point, but soon we will be changing
the limits on integrals instead of sums. Integration is parallel to summation, and it
is better to see a “change of variable” here first.

Note about | + 2+ - + n. The good thing is that Gauss found the sum $n{n + 1).
The bad thing is that his method looked too much like a trick. I would like to show
how this fits the fundamental rule connecting sums and differences:

fo,tv,+ - +u,=f thenv,=f,—f _,. 5

Gauss says that f, is $n(r + 1). Reducing n by 1, his formula for f,_ is 3(n — 1)n. The
difference [, — [, _ | should be the last term n in the sam:

fo— S =tnnt ) —dn—n=4n*+tn—-n*+n=n. (6

This is the one term v, = n that is included in f, but not in f, _,.

There is a degper point here. For any sum f,, there are two things to check. The
f’s must begin correctly and they must change correctly. The underlying idea is
mathematical induction: Assume the statement is true below n. Prove it for n.

Goal:  To prove that 1 +2+ - + n=14n(n + 1). This is the guess f,.
Proof by induction: Check [ (it equals 1). Check f,—f,_, (it equals n).

For n=1 the answer 4n(n+ 1)=4+1-2 is correct. For n=2 this formula §:2-3
agrees with 1+ 2. But that separate test is not necessary! If f, is right, and if the
change [, — f, ., is right for every n, then f, must be right. Equation (6) was the key
test, to show that the change in f's agrees with v.

That is the logic behind mathematical induction, but I am not happy with most
of the exercises that use it. There is absolutely no excitement. The answer is given by
some higher power {like Gauss), and it is proved correct by some lower power {(like
us). It is much better when we lower powers find the answer for ourselves.t Therefore
I will try to do that for the second problem, which is the sum of squares.

THE SUM OF 2 AND THE INTEGRAL OF x*

An important calculation comes next. It is the area in Figure 5.6. One region is made
up of rectangles, so its arca is a sum of n pieces. The other region lies under the
parabola v = x?, It cannot be divided into rectangles, and calculus is needed.

The first problem is to find f, = 124+ 22 + 3% + - + n%, This is a sum of squares,
with f, =1 and f, = 5 and f; = 14. The goal is to find the pattern in that sequence.
By trying to guess f, we are copying what will soon be done for integrals.

Calculus locks for an f(x) whose derivative is {x). There fis an antiderivative (or

+The goal of real teaching is for the student to find the answer. And also the problem.
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2_
o (ndx) Area
Area Y & (12+ .. +nh(ax)’
12+422+32=14 -

1 i (Ax)? ¢ SN R NS AN ; ;
1 2 3=n Ax 1 2 3=nAx [ 2 3

Fig. 5.6 Rectangles enclosing v = x? have area (3n + 4n% + §n)(Ax)* = J{nAx)* = §x7.

an integral}, Algebra looks for f.'s whose differences produce v,. Here f, could be
called an antidifference (better to call it a sum).

The best start is a good guess. Copying directly from integrals, we might try
f,=4n3. To test if it is right, check whether f, —f,_, produces v, = n*:

I =in- 1P =i’ -4 -3+ 3n-)=n*—n+3.

We see n?, but also —n + 1. The guess §n> needs correction terms. To cancel § in the
difference, I subtract in from the sum. To put back n in the difference, 1 add
1+2+ - +n=4n(n+ 1) to the sum. The new guess (which should be right) is

Si=3 Hian+ )= fn=13n" +1n* +§n. N

To check this answer, verify first that f; = 1. Also f; =5 and f; = 14. To be certain,
verify that f, — f,_, = a%. For calculus the important term is n*:

The sum Y j* of the first n squares is % n® plus corrections % n? andé n.
i=1

In practice $n> is an excellent estimate. The sum of the first 100 squares is approxi-
mately §(100)*, or a third of a million. If we need the exact answer, equation (7) is
available: the sum is 338,350. Many applications {exampie: the number of steps to
solve 100 linear equations) can settle for 3n’.

