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23 Find the slope of the sine curve at ¢t = n/3 from v =cos t.
Then find an average slope by dividing sin 7/2 — sin n/3 by
the time difference #/2 — n/3.

The oscillation x = 0, y = sin ¢ goes (1) up and down (2) between
—1 and 1 (3) starting from x=0, y=0 (4) at velocity
v=cos t. Find (1)(2)(3)(4) for the oscillations 31-36.

24 The slope of f=sint at t=0 is cos 0=1. Compute
average slopes (sin t)/t for t =1, .1, .01, .001.

31 x=cost,y=0
33 x=0, y=2sin(t +6)
35 x=0, y=—2cos it

32 x=0, y=sin 5t

34 x=cost,y=cost

The ball at x =cost, y=sin t circles (1) counterclockwise
(2) with radius 1 (3) starting from x =1, y=0 (4) at speed 1.
Find (1)(2)(3)(4) for the motions 25-30.

25 x=cos 3t, y=—sin 3t

36 x=cos?t, y=sin?t

37 If the ball on the unit circle reaches t degrees at time ¢,
find its position and speed and upward velocity.

. 38 Choose the number k so that x = cos kt, y =sin kt com-
26 x =3 cos 4t, y =3 sin 4t pletes a rotation at t = 1. Find the speed and upward velocity.
27 x=35sin 2, y=>5cos 2t 39 If a pitcher doesn’t pause before starting to throw, a balk
is called. The American League decided mathematically that
there is always a stop between backward and forward motion,
even if the time is too short to see it. (Therefore no balk.) Is

that true?

28 x=1+cost, y=sint
29 x=cos(t+1), y=sin(t+1)
30 x=cos(—t), y=sin(—t)
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Trigonometry begins with a right triangle. The size of the triangle is not as important
as the angles. We focus on one particular angle—call it 9—and on the ratios between
the three sides x, y, r. The ratios don’t change if the triangle is scaled to another
size. Three sides give six ratios, which are the basic functions of trigonometry:

X near side r 1
cos =—= —— sec 0= —=
r hypotenuse x cos@
r
Y . o ite sid 1
sing=2 = opposteside o=l 1
r  hypotenuse y sin
opposite side x 1
.x tan0=X=L7-- cotf=—=
Fig. 1.19 X near side y tané

Of course those six ratios are not independent. The three on the right come directly
from the three on the left. And the tangent is the sine divided by the cosine:

Note that “tangent of an angle” and “tangent to a circle” and “tangent line to a
graph” are different uses of the same word. As the cosine of 6 goes to zero, the tangent
of 8 goes to infinity. The side x becomes zero, 6 approaches 90°, and the triangle is
infinitely steep. The sine of 90° is y/r = 1.

Triangles have a serious limitation. They are excellent for angles up to 90°, and
they are OK up to 180°, but after that they fail. We cannot put a 240° angle into a
triangle. Therefore we change now to a circle.
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Fig. 1.20 Trigonometry on a circle. Compare 2 sin 8 with sin 260 and tan 0 (periods 2=, =, 7).

Angles are measured from the positive x axis (counterclockwise). Thus 90° is
straight up, 180° is to the left, and 360° is in the same direction as 0°. (Then 450° is
the same as 90°.) Each angle yields a point on the circle of radius r. The coordinates
x and y of that point can be negative (but never r). As the point goes around the
circle, the six ratios cos 8, sin 0, tan 0, ... trace out six graphs. The cosine waveform
is the same as the sine waveform—just shifted by 90°.

One more change comes with the move to a circle. Degrees are out. Radians are
in. The distance around the whole circle is 2zr. The distance around to other points
is Or. We measure the angle by that multiple 6. For a half-circle the distance is nr,
so the angle is n radians—which is 180°. A quarter-circle is n/2 radians or 90°.
The distance around to angle 0 is r times 0.

When r =1 this is the ultimate in simplicity: The distance is 6. A 45° angle is 1 of
a circle and 27/8 radians—and the length of the circular arc is 2x/8. Similarly for 1°:

360° = 2n radians 1° = 2x/360 radians 1 radian = 360/2n degrees.

An angle going clockwise is negative. The angle —=/3 is —60° and takes us ¢ of the
wrong way around the circle. What is the effect on the six functions?

Certainly the radius r is not changed when we go to — 6. Also x is not changed
(see Figure 1.20a). But y reverses sign, because — 6 is below the axis when +6 is
above. This change in y affects y/r and y/x but not x/r:

cos(—68)=cos 0 sin(—6)= —sin 0 tan(—6)= —tan 6.
The cosine is even (no change). The sine and tangent are odd (change sign).

The same point is £ of the right way around. Therefore 2 of 2z radians (or 300°)
gives the same direction as —n/3 radians or —60°. 4 difference of 2n makes no
difference to x, y, r. Thus sin 0 and cos 6 and the other four functions have period 2x.
We can go five times or a hundred times around the circle, adding 10z or 200% to
the angle, and the six functions repeat themselves.

EXAMPLE Evaluate the six trigonometric functions at 6 = 2%/3 (or 8 = —4=/3).

