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CHAPTER 13

Partial Derivatives

This chapter is at the center of multidimensional calculus. Other chapters and other
topics may be optional; this chapter and these topics are required. We are back to
the basic idea of calculus—tke derivative. There is a function f, the variables move a
little bit, and f moves. The question is how much f moves and how fast. Chapters
1-4 answered this question for f{x), a function of one variable. Now we have f{x, y)
or fix, y, z)—with two or three or more variables that move independently. As x and
y change, f changes. The fundamental problem of differential calculus is to connect
Ax and Ay to Af.

Calculus solves that probiem in the limit. It connects dx and dy te df. In using this
language I am building on the work already done. You know that df/dx is the limit
of AffAx. Calculus computes the rate of change—which is the slope of the tangent
line. The goal is to extend those ideas to

fix, p=x*—y* or flx,yy=J/x*+y or flix,y, 2)=2x+3y+4z

These functions have graphs, they have derivatives, and they must have tangents.

The heart of this chapter is summarized in six lines. The subject is differential
calculus—small changes in a short time. Still to come is integral calculus—adding
up those small changes. We give the words and symbols for f{x, y}, matched with the
words and symbols for f{x). Please use this summary as a guide, to know where
calculus is going.

Curve y=fix) vs. Surface z=f[x,y)

LA becomes two partial derivatives g and g
dx ox dy
a*f L 2f *f &#f °f
—_— ti —_— . L
o becomes four second derivatives 232 Bxdy’ Byax’ 8y?
af . . o,
w—A a — =
A% becomes the linear approximation Af I Ax + 2 Ay

. d 3
tangent line becomes the tangent plane z —zo5= a;::(x ~xq)+ a—';( ¥ = ¥o)

dy dydx . dr 0Ozdx Ozdy

ot At it h it Wt

- dx i becomes the chain rule it Gxdr | aydt
g 0 becomes two maximum-minimum equations g_ 0 and g 0.
dx ox dy

471
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I  13.1 Surfaces and Level Curves T

The graph of y=f(x) is a curve in the xy plane. There are two variables—x is
independent and free, y is dependent on x. Above x on the base line is the point (x, y)
on the curve. The curve can be displayed on a two-dimensional printed page.

The graph of z=f(x, y) is a surface in xyz space. There are three variables—x and
y are independent, z is dependent. Above (x, y) in the base plane is the point (x, y, z)
on the surface (Figure 13.1). Since the printed page remains two-dimensional, we
shade or color or project the surface. The eyes are extremely good at converting two-
dimensional images into three-dimensional understanding—they get a lot of practice.
The mathematical part of our brain also has something new to work on—two partial
derivatives.

This section uses examples and figures to illustrate surfaces and their level curves.
The next section is also short. Then the work begins.

EXAMPLE 1 Describe the surface and the level curves for z = f(x, y) = /x* + y*.

The surface is a cone. Reason: ./x? + y* is the distance in the base plane from (0, 0)
to (x, ). When we go out a distance 5 in the base plane, we go up the same distance
5 to the surface. The cone climbs with slope 1. The distance out to (x, y) equals the
distance up to z (this is a 45° cone).

The level curves are circles. At height 5, the cone contains a circle of points—all
at the same “level” on the surface. The plane z = 5 meets the surface z = ./x% + y? at
those points (Figure 13.1b). The circle below them (in the base plane) is the level
curve.

DEFINITION A level curve or contour line of z = f(x, y) contains all points (x, y) that
share the same value f(x, y) = c. Above those points, the surface is at the height z = c.

There are different level curves for different ¢. To see the curve for ¢= 2, cut
through the surface with the horizontal plane z=2. The plane meets the surface
above the points where f(x, y) = 2. The level curve in the base plane has the equation
flx, y)= 2. Above it are all the points at “level 2" or “level ¢” on the surface.

Every curve f(x, y) = c is labeled by its constant c¢. This produces a contour map
(the base plane is full of curves). For the cone, the level curves are given by

x? + y*=¢, and the contour map consists of circles of radius c.

Question What are the level curves of z = f(x, y) = x* + y*?
Answer  Still circles. But the surface is not a cone (it bends up like a parabola). The
circle of radius 3 is the level curve x* + y? = 9. On the surface above, the height is 9.

z=\x2+y?

y

y

<— base plane —-

Fig. 13.4 The surface for z = f{x, y) = /x> + y? is a cone. The level curves are circles.
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EXAMPLE 2 For the linear function f(x, y)=2x + y, the surface is a plane. Its level
curves are straight lines. The surface z=2x+ y meets the plane z = c in the line
2x + y=c. That line is above the base plane when c is positive, and below when ¢ is
negative. The contour lines are in the base plane. Figure 13.2b labels these parallel
lines according to their height in the surface.

Question If the level curves are all straight lines, must they be parallel?
Answer No. The surface z= y/x has level curves y/x = c. Those lines y = ¢x swing
around the origin, as the surface climbs like a spiral playground slide.

\ 3N
AN AR
e

2x+y=0 2x+y=2 Yo 1 5

X

)

Fig. 13.2 A plane has parallel level lines. The spiral slide z = y/x has lines y/x=c.

EXAMPLE 3 The weather map shows contour lines of the temperature function. Each
level curve connects points at a constant temperature. One line runs from Seattle to
Omaha to Cincinnati to Washington. In winter it is painful even to think about the
line through L.A. and Texas and Florida. USA Today separates the contours by
color, which is better. We had never seen a map of universities.
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Fig. 13.3 The temperature at many U.S. and Canadian universities. Mt. Monadnock in New Hampshire is said to be the most
climbed mountain (except Fuji?) at 125,000/year. Contour lines every 6 meters.
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@uestion From a contour map, how do you find the highest point?
Answer The level curves form loops around the maximum point. As ¢ increases the
loops become tighter. Similarly the curves squecze to the lowest point as ¢ decreases.

EXAMPLE 4 A contour map of a mountain may be the best example of all. Normally
the level curves are separated hy 100 feet in height. On a steep trail those curves are
bunched together—the trail climbs quickly. In a flat region the contour lines are far
apart. Water runs perpendicular to the level curves. On my map of New Hampshire
that is true of crecks but looks doubtful for rivers.

Question Which direction in the base plane is uphill on the surface?
Answer The steepest direction is perpendicular to the level curves. This is important.
Proof to come.

EXAMPLE 5 1In economics x?y is a utility function and x*y = ¢ is an indifference curve.

The utility function x2y gives the value of x hours awake and y hours asleep. Two
hours awake and fifteen minutes asleep have the value f'= (22)(}). This is the same as
one hour of each: f={12)(1). Those lie on the same level curve in Figure 13.4a. We
are indifferent, and willing to exchange any two points on a level curve.

The indiflezence curve is “convex.” We prefer the average of any two points. The
line between two points is up on higher level curves.

Figure 13.4b shows an extreme case. The level curves are straight lines 4x + y=¢.
Four quarters are freely substituted for one dollar. The value is f= 4x + y dollars.

Figure 13.4c shows the other extreme. Extra left shoes or extra right shoes are
useless. The value {(or utility) is the smaller of x and y. That counts pairs of shoes.

¥y quarters right shoes

8..

min (x, ¥)

11 41 24
|+
11
7
' - loUIS ! = 1 dollars ; — . left
i 7 Owake 2 L shoes
Ag. 1.4 Utility functions x?y, 4x + y, min{x, y). Convex, straight substitution, complements,
13.1  EXERCISES
Read-through questions
The graph of z=f(x,y})is a _9__ in _b _-dimensional For z = f{x, y) = x? — y%, the equation for a level curve is
space. The __¢ __ curve f{x, y) = 7 lies down in the base plane. ! .Thiscurveisa _ | . For z=x—y the curves are
Above this ievel curve are all points at height _ @ in the kX __. Level curves never cross because . They crowd
surface. The __ e z =7 cuts through the surface at those together when the surface is _ m _ . The curves tighten to a
points, The level curves flx, yy=__1t _ are drawn in the xy point when __n__ . The steepest direction on a mountain is
plane and labeled by __ g . The family of labeled curves is © tothe_p

a_bh
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1 Draw the surface z =f{x, ) for these four functions:

L=V4-x*-y =2 x4y
=244y fa=14e 0¥

2 The level curves of all four functions are . They
enclose the maximum at . Draw the four curves
flx, y)=1 and rank them by increasing radius.

3 Set y=0 and compute the x derivative of each function
at x = 2, Which mountain is flattest and which is steepest at
that point?

4 Set y=1 and compute the x derivative of each function
atx=1

For fs to f,; draw the level curves =10, 1, 2. Ao f= —4,

5fs=x—y 6 Jo=(x+yy
T fr=xe” B f5=sin(x — y)
S?_,!';;=y—)l:z 10 f“,:y;‘xz

11 Suppose the level curves are parallel straight lines. Does
the surface have to be a plane?

12 Construct a function whose level curve f=0 is in two
separate pieces.

13 Construct a function for which f=0is a circle and f=1
is not.

14 Find a function for which = 0 has infinitely many pieces.

15 Draw the contour map for f=xy with level curves f=
=2, —1,0, 1, 2. Describe the surface.

16 Find a function fTx, y) whose level curve =0 consists of
a circle and all points inside it

Draw two level curves in 17-20. Are they ellipses, parabolas,

or hyperbolas? Write . / —2x=c a8 / =c+2x

before squaring both sides.

17 f=/ax? +y* 18 f=./4x? 4 y2 - 2x
19 f=/5x* +y* - 2x 20 f=./3x+y? —2x

21 The level curves of f=(y—2)/{x—1) are
through the point (1, 2) except that this point is not

13.2 Partial Derivatives

22 Sketch a map of the US with lines of constant temperature
(isotherms) based on today’s paper.

23 (a) The contour lines of z = x? + y* — 2x — 2y are circles
around the point , where z is 4 minimum.

(b) The contour lines of f= are the circles
x? 4+ y*=c+1 on which f=c.

24 Draw a contour map of any state or country (lines of
constant height above sea level). Florida may be too flat.

25 The graph of w=F(x, y, z)is 2 -dimensional sur-
face in xyzw space. Its level sets F(x, y, z) =c are ~
dimensional surfaces in xyz space. For w=x — 2y + z those
level sets are . For w = x?% + y* + z? those level sets
are

26 The surface x2 + y? —z* = — 1 is in Figure 13.8. There is
empty space when z* is smaller than [ because

27 The level sets of F=x?+y? 4 gz* look like footballs
when g is , like basketballs when g is ,
and like frisbees when g is

28 Let T(x, y) be the driving time from your home at (0, O)
to nearby towns at (x, y). Draw the level curves,

29 (a) The level curves of fx, y} = sin(x — y) are
(b) The level curves of g(x, y) = sin(x* — y?) are
(c) The level curves of h(x, y) = sin(x — y?) are
30 Prove that if x,y, =1 and x,y, =1 then their average

x =4x, + x3), y =4y, + ) has xy > 1. The function f= xy
has convex level curves (hyperbolas).

31 The hours in a day are limited by x + y =24, Write x%y
as x2(24 — x) and maximize to find the optimal number of
hours to stay awake.

32 Near x = 16 draw the level curve x2y = 2048 and the line
x+ y=24. Show that the curve is convex and the line is
tangent.

33 The surface z=4x+yis a . The surface z=
min(x, y) is formed from two . We are willing to
exchange 6 left and 2 right shoes for 2 left and 4 right shoes
but better is the average

34 Draw a contour map of the top of your shoe.

The central idea of differential calculus is the derivative. A change in x produces a
change in f. The ratio Af/Ax approaches the derivative, or slope, or rate of change.

What to do if f depends on both x and y?

The new idea is to vary x and y one at a time. First, only x moves. If the function
is x + xy, then Afis Ax + yAx. The ratio AffAxis 1 + y. The “x derivative” of x + xy
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is 1 + y. For all functions the method is the same: Keep y constant, change x, take the
limit of AflAx:

af(x, p) = lim A lim J+ Ax, y) — fix, y)'

DEFINITION -
ox Ax—0AX  Ax—0 Ax

(1)

On the left is a new symbol df/0x. It signals that only x is allowed to vary—df/dx is
a partial derivative. The different form @ of the same letter (still say “d”) is a reminder
that x is not the only variable. Another variable y is present but not moving.

EXAMPLE 4 fix, y)=x2y*+xy+y %{x, yy=2xy+ y+0.

Do not treat y as zero! Treat it as a constant, like 6. Its x derivative is zero.
If f{x) = sin 6x then df{dx = 6 cos 6x. If f{x, y) = sin xy then 3f/dx = y cos xy.
Spoken aloud, dfféx is still “dfd x.” It is a function of x and y. When more is
needed, call it “the partial of f with respect to x.” The symbol f” is no longer available,
since it gives no special indication about x. §ts replacement f.. is pronounced “f x* or
“fsub x,” which is shorter than gf/dx and means the same thing.
We may also want to indicate the point (xg, y,) where the derivative is computed:

af o ‘ 4
aI (xﬂ') yD) or fx(x[)'r yD) or aI t<on¥0) or JUSt (ax)o'

EXAMPLE2 f(x,y)=sin2xcosy f,=2cos2xcosy (cosyisconstant for J/0x)

The particular point (xg, yo) is (0,0). The height of the surface is fi0,0) =0,
The slope in the x direction is f, = 2. At a different point x;=x, y,==n we find

fin, m)=—2.
Now keep x constant and vary y. The ratio Af/Ay approaches df/dy:

o & S y+ Ay —fix, )
Sx 9= Alslrl—lvlu Ay A])laTo Ay '

2

This is the slope in the y direction. Please realize that a surface can go up in the x
direction and down in the y direction. The plane f{x, y) = 3x — 4y has f, = 3 (up) and
Jy= — 4 (down). We will soon ask what happens in the 45° direction.

B o _  x _x o _y _vy
EXAMPLE3 flx, y)=./x>+ ) x Jerp f o Jerg f

The x derivative of ./x*+ y? is really one-variable calculus, because y is constant.
The exponent drops from 4 to — 4, and there is 2x [rom the chain rule. This distance
function has the curipus derivative df{0x = x/f.

The graph is a cone. Above the point (0, 2) the height is /0*+2?=2. The
partial derivatives are f, = 0/2 and f, = 2/2. At that point, Figure 13.5 climbs in the
y direction. It is level in the x direction. An actual step Ax will increase 0% + 22 to
{Ax)? + 22. But this change is of order (Ax)? and the x derivative is zero.

Figure 13.5 is rather important. It shows how df/dx and df/dy are the ordinary
derivatives of f{x, yo) and f{x,, ¥). It is natural to call these partial functions. The first
has y fixed at y; while x varies. The second has x fixed at x, while y varies. Their
graphs are cross sections down the surface—cut out by the vertical planes y = yq and
X = X. Remember that the level curve is cut out by the horizontal plane z = c.
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fle,y)y = Nx2+y?

2 £(0,y) =02 +2

Fig. 13.5 Partial functions ,/x* + 2% and /0% + y* of the distance function = /x? + y*.

The limits of Af/Ax and Af/Ay are computed as always. With partial functions
we are back to a single variable. The partial derivative is the ordinary derivative of a
partial function (constant y or constant x). For the cone, df/dy exists at all points
except (0, 0). The figure shows how the cross section down the middle of the cone
produces the absolute value function: f{0, y) = |y|. It has one-sided derivatives but not
a two-sided derivative.

Similarly df/ox will not exist at the sharp point of the cone. We develop the idea
of a continuous function f(x, y) as needed (the definition is in the exercises). Each
partial derivative involves one direction, but limits and continuity involve all direc-
tions. The distance function is continuous at (0, 0), where it is not differentiable.

EXAMPLE4 f(x, y)=)*—x>  ffox=—2x  &f/dy=2y

Move in the x direction from (1, 3). Then y* — x? has the partial function 9 — x?.
With y fixed at 3, a parabola opens downward. In the y direction (along x = 1) the
partial function y* — 1 opens upward. The surface in Figure 13.6 is called a hyperbolic
paraboloid, because the level curves y?> — x? = ¢ are hyperbolas. Most people call it a
saddle, and the special point at the origin is a saddle point.

The origin is special for y? — x* because both derivatives are zero. The bottom of
the y parabola at (0, 0) is the top of the x parabola. The surface is momentarily flat in
all directions. It is the top of a hill and the bottom of a mountain range at the same

(0, y) = y?

f(x,0) =-x2

Fig. 13.6 A saddle function, its partial functions, and its level curves.
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time. A saddle point is neither a maximum nor a minimum, although both derivatives
are zero.

Note Do not think that f{x, ) must contain y* and x* to have a saddle point. The
function 2xy does just as well. The level curves 2xy = are still hyperbolas. The
partial functions 2xy, and 2x,y now give straight lines—which is remarkable. Along
the 45° line x = y, the function is 2x? and climbing. Along the —45° line x = — y,
the function is —~2x? and falling. The graph of 2xy is Figure 13.6 rotated hy 45°,

EXAMPLES 5-6 f(x, y,2)=x?+y*+22  P(T, V)=nRT/V

Example 5 shows more variables. Example 6 shows that the variables may not be
named x and y. Also, the function may not be named f! Pressure and temperature
and volume are P and T and V. The letters change but nothing clse:

dP/@T=nR/V  @P/{0V= —nRT{V?  (note the derivative of 1/V).

There is no 6P/éR because R is a constant from chemistry—not a variable.

Physics produces six variables for a moving body—the coordinates x, y, z and the
momenta p,, p,, p,. Economics and the social sciences do better than that. If there
are 26 products there are 26 variables—sometimes 52, to show prices as well as
amounts. The profit can be a complicated function of these variables. The partial
derivatives are the marginal prafits, as one of the 52 variables is changed. A spreadsheet
shows the 52 values and the effect of a change. An infinitesimal spreadsheet shows
the derivative.