What is fascinating is the contrast with calculus. Calculus has no correction terms!
They get washed away in the limit of thin rectangies. When the sum is repiaced by
the integral (the area), we get an absolutely clean answer:

The integral of v = x* from x =0 to x = n is exactly yn’.

The area under the parabola, out to the point x = 100, is precisely a third of a million.
We have to explain why, with many rectangles.

The idea is to approach an infinite number of infinitely thin rectangies. A hundred
rectangles gave an area of 338,350. Now take a thousand rectangies. Their heights
are (1q)% (&) ... because the curve is v = x2. The base of every rectangle is
Ax =145, and we add heights times base:

area of rectangles = 1YL + FAYAS I 1000/ 1
r Bes=\10)\10) "\15/\10 10 J\10)

Factor out ({5)°. What you have left is 12+ 22 + -+ + 1000%, which fits the sum of
squares formula, The exact area of the thousand rectangles is 333,833.5. I could try
to guess ten thousand rectangles but I won't.

Main poirt: The area is approaching 333,333.333.... But the calculations are getting
worse. It is time for algebra—which means that we keep “Ax™ and avoid numbers.
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The interval of length 100 is divided into n pieces of length Ax. (Thus # = 100/Ax.)
The jth rectangle meets the curve ¢ = x7, so its height is {(jAx)?. Its base is Ax, and
we add arcas:

area = (Ax)H{Ax)+ 2Ax)HAx} + - + (nAx)*(Ax) = E (jAx)*(Ax), (8)

Factor out (Ax)*, leaving a sum of n squares. The arca is (Ax)? times f,, and n = EAQ—O:

100y | 1100 1 /100\] 1 0] 1

This cquation shows what is happening. The leading term is a third of a miilion,
as predicted. The other terms are approaching zero! They contain Ax. and as the
rectangles get thinner they disappear. They only account for the small corners of
rectangles that lic above the curve. The vanishing of those corners will eventually be
proved for any continucus functions—the area from the correction terms goes to
zera-—but here in equation (9) you see it explicitly.

The area under the curve came from the central idea of integration: 100/Ax rectan-
gles of width Ax approach the limiting arca = §(100)°. The rectangular area is T v:; Ax.
The exact avea is _[ vix)dx. In the limit T becomes I and v; becomes i{x) and Ax
becomes dx.

That comnpletes the calculation for a parabola. 1t used the formula for a sum of
squares. which was special. But the underlying idea is much more general. The limit
of the sums agrees with the antiderivative: The antiderivative afn: =x?isfix)=4x7
According to the Fundamental Theorem. the area under v{x) is f{x)

90 1x) dx = f(100) — £{0) = $(100)°.

)]
That Fundamental Theorem is not yet proved! | mean it is not proved by us. Whether
Leibniz or Newton managed to prove it. I am not guite sure. But it can be done.
Starting from sums of differences. the diffliculty 1 that we have too many limits at
once. The sums of r;Ax are approaching the integral. The differences Af7Ax approach
the derivative. A real proof has to separate those steps, and Section 5.7 will do it.
Proved or not. you are seeing the main point. What was true for the numbers f;
and r; is true in the limit for v{x) and fix). Now t{x) can vary continuously. but it 1s
still the slope of fix). The reverse of slope is area.

FANAY .
VA S g
VA S S
VY i F Vi 1f
FAVY AV VAN AV S
VA i / LAVATAY Y ;
LAy Ay i o

vy s e/ N
. .
Y 9

(1+2+3+D°=1"+2"+3+ 4
Proofl without words by Roger Nelsen ( Mathematics Magazine 1990),

Finally we review the area under = x. The sumof 1 -2+ -+ nis in® + tn. This
gives the area of n = 4;Ax rectangles, going out to x= 4. The heights arc jAx. the
bases are Ax, and we add areas:

42“(5 NAY) = (Ax)? 1 Ll WY § 4+ 2A 10
X Y LY - — = A
=Y Ax/) © 2\Ax * L)
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With Ax=1 the area is 1 + 2+ 3 + 4=10. With eight rectangles and Ax =4, the
area was 8 + 2Ax = 9. Sixteen rectangles of width § brought the correction 2A x down
to 4. The exact area is 8. The error is proportional to Ax.