This angle is shown in Figure 1.20a (where r = 1). The ratios are
cos 0=x/r=—1)2 sin0=y/r=\/§/2 tan9=y/x=-\/§
sec0=—2 csc0=2/\/§ cot9=—1/\/§
Those numbers illustrate basic facts about the sizes of four functions:
Jcos ] < 1 [sin 8] < 1 [sec B8] =1 lesc 8] = 1.

The tangent and cotangent can fall anywhere, as long as cot § = 1/tan 0.



4.5 A Review of Trigonomethy

The numbers reveal more. The tangent — \/3 is the ratio of sine to cosine. The
secant —2 is 1/cos 6. Their squares are 3 and 4 (differing by 1). That may not seem
remarkable, but it is. There are three relationships in the squares of those six numbers,
and they are the key identities of trigonometry:

cos?2f+sin?0=1 1+ tan?6 =sec?0 cot?0+ 1=csc?0

Everything flows from the Pythagoras formula x* + y*> =r?. Dividing by r? gives
(x/r)? + (y/r)* = 1. That is cos? 6 + sin? § = 1. Dividing by x? gives the second identity,
which is 1+ (y/x)? = (r/x)>. Dividing by y? gives the third. All three will be needed
throughout the book—and the first one has to be unforgettable.

DISTANCES AND ADDITION FORMULAS

To compute the distance between points we stay with Pythagoras. The points are in
Figure 1.21a. They are known by their x and y coordinates, and d is the distance
between them. The third point completes a right triangle.

For the x distance along the bottom we don’t need help. It is x, — x; (or |x; — x4
since distances can’t be negative). The distance up the side is |y, — y,|. Pythagoras
immediately gives the distance d:

distance between points = d = \/(xz —x )2+ (2 — )2 (1)
X=COSS
y=sins
(xp, ¥5) x=cos(s—1)
y=sin(s—1?)
1 x=cost
d=\" (LA =sint d

|y2—y||

x=1
=0
——&(,\'l,yl) Y

| vp= x|

Fig. 1.24 Distance between points and equal distances in two circles.

By applying this distance formula in two identical circles, we discover the cosine
of s — t. (Subtracting angles is important.) In Figure 1.21b, the distance squared is

d? = (change in x)? + (change in y)?
= (cos s — cos t)® + (sin s — sin t)2. ?)

Figure 1.21c shows the same circle and triangle (but rotated). The same distance
squared is
d?=(cos(s — t)— 1)® + (sin(s — )% (3

Now multiply out the squares in equations (2) and (3). Whenever (cosine)? + (sine)?
appears, replace it by 1. The distances are the same, so (2) = (3):

(2=1+1—2cosscost—2sin s sin t
(3)=1+1—-2cos(s—t).
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After canceling 1 + 1 and then — 2, we have the “addition formula’ for cos (s — t):

The cosine of s — t equals cos s cos ¢+ sin s sin ¢. 4)

The cosine of s+ t equals cos s cos ¢ — sin s sin ¢. 5)

The easiest is t = 0. Then cos ¢t = 1 and sin ¢t = 0. The equations reduce to cos s = cos s.

To go from (4) to (5) in all cases, replace t by —t. No change in cos ¢, but a “minus”
appears with the sine. In the special case s=t, we have cos(t+1t)=
(cos t)(cos t) — (sin t)(sin t). This is a much-used formula for cos 2::

Double angle: cos 2t = cos>t —sin?t =2 cos’t— 1 =1—2 sin?t. (6)

I am constantly using cos?t + sin?t = 1, to switch between sines and cosines.

We also need addition formulas and double-angle formulas for the sine of s —t
and s+ ¢ and 2t. For that we connect sine to cosine, rather than (sine)? to (cosine)?.
The connection goes back to the ratio y/r in our original triangle. This is the sine of
the angle 0 and also the cosine of the complementary angle n/2 — 6:

sin 8 = cos (n/2 — 0) and cos 0 =sin(n/2 — 0). (7

The complementary angle is n/2 — 8 because the two angles add to n/2 (a right angle).
By making this connection in Problem 19, formulas (4-5-6) move from cosines to
sines:

sin(s —¢) =sin s cos t — cos s sin t (8)
sin(s +t) = sin s cos t + cos s sin ¢ )
sin 2t =sin(t+t)=2 sin t cos ¢ (10)

I want to stop with these ten formulas, even if more are possible. Trigonometry is
full of identities that connect its six functions—basically because all those functions
come from a single right triangle. The x, y, r ratios and the equation x? + y?> =r2 can
be rewritten in many ways. But you have now seen the formulas that are needed by
calculus.t They give derivatives in Chapter 2 and integrals in Chapter 5. And it is
typical of our subject to add something of its own—a limit in which an angle
approaches zero. The essence of calculus is in that limit.

Review of the ten formulas Figure 1.22 shows d2=(0—3)?+(1 — \/3/2)2.

COS = = COS = COS = + sin = sin (s—t sin — = sin = cos = — cos ~ sin ~
6 geosyFsingsing (7 6 2703 2713
coséﬁ—cosgcosg—singsinE (s+1) sinﬁ=sinfcosg+cosfsinE
6 2 3 2 3 6 2 3 2 3
cos 2§=cos2§—sin2§ (1) sin 2§=25in§cosg
cos%=sing=\/§/2 (g—e) sing=cosg=l/2

+Calculus turns (6) around to cos?t = 4(1 + cos 2t) and sin? t = $(1 — cos 2t).
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1.5 EXERCISES

Read-through questions

Starting with a __a _ triangle, the six basic functions are the

b __of the sides. Two ratios (the cosine x/r and the __c )
are below 1. Two ratios (the secant r/x and the _d ) arc
above 1. Two ratios (the __e__and the __t__) can take any
value. The six functions are defined for all angles 6, by chang-

ing from a triangletoa _ g .