SECOND DERIVATIVE

Genius is not essential, to move to second derivatives. The only difficulty is that two
first denivatives f, and f, lead to four second dernvatives f,, and f,, and f,, and f,,.
(Two subscripts: f.. is the x derivative of the x derivative. Other notations are
&*f{ox? and 9*f/0xdy and & f/dydx and &°f/dy>.) Fortunately f,, equals f,., as we
see first by example.

EXAMPLE 7 f=x/y has f.=1/y, which has f,,=0 and f,,= —1/)%

The function x/y is linear in x (which explains f,. = 0). Its y derivative is f, = — x/y?,
This has the x derivative f,, = —1/y*. The mixed derivatives f,, and f,, are equal.

In the pure y direction, the second derivative is f,, = 2x/y*. One-variable calculus
is sufficient for all these derivatives, because only one variable is moving.

EXAMPLES f(=4x”+3xy+y® has f,=8x+3y and f,=3x+2y.

Both *cross derivatives” f,, and f,, equal 3. The second derivative in the x direction
is 82f{ox*=8 or f,,=8. Thus “fxx" is “d second fdx squared.” Similarly
#*f{d8y* = 2. The only change is from 4 to 4.

Iff(x, y) kas continuous second derivatives then f,, = f,.. Problem 43 sketches a proof
based on the Mean Value Theorem. For third derivatives almost any example shows

that f.,, = f.,x = fix; 15 different from f,. = f,,, = fo,,.

Question How do you plot a space curve x(t), y(t), z(t) in a plane? One way is to look
parallel to the direction (1,1, 1). On your XY screen, plot X =(y— x)/ﬁ and
Y=(2z— x — y)//6. The line x = y = z goes to the point (0, O)!



132 Pamal Derivatives 479

How do you graph a surface z =f{x, y)? Use the same X and Y. Fix x and let y
vary, for curves one way in the surface. Then fix y and vary x, for the other partial
function, For a parametric surface like x = (2 + v sin $u) cos u, y= (2 + v sin Ju) sin u,

= p cos 4u, vary u and then p. Dick Williamson showed how this draws a one-sided

“Mbbius strip.”

43.2 EXERCISES

Read-through questions

The _a  derivative 3f/@y comes from fixing _ b and
moving _ ¢ . It is the limit of _d . If f=¢**sin y then
dfiox=_e anddffdy=_ 1t .Tf=(x*+y*)""thenf, =

@ andjf,=_h_ . At(x,,yo) the partial derivative f, is
the ordinary derivative of the __ I function f{x, y,). Simi-
larly f, comes from f{__|__). Those functions are cut out hy
vertical planes x =xy and __k__, while the level curves are

cut out by _ |  planes.

The four second derivativesaref,,, m . n . ©
For f=xy they are _p . For f=cos 2x cos 3y they are
q . In those examples the derivatives _ r_ and __s
are the same, That is always true when the second derivatives
are __f . At the origin, cos 2xcos 3y is curving __u __ in
the x and y directions, while xy goes __ ¥ __ in the 45° direc-

tion and _ w

in the —45° direction.

Find &f/dx and 3f/dy for the fuactions in 1-12.

1 3x—y+x¥y? 2 sin(3x—y)+y
Ixy—xi_& 4 xe=t*

5 (x+))(x—) 6 1//x7+y
7 {x*+yH)7? 8 In(x + 2y)

9 In/x2+ y? 10 y

11 tan~i(y/x) 12 In(xy)

Compute f,., f,, =/, and f,, for the functions in 13-20.

13 x? + 3xy + 2 14 (x+3y?
18 (x+iy)? 16 ¢=*>
17 11 /X34y 18 (x+ yy"
19 cos ax cos by 2 f{x+iy)

Find the domnin and range (all inputs and outputs) for the
functions 21-26. Then compute £, f,, f;, f-

21 1fix—-y? 2
3 (y—xWz—1) 24 In(x+ 1)

Xty — 2

25 x'2* Why does this equal £°*? 26 cos x cos” 'y

27 Verify f,, =fx for f=x™V" If f,, =0 then f, does not
depend on and £, is independent of . The
function must have the form f(x, y) = G(x) +

18 In terms of », compute f, and f, for f(x, y) = [* v(¢) dt. First
vary x. Then vary y.

29 Compute df/éx for f= |77 o{t)idr. Keep y constant.
30 What is f{x, y) = |7 dt/t and what are f; and f,?

31 Calculate all eight third derivatives f,.., f..,, ... of f=
x?y®. How many are different?

In 32-38, choose g(y) so that fix, y}=¢"g(y) satisfies the
equation.

3 f+f,=0 3 £,=7f,

M fr =fxx B fo= 4-{7)*

36 Show that ¢~ 1/2¢ /% gatisfies the heat eguation f,= /..
This flx, ¢} is the temperature at position x and time ¢ due to
a point source of heat at x =0, ¢ =0.

37 The equation for heat flow in the xy plane is f; = fi, + £
Show that f{x, y, ¢} = ¢~ % sin x sin y Is a solution, What expo-
nent in f=e¢ sin 2x sin 3y gives a solution?

38 Find solutions fix, y)=¢ sin mx cos ny of the heat
equation f, =S, +f,,. Show that ¢~ 'e™=#45g~74t j5 alsp a
solution,

39 The basic wave equation is [, =f,.. Yenfy that f{x, ()=
sin{x + £} and f(x, ¢)=sin{x —¢) are solutions, Draw hoth
graphs at t = n/4, Which wave moved to the left and which
moved to the right?

40 Continuing 39, the peaks of the waves moved a distance
Ax= in the time step At =n/4. The wave velocity
is Ax/At = .

41 Which of these satisfy the wave equation f;, = ¢2f,?

sin(x —ct), cos{x+ct), €% & —¢7, € Coscl

42 Suppose Jf/0t = §f/8x. Show that d2f/o:® = d2ffax.
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43 The proof of f,, ={,, studies f(x, y} in a smali rectangle.
The top-bottom difference is g{x}=f(x, B} —f(x, A). The
difference at the corners 1, 2, 3, 4 is:

g=Lfa—f]1-1S2-/i1
=g(b)—gla) (definition of g}
={b —a)glc}) (Mean Value Theorem)

={b—a)[fdc, B)—fde, A)] {compute g}
={b—a)}(B— A)f,c, C) (MVT again)
(a) The right-left difference is k(y)=f(b, y)—fla, y). The
same Q is A{(B)— h{A). Change the steps to reach Q=
{B— A)b — a}f,Ac*, C*).
(b} The two forms of ¢ make f, at {¢, C} equal to f,, at
(c*, C*), Shrink the rectangle toward (g, 4). What assump-
tion yields f,, =f,. at that typical point?

B
2 . ) 4
L C
: (%, C*)
;- r==-==== - C*
] 1 h
v Jo o 3
- A
a ¢ o b

44 Find df/dx and &f/dy where they exist, based on equations
{1y and {2).

@f=Ilxyl (B)f=x?+y?ifx+#0,f=0ifx=0

Questions 45-52 are about limits in two dimensions.

45 Complete these four correct definitions of timit: 1 The
points {x,, y,) approach the point (a, b) if x, converges to a
and . 2 For any circle around {a, b), the points (x,, ¥,)
eventually go the circle and stay .3 The
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distance from (x, y,} to (g, b) is and it approaches
.4 For any & > 0 there is an N such that the distance
<eforall n>

46 Find (x,, y,} and (x4, y,) and the limit (g, b) if it exists.
Start from (x,, yo) = (1, 0).

(@) (x,, yab =(1{(n + 1}, ni(n + 1))

[b} (xu) J’n) = (I,,_ 11 Va- '.l)

[C} (xm yn) Z{yn— 1- xn—‘l}

[d}[xm yn) ={xn—1+ Ya-1s xn—l_yn—!.]
47 (Limit of fi{x,y)} 1 Informal definition: the numbers
Jf(x., y,) approach L when the points {x,, y,) approach (g, b).
2 Epsilon-delta definition: For each & >0 there is a 4 >0 such
that | fix, y) — L] is less than when the distance from
(x,y) to (g, b) is . The value of f at {a, b) is not
involved.

48 Write down the limit L as {x, y) — (g, b}. At which points
(a, b} does f(x, y} have no limit?

@flx, y}=/x*+y*  (bflx,¥)=x/y

© fix, ) =1/x+y) (d}f1x, ¥) = xpf(x* + )
In (d) find the limit at (0, O) along the Yine y =mx. The limit
changes with m, so L does not exist at (0, 0). Same for x/p.

49 Definition of continuity. f{x,y) is continucus at (g, b) if
fla, b) is defined and f{(x, y) approaches the limit as
{x, y) approaches {(a, b). Construct a function that is not con-
tinuous at (1, 2).

50 Show that x2y/(x*+y%)— 0 along every straight line
y = mx to the origin. But traveling down the parabola y = x?,
the ratic equals

51 Can you define f{0, O} so that f(x, y) is continuous at {0, 0)?
@f=k+ly—1 Bf=1+xp @f=x'"

52 Which functions approach zero as {x, y} — (0, 0} and why?

xyZ nyZ Xm_}"
(3) )-'2 +y2 ( )Id-l-y‘ {C) xm+yn'

Over a short range, a smooth curve y = f(x) is almost straight. The curve changes
direction, but the tangent line y — yg = f(xg}(x — xo} keeps the same slope forever.
The tangent line immediately gives the linear approximation to y=f{x).

¥ & Yo + £ (Xo)(x = Xo).

What happens with two variables? The function is z =f(x, y), and its graph is a
surface. We are at a point on that surface, and we are near-sighted. We don’t see far
away. The surface may curve out of sight at the horizon, or it may be a bowl or a
saddle. To our myopic vision, the surface looks flat. We believe we are on a plane
(not necessarily hornizontal), and we want the equation of this tangent plane.
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Notation The basepoint has coordinates x, and y,. The height on the surface is
29 =f(xq, yo). Other letters are possible: the point can be (a, b) with height w. The
subscript , indicates the value of x or y or z or df/éx or df/dy at the point.

With one variable the tangent line has slope df/dx. With two variables there
are two derivatives df/0x and df/dy. At the particular point, they are (df/dx), and
(0f/0y)o. Those are the slopes of the tangent plane. Its equation is the key to this
chapter:

13A The tangent plane at (xo, yo, zo) has the same slopes as the surface z =
f(x, y). The equation of the tangent plane (a linear equation) is

il af
22y = (g{)ﬂ{x )+ (é)ﬂ(y = o). (1)

The normal vector N to that plane has components (df/éx),, (6f/8y)e, —1.

EXAMPLE 1 Find the tangent plane to z = 14 — x> — y? at (xq. Vo, 2o) = (1, 2, 9).

Solution  The derivatives are df/dx= —2x and Jf/dy= —2y. When x=1 and y=2
those are (df/dx), = — 2 and (df/0y), = — 4. The equation of the tangent plane is

z-9=-2x—1)=-4y=2 or z+2x+dy=19, (2

This z(x, y) has derivatives —2 and —4, just like the surface. So the plane is tangent.

The normal vector N has components —2, —4, —1. The equation of the normal
lineis(x, y,z)=(1,2,9)+ t(— 2, —4, —1). Starting from (1, 2, 9) the line goes out along
N—perpendicular to the plane and the surface.

z=14—x2-y2 z

(0z/0x), =-2

F

(dz/dy), = —4

N= (-4

X X

Fig. 13.7 The tangent plane contains the x and y tangent lines, perpendicular to N.

Figure 13.7 shows more detail about the tangent plane. The dotted lines are the x
and y tangent lines. They lie in the plane. All tangent lines lie in the tangent plane!
These particular lines are tangent to the “partial functions”—where y is fixed at y, =
2 or x is fixed at x, = 1. The plane is balancing on the surface and touching at the
tangent point.

More is true. In the surface, every curve through the point is tangent to the plane.
Geometrically, the curve goes up to the point and “kisses™ the plane.t The tangent
T to the curve and the normal N to the surface are perpendicular: T+ N = 0.

TA safer word is “osculate.”” At saddle points the plane is kissed from both sides.
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EXAMPLE 2 Find the tangent plane to the sphere z% = 14 — x* — y? at (1, 2, 3).

Solution Instead of z=14—x?—y* we have z= /14— x? — y?. At xo =1, yo =2
the height is now z, = 3. The surface is a sphere with radius  /14. The only trouble
from the square root is its derivatives:

e e 2 -2 0 -2
Cx @x /14 — x _yz ay /14_x2_y2
At (1, 2) those slopes are —4 and — %. The equation of the tangent plane is linear:
z—3=—4(x—1)—3%(y — 2). I cannot resist improving the equation, by multiplying
through by 3 and moving all terms to the left side:

tangent plane to sphere: 1(x—1)+2(y—2)+ 3(z—3)=0. (4)

If mathematics is the “science of patterns,” equation (4) is a prime candidate for study.
The numbers 1, 2, 3 appear twice. The coordinates are (xgq, ¥o,2o)=(1, 2, 3). The
normal vector is 1i + 2j + 3k. The tangent equation is 1x + 2y + 3z = 14. None of this
can be an accident, but the square root of 14 — x> — y? made a simple pattern look
complicated.

This square root is not necessary. Calculus offers a direct way to find dz/dx—
implicit differentiation. Just differentiate every term as it stands:

x2+y*+22=14 leadsto 2x+2z0z/0x=0 and 2y+2z3z/6y=0. (5)

Canceling the 2’s, the derivatives on a sphere are — x/z and — y/z. Those are the same
as in (3). The equation for the tangent plane has an extremely symmetric form:

2=20= = 2(x X))~ 22(y=y0) or Xolx=¥o)+ Yoy~ yo)+ 2oz =20)=0. (6)
o ]

Reading off N = x4i + yoj + zok from the last equation, calculus proves something
we already knew: The normal vector to a sphere points outward along the radius.

o2

=1

Fig. 13.8 Tangent plane and normal N for a sphere. Hyperboloids of 1 and 2 sheets.

THE TANGENT PLANETO Ax, y, 2 = ¢

The sphere suggests a question that is important for other surfaces. Suppose the
equation is F(x, y, z) = ¢ instead of z = f(x, y). Can the partial derivatives and tangent
plane be found directly from F?

The answer is yes. It is not necessary to solve first for z. The derivatives of F,
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computed at (xq, Vo, Zo), give a second formula for the tangent plane and normal
vector.

43B The tangent plane to the surface F(x, y, z) = ¢ has the linear equation

oF oF oF
(E)O{X = Xo) + (a—y)o(y — Yo+ (E)D(z —Z5) =0, (7)

The normal vector is N = 47 i+ i j+ s k.
0x Jo oy /o 0z J,

Notice how this includes the original case z=f(x,y). The function F becomes
flx, y)— z. Its partial derivatives are df/0x and ¢f/dy and —1. (The —1 is from the
derivative of —z.) Then equation (7) is the same as our original tangent equation (1).

EXAMPLE 3 The surface F = x? + y? — z2 = cis a hyperboloid. Find its tangent plane.
Solution The partial derivatives are F, = 2x, F, =2y, F. = — 2z. Equation (7) is
tangent plane: 2x,(x — xg) + 2yo(y — yo) — 2z¢(z — 24) = 0. (8)

We can cancel the 2’s. The normal vector is N = x4i+ yoj — zok. For ¢>0 this
hyperboloid has one sheet (Figure 13.8). For ¢ =0 it is a cone and for ¢ <0 it breaks
into two sheets (Problem 13.1.26).

DIFFERENTIALS

Come back to the linear equation z — zy = (0z/0x)o(x — Xo) + (02/6y)o(y — o) for the
tangent plane. That may be the most important formula in this chapter. Move along
the tangent plane instead of the curved surface. Movements in the plane are dx and
dy and dz—while Ax and Ay and Az are movements in the surface. The d’s are
governed by the tangent equation—the A’s are governed by z = f{(x, y). In Chapter 2
the d’s were differentials along the tangent line:

dy = (dy/dx)dx (straight line) and Ay = (dy/dx)Ax (on the curve). (9)

Now y is independent like x. The dependent variable is z. The idea is the same. The
distances x — x, and y — y, and z — z, (on the tangent plane) are dx and dy and dz.
The equation of the plane is

dz = (0z/0x)edx + (0z/By)ody or df=fdx+ fdy. (10)

This is the total differential. All letters dz and df and dw can be used, but dz and df
are not used. Differentials suggest small movements in x and y; then dz is the resulting
movement in z. On the tangent plane, equation (10) holds exactly.

A “‘centering transform™ has put x,, y,, 2o at the center of coordinates. Then the
“zoom transform” stretches the surface into its tangent plane.

EXAMPLE 4 The area of a triangle is 4= 3ab sin 6. Find the total differential dA.

Solution The base has length b and the sloping side has length a. The angle between
them is 6. You may prefer A = 3bh, where h is the perpendicular height a sin . Either
way we need the partial derivatives. If 4 = $ab sin 6, then

0A 1 A 1 0A

1
—_— ] - 1 — i — 1 —_— = - . Il
% 2b sin 6 , = 5asin 0 3 zab cos 0 (11)
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These lead immediately to the total differential dA (like a product rule):

dA dA dA o I 1
— ] — —_— —_— = + — — 3
dA (8a)da + (Ob)db + (ag)dB 2b sin 0 da 2a sin 6 db + 2ab cos 0 db

EXAMPLE 5 The volume of a cylinder is V = nr?h. Decide whether V is more sensitive
to a change from r=1.0tor=1.1 or from h=10to h=1.1.

Solution The partial derivatives are éV/dr = 2nrh and 8V/éh= nr?. They measure
the sensitivity to change. Physically, they are the side area and base area of the
cylinder. The volume differential dV comes from a shell around the side plus a layer
on top:

dV = shell + layer = 2nrh dr + nr’dh. (12)

Starting from r= h= 1, that differential is dV = 2ndr + ndh. With dr =dh= .1, the
shell volume is .2x and the layer volume is only .17m. So V is sensitive to dr.