Important note  There you see a question in applied mathematics. If there is an error,
what size is it? How does it behave as Ax — 0?7 The Ax term disappears in the limit,
and {Ax)* disappears faster. But to get an error of 1075 we need eight million
rectangles:

2Ax = 2+ 4/8,000,000 = 1075,

That is horrifying! The numbers 10, 9, 83, 84, ... seem to approach the area 8 in a
satisfactory way, but the convergence is much toe slow. It takes twice as much work
to get one more binary digit in the answer—which is absolutely unacceptable. Some-
how the Ax term must be removed. If the correction is (Ax)? instead of Ax, then a
thousand rectangles will reach an accuracy of 107°,

The problem is that the rectangles are unbalanced. Their right sides touch the graph
of v, but their left sides are much too high. The best is to cross the graph in the middle
of the interval—this is the midpoint rule. Then the rectangle sits halfway across the
line v = x, and the error is zero. Section 5.8 comes back to this rule—and to Simpson’s
rule that fits parabolas and removes the (Ax)? term and is built into many calculators.

Finally we try the quick way, The area under v = x is f= ¥x?, because df/dx is v.
The area out to x =4 is %(4)> = 8. Done.

1 1

unbalanced centered

Error rectangies Emor rectangles
174 1/4
179 = Work /9 Work
1 4 G 1 2 3

Fig. 8.7 Endpoint rules: error ~ lj{work) ~ 1/n. Midpoint rule is better: error ~ 1/(work)>.

Optional: pth powers Our sums are following a pattern. First, [ + - + nis £n® plus
$n. The sum of squares is n* plus correction terms. The sum of pth powers is

174204 - +pP = p41- I n?*! plus correction terms. (11)

The correction invoives lower powers of n, and you know what is coming. Those
corrections disappear in calculus. The area under v = x? from 0 to n is

H pd l nidx A V(A i I
x? dx= lim X)P(Ax)= .
L paem fim " Gagag= e 1
Calculus doesn’t care if the upper limit # is an integer, and it doesn’t care if the power
pis an integer. We only need p + 1 > 0 to be sure n”* ! is genuinely the leading term.
The antiderivative of v=x" is f=x?*'{(p+ 1).

We are close to interesting experiments. The correction terms disappear and the
sum approaches the integral. Here are actual numbers for p= 1, when the sum and
integral are easy: S, =1+ - + nand I, = [ x dx = }n’ The diflerence is D, = in. The
thing to watch is the relative error E,= D, /I

n S, I b,=S8,-1, E,=D,JI,
100 5050 5000 50 010
200 20100 20000 100 005

193
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The number 20100 is $(200)(201). Please write down the next line n = 400, and please
find g formula for E,. You can guess E, from the table, or you can derive it from
knowing S, and [,. The formula should show that £, goes to zero. More important,
it should show how quick (or slow) that convergence will be.

One more number—a third of a million—was mentioned earlier. It came from
integrating x2 from O to 100, whicb compares to the sum §,, of 100 squares:

n o p S, I,=4n® D=§~1 E=DjI
100 2 338350 3333334 50168 01505
200 2 2686700 26666663 20033 0075125

These numbers suggest a new idea, to keep n fixed and change p. The computer can
find sums without a formula! With its help we go to fourth powers and square roots:

n p S=PP+-+p [=p*Yp+1) D=S-1 E,,=D/I
100 4 2050333330 }100)° 50333330 0.0252
100 4 671.4629 #(100)%2 4.7963 0.0072

In this and future tables we don’t expect exact values. The last entres are rounded
off, and the goal is to see the pattern. The errors E, , are sure to obey a systematic
rule—they are proportional to 1/n and to an unknown number C{p) that depends
on p. I hope you can push the experiments far enough to discover C(p). This is not
an exercise with an answer in the back of the book—it is mathematics.