The angle 6 is measuredin __h__, Afullcircleisf=_1
when the distance around is 2nr. The distance to angle 6 is

] . All six functions have period __k . Going clockwise
changes the signof #and _ ) _and _ m__. Since cos(—0) =

cos 0, the cosine is __n

Coming from x?+y*=r®> are the three identities
sin?f+cos’@=1and __o and _p . (Divide by r* and

a and __r__.) The distance from (2,5) to (3,4) is
d=__s . The distance from (1, 0) to (cos(s —¢), sin(s —¢))
leads to the addition formula cos(s —t)=__t . Changing
the sign of ¢ gives cos(s+t)=__u . Choosing s=t gives
cos2t=_v__ or _w__. Therefore $(1+cos2t)=_x

a formula needed in calculus.

1 In a 60-60-60 triangle show why sin 30° =4.

2 Convert 7, 3, —n/4 to degrees and 60°, 90°, 270° to
radians. What angles between 0 and 2z correspond to
0 =480° and 6 = —1°?

3 Draw graphs of tan 6 and cot 0 from 0 to 2z. What is their
(shortest) period?

4 Show that cos 260 and cos? § have period = and draw them
on the same graph.

5 At 6=3n/2 compute the six basic functions and check
cos? 0 + sin? 6, sec? @ — tan? 0, csc? § — cot? 6.

6 Prepare a table showing the values of the six basic func-
tions at 8 =0, n/4, n/3, n/2, n.

7 The area of a circle is nr>. What is the area of the sector
that has angle 67 It is a fraction of the whole area.

8 Find the distance from (1, 0) to (0, 1) along (a) a straight
line (b) a quarter-circle (c) a semicircle centered at (4, %).

9 Find the distance d from (1, 0) to (3, ﬁ/Z) and show on
a circle why 6d is less than 27.

10 In Figure 1.22 compute d” and (with calculator) 12d. Why
is 12d close to and below 2x?

11 Decide whether these equations are true or false:

1+cos@
sin 6

sin 0 _
1—cosf

(@)

sec 8 +csc 0

—————— =5in 6 + cos 0
tan 6 + cot 0

(b)
(c) cos 8 —sec 0 =sin 6 tan 6
(d) sin(2n — @) =sin 9

12 Simplify sin (z — ), cos(rx — 0), sin(=/2 + 8), cos(n/2 + 0).

13 From the formula for cos(2t +¢) find cos 3¢ in terms of
cos t.

14 From the formula for sin(2t +t) find sin 3¢ in terms of
sin t.

15 By averaging cos(s — t) and cos(s + t) in (4--5) find a for-
mula for cos s cos t. Find a similar formula for sin s sin ¢.

16 Show that (cos ¢ + i sin ¢)> = cos 2t +i sin 2¢, if i = —1.

17 Draw cos 0 and sec 0 on the same graph. Find all points
where cos § = sec 0.

18 Find all angles s and ¢ between 0 and 2z where sin (s + £) =
sin s + sin .

19 Complementary angles have sin 8 = cos(n/2 — 6). Write
sin(s+¢) as cos(n/2—s—t) and apply formula (4)
with n/2 —s instead of s. In this way derive the addition
formula (9).

20 If formula (9) is true, how do you prove (8)?

21 Check the addition formulas (4-5) and (8-9) for
s=t=mn/4.

22 Use (5) and (9) to find a formula for tan(s + ¢).
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In 23-28 find every O that satisfies the equation.

23 sin = —1 24 sec 0 =—-2
25 sin 8 =cos 0 26 sin =0
27 sec?0+csc?f=1 28 tan 0=0

29 Rewrite cos 8 +sin 0 as ﬁ sin(6 + ¢) by choosing the
correct “phase angle” ¢. (Make the equation correct at
0 = 0. Square both sides to check.)

30 Match asin x + b cos x with 4 sin(x + ¢). From equation
(9) show that a = A cos ¢ and b = A4 sin ¢. Square and add to
find A= . Divide to find tan ¢ = b/a.

31 Draw the base of a triangle from the origin O = (0, 0) to
P =(a, 0). The third corner is at Q = (b cos 6, b sin ). What
are the side lengths OP and 0Q? From the distance formula

1.6 A Thousand Points of Light

(1) show that the side PQ has length
d*=a?+b*—2abcos 6 (law of cosines).

32 Extend the same triangle to a parallelogram with its fourth
corner at R = (a + b cos 0, b sin 0). Find the length squared of
the other diagonal OR.

Draw graphs for equations 33—36, and mark three points.

33 y=sin 2x 34 y=2sin nx
35 y=1%cos 2nx 36 y=sin x +cos x

37 Which of the six trigonometric functions are infinite at
what angles?

38 Draw rough graphs or computer graphs of ¢sin¢ and
sin 4¢ sin t from 0 to 27.

The graphs on the back cover of the book show y=sinn. This is very different
from y =sin x. The graph of sin x is one continuous curve. By the time it reaches
x = 10,000, the curve has gone up and down 10,000/2x times. Those 1591 oscillations
would be so crowded that you couldn’t see anything. The graph of sin n has picked
10,000 points from the curve—and for some reason those points seem to lie on more
than 40 separate sine curves.