For a short cylinder like a penny, the layer has greater volume. V'is more sensitive
to dh. In our case V = nr?h increases from n(1)* to n(1.1)*. Compare AV to dV:

AV=n(1.1P —n(1)*=.331r  and  dV=2n(.1)+ n(.1)=.300m.

The difference is AV—dV=.031n. The shell and layer missed a small volume in
Figure 13.9, just above the shell and around the layer. The mistake is of order
(dr)* + (dh)*. For V= nr?h, the differential dV = 2nrh dr + nr*dh is a linear approxima-
tion to the true change AV. We now explain that properly.

LINEAR APPROXIMATION

Tangents lead immediately to linear approximations. That is true of tangent planes as
it was of tangent lines. The plane stays close to the surface, as the line stayed close
to the curve. Linear functions are simpler than f(x) or f(x, y) or F(x, y, z). All we
need are first derivatives at the point. Then the approximation is good near the point.

This key idea of calculus is already present in differentials. On the plane, df equals
fidx + f,dy. On the curved surface that is a linear approximation to Af:

13C The linear approximation to f(x, y) near the point (xq, yo) is

d 3
S(x, y) = f(xo, yo) + (5{)0“ — Xp) + (%)D(y = Yo)- (13)

In other words Afxf,Ax + f,Ay. as proved in Problem 24. The right side of (13)
is a linear function f(x, y). At (xg, ¥o). the functions f and f; have the same slopes.
Then f(x, y) curves away from f; with an error of “‘second order:”

LA(x, ¥) = flx, )] < MI(x = x0)* + (¥ = ¥o)*]: (14)

This assumes that f,,, f.,. and f,, are continuous and bounded by M along the line
from (xq, yo) to (x, y). Example 3 of Section 13.5 shows that | f,| < 2M along that line.
A factor 4 comes from equation 3.8.12, for the error f— f, with one variable.

For the volume of a cylinder, r and h went from 1.0 to 1.1. The second derivatives
of V= nr*h are V,,= 2nh and V,, = 2nr and V,, = 0. They are below M = 2.2n. Then
(14) gives the error bound 2.27(.1% + .1?) = .0447, not far above the actual error .0317.
The main point is that the error in linear approximation comes from the quadratic
terms—those are the first terms to be ignored by f; .
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P
40 D Y
5
layer dh
\I area T 301 = ‘.,:_ }]g
.. . - —T" 60, 28
£ shell dr (=201
- ) =50, P =30
4 area 27rh s=.3 ¢
=104
y=4
§=.3
Vg = = = : ' — ¢
g 20 40 60
Fig. 13.9  Shell plus layer gives dV = .300x. Fig. 43.40 Quantity ¢ and price P move with the lines.

Including top ring gives AV = 331x.

EXAMPLE & Find alinear approximation to the distance function r= . /x? + y2.
Solution  The partial derivatives are x/r and y/r. Then Ar = (x/r)Ax + (y/F)Ay.

For (x, y, 7y near (1, 2, /5): /x? + )2 = /T2 + 22+ (x — 1) /5+ 2y — 21/5.

If y is fixed at 2, this is a one-variable approximation to ./x? + 22, If x is fixed at 1,
it is a linear approximation in y. Moving both variables, you might think dr would
involve dx and dy in a square root, It doesn’t. Distance involves x and y in a square
root, but change of distance is lincar in Ax and Ay—to a first approximation.

There 18 a rough point at x=0, y=0. Any movement from ({, 0) gives Ar=
\/{Ax)z + {Ay)?. The square root has returned. The reason is that the partial deriva-
tives x/r and y/r are not continuwous at (0,0). The cone has a sharp point with no
tangent plane. Linear approximation breaks down.

The next example shows how to approximate Az from Ax and Ay, when the
equation is F(x, y, z) = ¢. We use the implicit derivatives in (7) instead of the explicit
derivatives in (1). The 1dea is the same: Look at the tangent equation as a way to
find Az, instcad of an equation for z. Here is Example 6 with new letters.

EXAMPLE? From F= —x?— y? + z2 =0 find a linear approximation to Az.
Soluticn  (implicit derivatives) Use the derivatives of F; —2xAx — 2yAy + 2zAz = 0.
Then soive for Az, which gives Az & (x/z)Ax + (y/z)Ay—the same as Example 6.
EXAMPLE 8 How does the equilibrium price change when the supply curve changes?

The equilibrium price is at the intersection of the supply and demand curves
(supply = demand). As the price p rises, the demand g drops {the slope is — .2):

demand line DD: p= — 24 + 40. {15)
The supply (also g} goes up with the price. The slope s is positive (here s = 4):
supply line SS: p=sq+¢=4q9 + 10.

These lines are in Figure 13.10. They meet at the equilibrium price P = $30. The
quantity @ = 50 is available at P (on §S) and demanded at P(on DD). So it is seld.

Where do partial derivatives come in? The reality is that those lines DD and §S
are not fixed for all time. Technology changes, and competition changes, and the
value of inoney changes. Therefore the lines move. Therefore the crossing point (Q, P)
also moves. Please recognize that derivatives are hiding in those sentences.
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Main point: The equéilibrium price P is a function of s and t. Reducing s by better
technology lowers the supply line to p = .39 + 10. The demand line has not changed.
The customer is as eager or stingy as ever. But the price P and quantity @ are
different. The new equilibrium is at Q = 60 and P = $28, where the new line XX
crosses DD.

If the technology is expensive, the supplier will raise ¢+ when reducing s. Line YY
is p=_3g + 20. That gives a higher equilibrium P = $32 at a lower quantity @ = 40—
the demand was too weak for the technology.

Calculus question Find éP/ds and ¢P/dt.  The difficulty is that P is not given as
a function of s and . So take implicit derivatives of the supply = demand equations:

supply =demand: P= - 20+40=s0+1 (16)
s derivative: P,=—20=50,+Q (notet,=0)
¢ derivative: Po=~-20,=3Q,+1 (noter,=1)

Now substitute s = .4, t = 10, P = 30, ¢ = 50. That is the starting point, around which
we are finding a linear approximation. The last two equations give P, = 50/3 and
P,=1/3 {Problem 25). The linear approximation is

P =30+ 50(s — .4)/3 + (¢t — 10)/3. (17)

Comment This example turned out to be subtle {(so is economics). I hesitated before
including it. The equations are linear and their derivatives are easy, but something
in the problem is hard—there is no explicit formula for P. The function P(s, t) is not
known. Instead of a point on a surface, we are following the intersection of two lines.
The solution changes as the equation changes. The derivative of the solution comes from
the derivative of the equation.

Summary The foundation of this section is equation (1) for the tangent plane. Every-
thing builds on that—total diflerential, linear approximation, sensitivity to small
change. Later sections go on to the chain rule and “directional derivatives” and
“gradients.” The central idea of differential calculus is Af = fAx + fAy.

NEWTON'S METHOD FOR TWO EQUATIONS

Linear approximation is used to solve equations. To find out where a function is zero,
look first to see where its approximation is zero. To find out where a graph crosses
the xy plane, look to see where its tangent plane crosses.

Remember Newton's method for f{x)=10. The current guess is x,. Around that
point, fix) is close to f{x,)+ (x — x,)f"(x,). This is zero at the next guess x,,, =
x, — fix,}/f (x,). That is where the tangent line crosses the x axis.

With two variables the idea is the same— but two unknowns x and y require two
equations. We solve gix, y)= 0 and h(x, y)= 0. Both functions have linear approxi-
mations that start from the current point (x,, y,)—where derivatives are computed:

glx, y) = glx,, ¥,) T (C@/EX)(x = x;) + (Cg/CV)(y — ¥a)

18
h(x, y) & hix,, ya) + (Ch{EX)x — x,) + (BA/EY)(Y ~ yn)- )

The natural idea is to set these approximations to zero. That gives linear equations
for x — x, and y — y,. Those are the steps Ax and Ay that take us to the next guess
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in Newton’s method:

13D Newton’s method to solve g(x, y) = 0 and h(x, y) = 0 has linear equations
for the steps Ax and Ay that go from (x,, ¥,) t0 (X415 Vus1):

) 3 oh oh
(ﬁ)&x ok (‘ggj)Ay =i— gl yn) and (&)AX il (5)6}’ = h(xln Ya). (19)

EXAMPLE® g¢=x*—y=0and h=y*— x=0have 3 solutions(1, 1),(0, 0), (—1, —1).

I will start at different points (xo, yo). The next guess is x; = xo + Ax, y; = yo + Ay.
It is of extreme interest to know which solution Newton’s method will choose—if it
converges at all. I made three small experiments.

1. Suppose (xo, o) =(2, 1). At that point g=2*—1=7and h=13—-2= —1. The
derivatives are g, = 3x>=12, g, = — 1, h,= — 1, hy= 3y*> = 3. The steps Ax and Ay
come from solving (19):

12Ax— Ay= -1 Ax= —4/7 x; =X+ Ax=10/7
= =
—Ax+3Ay=+1 Ay=+1/7 yi=yot+Ay=28/7.

This new point (10/7, 8/7) is closer to the solution at (1, 1). The next point is (1.1,
1.05) and convergence is clear. Soon convergence is fast.

2. Start at (xo, yo) = (4, 0). There we find g=1/8 and h= —1/2:
(B/4)Ax— Ay=—1/8 Ax=—1)2 Xy =xo+Ax=0

= =

Newton has jumped from (3, 0) on the x axis to (0, —#) on the y axis. The next step
goes to (1/32, 0), back on the x axis. We are in the “basin of attraction” of (0, 0).

3. Now start further out the axis at (1, 0), where g=1and h= — 1:
3JAx— Ay=-1 Ax=—-1 X, =Xxgt+tAx=0

=

—_—
—Ax+0Ay= +1 Ay=—2 yi=yo+Ay= -2

Newton moves from (1,0) to (0, —2) to (16, 0). Convergence breaks down—the
method blows up. This danger is ever-present, when we start far from a solution.

Please recognize that even a small computer will uncover amazing patterns. It can
start from hundreds of points (xq, yo), and follow Newton’s method. Each solution
has a basin of attraction, containing all (x,, y,) leading to that solution. There is also
a basin leading to infinity. The basins in Figure 13.11 are completely mixed together—
a color figure shows them as fractals. The most extreme behavior is on the borderline
between basins, when Newton can’t decide which way to go. Frequently we see chaos.

Chaos is irregular movement that follows a definite rule. Newton’s method deter-
mines an iteration from each point (x,, y,) to the next. In scientific problems it
normally converges to the solution we want. (We start close enough.) But the com-
puter makes it posible to study iterations from faraway points. This has created a
new part of mathematics—so new that any experiments you do are likely to be
original.
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Section 3.7 found chaos when trying to solve x* + 1= 0. But don’t think Newton’s
method is a failure. On the contrarys, it is the best method to solve nonlinear equations.
The error is squared as the algorithm converges, because linear approximations have
errors of order (Ax)? + (Ay)®. Each step doubles the number of correct digits, near
the solution. The example shows why it is important to be near.

Fig. 13.41 The basins of attraction to (1, 1), (0, 0), (—1, —1), and infinity.

13.3 EXERCISES

Read-through questions

The tangent line to y=/f{x) is y—yo=_9 . The tangent

plane to w=f(x, y)is w—wg=_b . The normal vector is
N=_c¢ . Forw=x?*+y? the tangent equation at (1, 1, 2)
is _d . The normal vectoris N=__e . For a sphere, the

direction of Nis __f

The surface given implicitly by F(x, y, z) = ¢ has tangent
equation (F/0x)o(x —xo)+ _9 . For xyz=6 at (1,2, 3)
the tangent plane is __h . On that plane the differentials
satisfy _ | dx+_ 1 dy+__k dz=0. The differential
of z=f(x, y)isdz=__1 . This holds exactly on the tangent
plane, while Az~ __m__ holds approximately on the _n .
The height z = 3x + 7y is more sensitive to a changein __©
than in x, because the partial derivative _ P __is larger than

q

The linear approximation to f(x, y) is f(xo, o)+ _" .
This is the same as Af~_ s Ax+__t Ay The error is
of order _u_ . For f=sinxy the linear approximation
around (0,0)is f; =__ v . We are moving along the __w
instead of the _ x . When the equation is given as
F(x,y,z)=¢, the linear approximation is Y Ax+

2z Ay+_A Az=0.

Newton’s method solves g(x, y)=0 and h(x, y)=0 by a
B approximation. Starting from x,, y, the equations are
replacedby _ € and _ D . The steps Ax and Ay go to the

. Each solution has a basin of __F__. Those

next point __E
basins are likely tobe _ G .

In 1-8 find the tangent plane and the normal vector at P.
1z2=/x*+)4P=(0,1,1)

2 x+y+z=17, P=(3, 4, 10)

3z=x/y,P=(6,32)

4z=¢",P=(0,0,1)
5x*+y*+22=6,P=(1,2,1)

6 x2+y2+222=7,P=(1,2,1)

T.z=x% P=(1,1,1)

8 V=nr’h, P=(2,2, 8n).

9 Show that the tangent plane to z?—x*—y*=0 goes
through the origin and makes a 45° angle with the z axis.

10 The planes z=x +4y and z=2x + 3y meet at (1, 1, 5).
The whole line of intersection is (x,y, z)=(1, 1, 5)+ vt
Find v=N, x N,.

11 If z=3x — 2y find dz from dx and dy. If z = x*/y? find dz
from dx and dy at xo=1, yo=1. If x moves to 1.02 and y
moves to 1.03, find the approximate dz and exact Az for both
functions. The first surface is the to the second
surface.
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12 The surfaces z = x> + 4y and z = 2x + 3y? meet at (1, 1, 5).
Find the normals N, and N, and also ¥y =N, x N;. The line
in this direction v is tangent to what curve?

13 The normal N to the surface Fix, y, z) = 0 has components
F., F,, F.. The normal line has x=x,+ F_t, y=ypa+ F 1,
z= . For the surface xyz — 24 =0, find the tangent
plane and normal line at {4, 2, 3).

14 For the surface x?y* — 2 =0, the normal line at (1, 2, 4)
has x = Ly = , 2=

15 For the sphere x* + 3 + 2% =9, find the equation of the
tangent plane through (2, 1, 2). Also find the equation of the
normal line and show that it goes through {0, 0, 0).

16 If the normal line at every point on F(x, y,z) =0 goes
through {0, 0, 0), show that F, = cx, F, = ey, F, = cz. The sur-
face must be a sphere.

17 For w = xynear (xg, yy), the lingar approximation is dw =
. This looks like the rule for derivatives.

The difference between Aw = xy — xy, and this approxima-

tion is

18 If f=xyz (3 independent variables) what is df?

19 You invest P=34000 at R=18% to make [ =3$320 per
year. If the numbers change by dP and dR what is J4I? If the
rate drops by dR = .002 {to 7.8%) what change dP keeps df =
0?7 Find the cxact interest [ after those changes in R and P.

20 Resistances R, and R, have parallel resistance R, where
1/R=1/R, + 1/R;. Is R more sensitive to AR, or AR, if R =
land R, =27

21 (a) If your batting average is 4 = (25 hits)/{(100 at bats) =

.250, compute the increase (to 26/101} with a hit and the
decrease (to 25/101} with an out.
{(b)If A =x/ythendA = dx + dy. A hit
{dx =dy =1} gives dA = (1 — A){y. An out (dy=1) gives
dA = —Afy. So at A =250 a hit has times the
effect of an out.

22 (a) 2 hits and 3 outs (dx = 2, dy = 5) will raise your average
{dA > 0) provided A is less than .
(b) A player batting A =.500 with y =400 at bats needs
dx = hits to raise his average to ,503.

23 If x and y change by Ax and Ay, find the approximate
change A® in the angle 8 = tan~ {y/x).

24 The Fundamenial Lemma behind equation (13) writes
Af=aAx + bAy. The Lemma says that a — f(xg. ¥o) and
b — f{xg, o) when Ax — 0 and Ay — 0. The proof takes Ax
first and then Ay:
(1) fixa + Ax, yo) —flxq. ¥o) = Axf{c, yo} where ¢ is
between and {by which theorem?}
(2) fixg + Ax, yo + A¥} —flxg + Ax, ¥o) = A}f}{xn + Ax, C)
where C is between and

(3) a=fdc, yo) = filxo, yo) provided f, is
{(4) b=flxg + Ax, C) = fiixq, ¥o) provided f, is

25 If the supplier reduces s, Figure 13.10 shows that P
decreases and ¢
{a) Find P.=50/3 and P, = 1/3 in the economics equation
{17) by solving the equations above it for @, and Q,.
{b} What is the linear approximation to ¢ around s= 4,
=10, P=30, Q0 =50?

26 Solve the equations P=—.2Q0 +40 and P=s@ +t for P
and Q. Then find dP/ds and &Pt explicitly. Al the same
5, t, P, Q check 5G/3 and 1/3.

27 If the supply =demand equation (16) changes to P =
sQ+t=—@Q+50 find P,and P,ats=1,t=10.

28 To find out how the roots of x? + bx + ¢ =0 vary with b,
take partial derivatives of the equation with respect to

. Compare dx/dh with &x/éc to show that a root at
x =2 is more sensitive to b.

19 Find the tangent planes to z=xy and z=x% — y? at x =
2, y=1. Find the Newton point where those planes meet the
xy plane (set z=0in the tangent equations).

30 (a) Tosolve gix, y)=02and h(x, y) = Dis to find the meeting
point of three surfaces: z=gix, }) and z=h(x,y) and

{b} Newton finds the meeting point of three planes: the
tangent plane to the graph of g, , and

Problems 31-36 po further with Newton’s method for g =
x* — y and k = y* — x. This is Example 9 with solutions (1, 1),
{07 O]a(_ly _1)

31 Start from x, =1, vy =1 and find Ax and Ay. Where are
x, and y,, and what line is Newton's method moving on?

32 Start from (4, 4) and find the next point. This is in the
basin of attraction of which solution?

33 Starting from (g, —a) lind Ay which is also —Ax. Newton
goes toward (0, 0). But can you find the sharp point in
Figure 13.11 where the lemon meets the spadc?