5.3 EXERCISES

Read-through questions

The Greek letter _ o _ indicates summation. In Z} pv; the
dummy varable is __ b The limits are __ ¢, so the first
term is

] L}
3 Evaluate the sum ) 2% and ), 2.
i=0 i=0

& ]
4 —iand ¥ (~1)%.
and the last term is __® . When v;=j this Evaluate ;:Z,{ [t an ,-);;( ¥

sum equals _ T . For n= 100 the leading term is _ @

- 5 Write these sums in sigma notation and compute them:

The correction term is _ N, The leading term equals the
integral of v = x from 0 to 100, which is written _ ¢ _ . The 24+4+64+4+100 14+3+5+-+199

sum is the total __| _ of 100 rectangles. The correction term
is the area between the __k__ and the __!

:2 s 4
The sum Z{_,i? is the same as X},

6 Express these sums in sigma notation:
U=yt Uy—vy Uyw Wt W
and Cqualﬁ ] 2 3 4 171 272 A

n_ . The sum ZI.’=4 v,is thesame as _ ¢  v;,, and equals 7 Convert these sums to sigma notation:

p__. Forf,=Z]_, v, the difference f, — /.-, equals _4a

The formula for 12+22 + - +n?isf,=__t . To prove
it by mathematical induction, check fi=__3  and check

_f;—f;a—1=.__

x=0to x=9is _ ¥ This is close to the area of __ ¥

rectangles of base Ax. The correction terms approach zero (@b = (n) o (")a"‘ gt (")b" _
very _ W 0 n i

4 5
1 Compute the numbers } 1/mand 22(21'—3).
n=1 i=

3
2 Compute Y (j*—j}and
pute 3, (*=J

n
. The area under the parabola v =x? from 8 The binomial formula uses coefficients (j

g

l

4
LoO

ot

19 10
1/24 10 On a computer find ;{-l)jfj! times Z‘ 14!

i}

J=1i

. Im . 4nm .
de+ax+ - +ax" 51n:+sm?+"-+sm 2n

9 With electronic help compute 3, 1/f and 3,
T g
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1 s.mplu'yz (a+b) + Z @—bF to 3, :

af a.nd

M:
||M:

n 2 n
12 Show that ( Y ai) # :be Z Z
i=1 =1 J= =

1 1
13 “Telescope™ the sums Z (2~ 2~ and E (J?H;)

All but two terms cancel.

L] 12
14 Simplify the sums )Z (f;—f4-1) and _;3 Ujer~1.

15 True or false. (a) Z vy = Z Bi-2 (b) _il o= i Ui—3
a-1 g
16 ‘; v;=j§o _ . and :Z'o i -:_(Zz .

17 The antiderivative of d2f/dx? is df{dx. What is the sum
(=21 +)+ (-2 + 1)+ +{fo—2a + o1

18 Induction; Verify that 12422+ +n? s f =
rin+1¥2n +1)/6 by checking that f; is correct and
N _ﬁc— 1= nt, ]

19 Prove by induction: 1+3+ - +(2n—1)=r"

20 Verify that 134 2% + - + n? is J, = dn’(n + 1)® by check-
ing f; and f, —f,-,. The text has a proof without words.

21 Suppose f, has the form an+ bn%+cn. If you know
fi=1, =85, fy=14, turn those into three equations for
a, b, ¢. The solutions a=4%, b =4, c =} give what formula?