The second graph shows the first 1000 points. They don’t seem to lie on sine curves.
Most people see hexagons. But they are the same thousand points! It is hard to believe
that the graphs are the same, but I have learned what to do. Tilt the second graph
and look from the side at a narrow angle. Now the first graph appears. You see
“diamonds.” The narrow angle compresses the x axis—back to the scale of the first
graph.

[ S

The effect of scale is something we don’t think of. We understand it for maps.
Computers can zoom in or zoom out—those are changes of scale. What our eyes see

. . 5 L K .
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depends on what is “close.” We think we see sine curves in the 10,000 point graph,
and they raise several questions:

1. Which points are near (0, 0)?
2. How many sine curves are there?
3. Where does the middle curve, going upward from (0, 0), come back to zero?

A point near (0, 0) really means that sin n is close to zero. That is certainly not true
of sin 1 (1 is one radian!). In fact sin 1 is up the axis at .84, at the start of the seventh
sine curve. Similarly sin 2 is .91 and sin 3 is .14. (The numbers 3 and .14 make us
think of n. The sine of 3 equals the sine of = — 3. Then sin .14 is near .14.) Similarly
sin4, sin 5, ..., sin 21 are not especially close to zero.

The first point to come close is sin 22. This is because 22/7 is near n. Then 22 is
close to 7n, whose sine is zero:

sin 22 = sin (77 — 22) ~sin(— .01) ~ — .01.

That is the first point to the right of (0, 0) and slightly below. You can see it on
graph 1, and more clearly on graph 2. It begins a curve downward.
The next point to come close is sin 44. This is because 44 is just past 14x.

44~ 14n+ .02 so sin 44 ~ sin .02 ~ .02.

This point (44, sin 44) starts the middle sine curve. Next is (88, sin 88).

Now we know something. There are 44 curves. They begin near the heights sin 0,
sin 1, ..., sin 43. Of these 44 curves, 22 start upward and 22 start downward. I was
confused at first, because I could only find 42 curves. The reason is that sin 11 equals
—0.99999 and sin 33 equals .9999. Those are so close to the bottom and top that you
can’t see their curves. The sine of 11 is near —1 because sin 22 is near zero. It is
almost impossible to follow a single curve past the top—coming back down it is not
the curve you think it is.

The points on the middle curve are at n =0 and 44 and 88 and every number 44N.
Where does that curve come back to zero? In other words, when does 44N come
very close to a multiple of n? We know that 44 is 14z +.02. More exactly 44 is
147 + .0177. So we multiply .0177 until we reach =:

if N=nr/0177 then 44N =(l4n+ 0177)N = 142N + =.

This gives N =177.5. At that point 44N = 7810. This is half the period of the sine
curve. The sine of 7810 is very near zero.

If you follow the middle sine curve, you will see it come back to zero above 7810.
The actual points on that curve have n=44-177 and n=44-178, with sines just
above and below zero. Halfway between is n = 7810. The equation for the middle sine
curve is y = sin(nx/7810). Its period is 15,620—beyond our graph.

Question The fourth point on that middle curve looks the same as the fourth point

coming down from sin 3. What is this “‘double point?”

Answer 4 times 44 is 176. On the curve going up, the point is (176, sin 176). On the

curve coming down it is (179, sin 179). The sines of 176 and 179 differ only by .00003.
The second graph spreads out this double point. Look above 176 and 179, at the

center of a hexagon. You can follow the sine curve all the way across graph 2.

Only a little question remains. Why does graph 2 have hexagons? I don’t know.
The problem is with your eyes. To understand the hexagons, Doug Hardin plotted
points on straight lines as well as sine curves. Graph 3 shows y = fractional part of
n/2n. Then he made a second copy, turned it over, and placed it on top. That
produced graph 4—with hexagons. Graphs 3 and 4 are on the next page.

35



36 1 Introduction fo Calculus

750 100012501500 1750

spee

00

This is called a Moiré pattern. If you can get a transparent copy of graph 3, and
turn it slowly over the original, you will see fantastic hexagons. They come from
interference between periodic patterns—in our case 44/7 and 25/4 and 19/3 are near
2n. This interference is an enemy of printers, when color screens don’t line up. It can
cause vertical lines on a TV. Also in making cloth, operators get dizzy from seeing
Moiré patterns move. There are good applications in engineering and optics—but
we have to get back to calculus.

I 1.7 Computing in Calculus TN

Software is available for calculus courses—a lot of it. The packages keep getting
better. Which program to use (if any) depends on cost and convenience and purpose.
How to use it is a much harder question. These pages identify some of the goals, and
also particular packages and calculators. Then we make a beginning (this is still
Chapter 1) on the connection of computing to calculus.

The discussion will be informal. It makes no sense to copy the manual. Qur aim
is to support, with examples and information, the effort to use computing to help
learning.

For calculus, the greatest advantage of the computer is to offer graphics. You see
the function, not just the formula. As you watch, f(x) reaches a maximum or a
minimum or zero. A separate graph shows its derivative. Those statements are not
100% true, as everybody learns right away—as soon as a few functions are typed in.
But the power to see this subject is enormous, because it is adjustable. If we don’t
like the picture we change to a new viewing window.