34 Starting from (a, 0) show that Newton’s method goes to
(0, —24% and find the next point (x;, y;). Which numbers a
lead to convergence? Which special number g leads to a cycle,
in which (x,, v,) is the same as the starting peint {a, 0)?

35 Show that x* = y, ¥ = x has exactly three solutions.
36 Locate a point from which Newton’s method diverges.

37 Apply Newton's method to a linear problem: g=
x+2y—5=0,h=3x—3=0.From any starting point show
that (x, ¥, } is the exact solution {convergence in one step).
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38 The complex equation (x + iy)* = ! contains two real equ-
ations, x> —3xy® =1 from the real part and 3x%y —y* =0
from the imaginary part. Search by computer for the basins
of attraction of the three solutions {1, 0), (—1/2, \/5,*'2], and
—1/2, —ﬁ;’Z]-—-whiCh give the cube roots of 1.

39 In Newton's method the new guess comes from (x,, »,) by
an iteration: x,, , = Gix,, y,} and y.., = H{x,, y,). What are
Gand Hfor g=x*—y=0, h=x —y=0? First find Ax and
Ay; then x, + Ax gives G and y, + Ay gives H.

40 In Problem 39 find the basins of attraction of the solution
(0, 0)and (1, 1)

13.4 Directional Derivatives and Gradients

41 The matrix in Newton's method 1s the Jacobian:

=[6gf@x ag.fay] ond  J ﬂx] _ —g.,]
Ay ~h, |

dhiéx Chidy
Find fand Axand Ayforg=¢"— 1, h=¢"+ x.

42 Find the Jacobian matrix at (1, 1} when g =x? + »? and
k= xy. This matrix is and Newton’s method fails.
The graphs of g and h have tangent planes.

43 Solve g=x*—y*+1=0 and h=2xy=0 by Newton's
method from three starting points: {0, 2) and {(—1, 1) and (2, 0).
Take ten steps by computer or one by hand. The solution
(0, 1)y attracts when y5 > 0. If y, = 0 you should find the chaos
iteration x,., =%(x, — x; "}

As x changes, we know how f(x, y) changes. The partial derivative ¢f/¢x treats y as
constant. Similarly éf/@y keeps x constant, and gives the slope in the y direction. But
east-west and north-south are not the only directions to move. We could go along a
45° line, where Ax = Ay. In principle, before we draw axes, no direction is preferred.
The graph is a surface with slopes in afl directions.

On that surface, calculus looks for the rate of change (or the slope}). There is a
directional derivative, whatever the direction. In the 45° case we are inclined to divide

Af by Ax, but we would be wrong.

Let me state the problem. We are given f{x, v) around a point P = {x,, y,). We are
also given a direction u {a unit vector). There must be a natural definition of D, f—
the derivative of f in the divection u. To compute this slope at P, we need a formula.
Preferably the formula is based on df/éx and &f/2y, which we already know.

Note that the 43° direction has u =i/

2 +j,.f'ﬁ. The square root of 2 is going to

enter the derivative. This shows that dividing Af by Ax is wrong. We should divide

by the step length As.

EXAMPLE 1
direction from (1, 1), what 15 Az/As?

Stay on the surface z = xy. When (x, ¥) moves a distance As in the 45°

Solution The step is As times the unit vector u, Starting {rom x= y =1 the step
endsat x=y=1+ As;’ﬁ. (The components of nAs are As,-'vﬁ.) Then z = xy is

z={(1 +As//2)? =1+ /2As + }{As)?, which means Az = _/2As + {As)?.
A A

The ratio Az{/As approaches \/5 as As — 0. That is the slope in the 45° direction.

DEFINITION  The derivative of { in the direction u ar the point P is D, f(P).

D, f{P)= lim i—j-z

As—=0 AN

. fIP+uAs)— fIP)
imm-—-—

as—0 Ax

(1)

The step from P = (x4, yo) has length As. It takes us to (xg + uyAs. yo + u,As). We
compute the change Af and divide by As. But formula (2) below saves time,
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The x direction is u= (1, 0). Then uAs is (As, 0) and we recover df/dx:
Af _ fixo t As, yo) — f(Xo0, Yo) 5f
As As

Similarly D,f= df/dy, when u=(0, 1) is in the y direction. What is D,f when u=
(0, —1)? That is the negative y direction, so D, f= — df/dy.

apprOaCth D[l mf

CALCULATING THE DIRECTIONAL DERIVATIVE

D, fis the slope of the surface z = f{(x, y) in the direction u. How do you compute it?
From ¢df/0x and df/dy, in two special directions, there is a quick way to find D, f in
all directions. Remember that u is a unit vector.

13E The directional derivative D, f in the direction u = (u,, u,) equals

D.f= %u1+%u;. )

The reasoning goes back to the linear approximalion of Af:

af of of
A A + =Ay= =
iy y F= a ™
Divide by As and let As approach zero. Formula (2) is the limit of Af/As, as the
approximation becomes exact. A more careful argument guarantees this limit pro-
vided f, and f, are continuous at the basepoint (x,, y;).
Main point: Slopes in all directions are known from slopes in two directions.

u; As + —u, As.

EXAMPLE 1 (repeated) f=xyand P=(1,1)and u= (I/ﬁ, l{\/i). Find D, f(P).
The derivatives f, = y and f, = x equal 1 at P. The 45° derivative is

D.f(P)=fuuy + fyu, = 1(1/3/2) + 1(1/3/2) = \/2 as before.

EXAMPLE 2 The linear function f= 3x + y + 1 has slope D, f=3u, + u,.

The x direction is u= (1, 0), and D,f= 3. That is df/éx. In the y direction D, f= 1.
Two other directions are special—along the level lines of f(x, y) and perpendicular:

Level direction: D, f is zero because fis constant
Steepest divection: D, fis as large as possible (with u? + u3 = 1).

To find those directions, look at D, f= 3u, +u,. The level direction has 3u, +u,=0.
Then u is proportional to (1, —3). Changing x by 1 and y by — 3 produces no change
inf=3x+y+1.

In the steepest direction u is proportional to (3, 1). Note the partial derivatives
fx=3 and f,= 1. The dot product of (3, 1) and (1, —3) is zero—steepest direction
is perpendicular to level direction. To make (3, 1) a unit vector, divide by \/ﬁ

Steepest climb:  D,f=3(3/\/10)+ 1(1/,/10)= 10/,/10= /10
Steepest descent: Reverse to u=(— 3;’\/5, -1 /\/ﬁ) and D,f=-— \/ﬁ

The contour lines around a mountain follow D, f= 0. The creeks are perpendicular.
On a plane like f=3x+ y+ 1, those directions stay the same at all points
(Figure 13.12). On a mountain the steepest direction changes as the slopes change.
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z=3x+y+1 level
D, f=0

gradient direction
u =(3/410, 1/510)
D, f=10

steepest descent
D, f=-V10

level direction
3uy+uy,=0

Fig. 13.12 Steepest direction is along the gradient. Level direction is perpendicular.

THE GRADIENT VECTOR

Look again at f.u, + fiu,, which is the directional derivative D,f. This is the dot
product of two vectors. One vector is u= (u,, u,), which sets the direction. The other
vector is (f., f,), which comes from the function. This second vector is the gradient.

J 7
DEFINITION The gradient of f(x, y) is the vector whose components are % and é—)j-:
of cf of
grad f[=Vf= % i+ i—vj (add f—j k in three dimensions).
() 0y 0z

The space-saving symbol V is read as “grad.” In Chapter 15 it becomes “del.”

For the linear function 3x + y + 1, the gradient is the constant vector (3, 1). It is
the way to climb the plane. For the nonlinear function x? + xy, the gradient is the
non-constant vector (2x + y, x). Notice that grad [ shares the two derivatives in N =
(fesf,» —1). But the gradient is not the normal vector. N is in three dimensions,
pointing away from the surface z = f(x, y). The gradient vector is in the xy plane! The
gradient tells which way on the surface is up, but it does that from down in the base.

The level curve is also in the xy plane, perpendicular to the gradient. The contour
map is a projection on the base plane of what the hiker sees on the mountain. The
vector grad f tells the direction of climb, and its length |grad f| gives the steepness.

43F The directional derivative is D, f= (grad f) - u. The level direction is per-
pendicular to grad f, since D,f= 0. The slope D, f is largest when u is parallel to
grad f. That maximum slope is the length |grad f| = _/f? -l-ff:

grad f _ lgrad fI> _
|grad [ lgrad /|

The example f=3x+ y+ 1 had grad f=(3, 1). Its steepest slope was in the direc-
tion u = (3, 1)//10. The maximum slope was ./ 10. That is |grad f| = /9 + .

for u= the slope is (gradf)-u

|grad f].

Important point: The maximum of (grad f)-u is the length |grad f|. In nonlinear
examples, the gradient and steepest direction and slope will vary. But look at one
particular point in Figure 13.13. Near that point, and near any point, the linear
picture takes over.

On the graph of f, the special vectors are the level direction L =(f,, —f,, 0) and
the uphill direction U = (f,. f,,fZ +f}) and the normal N = (f,. f,, —1). Problem 18
checks that those are perpendicular.
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EXAMPLE 3 The gradient of fix, y)=(14—x?— y%)/3 is Vf=(—2x/3, —2y/3).

On the surface, the normal vector is N = (—2x/3, —2y/3, ~1). At the point (1, 2, 3),
this perpendicular is N =(-2/3, —4/3, —1). At the point (1, 2) down in the base,
the gradient is (—2/3, —4/3). The length of grad fis the slope /20/3.

Probably a hiker does not go straight up. A “grade” of . /20/3 is fairly steep (almost
150%). To estimate the slope in other directions, measure the distance along the path
between two contour lines. If Af=1in a distance As = 3 the slope is about 1/3. This
calculation is not exact until the limit of Af/As, which is D, f.

sleepest
F
tangent ‘

1o level curve P=(1,2)

/ gra d f fevel

7=3
S~

f=0 Ay
\ 0

Fig. 13.43 N perpendicular to surface and grad f perpendicular to level line {in the base).

EXAMPLE 4 The gradient of f(x, y, z) = xy + yz + xz has three components.

The pattern extends from f(x, y} to f(x, y, z). The gradient is now the three-dimensional
vector (f, f,,f:}. For this function grad fis {y + z, x + z, x + y). To draw the graph
of w=f{x, y,z) would require a four-dimensional picture, with axes in the xyzw
directions.

Notice the dimensions. The graph is a 3-dimensional “‘surface™ in 4-dimensional
space. The gradient is down below in the 3-dimensional base. The level sets of fcome
from xy + yz + zx = c—they are 2-dimensional. The gradient is perpendicular to that
level set (still down in 3 dimensions). The gradient is not N! The normal vector is
(f £, f:. — 1), perpendicular to the surface up in 4-dimensional space.

EXAMPLE 5 Find grad z when z(x, y} is given implicitly: F(x, y, z)=x? + y* —z*=0.

In this case we find z= +./x*+ y*. The derivatives are + x/./x*+y* and
+ v//x*+ y*, which go into grad z. But the point is this: To find that gradient faster,

differentiate F(x, y, z) as it stands. Then divide by F_:
Fudx+ Fdy+ F,dz=0 ar dz =(— F.dx— Fdy){F,. (3

The gradient is (—F,/F,, —F,/F_.}. Those derivatives are evaluated at (x,, y,). The
computation does not need the explicit function z = f(x, y):

F=x*+y?=2? = F,=2x, F,=2y, F,= -2 = grad z=(x/z, y/2).

To go uphill on the cone, move in the direction (x/z, yjz). That gradient direction
gocs radiaily outward. The stcepness of the cone is the length of the gradient vector:

lgrad z| = /(x/2)* + (y/2)* = I because z = x* + y* on the cone,
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DERIVATIVES ALONG CURVED PATHS

On a straight path the derivative of fis D, f=(grad /) -u. What is the derivative on
a curved path? The path direction u is the tangent vector T. So replace u by T, which
gives the “direction” of the curve.

The path is given by the position vector R(z) = x(1)i ~ ®1)j. The velocity is v=
{dx/dti + (dy/dt)j. The tangent vector is T = v/|v]. Notice the choice—to move at any
speed (with v) or to go at umit speed (with T). There is the same choice for the
derivative of f{x, y) along this curve:

df éfdx  éfdy

’l s Yy ==+ —— 4

rate of change - (grad f)-v éxdt  dydt @
daf ¢fdx  ¢fdy

= = * = + -l g 5

slope s (grad f)- T oxds  Qdyds 2

The first involves time. If we movc faster, df/de increases. The second involves distance.
If we move a distance ds, at any speed, the function changes by df. So the slope in
that direction is df/ds. Chapter | introduced velocity as dffdt and slope as dy/dx and
mixed them up. Finaily we see the difference.

Uniform motion on a straight line has R = R, + vt. The velocity v is constant. The
direction T = u=v/|v| is also constant. The directional derivative is (grad /) -u, but
the rate of change is (grad f) -v.

Equations (4) and (5) icok like chain rules. They are chain rules. The next section
extends df/dt = (df/dx)(dx/dt) to more variables, proving {4) and (5). Here we focus
on the meaning: df/ds is the derivative of [ in the direction u=T along the curve.

EXAMPLE 7 Find df/dt and df/ds for f=r. The curve is x = t%, y = ¢ in Figure 13.14a.

Solution The velocity along the curve is v = 2ti + j. At the typical point t =1 it is
v=2i+j. The unit tangent is T = v;’\/g‘ The gradient is a unit vector i;’ﬂ +j/ﬁ
pointing outward, when f{x, y} is the distance r from the center. The dot product
with v is dffdi = 3/,/2. The dot product with T is df/ds = 3/,/10.

When we slow down to speed 1 (with T), the changes 1n f{x, y) slow down too.

EXAMPLE 8 Find df/ds for /= xy along the circular path x=cos ¢, y=sint.

First take a direct approach. On the circle, xy equals {cos t}{sin r). Its derivative comes
from the product rule: df/dt = cos?t — sin*t. Normally this is different from df}ds,
because the time t need not equal the arc length 5. There is a speed factor ds/dt to
divide by—but here the speed is 1. {A circle of length s = 2n is compieted at t = 2x.)
Thus the slope df/ds along the roller-coaster in Figure 13.14 is cos?t — sint.

y=t T= (3.0 ,y grad f=(y. 1) ¥
¥ =2
d
gredf distance
1o (x5, ¥g)
T X
7 f=xv>0
//f= Vil +yl=r f=ay <l
z % = x=r fgrad D | = |abrast=1
t 2

Fig. 13.14 The distance f=r changes along the curve. The slope of the roller-coaster is
{grad /) - T. The distance D from (x,, }'o) has grad D = unit vector.
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The second approach uses the vectors grad f and T. The gradient of f=xy is
(y, x) = (sin t, cos £). The unit tangent vector to the path is T = (—sin ¢t, cos t). Their
dot product is the same df/ds:

slope along path = (grad f)-T = — sin’t + cost,
GRADIENTS WITHOUT CQORDINATES

This section ends with a little “‘philosophy.” What is the coordinate-free definition of
the gradient? Up to now, grad /= (/,, f,) depended totally on the choice of x and y
axes. But the steepness of a surface is independent of the axes. Those are added later,
to help us compute.

The steepness df/ds involves only f and the direction, nothing eise. The gradient
should be a “tensor” —its meaning does not depend on the coordinate systern. The
gradient has different formulas in different systems (xy or r§ or ...), but the direction
and length of grad f are determined by df/ds—without any axes:

The airection of grad f is the one in which df/ds is largest.

The length |grad f| is that largest siope.
The key equation is (change in f} 2 (gradient of ) -(change in position). That is another
way to write Afx f,Ax +f Ap. It is the multivariable form—we used two variables—
of the basic linear approximation Ay & (dy/dx)Ax.

EXAMPLE? D(x, y)=distance from (x,y) to (xq, yo). Without derivatives prove
|grad D| = 1. The graph of D{x, y) is & cone with slope 1 and sharp point (x4, y,).

Arst question In which direction does the distance D(x, y) increase fastest?
Answer Going directly away from (xo, yo). Therefore this is the direction of grad D.

Second question How quickly does D increase in that steepest direction?
Answer A step of length As increases D by As. Therefore |grad D| = As/As = 1.

Conclusion grad D is a unit vector. The derivatives of D in Problem 48 are
{x—x0)/D and (y— yo)/D. The sum of their squares is 1, because (x —x,)*+
(¥ = yo)* equals D%
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13.4 EXERCISES

Read-through questions

D, f gives the rate of change of _ & in the direction _ b

It can be computed from the two derivatives __ ¢ in the

special directions _ d . In terms of u,,u, the formula is

. This is a __t__ product of u with the vector
g, which is called the __h . For the linear function f=

df/ds is the same as __w

magnitude |gradf] is _p . For f=x?+ y* the gradient
points __q _ and the slope in that steepest directionis __ r . 4 flx, yy=y'® u=(0, -1}

The gradient of fix, y, z}is _ s . This 1s different from the
gradient on the surface F(x, y, z) =0, which is —(F /F )i+

t . Traveling with velocity v on a curved path, the rate
of change of fis dffdt = __u__. When the tangent direction -
is T, the slope of fis dffds=__v . In a straight direction u,"

ax + by, the gradient is grad f=__ 1 __ and the directional dr the —{grad - u. then D.fat P
derivativeis D, f=_ 1 ~_k Compute grad f, then D, /= (grad /) - u, then D, fat P.
[ S = =
The gradient ¥f={(/,, /) is not a vector in __1 _ dimen- 1flx, y)=x"~y 4 (‘/3‘!2’ /) P=(1.0)
sions, it is a vector in the _m__ . It is perpendicular to the 2 flx, Y)=3x+4y+7 u=(3/54/5 P=(0, n{2)
lines. It points in the direction of __e  climb. Its 3 fx, y)= €* cos y u=(0, 1) P=(0,7/2)

P={1, -1)
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5 flx, y) = distance to (0, 3) a=(, 0) P=(11)

Find grad /= (., f,,/;) for the functions 6—8 from physics.
6 lf\/m (point source at the origin}

7 In(x? + ¥?) (line source along 2 axis)

8 1/3/(x~ 1P+ y2 + 22— 1/ /ix + 1P + y* + 2* (dipole)

9 For f=3x? +2y? find the steepest direction and the level
direction at (1, 2). Compute D, f in those directions.

10_Example 2 claimed that f=3x 4 y + 1 has steepest slope
/10, Maximize D, f = 3u; + u; = 34, + /1 — 43,
11 True or false, when f{x, y) is any smooth function:

(a) There is a direction w at P in which D, f=0.