22 Find q in the formula 1% + - + n® = gn® + correction.

23 Add n =400 to the table for §S,=1+ --- + n and find the
relative error E,. Guess and prove a formula for E,.

24 Add n=50to the table for 5, =12 + - + n? and compute
Esg. Find an approximate formula for E,.

25 Add p=1 and p=3 to the table for S,pp,=
1# 4 -+ + 100°. Guess an approximate formula for E, g .

26 Guess C(p) in the formula E, , = C{p)/n.

27 Show that |1 — 5| <|1] +|—35|. Always |, + p2| < |04 + |22
unless .
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28 Let S be the sum 1 + x + x* + -+ of the (infinile) geometric
series. Then xS=x+ x4 x>+ - is the same as S minus

. Therefore S = . None of this makes sense
if x =2 because

29 The dowble sum i[z (I+]]]15 b= Z(l+_;) plus
i=1

3
vy = _El {2+ ). Compute v, and », and the double sum,

i=

2 3
30 The double sum Y (E w;,;) is (wy g +wizt+w )+
=1 U5

3 2
The double sum 3 (E w; J) is
i

Jj=1 =1

(Wy,1 +wa )+ (wya+ W)+ . Compare.

31 Find the flaw in the proof that 2"=1 for every
n=0,1,2 ... For n1=0 we have 2°=1. If 2*=1 for every
n<N, then 2¥ =2V 1. 28" LpN-2 _1.1/1=1.

32 Wrile out all terms to see why the following are true:

bromafe £ (£ ) (B)(E)

33 The average of 6, 11, 4 is 6=46+11+4). Then
6—o+{1l -+ {@d—0)= . The average of
Ugy -oes Dy IS T= . Prove that £(v; —0)=0.

34 The Schwarz inequdlity is (); a ) (}:a )(}:: bf).

Compute both sides if 4, =2, a;=13, b; =1, b;=4. Then
compute both sides for any a4y, a,, by, b;. The preol in
Section 11.1 uses vectors,

35 Suppose n rectangles with base Ax touch the graph of v(x)
at the poinis x = Ax, 2Ax, ..., nAx. Express the total rectan-
gular area in sigma notation. .

36 If 1/Ax rectangles with base Ax touch the graph of ux)
at the left end of each interval (thus at x=0, Ax, 24x, ...)
express the total area in sigma notation.

1/Ax A _ .
37 The sum Ax 5: fUAx) J;((: 1)Ax)

i=i
In the limit this becomes |, dx =

equals

This section integrates the easy way, by looking for antiderivatives. We leave aside
sums of rectangular areas, and their limits as Ax — 0. Instead we search for an f{x)
with the required derivative o(x). In practice, this approach is more or less indepen-
dent of the approach through sums—but it gives the same answer. And also, the
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search for an antiderivative may not succeed. We may not find f. In that case we go
back to rectangies, or on to something better in Section 5.8.

A computer is ready to integrate v, but not by discovering f. It integrates between
specified limits, to obtain a mumber (the definite integral). Here we hope to find a
Junction (the indefinite integrai). That requires a symbolic integration code like
MACSYMA or Mathematica or MAPLE, or a reasonably nice p(x), or both. An
expression for f(x) can have tremendous advantages over a list of numbers,

Thus our goal is to find antiderivatives and use them. The techniques will be further
developed in Chapter 7—this section is short but good. First we write down what
we know. On each line, f(x) is an antiderivative of v{x) because df /dx = v(x).

Known pairs Fuanction v(x) Antiderivative [(x)

Powers of x x" T+ 1+ C

n= —1 is not included, because n+1 would be zero. v=x""* will lead us to f=1In x.

Trigonometric functions COS X sin x+ C
sin x —cosx+C

sec’ x tan x + C

esc x —cotx+C

sec x tan x secx+C

€sc x cot x —ccx+C

Inverse fanctions Ifm sin"'x+C

/(1 + x®) tan 'x+C

x| /x?—1 sec 'x+ C

You recognize that each integration formula came directly from a differentiation
formula. The integral of the cosine is the sine, because the derivative of the sine is
the cosine. For emphasis we list three derivatives above three integrals:

d d d {x"*1 .\
d—;(constant)—f) a(x}—l E(n+ l)—x
xn+1
J‘de=C J‘ldx=x+C J‘x"dx= +C
n+1

There are two ways to make this list longer. One is to find the derivative of a new
f(x). Then f goes in one column and v = df/dx goes in the other column.t The other
possibility is to use rules for derivatives to find rules for integrals. That is the way to
extend the list, enormously and easily.