This is computer-based graphics. It combines numerical computation with
graphical computation. You get pictures as well as numbers—a powerful combination.
The computer offers the experience of actually working with a function. The domain
and range are not just abstract ideas. You choose them. May I give a few examples.

EXAMPLE 1  Certainly x> equals 3* when x = 3. Do those graphs ever meet again’?
At this point we don’t know the full meaning of 3*, except when x is a nice number.
(Neither does the computer.) Checking at x =2 and 4, the function x> is smaller
both times: 2* is below 3% and 43 = 64 is below 3* = 81. If x> is always less than 3*
we ought to know—these are among the basic functions of mathematics.
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The computer will answer numerically or graphically. At our command, it solves
x3 = 3*. At another command, it plots both functions—this shows more. The screen
proves a point of logic (or mathematics) that escaped us. If the graphs cross once,
they must cross again—because 3* is higher at 2 and 4. A crossing point near 2.5 is
seen by zooming in. I am less interested in the exact number than its position—it
comes before x = 3 rather than after.

A few conclusions from such a basic example:

1. A supercomputer is not necessary.
2. High-level programming is not necessary.
3. We can do mathematics without completely understanding it.

The third point doesn’t sound so good. Write it differently: We can learn mathematics
while doing it. The hardest part of teaching calculus is to turn it from a spectator
sport into a workout. The computer makes that possible.

EXAMPLE 2 (mental computer) Compare x2 with 2*. The functions meet at x = 2.
Where do they meet again? Is it before or after 2?7

That is mental computing because the answer happens to be a whole number (4).
Now we are on a different track. Does an accident like 2* = 42 ever happen again?
Can the machine tell us about integers? Perhaps it can plot the solutions of x® = b*.
I asked Mathematica for a formula, hoping to discover x as a function of b—but the
program just gave back the equation. For once the machine typed HELP irstead of
the user.

Well, mathematics is not helpless. I am proud of calculus. There is a new exercise
at the end of Section 6.4, to show that we never see whole numbers again.

EXAMPLE3 Find the number b for which x” = b* has only one solution(at x = b).

When b is 3, the second solution is below 3. When b is 2, the second solution (4) is
above 2. If we move b from 2 to 3, there must be a special “double point”—where
the graphs barely touch but don’t cross. For that particular b—and only for that
one value—the curve x® never goes above b*.

This special point b can be found with computer-based graphics. In many ways it
is the “center point of calculus.” Since the curves touch but don’t cross, they are
tangent. They have the same slope at the double point. Calculus was created to work
with slopes, and we already know the slope of x2. Soon comes xb. Eventually we
discover the slope of b*, and identify the most important number in calculus.

The point is that this number can be discovered first by experiment.

EXAMPLE4 Graph y(x) = ¢* — x°. Locate its minimum.

The next example was proposed by Don Small. Solve x* — 11x3 + 5x — 2= 0. The
first tool is algebra—try to factor the polynomial. That succeeds for quadratics, and
then gets extremely hard. Even if the computer can do algebra better than we can,
factoring is seldom the way to go. In reality we have two good choices:

1. (Mathematics) Use the derivative. Solve by Newton’s method.
2. (Graphics) Plot the function and zoom in.

Both will be done by the computer. Both have potential problems! Newton’s method
is fast, but that means it can fail fast. (It is usually terrific.) Plotting the graph is aiso
fast—but solutions can be outside the viewing window. This particular function is

37
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zero only once, in the standard window from —10 to 10. The graph seems to be
leaving zero, but mathematics again predicts a second crossing point. So we zoom
out before we zoom in.

The use of the zoom is the best part of graphing. Not only do we choose the domain
and range, we change them. The viewing window is controlled by four numbers. They
can be the limits A <x<B and C<y<D. They can be the coordinates of two
opposite corners: (4, C) and (B, D). They can be the center position (g, b) and the
scale factors ¢ and d. Clicking on opposite corners of the zoom box is the fastest way,
unless the center is unchanged and we only need to give scale factors. (Even faster:
Use the default factors.) Section 3.4 discusses the centering transform and zoom
transform—a change of picture on the screen and a change of variable within the
function.

EXAMPLE 5 Find all real solutions to x* — 11x3 + 5x —2=0.

EXAMPLE 6 Zoom out and in on the graphs of y=cos40x and y= xsin(1/x).
Describe what you see.

EXAMPLE 7 What does y=(tan x — sin x)/x> become at x=0? For small x the
machine eventually can’t separate tan x from sin x. It may give y =0. Can you get
close enough to see the limit of y?

For these examples, and for most computer exercises in this book, a menu-driven
system is entirely adequate. There is a list of commands to choose from. The user
provides a formula for y(x), and many functions are built in. A calculus supplement
can be very useful—MicroCalc or True BASIC or Exploring Calculus or MPP (in
the public domain). Specific to graphics are Surface Plotter and Master Grapher and
Gyrographics (animated). The best software for linear algebra is MATLAB.

Powerful packages are increasing in convenience and decreasing in cost. They are
capable of symbolic computation—which opens up a third avenue of computing in
calculus.