(b) There is a direction u in which D, f=grad /.

{c) There is a direction u in which D_f=1.

{d) The gradient of fix)g(x) equals g grad f+ fgrad g.
12 What is the gradient of f{x)? (One component only.) What
are the two possible directions u and the derivatives D_f?

What is the normal vector N to the curve y =f[x)? (Two
components. )

In 1316 find the direction u in which f increases fastest at P =
(1, 2). How fast?

13 flx, yl=ax+ by 14 flx, y)=smaller of 2x and y
I8 fix, vi=e ¥ 16 flx, y)= /5 — x? — y? (careful)

17 (Looking ahead) At a point where f{x, y) is a maximum,
what is grad /? Describe the level curve containing the maxi-
mum point (x, y).

18 {(a) Check by dot products that the normal and uphill and
level directions on the graph are perpendicular: N =
(fxsf)ﬂ _l)sU ={fx’-r;9f:2r +f§]'L ={fy‘ _'fxs 0)

{(b)N is to the tangent plane, U and L are
to the tangent plane.

(c) The gradient is the xy projection of and also

of . The projection of L points along the

19 Compute the N, U, L vectors for f=1—x+ y and draw
them at a point on the flat surface.

20 Compute N, U, L for x* + p*> — z> =0 and draw them at
a typical point on the cone.

With gravity in the negative z direction, in what direction — U
will water fow down the roofs 21-247

21 z =2x (flat roof) 22 2z =4x — 3y (flat roof}

23 z=/1—x?—y?* (sphere) 24 z= — . /x? + y? {cone)

25 Choose two functions fTx, y) that depend only on x + 2y.
Their gradients at (1, 1) are in the direction . Their
level curves are

26 The level curve of f= y/x through (1, 1} is . The
direction of the gradient must be . Check grad f.

27 Grad fis perpendicular to 2i + j with length 1, and grad g
is parallel to 2i + j with length 5. Find grad f, grad g, f, and g.

28 True or false:
(a) If we know grad f, we know f.
(b) The line x = y = — z is perpendicular to the plane z =
x+y
{c) The gradient of z = x + y lies along that line.

29 Write down the level direction u for @ = tan ™ '(p/x) at the
point (3, 4). Then compute grad # and check D0 =0

30 On a circle around the origin, distance is As = rA0. Then
dbjds =1{/r. Verify by computing gradd and T and
(grad 8)-T.

31 At the point (2, 1, 6} on the mountain z=9 —x —y?,
which way is up? On the roof z = x + 2y + 2, which way is
down? The roof is to the mountain.

32 Around the point (1, —2) the temperature T=e¢~**~*" has
AT = Ax 4+ Ay. In what direction u does
it get hot fastest?

33 Figure A shows level curves of z = fix, y).
{a) Estimate the direction and length of grad fat P, @, R.
(b) Locate two points where grad fis parallel to i + .
(c) Where is |grad f| largest? Where is it smallest?
(d) What is your estimate of z.,,, on this figure?

(e} On the straight line from P to R, describe z and esti-
mate its maximum.
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34 A quadratic function ax? + by* + ¢x + dy has the gradi-
ents shown in Figure B. Estimate a4, b, ¢, d and sketch two
level curves.

35 The level curves of f{x, y) are circles around (1, 1). The
curve f=¢ has radius 2c. What is f? What is grad f at (0, O)?

36 Suppose grad fis tangent to the hyperbolas xy = constant
in Figure C, Draw three level curves of f{x, p). Is |grad f] larger
at P or Q7 Is |grad /| constant along the hyperbolas? Choose
a function that could be f: x2 + p2, x? — p?, xp, x*)2

37 Repeat Problem 36, if grad fis perpendicular to the hyper-
bolas in Figure C.

38 Iff=0, 1, 2 at the points (0, 1), (1, 0}, {2, 1), estimate grad
by assuming f= Ax + By + C.

39 What functions have the following gradients?
(a}(2x+yp,x)  (b)(e"?, —e* "} (¢} (¥, —x) (careful)

40 Draw level curves of f{x, ) il grad f=(y, x).

In 4146 find the velocity v and the tangent vector T. Then
compute the rate of change df/d:t =grad (v and the slope
df/ds = grad f~T.

41 f=x?+y* x=t y=t?

13.5 The Chain Rule

42 f=x x=cos2t y=sin2t

3 f=x*—y? Xx=xo+2% y=yo+3t

M f=xy x=t2+1 y=3}

45 f=In xyz x=¢ y=e* z=¢ "
46 f=2243y 422 x=¢ y=t? z=13

47 (a) Find df/ds and df/dt for the roller-coaster f = xy along
the path x = cos 2¢, y =sin 2z. (b) Change to f=x% + »? and
explain why the slope is zero.

48 The distance D from (x,» to (1,2) has D*=
(x — 1) +(y — 2)°. Show that 8D/dx = (x — 1)/D and 8D/dy =
(y— 2)/D and |grad D|= 1. The graph of D(x, y)isa

with its vertex at

49 If f=1 and grad /= (2, 3} at the point (4, 5), find the tan.
gent plane at (4, 5). If fis a linear function, find fix, y).

50 Define the derivative of f{x, y} in the direction u = (u,, u,)
at the point P =(xp, o). What is Af (approximately)? What
is D, f (exactly)?

51 The slope of falong a level curve is dffds = =10,
This says that grad fis perpendicular to the vector
in the level direction.

Calculus goes back and forth between solving problems and getting ready for harder
problems. The first is “application,” the second looks like “theory.” If we minimize f
to save time or money or energy, that is an application. If we don’t take derivatives
to find the minimum—maybe because f'is a function of other functions, and we don’t
have a chain rule—then it is time for more theory. The chain rule is a fundamental
working tool, because f{g(x)) appears all the time in applications. So do f{g(x, ¥)) and
J(x(t), y(t)) and worse. We have to know their derivatives. Otherwise calculus can’t
continue with the appiications.

You may instinctively say: Don’t bother with the theory, just teach me the formulas.
That is not possible. You now regard the derivative of sin 2x as a trivial probiem,
unworthy of an answer. That was not always so. Before the chain rule, the slopes of
sin 2x and sin x? and sin?x? were hard to compute from Af/Ax. We are now at the
same point for f{x, y). We know the meaning of 8f/0x, butif f=rtan #and x=rcos §
and y =rsin &, we need a way to compute df/0x. A little theory is unavoidable, if the
problem-solving part of calculus is to keep going.

To repeat: The chain rule applies to a function of a function. In one variable that
was fig(x)). With two variables there are more possibilities:

1. f{z) with z = g(x, y) Find &f/dx and df/dy
2. fix, y) with x=x(t), y= 1) Find dffdt
3 fix, y) with x=x({t, u), y= ¢, u) Find &f/ét and 3f/éu
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All derivatives are assumed continuous. More exactly, the input derivatives like
dg/dx and dx/dt and 8x/8u are continuous. Then the output derivatives like df/dx
and df/dt and df/du will be continuous from the chain rule. We avoid points like
r={0 in polar coordinates—where dr/dx = x/r has a division by zero.

A Typical Problems Start with a function of x and y, for example x times y. Thus
fix, )= xy. Change x to r cos 8 and y to r sin 8. The function becomes (r cos ) times
(rsin §). We want its derivatives with respect to r and 8. First we have to decide on
its name.

To be correct, we should not reuse the letter f. The new function can be F:

fix, y=xy  flrcos 8, rsin 8) = {rcos §)(r sin §) = F(r, 0).

Why not call it fir, )7 Because strictly speaking that is r times 8! If we follow the
rules, then f{x, y) is xy and fir, ) should be rf. The new function F does the right
thing— it multiplies (r cos )(r sin §). But in many cases, the rules get bent and the
letter F is changed back to f.

This crime has already occurred, The end of the last page ought to say éF /ot
Instead the printer put df/2t. The purpose of the chain rule is to find derivatives in
the new variables ¢ and u (or r and 8). In our example we want the derivative of F
with respect to r. Here is the chain rule:

dF _ &f dx 4 aféy

or oxadr  Oyor

I substituted rsin 8 and rcos @ for y and x. You immediately check the answer:
F(r,8)=r? cos #sin § does lead to 6F/8r = 2r cos 8 sin 8. The derivative is correct,
The only incorrect thing—but we do it anyway—is to write finstead of F.

of & ox  df dy

i =7 1% —— =
Question What is i Answer It is % 36 -+ 3y 36

= (y)(cos B} + (x)(sin §) = 2r sin  cos &.

THE DERIVATIVES OF (g(x, )

Here g depends on x and y, and f depends on g. Suppose x moves by dx, while y
stays constant. Then g moves by dg = (dg/ox)dx. When g changes, f also changes:
df = (df{dg)dg. Now substitute for dg to make the chain: df = {df/dg)(8g/dx)dx. This
is the first rule:

A dm o H s

13G  Chain rule for fg(x, y)): ox  dg ox dy dgay

®)

EXAMPLE1 Every f{x + cy) satisfies the 1-way wave equation Jf/8y = ¢ 8f/0x.

The inside function is g= x + cy. The outside function can be anything, g’ or sing
or ¢%. The composite function is (x + cy)? or sin{x + cy) or ¢**“. In each separate
case we could check that df/éy = ¢ 8f/0x. The chain rule produces this equation in
all cases at once, from dg/dx =1 and fg/dy=c:

g_Ye_F 4 Y . Y_ ¥  I_ I

Bx dgdx dg dy dgdy dg dy €ox @)

This is important: éf/dy = ¢ &f/dx is our first example of a partial differential equation.
The unknown f{(x, y) has two variables. Two partial derivatives enter the equation.
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Up to now we have worked with dy/dr and erdimary differential equations. The
independent variable was time or space (and only one dimension in space). For partial
differential equations the variables are time and space (possibly several dimensions
in space). The great equations of mathematical physics—heat equation, wave equa-
tion, Laplace’s equation—are partial differential equations.

Notice how the chain rule applies to f= sin xy. Its x derivative is y cos xy. A patient
reader would check that fis sin g and g is xy and f, is f,g,. Prohably you are not
so patient—you know the derivative of sin xy. Therefore we pass quickly to the next
chain rule. Its outside function depends on two inside functions, and each of those
depends on ¢. We want df/dt.

THE DERIVATIVE OF f{x(1), y(}))

Before the formula, here is the idea. Suppose ¢ changes by Ar. That affects x and y;
they change by Ax and Ay. There is a domino eflect on f; it changes by Af. Tracing
backwards,

afx 5]’ + ¥

dx dy
= 6 —Ay and Ax=x EN and Ay~EAt.

Substitute the last two into the first, connecting Af to At. Then let At — O:

' d
134 Chain rule for fix(t), o)) j—{ - aa_i = % j—f. )

This is close to the one-variable rule dzfdx = (dz/dy{dy/dx). There we could “cancel”
dy. {(We actually canceled Ay in {Az/Ay)(Ay/Ax), and then approached the limit.)
Now At affects Af in two ways, through x and through y. The chain rule has two
terms. If we cancel in (9f/0x){dx/dt) we only get one of the terms!

We mention again that the true name for f{x(t), ¥2)) is F(¢) not f{t). For f(x, y, 2)
the rule has three terms: f,x, + f,y, + f.z, is f; {or better dF/dt).

EXAMPLE 2 How quickly does the temperature change when you drive to Fiorida?

Suppose the Midwest is at 30°F and Florida is at 80°F. Going 1000 miles south
increases the temperature f{x, y) by 50°, or .05 degrees per mile. Driving straight south
at 70 miles per hour, the rate of increase is (.05)(70) = 3.5 degrees per hour. Note how
(degrees/mile) times {miles/hour) equals (degrees/bour). That is the ordinary chain rule
(df{dx}{dx/di) = (df/dt)—there is no y variable going south.

If the road goes southeast, the temperature is f= 30+ .05x + .01y. Now x() is
distance south and ) is distance east, What is df,-’dr if the speed is still 70?

Solution g Ydx + Yy _ = 05— + 01 —= = 3 degrees/hour,

de oxdt dyde S f
In reality there is another term. The temperature also depends directly on t, because
of night and day. The factor cos(2rt/24) has a period of 24 hours, and it brings an
extra term into the chain rule:

o _Ydx ody o
dt 6xdr+6ydr ot @

This is the total derivative df/dt, from all causes. Changes in x, y, ¢ all affect f. The
partial derivative df/dt is only one part of df/dt. (Note that dt/dt = 1) If night and

For f(x, y, t) the chain rule is —

499
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day add 12 cos(2xt/24) to f, the extra term is df/dt = — = sin(2xt/24). At nightfall that
is — = degrees per hour. You have to drive faster than 70 mph to get warm.

SECCND DERIVATIVES

What is d2f/dt?? We need the derivative of (4), which is painful. It is like acceleration
in Chapter 12, with many terms. So start with movement in a straight line.

Suppose x = x, + tcos § and y =y, + t sin §. We are moving at the fixed angle 8,
with speed 1. The derivatives are x, = cos # and y, = sin 8 and cos?8 + sin’6 = 1. Then
df/dt is immediate from the chain rule:

h=fx Ly, =f,cos 8+ [, siné. (5)
For the second derivative f;,, apply this rule to f;. Then f, is
(f,)x cos B8 + (1), sin 8 =({,, cos 8+, sin 8) cos 8 + (f,, cos 8 + f,, sin 0) sin 6.
Collect terms: Ju = fox cOS?0 + 2f, cos @ sin 0+ f,, sin?8. {6)

In polar coordinates change t to r. When we move in the r direction, # is fixed.
Equation (6) gives f,, from f,,, ., f,,. Second derivatives on curved paths {(with new
terms from the curving) are saved for the exercises.

EXAMPLE3 Iff,,, ), f,, are all continuous and bounded by M, find a bound on f,.
This is the second derivative along any line.

Solution Equation (6) gives | f,] < M cos?6 + M sin 260 + M sin?0 < 2M. This upper
bound 2M was needed in equation 13.3.14, for the error in linear approximation.

THE DERIVATIVES OF r(x(!, 1}, y{i, u)}

Suppose there are two inside functions x and y, each depending on ¢ and u. When ¢
moves, x and y both move: dx = xdt and dy = ydt. Then dx and dy force a change
in f: df =f,dx + f,dy. The chain rule for &f/dt is no surprise:

_ox Yo

431 Chain rule for f{x(t, u), ¥t, u)) o axat ayor

7

This rule has d/dt instead of d/dt, because of the extra variable u. The symbols remind
us that u is constant. Similarty ¢ is constant while ¥ moves, and there is a second
chain rule for éffdu:  f,=f.x,+ 1, ¥u.

EXAMPLE 4 In polar coordinates find f; and f;y. Start from f{x, y) = f{r cos 8, r sin 8).

The chain rule uses the 8 derivatives of x and y:

o_ox Yoy (BN oo (¥
0 oxao + dy 80 (6):)( r sin 6) + (6Q(r cos 6). (8)

The second 8 derivative is harder, because (8) has four terms that depend on 6. Apply
the chain rule to the first term &f/dx. It is a function of x and y, and x and y are
functions of &:

o (a\_ o (an\ex o (aN\ey_,
3_9(5) ~ (ax P ﬁy(ax) a6~ JuT 7 sin )+ Lolr cos )
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The 8 derivative of ¢f;dy is similar. So apply the product rule to (8):
Soo = [fxxl— 7 sin 0) + £, (v cos )] (—r sin 6) +f,(—r cos 6)
+ [f{— 7 sin &) + £, (r cos B)](r cos &)+ f.{—r sin &). D

This formula is not attractive. In mathematics, a messy formula is almost always a
signal of asking the wrong question. In fact the combination f,, +/,, is much more
special than the separate derivatives. We might hope the same for f,, + f3,, but dimen-
sionally that is impossible—since r is a length and 8 is an angle. The dimensions of
S and £, are matched by £, and f,/r and fye/r>. We could even hope that

1, 1
fxx+ery:frr+;J{r+§ﬁiﬁ‘ {10)

This equation is true. Add (5)+(6) + {9) with t changed to r. Laplace’s equation
Jex + f1y = 0 is now expressed in polar coordinates: f,, + [,/r + f/r* = 0.

A PARADOX

Before leaving polar coordinates there is one more question. It goes back to dr/éx,
which was practically the first example of partial derivatives:

:—z = 5—’x\/x2 Fyi=x/ /Xty =xr. (11)
My problem is this. We know that x is r cos 8. So x/r on the right side is cos €. On
the other hand r is x/cos (. So ér/dx is also 1/cos 0. How can &ridx lead to cos 0 one
way and 1/cos  the other way!

I will admit that this cost me a sieepless night. There must be an explanation—
we cannot end with cos 8 = ljcos #. This paradox brings a new respect for partial
derivatives. May [ tell you what I finally noticed? You could cover up the next
paragraph and think about the puzzle first.