RULES FOR INTEGRALS

Among the rules for derivatives, three were of supreme importance. They were linear-
ity, the product rule, and the chain rule. Everything flowed from those three. In the

TWe will soon meet e, which goes in both columns. It is f{x} and also {x).
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reverse direction (from v to f) this is still true. The three basic methods of diflerential
calculus ailso dominate integral calculus:

linearity of derivatives — linearity of integrals
product rule for derivatives — integration by parts
chain rule for devivatives — integrals by substitution
The easiest is linearity, which comes first. Integration by parts will be left for

Section 7.1. This section starts on substitutions, reversing the chain rule to make an
integral simpler.

LINEARITY OF INTEGRALS

What is the integral of v(x) — w(x)? Add the 1wo separate integrals. The graph of
¢ +w has two regions below it, the area under ¢ and the area from v to v+ w.
Adding areas gives the sum rule. Suppose f and g are antiderivatives of v and w:

sum rule: [+ g isan antidenivative of ¢+ w
constant vule: of 1s an antiderivative of ot
linearity: af + bg 15 an antiderivative of av+ bw

This is a case of overkill. The first two rules are special cases of the third, so logically
the Tast rule is enough, However it is so important to deal quickiy with constants—
just ““factor them out”™ —that the rule ¢u— ¢f is stated separately. The proofs eome
from the linearity of derivatives: (af + bg) equals af' + bg" which equals av + bw.
The rules can be restated with integral signs:

sum rule: | [v(_\') + w(.\')] dx = [ e(x) dx + | wix) dx
constant rule: j ce{Xydx=r¢ j #(x) dx
linearity: i I av(x} —~ bw{x}J dx=a | v(x) dx+ b | w(x) dx

Noate about the constant in [(x)— C. All antiderivatives allow the addition of a con-
stant. For a combination like ai{x) + dwi(x), the antiderivative is af{x) + bg(x) + C.
Tie constants for each puart combine into a single constant. To give all possible antide-
rivatives of a function, just remember to write "+ ™ after one of them. The real
proeblem is teo find that one antiderivative,

EXAMPLE 4 The antiderivative of t = x>+ x "2 is f=x*3+(x ")/ (- D+ C.

EXAMPLE 2 The antiderivative of 6 cosr+ 7 sintis 6sin¢t— 7 cost+ C.

l—-sinx 1-—sinx

EXAMPLE 3 Rewrite =sec? x —sec x tan x.

N as ] - F
1 +sin x l —sin-x COs° X

The antiderivative is tan x — sec x + (. That rewriting is done by a symbolic algebra
code{or by you). Differentiation is often simpie, so most people check that df idx = e(x).

Question How to integrate tan? x?
Method Write it assec®x— 1. Answer tanx—x+ C.

197
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S Imegrais
INTEGRALS BY SUBSTITUTION

We now present the most valuable technique in this section— substitution. To see the
idea, you have to remember the chain rule:

Sflg(x)) has derivative f'(g(x})(dg/dx)

2 has derivative (cos x?}{2x)

(x*+1)° has derivative 5(x>+ 1)*(3x?)

sin x

If the function on the right is given, the function on the left is its antiderivative! There
are two points to emphasize right away:

1. Constants are no problem—they can always be fixed. Divide by 2 or 15:
1
J‘ x cos(x?) dx = 3 sin{x*}+ C J‘ x2(x3 + *dx = %(x3 +1¥’+C

Notice the 2 from x?, the 5 from the fifth power, and the 3 from x°>.