SYMBOLIC COMPUTATION

In symbolic computation, answers can be formulas as well as numbers and graphs.
The derivative of y = x2 is seen as “2x.” The derivative of sin ¢ is *““cos t.”” The slope
of b* is known to the program. The computer does more than substitute numbers
into formulas—it operates directly on the formulas. We need to think where this fits
with learning calculus.

In a way, symbolic computing is close to what we ourselves do. Maybe too close—
there is some danger that symbolic manipulation is all we do. With a higher-level
language and enough power, a computer can print the derivative of sin(x?). So why
learn the chain rule? Because mathematics goes deeper than “algebra with formulas.”
We deal with ideas.

I want to say clearly: Mathematics is not formulas, or computations, or even proofs,
but ideas. The symbols and pictures are the language. The book and the professor
and the computer can join in teaching it. The computer should be non-threatening
(like this book and your professor)—you can work at your own pace. Your part is
to learn by doing.

EXAMPLE 8 A computer algebra system quickly finds 100 factorial. This is 100! =
(100)(99)(98) ... (1). The number has 158 digits (not written out here). The last 24
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digits are zeros. For 10! = 3628800 there are seven digits and two zeros. Between 10
and 100, and beyond, are simple questions that need ideas:

1. How many digits (approximately) are in the number N!?
2. How many zeros (exactly) are at the end of N!?

For Question 1, the computer shows more than N digits when N = 100. It will never
show more than N2 digits, because none of the N terms can have more than N digits.
A much tighter bound would be 2N, but is it true? Does N! always have fewer than
2N digits?

For Question 2, the zeros in 10! can be explained. One comes from 10, the other
from 5 times 2. (10 is also 5 times 2.) Can you explain the 24 zeros in 100!? An idea
from the card game blackjack applies here too: Count the fives.

Hard question: How many zeros at the end of 200!?

The outstanding package for full-scale symbolic computation is Mathematica. It
was used to draw graphs for this book, including y =sin n on the back cover. The
complete command was ListPlot[ Table [Sin[n], {n, 10000}]]. This system has rewards
and also drawbacks, including the price. Its original purpose, like MathCAD and
MACSYMA and REDUCE, was not to teach calculus—but it can. The computer
algebra system MAPLE is good.

As I write in 1990, DERIVE is becoming well established for the PC. For the
Macintosh, Calculus T/L is a “sleeper” that deserves to be widely known. It builds
on MAPLE and is much more accessible for calculus. An important alternative is
Theorist. These are menu-driven (therefore easier at the start) and not expensive.

I strongly recommend that students share terminals and work together. Two at a
terminal and 3-5 in a working group seems to be optimal. Mathematics can be
learned by talking and writing—it is a human activity. Our goal is not to test but to
teach and learn.

Writing in Calculus May I emphasize the importance of writing? We totally miss it,
when the answer is just a number. A one-page report is harder on instructors as well
as students—but much more valuable. A word processor keeps it neat. You can’t
write sentences without being forced to organize ideas—and part of yourself goes
into it.

I will propose a writing exercise with options. If you have computer-based graph-
ing, follow through on Examples 1-4 above and report. Without a computer, pick a
paragraph from this book that should be clearer and make it clearer. Rewrite it with
examples. Identify the key idea at the start, explain it, and come back to express it
differently at the end. Ideas are like surfaces—they can be seen many ways.

Every reader will understand that in software there is no last word. New packages
keep coming (Analyzer and EPIC among them). The biggest challenges at this
moment are three-dimensional graphics and calculus workbooks. In 3D, the problem
is the position of the eye—since the screen is only 2D. In workbooks, the problem is
to get past symbol manipulation and reach ideas. Every teacher, including this one,
knows how hard that is and hopes to help.

GRAPHING CALCULATORS

The most valuable feature for calculus—computer-based graphing—is available on
hand calculators. With trace and zoom their graphs are quite readable. By creating
the graphs you subconsciously learn about functions. These are genuinely personal
computers, and the following pages aim to support and encourage their use.
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Programs for a hand-held machine tend to be simple and short. We don’t count
the zeros in 100 factorial (probably we could). A calculator finds crossing points and
maximum points to good accuracy. Most of all it allows you to explore calculus by
yourself. You set the viewing window and define the function. Then you see it.

There is a choice of calculators— which one to buy? For this book there was also
a choice—which one to describe? To provide you with listings for useful programs,
we had to choose. Fortunately the logic is so clear that you can translate the instruc-
tions into any language—for a computer as well as a calculator. The programs given
here are the *“‘greatest common denominator” of computing in calculus.

The range of choices starts with the Casio fx 7000G—the first and simplest, with
very limited memory but a good screen. The Casio 7500, 8000, and 8500 have increas-
ing memory and extra features. The Sharp EL-5200 (or 9000 in Canada and Europe)
is comparable to the Casio 8000. These machines have algebraic entry—the normal
order as in y=x+ 3. They are inexpensive and good. More expensive and much
more powerful are the Hewlett-Packard calculators—the HP-28S and HP-48SX.
They have large memories and extensive menus (and symbolic algebra). They use
reverse Polish notation—numbers first in the stack, then commands. They require
extra time and effort, and other books do justice to their amazing capabilities. It is
estimated that those calculators could get 95 on a typical calculus exam.