The key to partial derivatives is to ask: Whick variable is held constant? In
equation (11), yis constant. But when r = x/cos 8 gave &r/éx = 1/cos 8, @ was constant.
In both cases we change x and look at the eflect on r. The movement is on a horizontal
line {constant v} or on a radial line (constant #). Figure 13.15 shows the difference.

Remark This example shows that &r/éx is different from 1/{éx/dr). The neat formula
(éricéxKcix/cr) =1 is not generally true. May [ tell you what takes its place? We have
to include (¢r/dy)(&yfcr). With two variables xy and two vanables r8, we need 2 by
2 matrices! Section 14.4 gives the details:

aricx  aridy || éxfér Cxjit 1 0
éficx  abféy || cyidr  dviel 0 1]

dr = dvicos 8

dy

v 1 7
. k dr=dvcos 0

X X+ dy X X+ dx

Fig. 13.15 dr =dxcos §§ when y is constant, dr = dx/cos ( when ¢ is constant.
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NON-INDEPENDENT VARIABLES

This paradox points to a serious problem. In computing partial derivatives of f{x, y, z),
we assumed that x, y, z were independent. Up to now, x could move while y and z
were fixed. In physics and chemistry and economics that may not be possible. If there
is a relation between x, y, z, then x can't move by itself.

EXAMPLES The gas law PV = nRT relates pressure to velume and temperature.
P, V, T are not independent. What is the meaning of 8V/0P? Does it equal 1/(éP/dV)?

Those questions have no answers, until we say what is held constant. In the paradox,
drjox had one meaning for fixed y and another meaning for fixed 6. To indicate what
is held constant, use an extra subscript (not denoting a derivative):

(ér/dx), = cos B (Orjéx)s = 1/cos 6. (12)

(0f/0P), has constant volume and (df/0P); has constant temperature. The usual
df{0P has both V and T constant. But then the gas law won’t let us change P.

EXAMPLE & Let = 3x+ 2y + z. Compute df/dx on the plane z=4x + y.
Solution 4 Think of x and y as independent. Replace z by 4x + y:
F=3x+2y+@x+y) so (df/ox), =1
Solution 2 Keep x and y independent. Deal with z by the chain rule:
{Bf/ox), = 8f10x + (8 /02)(@z/dx) = 3 + (1){4) = 7.
Solution 3  (different) Make x and z independent. Then y =z — 4x:
(0f10x), = offox + (8f /éy)(dy/ex) =3+ (2)}(—4) = - 5.

Without a subscript, df/0x means: Take the x derivative the usual way. The answer
is §f{6x = 3, when y and z don’t move. But on the plane z = 4x + y, one of them must
move! 3 is only part of the total answer, which is (8f/dx), = 7 or (df/dx), = — 5.

Here is the geometrical meaning. We are on the plane z = 4x + y. The derivative
{8f/0x), moves x but not y. To stay on the plane, dz is 4dx. The change in f=
Ix+2y+zisdf=3dx+0+dz="1dx.

EXAMPLE 7 On the world line x2 + y? + z2 = ¢2 find (8f/8y),_. for f= xyzt.

The subséripts x, z mean that x and z are fixed. The chain rule skips df/dx and
df/oz:

(2105)... = &f [0y + (8f100)(t/Dy) = xzt + (xyz){(y/t). Why y/t?

EXAMPLE 8 From the law PV = T, compute the product (6P/dV)(@V/{dT)e(T/0P): .
Any intelligent person cancels @V’s, 6T’s, and 0P’'s to get 1. The right answer is —1:
(@PjaV)y = —T}V? @VieT)p=1/P  (0T/OPk=V.

The product is — T/PV. This is —1 not + 1! The chain rule is tricky (Problem 42).

EXAMPLE ¢ Implicit differentiation was used in Chapter 4. The chain rule explains it:
If F(x, )=0 then F. .+ F,y, =050 dy/dx = — F/F,. (13)
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13.5 EXERCISES

Read-through questions

The chain rule applies to a function of a _ @ . The x deriva-

tive of flg(x, ¥ is &f/éx =__b . The y derivative is §f/8y =
€ . The example f=(x+ y)" has g=_4d . Because

dgidx=20g/8y we know that _e =_1t | This _o

diflerential cquation is satisfied by any function of x + y,

Along a path, the derivative of fix{t), W) is dfidt=_h
The derivative of fix(t)., Wt), zithis _ ! . If f=x) then the
chain rule gives dfidt = __i . Thatis the same as the _ k
rule! When x = u,¢ and y = u,t the path is __1__. The chain
rule for fix, y) gives dffdt = _m___ Thatis the __n__ deriva-
tive D, f.

The chain rule for fix(r, w), ¥, ) is &fict=_o . We
don’t write df/dt because _® M x=rcos Uand y=rsin &,
the variables t,u change to _a . In this case &ffér=

r__and &fiéfl=_s . That connects the derivatives in

t and u coordinates. The difference between
&ricx = xir and &r{¢x = l/cos { is because __ ¥ is constant
in the first and _ % is constant in the second.

With a relation like xyz =1, the three variables are _ x
independent. The derivatives (ff/éx), and (¢f/éx), and (&fiéx)
mean_¥ and _ 2 and _A . Forf=x%+y*+z% with
xyz = 1, we computc {¢f/éx), from the chain rule _ B In
that rule ¢z/éx=_%< from the relation xyz =1,

Find £, and f, in Problems 1-4. What equation connects them?
I fix, y)=sin(x +c¥) 2 f(x, 1) = tax + b)'?
3 flx,yt=e"7 4 fix. Yi=Inix +7y)
5 Find both terms in the r derivative of (g{x{r). ¥{1))>.

6 Iffix, ) = xyand x = uft) and y = «{¢), what is df /dt? Prob-
ably all other rules for derivatives follow from the chain rule.

T The step function f{x) ts zero for x < 0 and one for x> G,
Graph f(x) and gix)=f{x + 2) and A(x) =fix + 4). If fix + 20)
represents a wall of water (a tidal wave), which way is it
moving and how fast?

8 The wave equation is f, = ¢*f,.. (a) Show that (x + ct)" is
a solution. (b} Find C different from ¢ so that (x + Ct)" s also
a solution,

9 If f=sin(x — t}, draw two lines in the xr plane along which
J=0. Between those lines sketch a sine wave. Skiing on top
of the sine wave, what is your spced dx;dr?

10 If you float at x =0 in Problem 9, do you go up first or
down lirst? At time t =4 what is your height and upward
velocity?

11 Laplace’s equation is f,, +/f,, = 0. Show from the chain
rule that any function flx + iy} satisfies this equation if % =
— L. Check that f=(x+ iy)? and its real part and
its imaginary part all satisfy Laplace’s equation.

12 Equation (10) gave the polar form f,, + /,/r + fzofr* =0 of

Laplace’s equation. (a) Check that f = r?¢?® and its real part

r? cos 20 and its imaginary part rZ sin 20 all satisfy Laplace’s
equation. (b) Show irom the chain rule that any function f{re')
satisfies this equation if 2= — 1.

In Problems 1318 find df/di from the chain rule (3).

13 f=x?+yt x=t,y=t¢2

14 fzm, x=t y=t?

15 f=xy,x=1—\/;,y=l+\/5

16 f=x/y, x=¢, y=2¢

17 f=In(x +y), x=¢", y=¢

18 f=x* x=t,y=1

19 If a cone grows in height by dh/dt = 1 and in radius by

dr{dt = 2, starting from zero, how fast ts its volume growing
att=73?

20 If a rocket has speed dx/dt =6 down range and dy/dt =
2r upward, how fast is it moving away from the launch point
at (0, 0)? How fast is the angle  changing, if tan # = y/x?

21 If a train approaches a crossing at 60 mph and a car
approaches (at right angles) at 45 mph, how fast are they
coming together? (a) Assume they are both 90 miles from the
crossing. {b) Assume they are going to hit.

22 In Example 2 does the temperature increase faster if you
drive due south at 70 mph or southeast at 80 mph?

23 On the line x =1L, y = u,f, z = uyf, what combination of
Foof, fe gives dfidr? This is the directional derivative in 3D.
24 On the same line x = uyf, y=t,!, 2= ust, find a formula
for d*fide®. Apply it to f= xyz.

25 For fix, y, ty=x+ y + ¢t find &f/ét and df/dt when x =2t
and v = 3r. Explain the difference.

26 f z=(x+3)? then x = /2 — y. Does (&z/8x)(8x/éz) = 17
27 Suppose x, =t and y, = 2r, not constant as in (5-6). For
Jix, ¥} find £, and f,. The answer invelves £, £, fox fes-fov:

28 Suppose x, =rand y, =t Forf=(x + y)? find f; and then
Ji from the chain rule.

29 Derive &f/8r = (6f]6x) cos 8 + (3] 3y) sin # from the chain
rule. Why do we take éx/ér as cos  and not 1/cos &7

30 Compute [, for fix,y)=(ax+by+¢)'°. Ifx=t and y=
t compute f,,. True or false: (&f/éx)(Cx/ct) = &ffce.
31 Show that #%r/éx? = p2/r® in two ways:

(1) Find the x derivative of drféx = x/\ /x? + y?

(2} Find the x derivative of &r/@x = x/r by the chain rule,
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32 Reversing x and y in Problem 31 gives r,, = x%/r". But
show that r,, = — xy/r®.

33 If sin z = x + y find (z/9x), in two ways:
(1) Write z =sin" '(x + ») and compute its derivative,
(2) Take x derivatives of sin z=x 4+ y. Verify that these
answers, explicit and implicit, are equal.
3 By direct computation find f, and [, and f,, for
==+
35 Find a formula for 3%f/3»86 in terms of the x and y deriva-
tives of fix, y).

36 Suppose z=f{x, y) is solved for x to give x =gy, 2). Is it
true that dz/6x = 1/(8x/8z)? Test on examples.

37 Suppose z =¢" and therefore x = (In z)/y. Is it true or not
that (8z/dx} = 1/(@x/0z)?
38 If x=xt, u,v)and y= Wt u, v) and z =z(t, u, v}, find the ¢
derivative of fix, y, 2).
39 The t denvative of f{x{t, ¥), W!, &) is in equation (7). What
is .2
40 (a) For f=x+y’+2z* compute &fx (no subscrip,
x, ¥, z all independent).
{(b) When there is a further relation z = x? + %, use it to
remove z and compute (3f/dx),.
{c} Compute (8fféx), using the chain rtule (8f/dx)+
(8f{82)(8z{8x).
{(d) Why doesn’t that chain rule contain (8f/8y)(Gy/dx)?

13.6 Maxima, Minimaq, and Saddle Points

41 Forf=ax + by on the plane z = 3x + 5y, find (3f/2x), and
(@f{éx), and (6f/0z),

42 The gas law in physics is P¥ =nRT or a more general
relation F(P, ¥, T)=0. Show that the three derivatives in
Example 8 still multiply to give —1. First find (8P/dV)y from
OF @V + (3F [8PY}aP{EV)r =0,

43 If Problem 42 changes to four variables related by
F(x,y,z,) =0, what is the corresponding product of four
derivatives?

44 Suppose x=¢+ uand y =tw. Find the 7 and u derivatives
of f{x, y). Check when fix, y)=x* —2y.

45 (a) For f=r*sin’d find f, and f,.
{(b) For f=x* + y* find f; and f;.

46 On the curve sin x +sin y =0, find dy/dx and d?y/dx? by
implicit differentiation.

47 (horrible} Suppose /., +f,,=0. If x=u+vand y=u—v
and f{x, y}=glu, v), find g, and g,. Show that g, + 2., =0

48 A function has constant returns to scale if flcx, cy)=
cfix,¥). When x and y are doubled so are f=_/x*+3?
and f= \/;} In economics, input/output is constant. In
mathematics f is homogeneous of degree one.

Prove that x 3f/édx + y &f/dy =f(x, y), by computing the ¢
derivative at ¢ = 1. Test this equation on the two examples
and find a third example.

49 True or false: The directional derivative of fir, 6) in the
direction of u, is df/38.

The outstanding equation of differential calculus is also the simplest: df/dx = 0. The
slope is zero and the tangent line is horizontal. Most likely we are at the top or
bottom of the graph—a maximum or a minimum. This is the point that the engineer
or manager or scientist or investor is looking for—maximum stress or production
or velocity or profit. With more variables in f{x, y) and fix, y, z), the problem becomes
more realistic. The question still is: Hew te locate the maximum and mirimum?

The answer is in the partial derivatives. When the graph is level, they are zero,
Deriving the equations f, =0 and f,=0 is pure mathematics and pure pleasure.
Applying them is the serious part. We watch out for saddle points, and also for a
minimum at a boundary point—this section takes extra time. Remember the steps
for f{x) in one-variable calculus:

1. The leading candidates are stationary points {(where df/dx = Q).
2. The other candidates are rough points (no derivative) and endpoimts (a or b).
3. Maximum vs, minimum is decided by the sign of the second derivative.

In two dimensions, a stationary point requires 4f/éx = 0 and df/dy = 0. The tangent
line becomes a tangent plane. The endpoints @ and b are replaced by a beundary
curve. In practice boundaries contain about 40% of the minima and 80% of the work.
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Finally there are three second derivatives f..,. f,, and f,,. They tell how the graph
bends away from the tangent plane—up at a minimum, down at a maximum, both
ways at a saddle point. This will be determined by comparing (f..)(f,,) With (f,,)*.

STATIONARY POINT — HORIZONTAL TANGENT — ZERO DERIVATIVES

Suppose f has a minimum at the point (xq, yo). This may be an absolute minimum or
only a local minimum. In both cases f(x,, yo) < f(x, y) near the point. For an absolute
minimum, this inequality holds wherever f is defined. For a local minimum, the
inequality can fail far away from (xg, yo). The bottom of your foot is an absolute
minimum, the end of your finger is a local minimum.

We assume for now that (xq, yo) is an interior point of the domain of f. At a
boundary point, we cannot expect a horizontal tangent and zero derivatives.

Main conclusion: At a minimum or maximum (absolute or local) a nonzero deriva-
tive is impossible. The tangent plane would tilt. In some direction f would decrease.
Note that the minimum point is (xq, yo), and the minimum value is f(x, Vo).

13J If derivatives exist at an interior minimum or maximum, they are zero:
df/ocx=0 and df/éy=0 (together this is grad f=0). (1)
For a function f(x, y, z) of three variables, add the third equation df/dz = 0.

The reasoning goes back to the one-variable case. That is because we look along the
lines x = x4 and y = y,. The minimum of f(x, y) is at the point where the lines meet.
So this is also the minimum along each line separately.

Moving in the x direction along y = y,, we find df/dx = 0. Moving in the y direction,
of/dy =0 at the same point. The slope in every direction is zero. In other words
grad = 0.

Graphically, (x, yo) is the low point of the surface z =f(x, y). Both cross sections
in Figure 13.16 touch bottom. The phrase “if derivatives exist” rules out the vertex
of a cone, which is a rough point. The absolute value f= |x| has a minimum without
df/dx =0, and so does the distance f= r. The rough point is (0, 0).

Fig. 13.16 df/0x =0 and df/dy =0 at the minimum. Quadratic f has linear derivatives.

EXAMPLE 4 Minimize the quadratic f(x, y)=x*+xy+y*—x—y+ 1.
To locate the minimum (or maximum), set f, =0 and f, = 0:
fi=2x+y—1=0 and f,=x+2y—1=0. (2)
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Notice what's important: There are two equations for twe umknowns x and y. Since |
is quadratic, the equations are linear. Their solution is x4 = §, y, = % (the stationary
point). This is actually a minimum, but to prove that you need to read further,

The constant 1 affects the minimum vaiue f = $—but not the minimum point. The
graph shifts up by 1. The linear terms — x — y affect f, and f,. They move the minimum
away from (0, 0). The quadratic part x? + xy + y* makes the surface curve upwards.
Without that curving part, a plane has its minimum and maximum at boundary
points.

EXAMPLE 2  (Stciner's problem) Find the point that Is nearest to three given points.

This example is worth your attention. We are locating an airport close to three cities.
Or we are choosing a house close to three jobs. The problem is to get as near as
possible to the corners of a triangle. The best point depends on the meaning of “rear.”

The distance to the first corner (x,,y,) is d;, = \/{x —x;)*+(y—y,)% The dis-
tanees to the other corners (x;, y;) and (x5, y3) are d; and d5. Depending on whether
cost equals (distance) or (distance)? or (distance)”, our problem will be:

Minimize d, - dy+d, or di+di+d} oreven df+d5+d5.
The second problem is the easiest, when 43 and ¢ and 4% are quadratics:
S, =@—x P+ (- P a0+ - )l - g - n)
ofiex=2Ax—x,+x—x;tx—x3]=0  &fiey=2[y—yty—yty—y]=0

Solving &f/éx = 0 gives x = 3(x, + x> + x3). Then {fidy =0 gives y =4y, + y, + 33).
The best point is the cenmtroid of the triangle (Figure 13.17a). It is the nearest point
to the corners when the cost is {distance)’. Note how squaring makes the derivatives
linear. Least squares dominates an enormous part of applied mathematies.

TR RN

_\':{_\'l*-_\‘_-‘+_\';],|'r._"3 y="F p=7?

dy iy +ed, = min

(X, ¥a)

Fig. 13.47 The centroid minimizes d2 + 4% + d{. The Steiner point minimizes d, + d; + 4.

The real “Steiner problem™ is to minimize f(x, y) = d, + d;, + d3. Wearc laying down
roads from the corners, with cost proportional to length. The equations f, = 0 and
Sy =0 look complicated because of square roots. But the nearest point in
Figure 13.17b has a remarkable property. which you will appreciate.