2. Choosing the inside function g (ot u) commits us to its derivative:
the integral of 2x cos x? is sin x> + C (g =x?, dg/dx = 2x)
the integral of cos x? is ( failure} (no dgjdx)
the integral of x? cos x? is (failure)  (wrong dgjdx)

To substitute g for x?, we need its derivative. The trick is to spot an inside function
whose derivative is present. We can fix constants like 2 or 15, but otherwise dg/dx
has to be there. Very often the inside function g is written u. We use that letter to state
the substitution rule, when f is the integral of v;

[ ot 52 = sty + . 1

EXAMPLE4 | sin x cos x dx = 3(sin x)* + C u = sin x (compare Example 6)
EXAMPLES |sin’xcos x dx=4(sinx)?+C  u=sinx
EXAMPLE & | cos x sin x dx = — }{cos x}* + C u=cos x (compare Example 4}
EXAMPLE7 | tan*xsec?x dx=}{tan x*+C wu=tanx

The next example has u = x* — 1 and dufdx = 2x. The key step is choosing u:

EXAMPLES [ xdx/\/x*~1=/x*—1+C [x/x*—ldx=3(x*~-1+C
A shift of x {to x + 2) or a multiple of x (rescaling to 2x} is particularly easy:

EXAMPLES 9-10 [ (x+2)?dx=4{x+2*+C  [cos2xdx=}sin2x+C

You will soon be able to do those in your sleep. Officially the derivative of (x + 2)*
uses the chain rule. But the inside function u = x + 2 has du/dx = 1. The 1 is there
automatically, and the graph shifts over—as in Figure 5.8b.

For Example 10 the inside function is v = 2x. Its derivative is du/dx =2. This
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area f(x)
if f(0)=0
0 ' 2 0 !

Fig. 5.8 Substituting u=x + 1 and u = 2x and u = x?. The last graph has half of du/dx = 2x.

required factor 2 is missing in [ cos 2x dx, but we put it there by multiplying and
dividing by 2. Check the derivative of  sin 2x: the 2 from the chain rule cancels the
4. The rule for any nonzero constant is similar:

j vix+c)dx=f(x+c) and J v(ex) dx = %f(cx). (2)
Squeezing the graph by c divides the area by ¢. Now 3x + 7 rescales and shifts:

EXAMPLE 11 [cos(3x+7) dx=4sin(3x+7)+C [(3x+7)?dx=%-43x+7°+C

Remark on writing down the steps  When the substitution is complicated, it is a good
idea to get du/dx where you need it. Here 3x* + 1 needs 6x:

7 7
J. Tx(3x2+ 1)* dx = — J. (3x2+ 1)*6x dx = - j ut ai dx
6 6 dx

: 7 u® 7 (3x%+ 1)3
Now integrate: -—+C=-———+C. 3

8 65 6 s ©)
Check the derivative at the end. The exponent 5 cancels 5 in the denominator, 6x from

the chain rule cancels 6, and 7x is what we started with.

Remark on differentials In place of (du/dx) dx, many people just write du:
| Bx*+ 1)*6x dx= [ u*du=4u’+ C. (4)

This really shows how substitution works. We switch from x to u, and we also switch
from dx to du. The most common mistake is to confuse dx with du. The factor du/dx
from the chain rule is absolutely needed, to reach du. The change of variables (dummy
variables anyway!) leaves an easy integral, and then u turns back into 3x* + 1. Here
are the four steps to substitute u for x:

1. Choose u(x) and compute du/dx

2. Locate v(u) times du/dx times dx, or v(u) times du
3. Integrate [ v(u) du to find f(u)+ C

4. Substitute u(x) back into this antiderivative f.

EXAMPLE 12 | (cos ﬁ)dxf2ﬁ=jcosudu= sinu+ C=sin . /x+C
(put in u) (integrate) (put back x)

The choice of u must be right, to change everything from x to u. With ingenuity,
some remarkable integrals are possible. But most will remain impossible forever. The
functions cos x? and 1/,/4 — sin” x have no “‘elementary” antiderivative. Those integ-
rals are well defined and they come up in applications—the latter gives the distance
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around an ellipse. That can be computed to tremendous accuracy, but not to perfect

accuracy.