While this book was being written, Texas Instruments produced a new graphing
calculator: the T1-81. It is closer to the Casio and Sharp (emphasis on graphing, easy
to learn, no symbolic algebra, moderate price). With earlier machines as a starting
point, many improvements were added. There is some risk in a choice that is available
only At before this textbook is published, and we hope that the experts we asked are
right. Anyway, our programs are for the TI-81. Tt is impressive.

These few pages are no substitute for the manual that comes with a calculator. A
valuable supplement is a guide directed especially at calculus—my absolute favorites
are Calculus Activities for Graphic Calculators by Dennis Pence (PWS-Kent, 1990 for
the Casio and Sharp and HP-28S, 1991 for the TI-81). A series of Calculator Enhance-
ments, using HP’s, is being published by Harcourt Brace Jovanovich. What follows
is an introduction to one part of a calculus laboratory. Later in the book, we supply
TI-81 programs close to the mathematics and the exercises that they are prepared
for.

A few words to start: To select from a menu, press the item number and ENTER.
Edit a command line using DEL(ete) and INS(ert). Every line ends with
ENTER. For calculus select radians on the MODE screen. For powers use " . For

. - ' e . . .
special powers choose x%, x7', \/x. Multiplication has priority, so (—)3+2x 2
produces 1. Use keys for SIN, IF, IS, ... When you press letters, I multiplies S.

If a program says 3 — C, type 3 STO C ENTER. Storage locations are A to Z

or Greek 6.

Functions A graphing calculator helps you (forces you?) to understand the concept
of a function. It also helps you to understand specific functions—especially when
changing the viewing window.

To evaluate y = x? — 2x just once, use the home screen. To define y(x) for repeated
use, move to the function edit screen: Press MODE, choose Func tion, and press
Y =. Then type in the formula. Important tip: for X on the TI-81, the key X| T is faster
than two steps Alpha X. The Y= edit screen is the same place where the formula
is needed for graphing.
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Example Y1=X2-2X ENTER onthe Y=screen. 4 STO X ENTER on the home
screen. Y1 ENTER on the Y-VARS screen. The screen shows 8, which is Y(4). The
formula remains when the calculator is off.

Graphing You specify the X range and Y range. (We should say X domain but we
don’t.) The screen is a grid of 96 x 64 little rectangles called “pixels.”” The first column
of pixels represents Xmin and the last column is Xmax. Press RANGE to reset.
With Xres = 1 the function is evaluated 96 times as it is graphed. Xsc L and Ysc L
give the spaces between ticks on the axes.

The Z0OOM menu is a fast way to set ranges. ZOOM Standard gives the default
—10<x<10, -10<y<10. ZOOM Trig gives ~2r<x<2m, —3<y<3.
The keystroke GRAPH shows the graphing screen with the current functions.

Example Set the ranges (—)2< X <3 and (-)150<Y <50. Press Y= and store
Y1 =X (in MATH)? —28X2+ 15X + 36 ENTER. Press GRAPH. You won’t see
much of the graph! Press RANGE and reset (—)10 < X < 30,(—)4000 < Y <2300.
Press GRAPH. See a cubic polynomial.

“Smart Graph” recalls the graph instantly without redrawing it, if no settings have
changed. The DRAW menu is for points, lines, and shaded regions. This is perfect for
our piecewise linear functions—just connect the breakpoints with lines. In Section 3.6
the lines show an iteration by its “cobweb.”

Programming This book contains programs that you can type in once and save.
We chose Autoscaling, Newton’s Method, Secant Method, Cobweb Iteration, and
Numerical Integration. You will create others—to do calculations or to add features
that are not available as single keystrokes. The calculator is like a computer, with a
fairly small set of instructions. One difference: Memory is too precious to store com-
ments with the code. You have to see the logic by rereading the program.

To enter the world of programming, press PRGM. Each PRGM submenu lists all
programs by name—a digit, a letter, or 8 (37 names). The program title has up to
eight characters. Select the ED I T submenu and press G for the edit screen. Type the
title GRAPHS and press ENTER. Practice on this one:

:"X2+X" STO (Y-VARS) Y1 ENTER
:"X=1" STO (Y-VARS) Y2 ENTER
:(PRGM) (1/0) DispGraph

The menus to call are in parentheses. Leave the edit screen with QUIT (not
CLEAR—that erases the line with the cursor). Set the default window by ZOOM
Standard.

To execute, press PRGM (EXEC) G ENTER. The program draws the graphs. It
leaves Y1 and Y2 on the Y= screen. To erase the program from the home screen,
press (PRGM)(ERASE)G. Practice again by creating Prgm2:FUNC. Type
:\/_ XSTO Yand : (PRGM) (I/0)Disp Y. Move to the home screen, store
X by 4 STO X ENTER, and execute by (PRGM) (EXEC)2 ENTER. Also try
X = — 1. When it fails to imagine i, select 1:Goto Error.

Piecewise functions and Input (to a running program). The definition of a piecewise
function includes the domain of each piece. Logical tests like "I F X>7" determine
which domain the input value X falls into. An I F statement only affects the following

line—which is executed when TES T = 1 (meaning true) and skipped when TEST =0

(meaning false). I F commands are in the PRGM (CTL) submenu; TEST calls the
menu of inequalities.

a1
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An input value X =4 need not be stored in advance. Program P stops while
running to request input. Execute with P ENTER after selecting the PRGM (EXEC)
menu. Answer ? with 4 and ENTER. After completion, rerun by pressing ENTER
again. The functionis y=14—xif x<7, y=xifx="7.