Calculus takes derivatives of di =(x— x;)> +{) — y,)>. The x derivative iecaves
2d,(8d,/@x)= 2(x — x,). Divide both sides by 2d,:

édy  x—x, édy  y—y X=X, y—
——=—— and —=—— sogradd,= ,— . 3
x4 & 4, gracd =l g, )

This gradient Is a unit vector. The sum of (x — x,)%/d? and (y — y,)%:d? s didi=1.
This was already in Section 13.4: Distance increases with slope 1 away from the
center. The gradient of d, (call it u,) is a unit vector from the center point (x;, ).
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Similarly the gradients of d, and d, are unit vectors u, and uy. They point directly
away from the other corners of the triangle. The total cost is f(x, y) =d, + d, + d3,
so we add the gradients. The equations f, =0 and f, =0 combine into the vector
equation

grad f=u, + u, + uy, =0 at the minimum.

The three unit vectors add to zero! Moving away from one corner brings us closer to
another. The nearest point to the three corners is where those movements cancel.
This is the meaning of “grad f= 0 at the minimum.”

It is unusual for three unit vectors to add to zero—this can only happen in one
way. The three directions must form angles of 120°. The best point has this property,
which is repeated in Figure 13.18a. The unit vectors cancel each other. At the *“Steiner
point,” the roads to the corners make 120° angles. This optimal point solves the
problem, except for one more possibility.

1200

[N

Ag. 13.18 Gradients u, + u; +uy =0 for 120° angles. Corner wins at wide angle. Four
corners. In this case two branchpeints are better —still 120°.

The other possibility is a minimum at a reagh point. The graph of the distance
function d,(x, y) is a cone. It has a sharp point at the center (x,, y,). All three corners
of the triangle are rough points for d, + d; + d5, so all of them are possible minimizers.

Suppose the angle at a corner exceeds 120°. Then there is no Steiner point. Inside
the triangle, the angle would become even wider. The best point must be a rough
point—one of the corners. The winner is the corner with the wide angle. In the figure
that means 4, = 0. Then the sumn d, + 45 comes from the two shortest edges.

Summary The solution is at a 120° point or a wide-angle corner. That is the theory.
The real problem is to compute the Steiner point—which I hope you will do.

Remark 1 Steiner’s problem for four points is surprising. We don’t minimize
d +d,+dy+d,—there is a better problem. Connect the four points with roads,
minimizing their total length, and allow the roads to branch. A typical solution is in
Figure 13.18¢. The angles at the branch points are 120°. There are at most two branch
points {twe less than the number of corners).

Remark 2 For other powers p, the cost is (d,)” +(d.)? + (d3)°. The x derivative is
&f{3x = p(d, )~ 2(x — x1) + pld2)? " Hx — x2) + plda)? " H(x — x3). 4

The key equations are still 4f/dx = 0 and &f/dy = 0. Solving them requires a computer
and an algorithm. To share the work fairly, [ will supply the algorithm (Newton’s
method) if you supply the computer. Seriously, this is a terrific example. It is typical
of real problems— we know &f/éx and &f/dy but not the point where they are zero.
You can calculate that nearest point, which changes as p changes. You can also
discover new mathematics, about how that point moves. I will collect all replies [
receive to Problems 38 and 39.
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MINIMUM OR MAXIMUM ON THE BOUNDARY

Steiner’s problem had no boundaries. The roads could go anywhere. But most appli-
cations have restrictions on x and y, like x 2 0 or y € 0 or x* + 3% 2 1. The minimum
with (hese restrictions is probably higher than the absolute minimum. There are three
possibilities:

(1} stationary point /. =0, f, =0 (2) rough point (3) boundary point

That third possibility requires us to maximize or minimize f{x, y) along the boundary.

EXAMPLE 3 Minimize f(x, y)= x>+ xy + 3> — x— p+ 1 in the half-plane x = 0.
The minimum in Example | was 4. Tt occurred at x, =}, y, = }. This point is still
allowed. It satisfies the restriction x 2 0. So the minimum is not moved.

EXAMPLE 4 Minimize the same f(x, v) restricted to the fower half-plane y £ 0.

Now the absolute minimum at (%, %) is not allowed. There are no rough points. We
look for a minimum on the boundary line y =0 in Figure 13.19a. Set y=0, so [
depends only on x. Then choose the best x:

fix, 0)=x?+0-x—-0+1 and [, =2x—1=0.

The minimum is at x = § and y = 0, where /= 3. This is up from 3.

f=xt-x+1
when v =0

fmin

not allowed

N, 3
-fm'm_T

1
2

Fig. 43.19 The boundaries y =0 and x* + y? = | contain the minimum points.

EXAMPLE S Minimize the same f(x, v) on or outside the circle x* + y* = 1.

One possibility is f, =0 and f; = 0. But this is at {§. ), inside the circle. The other
possibility is 2 minimum at a boundary point, on the circle.

To follow this boundary we can set y= /1 — x*. The function f gets complicated,
and dfidx is worse. There is a way to avoid squarc roots: Set x =cos t and y =sin 1.
Then f= x? + xy + 3 — x — y+ 1 is a function of the angle ¢

fin=1+costsint—cost—sint+1
df{dt = cos®t — sin?r + sin ¢ — cos t = (cos ¢ — sin f{cos 1 +sin ¢ — 1).

Now dfidt = 0 locates a minimum or maximum along the boundary. The first factor
(cos t — sin 2) is zero when x = y. The second factor is zero when eost +sint =1, or
x + y= 1. Those points on the circle are the candidates. Problem 24 sorts them out,
and Section 13.7 finds the minimum in a new way using “Lagrange multipliers.”
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Minimization on a boundary is a serious problem—it gets difficult quickly—and
multipliers are ultimately the best solution.

MAXIMUM VS. MINIMUM VS. SADDLE POINT

How to separate the maximum from the minimum? When possible, try all candidates
and decide. Compute f at every stationary point and other critical point (maybe also
out at infinity), and compare. Calculus offers another approach, based on second
derivatives.

With one variable the second derivative test was simple: f,, >0 at a minimum,
fx=0 at an inflection point, f,, <0 at a maximum. This is a local test, which may
not give a global answer. But it decides whether the slope is increasing (bottom of
the graph) or decreasing (top of the graph). We now find a similar test for f{(x, y).

The new test involves all three second derivatives. It applies where f, =0 and
f, = 0. The tangent plane is horizontal. We ask whether the graph of [ goes above or
below that plane. The tests ., >0 and f,,> 0 guarantee a minimum in the x and y
directions, but there are other directions.

EXAMPLE 6 f(x, y)=x*+ 10xy + y? has f,, =2, f,,= 10, f,, =2 (minimum or not?)

All second derivatives are positive—but wait and see. The stationary point is (0, 0),
where df/6x and &f/dy are both zero. Our function is the sum of x? + y%, which goes
upward, and 10xy which has a saddle. The second derivatives must decide whether
x? + y? or 10xy is stronger.

Along the x axis, where y = 0 and /= x?, our point is at the bottom. The minimum
in the x direction is at (0, 0). Similarly for the y direction. But (0, 0) is not a minimum
point for the whole function, because of 10xy.

Try x=1, y= — 1. Then f=1— 10+ 1, which is negative. The graph goes below
the xy plane in that direction. The stationary point at x =y =0 is a saddle point.

AR TR
—_t2+__\'3
\, y
il
a>0 ac>b-
v a<0 ac > b ¢y oac< h?

Fig. 13.20 Minimum, maximum, saddle point based on the signs of a and ac — b*.

EXAMPLE 7 f(x, y)=x*+xy+y* has f,, =2, f,, =1, f,, =2 (minimum or not?)

The second derivatives 2, 1, 2 are again positive. The graph curves up in the x and y
directions. But there is a big difference from Example 6: f,, is reduced from 10 to 1.
It is the size of f,, (not its sign') that makes the difference. The extra terms —x — y + 4
in Example 1 moved the stationary point to (3, §). The second derivatives are still
2.1, 2, and they pass the test for a minimum:

13K At (0, 0) the quadratic function f(x, y) = ax® + 2bxy + cy* has a

3 3 - a } 0 - - a < 0 . -
minimum if maximum if saddle point if ac < b.
ac > b? ac > b*
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For a direct proof, split f(x, y) into two parts by “completing the square:”

b V¥  ac—b?
ax* +2bxy +cy* = u(x +-y) + yi
a a

That algebra can be checked (notice the 2b). It is the conclusion that’s important:

if a> 0 and ac > b*, both parts are positive: minimum at (0, 0)
if a <0 and ac > b?, both parts are negative: maximum at (0, 0)

if ac < b, the parts have opposite signs: saddle point at (0, 0).

Since the test involves the square of b, its sign has no importance. Example 6 had
b=5 and a saddle point. Example 7 had b=3 and a minimum. Reversing to
—x? — xy— y? yields a maximum. So does — x* + xy — y*.

Now comes the final step, from ax? + 2bxy + c¢y? to a general function f(x, y). For
all functions, quadratics or not, it is the second order terms that we test.

EXAMPLE 8 f(x, y)=e€"— x—cos y has a stationary point at x=0, y=0.

The first derivatives are ¢* — 1 and sin y, both zero. The second derivatives are f,, =
e*=1 and f,,=cos y=1 and f,, = 0. We only use the derivatives at the stationary
point. The first derivatives are zero, so the second order terms come to the front in
the series for e¥ — x — cos y:

(1+x+4x2+ )= x—(1—=1y? + =)= 1x* + 1y? + higher order terms.  (7)

There is a minimum at the origin. The quadratic part $x? + $y? goes upward. The x3
and y* terms are too small to protest. Eventually those terms get large, but near a
stationary point it is the quadratic that counts. We didn’t need the whole series,
because from f,, = f,, = 1 and f,, = 0 we knew it would start with $x2? + 2.

13L The test in 13K applies to the second derivatives a=f,,, b=/f,,c=f,,
of any f(x, y) at any stationary point. At all points the test decides whether the
graph is concave up, concave down, or “indefinite.”

EXAMPLE 9 f(x. y)=¢" has f, = ye™ and f, = xe**. The stationary point is (0, 0).

The second derivatives at that point are a=f,, =0, b=f,,=1, and c=f,,=0. The
test b? > ac makes this a saddle point. Look at the infinite series:

e =1+xy+ixty? + -

No linear term because f, = f, = 0: The origin is a stationary point. No x* or y* term
(only xy): The stationary point is a saddle point.

At x=2, y= —2 we find f.f,, > (f.,)*. The graph is concave up at that point—
but it’s not a minimum since the first derivatives are not zero.

The series begins with the constant term—not important. Then come the linear
terms—extremely important. Those terms are decided by first derivatives, and they
give the tangent plane. [t is only at stationary points—when the linear part disappears
and the tangent plane is horizontal—that second derivatives take over. Around any
basepoint, these constant-linear-quadratic terms are the start of the Taylor series.



13.6 Maxima, Minima, and Saddle Poinis
THE TAYLOR SERIES

We now put together the whole infinite series. It is a “Taylor series”—which means
it is @ power series that matches all derivatives of f (at the basepoint). For one
variable, the powers were x" when the basepoint was 0. For two variables, the
powers are x" times y™ when the basepoint is (0, 0). Chapter 10 multiplied the nth
derivative d"f/dx" by x"/n! Now every mixed derivative (6/0x)"(8/dy)"f(x, y) is computed
at the basepoint (subscript ).

We multiply those numbers by x"y™/n!m! to match each derivative of f(x, y):

13M  When the basepoint is (0, 0), the Taylor series is a double sum X g, x"y".
The term a,,x"y™ has the same mixed derivative at (0, 0) as f(x, y). The series is

s, 0J+x(%)o+y(§£) ik (axf) e (aiafy) i (ayj)

xnym an+mf
§ ;-.Zz nlm! (afay")o'

The derivatives of this series agree with the derivatives of f(x, y) at the basepoint.

The first three terms are the linear approximation to f(x, y). They give the tangent
plane at the basepoint. The x* term has n=2 and m=0, so n'm! = 2. The xy term
has n=m= 1, and n!m! = 1. The quadratic part ¥(ax* + 2bxy + cy?) is in control when
the linear part is zero.

EXAMPLE 10  All derivatives of ¢*** equal one at the originA The Taylor series is

2
“+"—1+x+y+5+\y+—+

n'm'

This happens to have ac = b?, the special case that was omitted in 43M and 13N.
It is the two-dimensional version of an inflection point. The second derivatives fail to
decide the concavity. When f,.f,, = (f,)*, the decision is passed up to the higher
derivatives. But in ordinary practice, the Taylor series is stopped after the quadratics.

If the basepoint moves to (x,, yo), the powers become (x — x,)"(y — yo)"—and all
derivatives are computed at this new basepoint.

Final question. How would you compute a minimum numerically? One good way is
to solve f,=0 and f, =0. These are the functions g and h of Newton’s method
(Section 13.3). At the current point (x,, y,), the derivatives of g =f, and h=f, give
linear equations for the steps Ax and Ay. Then the next point x,,, = x, + Ax, y,+, =
V. + Ay comes from those steps. The input is (x,, y,), the output is the new point,
and the linear equations are
(8)AX + (g,)Ay = — g(X,, ¥a) s (fa)Ax + (f)Ay = — fu(Xns ¥5) )
(ho)Ax + (hy)Ay = — h(x,, y,) (fe)Ax + (fy,)Ay = — fy(xXn, Yn)-
When the second derivatives of f are available, use Newton’s method.

When the problem is too complicated to go beyond first derivatives, here is an
alternative—steepest descent. The goal is to move down the graph of f(x, y), like a
boulder rolling down a mountain. The steepest direction at any point is given by the
gradient, with a minus sign to go down instead of up. So move in the direction Ax =
— s df/ox and Ay = — s df/dy.
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The question is: How far to move? Like a boulder, a steep start may not aim
directly toward the minimum. The stepsize s is monitored, to end the step when the
function f starts upward again (Problem 54). At the end of each step. compute first
derivatives and start again in the new steepest direction.

13.6 EXERCISES

Read-through questions

A minimum occurs at a9 point (where f,=f, =0) or a

b point {no derivative) or a _ ¢  point. Since f=
x*—xy+2yhas f=_d andf,=_e , the stationary
point is x=_1 _ y=_49 _ This is not a minimum,
because [ decreases when __h

The minimum of d*=(x —x, P +(y — ¥, occurs at the
rough point _ ! The graph of dis a _ 1 and gradd
1s a __k__ vector that points __1 . The graph of f=|x)]
touches bottom along the lines _m . Those are “rough
lines” because the derivative _ n . The maximum of d and
S must occur on the _ 0 of the allowed region because it

doesn’t occur __ P

When the boundary curve is x = x(t), y = y{t}, the derivative
of fix, y) along the boundary is _a  {(chain rule). If f=
x? + 2y? and the boundary is x = cos {, y =sin f, then df/dt =

r . It is zero at the poiots _ s . The maximum is at

t __ and the minimum is at _ v . Inside the circle f has
an absolute ninimum at __¥

Te separate maximum from minimum from __w . com-
pute the _ % derivatives at a _¥ ___ point. The tests for a
minimum are __2¢ . The tests for a maximum are _ A _ . In
caseac<_B orf. f.<_ €  wehavea D . Atall
points these tests decide between concave up and __E_ and
“indefinite.”" For f= 8x? —6xy + y* theoriginisa _ F . The
signs of fat (L, Opand (1. 3)are _&

The Taylor sertes for fix, y) begins with the six terms _ H
The coefficient of x"y* is _ 1 . To find a stationary point
numerically. use _ J  or _ K

Find all stationary points (/, =, = 0) in 1-16. Separate mini-
mum from maximum from saddle point. Test 13K applies to
o :.Jf;&.u h Z.fxy! ¢ =f:))

1 x4 2xy + 3y? 2 xy—x+y

30 +axyp+ 3yt —6x— 12y 4 xT -y 4y

5 xyp?—x 6 xer — et

7 —xP 42y =30 B (x+3)° +(x+2—6)
9 x* 4yt -4z 10 (x + y¥)ix+ 2y —0)
1 (x— P 12 (14 x3)i1 + %)

13 (x+ ) —(x+2p)° 14 sin x —cos ¥

15 x* 437 - 3P 437 16 8xy— 5t —y*

17 A rectangle has sides on the x and v axes and & corner on
the line x + 3y =12, Find its maximum arca.

18 A box has a corner at {{), 0, 0) and all edges paralle] to the
axcs. If the opposite corner (x,y, 2z} is on the plane
3x + 2y + = = 1, what position gives maximum volume? Show
first that the problem maximizes xv — 3x%v — 2x)?,

19 (Straight line fit, Section 11.4) Find x and y to minimize
the error

E=(x+ ¥ +(x+2y—=5" +(x 43y —4)°
Show that this gives 2 minimum not a saddle point.

20 (Least squares) What numbers x, y come closest to satisfy-

ing the three equations x - y=1, 2x+y=—1, x+2p=1?

Square and add the errors, (x—y—1)*+ +
. Then minimize.

21 Minimize /= x* + xy + 37 — x — ¥ restricted by
fayx=<0 byyz1 ©yxs0and y = 1.

22 Minimize f= x* + y* 4+ 2x + dy in the regions
faall x, v byyr=0 ) xz0yz0

23 Maximize and minimize f'=x+ /3y on the circle x =
cos{ y=sin{.

24 Example 5 followed f=x*+ xy+y? —x—y+ 1 arcund
the circle x? ~ v* = 1. The four stationary points have x =y
or x+y=1 Compute / at those points and locate the
minimum.

25 {a) Maximize f= ax + by on the circle x* + 3% = 1.
{b) Minimize x* 4+ y* on the linc ax + hy= 1.

26 For fix, p)=4x* - xy + 3y*, what are the equations f, =
0 and f, = 0? What are their solutions? What is f;,?

27 Choose ¢ =0 50 that f=x% 4 xy + ¢)? hay 4 saddle point
at (0, 0). Note that f>0on the limes x=0and y =0and y =
xand y= — x, so checking four directions does not confirm
a minimum.