The exercises concentrate on substitutions, which need and deserve practice. We
give a monexample— | (x* + 1)* dx does not equal §(x* + 1)>—1to emphasize the need
for du/dx. Since 2x is missing, u = x? + 1 does pot work. But we can fix up =

; . d 1 1
Jsmnxdx=Jsmuf=—-—cosu+c=—;cosnx+c.

5.4 EXERCISES
Read-through questions 25 dyfdx =1}y 26 dyjdx=x[y
Finding integrals by substitution is the reverse of the __ @ 27 d¥yfdxt=1 28 Jiyldx* =1
rule. The derivative of (sin x)* is __© _. Therefore the antide- 2 1 o
rivativeof _ € is__d . Tocompute [ (1 + sin x)? cos x dx, 2 dyldx*=—y 3 dyjdx = /xy

substitute w=_@ . Then du/dx=__1 s0 substitute
du=_49 . In terms of u the integral is {_h =_ 1

Returning to x gives the final answer.

The best substitutions for tan{x + 3)sec?{x + 3)dx
and [(x2+1)""xdx are u=_ 1 _ and u=_k , Then

du=_" _and _m _ The answersare _ " and %@
The antiderivative of vdp/dx is _® . [2xdxf(l+x?)
leads to § _a , which we don't yet know. The iniegra!
[ dx/(1 + x?) is known immediately as _ r

Find the indefinite integrals in 1-20.

1(/2+xdx (add+C) 2{./3—xdx (always+C)
I[x+1)dx 4 {(x+1)"dx
5[(*+1)xdx 6] /1—3xdx

7 [cos®x sin x dx

9 [ cos® 2x sin 2x dx
11 [ dt) /142

13 [Bdi) /146

15 [ (1 + /x) dx//x

17Isecxtanxdx

8 { cos x dx/sin’ x
10 § cos®x sin 2x dx
12 /1-1%dr
14 {3 /12 dt
16 § (1+x2)/x dx
18 | sec?x tan?x dx

19 [ cos x tan x dx 20 | sin’x dx

In 21-32 find a function y(x} that solves the differential
eguation.

2 dyfdx = x* +\/;

23 dyjdx = /1 — 2x

22 dyfdx=y* (try y=cx")

24 dyjdx=1/./1-2x

31 d*yldxt = /x 32 (dy/dx)? = /x

33 True or false, when f is an antiderivative of u:
() § v(u(x)} dx =f(u(x))+ C
b) [ Ax)dx=3/*x)+C
(©) | olx)(dujdx) dx = f(u(x))+ C
) [ v(x)(dvidx) dx=4f3(x)+ C

M True or false, when [ is an antiderivative of i:
(@) [ flx)dvjdx) dx=1f*(x)+ C
(b) | vlv(x))(dp/dx) dx = f(v(x)) + C
(c} Integral is inverse to derivative so f{v(x))=x
(d) Integral is inverse to derivative so [ (df/dx) dx =f{x)

B If dffdx=v(x) then I v(x—1}dx = and
Jo(x/2) dx= )
B I dffdx=vix) then [vx—1)dx= and
fo(x?)x dx = .
x? 1 x*dx
7 =1- =
1+x? : 1+xlmjl+x2

3B [(x*+ 1)*dx is not 4{x2 + 1)° but
3 [2xdxf(x? +1}is | du which will soon be In u.
40 Show that  2x*dx/(1 + x*P = [ (w — 1) dufu® =

41 The acceleration d2//dt? = 9.8 gives fit)= {two
integration constants).

42 The solution to d*y/dx* =01is { four constants).

43 If f{r) is an antiderivative of v(t), find antiderivatives of
{a) vt +3) (b) s{)+3 (c} 3u(e) (d) o(3t).
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