PrgmP: PIECES

:Disp "Xx=" PGRM (I/0) Ask for input
:Input X PGRM (I/0) Screen ? ENTER X
t14-X->Y First formula for all X

tIf7<X PRGM (CTL) TEST

D N Overwrite if TEST =1

:Disp Y Display Y(X)

Overwriting is faster than checking both ends 4 < X < B for each piece. Even faster:
a whole formula (14 — X)(X <7)+ (X)(7 < X) can go on a single line using 1 and 0
from the tests. Compute-store-display Y(X) as above, or define Y 1 on the edit screen.

Exercise Define a third piece Y =8 + X if X < 3. Rewrite P using Y1 =. A product
of tests (3 < X) (X <7) evaluates to 1 if all true and to 0 if any false.

TRACE and ZOOM The best feature is graphing. But a whole graph can be like a
whole book—too much at once. You want to focus on one part. A computer or
calculator will trace along the graph, stop at a point, and zoom in.

There is also ZOOM OUT, to widen the ranges and see more. Our eyes work the
same way—they put together information on different scales. Looking around the
room uses an amazingly large part of the human brain. With a big enough computer
we can try to imitate the eyes—this is a key problem in artificial intelligence. With
a small computer and a zoom feature, we can use our eyes to understand functions.

Press TRACE to locate a point on the graph. A blinking cursor appears. Move
left or right—the cursor stays on the graph. Its coordinates appear at the bottom of
the screen. When x changes by a pixel, the calculator evaluates y(x). To solve y(x) =0,
read off x at the point when y is nearest to zero. To minimize or maximize y(x), read
off the smallest and largest y. In all these problems, zoom in for more accuracy.

To blow up a figure we can choose new ranges. The fast way is to use a ZOOM
command. For a preset range, use ZOOM Standard or ZOOM Tr ig. To shrink
or stretch by XFact or YFact (default values 4), use ZOOM Inor ZOOM Out.
Choose the center point and press ENTER. The new graph appears. Change those
scaling factors with ZOOM Set Factors. Best of all, create your own viewing
window. Press ZOOM Box.

To draw the box, move the cursor to one corner. Press ENTER and this point is
a small square. The same keys move a second (blinking) square to the opposite
corner—the box grows as you move. Press ENTER, and the box is the new viewing
window. The graphs show the same function with a change of scale. Section 3.4 will
discuss the mathematics—here we concentrate on the graphics.

EXAMPLE9 Place : Y1=X sin (1/X) inthe Y= editscreen. Press ZOOM Trig
for a first graph. Set XFact =1and YFact =2.5. Press ZOOM In with center at
(0, 0). To see a larger picture, use XFact =10and YFact=1. Then Zoom Out
again. As X gets large, the function X sin(1/X) approaches .

Now returnto ZOOM Trig. Zoom In with the factors set to 4 (default). Zoom
again by pressing ENTER. With the center and the factors fixed, this is faster than
drawing a zoom box.
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EXAMPLE 10 Repeat for the more erratic function Y = sin (1/X). After ZOOM Trig,
create a box to see this function near X =.01. The Y range is now .

Scaling is crucial. For a new function it can be tedious. A formula for y(x) does
not easily reveal the range of y’s, when 4 < x < B is given. The following program is
often more convenient than zooms. It samples the function L= 19 times across the
x-range (every 5 pixels). The inputs Xmin, Xmax, Y, are previously stored on other
screens. After sampling, the program sets the y-range from C = Ymin to D= Ymax
and draws the graph.

Notice the loop with counter K. The loop ends with the command IS> (K,L),
which increases K by 1 and skips a line if the new K exceeds L. Otherwise the
command Go to 1 restarts the loop. The screen shows the short form on the left.

Example: Y1 =x3+ 10x? — 7x + 42 with range Xmin=—12 and Xmax = 10.
Set tick spacing Xscl =4 and Yscl =250. Execute with PRGM (EXEC) A
ENTER. For this program we also list menu locations and comments.

PrgmA : AUTOSCL Menu (Submenu) Comment

43

tALL-0ff Y~VARS (OFF) Turn off functions
:Xmin—A VARS (RNG) Store Xmin using STO
:19->L Store number of evaluations (19)

:(Xmax-A)/L-H

Spacing between evaluations

tA-X Start at x=A4

Y1 C Y-VARS (Y) Evaluate the function
:C->D Start C and D with this value

:1-K Initialize counter K =1

:Lbl 1 PRGM (CTL) Mark loop start
tA+KH > X Calculate next x

tY1-Y Evaluate function at x

tIFY<C PGRM (CTL) New minimum?

Y- C Update C

:IFD<Y PRGM (CTL) New maximum?
:Y->D Update D

:IS>(K,L) PRGM (CTL) Add 1to K, skip Goto if >L
:Goto 1 PRGM (CTL) Loop returnto Lbl 1
:Y1-0n Y-VARS (ON) Turnon Y1
:C->Ymin STO VARS (RNG) Set Ymin=C
:D—> Ymax STO VARS (RNG) Set Ymax=D

:DispGraph

PRGM (I/0) Generate graph
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