Problems 28—42 minimize the Steiner distance { = d, + d, +
and related functions. A computer is needed for 33 and 36-39,

28 Draw the triangle with corners at (0, Q), (1, 1}, and (L, —1).
By symmetry the Steiner point will be on the x axis. Write
down the distances d,,d,.dy to {x,0) and find the x that
minimizes d, + 4, + ;. Check the 120° angles.
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29 Suppose three unit vectors add to zero. Prove that the
angles between them must be 120°,

3 In three dimensions, Steiner minimizes the total distance
fix,y,2)=d, +d; +ds+4d, from four points. Show that
grad 4, is still a unit vector (in which direction?) At what
angles do four unit veclors add to zero?

31 With four points in a plane, the Steiner problem allows
branches (Figure 13,18¢c). Find the shortest network connect-
ing the corners of a rectangle, if the side lengths are (a) 1 and
2(b) I and ! (two solutions for a square) (c} ! and 0.1.

32 Show that a Steiner point (120° angles) can never be out-
side the triangle.

33 Write a program to minimize f(x, y)=4d, +4d,+4d; by
Newton’s method in equation (5). Fix two corners at (0, 0),
(3, 0), vary the third from (1, t)} to (2, 1) to (3, 1) to (4, 1), and
compute Steiner points.

M Suppose one side of the triangle goes from (—1, 0) to (1, 0).
Above that side are points from which the lines to (—1, 0) and
(1, 0) meet at a 120° angle. Those points lie on a circular arc—
draw it and find its center and its radius.

35 Continuing Problem 34, there are circular arcs for all three
sides of the triangle. On the arcs, every point sees one side of
the triangle at a 120° angle. Where is the Steiner point?
(Sketch threc sides with their arcs.}

36 1nvent an algorithm to converge to the Steiner point based
on Problem 35. Test it on the triangles of Problem 3.

37 Write a code 1o minimize f=d? 4 d%+d$% by solving £, =0
and f, =0. Use Newton’s method in equation (5).

38 Extend the code to allow all powers p2 1, not only p=
4. Follow the minimizing point from the centroid at p=2 to
the Steiner point at p=1{try p= 1.8, 1.6, 1.4, 1.2).

39 Follow the minimizing point with your code as p increases:
p=2,p=4, p=8, p=16. Guess the limit at p = o0 and test
whether it is equally distant from the three corners.

40 At p=o0 we are making the largest of the distances
d;,d», d; as smal] as possible. The best point for a 1, 1, \/5
right triangle is

41 Suppose the road from corner 1 is wider than the others,
and the total cost is flx, y) = ﬁ dy + d; + d;. Find the gradi-
ent of fand the angles at which the best roads meet.

42 Solve Steiner’s problem for two points. Where is d, + 4,
a minimum? Solve also for three points if only the three
corners are allowed.

Find all derivatives at (0, 0). Construct the Taylor series:
43 fix, y}=(x +yp’ 44 fix, y) = x&
45 fix, yy=In{l — xy)

Fiod £, £, fuxs fuys fyy 8t the basepoint. Write the quadratic
approximation to f{x, y) — the Taylor series through second-
order terms:

46 f=&*7 at {0, 0}
48 f=sin x cos y at {0, 0}

47 f=e*? at(l, 1)
49 f=x>+y*at(l, ~1}
50 The Taylor series around (x, y) is also written with steps

hand k: fix+h y+ K =flx, )+ h +k +
h? + hk + ---. Fill in those four blanks.

51 Find lines along which fix, y) is constant (these functions
have f,, f,, =fZ, or ac = b%):
@ f=x*—a4xy+4y*  (o)f=€"¢

52 For fix, y, z) the first three terms after f{0, 0, 0) in the Tay-
lor series are . The next six terms are

§3 (a) For the error f — f; in linear approximatien, the Taylor
series at (0, 0) starts with the quadratic terms
(b} The graph of f goes up from its tangent plane (and
[=f)f . Then fis concave upward.

{c} For (0, 0) to be a minimum we also need

54 The gradient of x?+2y® at the point (1,1} is (2, 4).
Steepest descent is along the line x = 1 — 25, y = 1 —4s (minus
sign to go downward). Minimize x? + 2y® with respect to the
stepsize s. That locates the next point , where
steepest descent begins again.

85 Newton's method minimizes x® + 2y” in one step. Starting
at (xp, ¥o) = (1, 1), find Ax and Ay from equation (5).

56 If . +f,, =0, show that f{x, yj cannot have an interior
maximom ot minimum (only saddle points).

57 The value of x theorems and y exercises is f= x*y (maybe).
The most that a student or author can deal with is 4x+ y =
12. Substitute y = 12 — 4x and maximize f. Show that the line
4x + y = 12 is tangent to the level curve x%y =f,,,.

S8 The desirability of x houses and y yachts is f{x, y}. The
constraint px + gy = k limits the money available. The cost of
a house is , the cost of a yacht is . Substi-
tute y=(k — px)/q into f{x, ¥) = F(x) and use the chain rule
for d¥{dx. Show that the slope —f,/f, at the best x is —p/g.

59 At the farthest point in a baseball field, explain why the
fence is perpendicular to the line from home plate. Assume
it is not a rough point (corner) or endpoint (foul line).
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IR 13.7 Constraints and Lagrange Muttipliers T

This section faces up to a practical problem. We often minimize one function fix, y)
while another function g(x, y) is fixed. There is a constraint on x and y, given by
&(x, y) = k. This restricts the material available or the funds available or the energy
available. With this constraint, the problem is to do the best possible (f . OF fruin)-

At the absolute minimum of f{x, y), the requirement g(x, y) = k is probably violated.
In that case the minimum point is not allowed. We cannot use f, =0 and f, =0—
those equations don’t account for g.

Step 1 Find equations for the constrained minimum or constrained maximum. They
will involve f, and f, and also g, and g,, which give local information about fand g.
To see the equations, look at two examples.

EXAMPLE 4 Minimize f= x? + y? subject to the constraint g = 2x + y=k.

Trial runs The constraint allows x =0, y = k, where f= k2. Also (3%, 0) satisfies the
constraint, and f=}k? is smaller. Also x = y = 1k gives /= #k? (best so far).

idea of solution Look at the level curves of f(x, y) in Figure 13.21. They are circles
x%+ y* =c. When ¢ is smali, the circles do not touch the line 2x + y = k. There are
no points that satisfy the constraint, when ¢ is too small. Now increase c.
Eventually the growing circles x2 + y? = ¢ will just touch the line x + 2y =k. The
point where they touch is the winner. It gives the smailest value of ¢ that can be
achieved on the line. The touching point is (X;,, Ymia)» and the value of ¢ is f;,.

What equation describes that point? When the circle touches the line, they are
tangent. They have the same slope. The perpendiculars to the circle and the line go in
the same direction, That is the key fact, which you see in Figure 13.21a. The direction
perpendicular to f= c is given by grad f= (f,, f,). The direction perpendicular to g =
k is given by grad g =(g,.g,). The key equation says that those two vectors are
parallel. One gradient vector is a multiple of the other gradient vector, with a multi-
plier 4 (called lambda) that is unknown:

43N At the minimum of fix, y) subject to g{x, y)=k, the gradient of f is
parallel to the gradient of g—with an unknown number 4 as the multiplier:
& _ % o _ .o

grad f=Agrad g so a=la and oy )

Step2 There are now three unknowns x, y, 4. There are also three equations:

df/éx = idg/dx is 2x =24
dffdy = Adg/dy is 2y=4 (2)
glx, y)=k is 2x+y=k

In the third equation, substitute 24 for 2x and 41 for y. Then 2x + y equals 34
equais k. Knowing 4 = $k, go back to the first two equations for x, y, and f,;.:

2 1, 1t 2% LV 5 1
= 0= — =—.=—k .= —k =+ —-k =—k2=—k2‘
x=A=gk y=34=3k Juin (5) (5) 25° 73
The winning point (Xmin, Ymia) i (3k, $k). It mimmizes the “distance squared,”
f=x?*+ y* =1k?, from the origin to the line.



13.7 Consiraints and Lagrange Mullipllers

Question What is the meaning of the Lagrange multiplier 17

Mysterious answer The derivative of 1k* is 3k, whick equals 1. The multiplier
A is the derivative of f,;, with respect to k. Move the ling by Ak, and £, changes by
about 1Ak. Thus the Lagrange multiplier measures the sensitivity to k.

Pronounce his name “Lagronge™ or better “Lagrongh” as if you are French.

gxy)=4

f= 1, min
Fig. 13.21 Circles f= ¢ tangent to line g = k and ellipse g = 4 parallel gradients.

EXAMPLE 2 Maximize and minimize f= x?+ y? on the ellipse g=(x—1)?+4y*=4.

Idea and equatians The circles x> + y? = ¢ grow until they touch the ellipse. The
touching point is (X, Ymia) a0nd that smallest value of ¢ is f;,. As the circles grow
they cut through the cllipse. Finally there is a point (X, Ymas) Where the last circle
touches, That largest value of ¢ is f,x.

The minimum and maximum are described by the same rule: the circle is tangent
to the ellipse (Figure 13.21b). The perpendiculars go in the same direction. Therefore
(f. /;) is a multiple of (g, £,), and the unknown multiplier is 4i:

= Ag 2x = A2(x — 1)
fo=4gy 2y=A8By (3)
g=k x—1*+4y*=4.

Solution The second equation allows two possibilities: y = 0 or 4 = ;. Following up
y=0, the last equation gives (x — 1)>=4. Thus x=3 or x= — 1. Then the first
equation gives A=3/2 or 1= 1/2. The values of f are x>+ y*=32+0>=9 and
X+yl=(-1P+02=1.

Now follow 4= 1/4. The first equation yields x = — 1/3. Then the last equation
requires y> = 5/9. Since x2 = 1/9 we find x* + y* = 6/9 = 2/3. This is f;,.

Conclusion The equations (3) have four solutions, at which the circle and ellipse
are tangent. The four points are (3, 0), (— 1, 0), (—1/3, \/5/3), and (— 1/3, — \/5/3). The
four values of fare 9, 1, %, .

Surmmary The three equations are f, = Ag, and f, = Ag, and g = k. The unknowns
are x, y, and A. There is no absolute system for solving the equations {unless they are
linear; then use elimination or Cramer’s Rule). Often the first two equations yield x
and y in terms of A, and substituting into g = k gives an equation for Ai.

At the minimum, the level curve f{x, )= c is tangent to the constraint curve
gix, y)= k. If that constraint curve is given parametrically by x(f) and »z), then

515
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minimizing f{x(t), W)} uses the chain rule:
df  &fdx + o dy

dt dxdt  dyde

This is the caleulus proof that grad { is perpendicular to the curve. Thus grad f is
parallel to grad g. This means (f, f;) = Alg., g}
We have lost f, =0 and f,= 0. But a new function L has three zero derivatives:

=0 or (gradf)-(tangent to curve)=0.

130 The Lagrange function is L{x, y, &) = f(x, v} — A(g{x, y) — k). Its three
derivatives are L, = L, = L; =0 at the solution:

ax ox | ox 3y oy Aay 0 ﬁ=_g+k=0' @)

Note that 2L/24 = 0 automatically produces g = k. The constraint is “bailt in” to L.
Lagrange has included a term A(g — k), which is destined to be zero—but its derivatives
are absolutely needed in the equations! At the solution, g=k and L=/ and
AL{ok = A.

What is important is f, = Ag, and f, = 4g,, coming from L, = L, =0. In words: The
constraint g = k forces dg = g,dx + g, dy = 0. This restricts the movements dx and dy.
They must keep to the curve. The equations say that df = f.dx + f,dy is equal to idg.
Thus df is zero in the allowed direction—which is the key point.

MAXIMUM AND MINIMUM WITH TWO CONSTRAINTS

The whole subject of min{max)imization is called optimizarion. Its applications to
business decisions make up operations research. The special case of linear functions
is always important—in this part of mathematics it is called linear programming. A
book about those subjects won't fit inside a calculus book, but we can take one more
step—to allow a second constraint.

The [lunction to minimize or maximize is now f(x, y,z). The constraints are
g(x, y, z) =k, and h(x, y, z) = k,. The multipliers are 1, and ,. We need at least three
variables x, y, z because two constraints would completely determine x and y.

1P To minimize f{x, y, z) subject to g(x, y, z) = k, and k(x, ¥, z) = k1, solve five
equations for x, y, z, 4,, 4;. Combine g =k, and h =k, with

I 2.0 F_,%8.,% ¥_, ag+,12%.

ox ‘ox Pox’ 3y oy oy 8z ez

(5)

Figure 13.22a shows the geometry behind these equations. For convenience f is
x? + y? 4 z?, so we are minimizing distance (squared). The constraintsg=x + y+z =
9 and h=x+ 2y + 3z = 20 are linear—their graphs are planes. The constraints keep
(x, ¥, z) on both planes—and therefore on the line where they meet. We are finding
the squared distance from (0,0, Q) to a line.

What equation do we solve? The level surfaces x* + y* + z° = ¢ are spheres. They
grow as ¢ increases. The first sphere to touch the line is tangent to it. That touching
point gives the solution (the smallest c). A¥H three vectors grad f, grad g, grad k are
perpendicular to the line:

line tangent to sphere = grad f perpendicular to line

line in both planes = grad g and grad h perpendicular to line.
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Thus grad f, grad g, grad h are in the same plane—perpendicular to the line. With
three vectors in a plane, grad fis a combination of grad g and grad h:

{fx? j;n fz)= j'l(gx’gys gz)+ Az(hx! hy! hz) (6}

This is the key equation (5). It applies to curved surfaces as well as planes.

EXAMPLE 3 Minimize x* + y* + z* when x + y+z=9 and x+ 2y + 3z = 20.

In Figure 13.22b, the normals to those planes are grad g=(1,1,1) and grad h=
(1, 2, 3). The gradient of f= x? + y* + z% is (2x, 2y, 22). The equations (5)-(6) are

x=A,+ 4, 2y=Ai,+24,, 2z=4i,+34,.
Substitute these x, y, z into the other two equations g=x+y+z=9%and h=20;

A+, A +24, A+ 34, AT 4, A, T24, A, +34,
+ = =
2 + 5 2 9 and 2 +2 3 +3 2

After multiplying by 2, these simplify to 34; + 61, =18 and 64, + 144, =40. The
solutions are i, =2 and 4, = 2. Now the previous equations give (x, y, )= (2, 3, 4).

The Lagrange function with two constraints is L(x, y, 2z, 4, 45)=
f—A(g — k) — A{h — k;). Tts five derivatives are zero—those are our five equations.
Lagrange has increased the number of unknowns from 3 to 5, by adding 4, and 4,.
The best point (2, 3, 4) gives [, = 29. The A’s give df/0k—the sensitivity to changes
in 9 and 20.

20.

grad f=(4,6,9) 4,6,9)
=X, grad g + &, grad k

1‘

plane & =20

H
grad g

y

line

tangent x plane g =9
to sphere

intersection
of planes

Fig. 13.22 Perpendicular vector grad fis a combination /, grad g+ 4, grad k.

INEQUALITY CONSTRAINTS

In practice, applications involve imequalities as well as equations. The constraints
might be g < k and h > 0. The first means: It is not required to use the whole resource
&, but you cannot use more. The second means: i measures a guantity that cannot
be negative. At the minimum point, the multipliers must satisfy the same inequalities:
2, <0and &, 2 0. There are inequalities on the 4’s when there are inequalities in the
constraints.

Brief reasoning; With g < k the minimum can be on or ipside the constraint curve.
Inside the curve, where g < k, we are free to move in all directions. The constraint is
not really constraining. This brings back f, =0 and f, =0 and A=0-—an ordinary
minimum. On the curve, where g = & constrains the minimum from going lower, we
have 4 < 0. We don't know in advance which to expect.
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For 100 constraints g; < k;, there are 100 4’s. Some A’s are zero (when g, < k;} and
some are nonzero {when g; = k;). It is those 21°° possibilities that make optimization
interesting. In linear programming with two vaniables, the constraints are x >0, y 2 G

EXAMPLE 4 Minimize f=5x+ 6y withg=x+y=4dand h=x>0and H=y2=0.

The constraint g =4 is an equation, h and H yield inequalities. Each has its own
Lagrange multiplier—and the inequalities require 4, = 0 and 1; = 0. The derivatives
of f, g, h, H are no problem to compute:

& . ég . ok OH L
a—xl x+ﬂ.zax+ﬂ.3 P yields 5=1,+4,

o @ oh oH 0
T B 4,2+, 5 yields 6=4,+4,.

ay ¥ dy y

Those equations make A, larger than A,. Therefore A, > 0, which means that the
constraint on H must be an equation. (Inequality for the multiplier means equality
for the constraint.) In other words H=y=0. Then x+ y=4 leads to x=4. The
solution s at (X, Ymia) = @, 0), where [, = 20.

At this minimum, k= x =4 is above zero. The multiplier for the constraint A= 0
must be A, =0. Then the first equation gives A; = 5. As always, the multiplier mea-
sures sensitivity. When g=4 is increased by Ak, the cost f;, = 20 is increased by
S5Ak. In economics 4, =5 is called a shadow price—it is the cost of increasing the
constraint.

Behind this example is a nice problem in geometry. The constraint curve x+ y=4
is a line. The inequalities x = 0 and y = 0 leave a piece of that line—from P to Q in
Figure 13.23. The level curves f=5x+ 6y =c move out as ¢ increases, until they
touch the line. The first touching point is Q = (4, 0), which is the solution. It is always
an endpoint—or a corner of the triangle POR. It gives the smallest cost f;,, which
is ¢ =20,

constraint

Thy=4 g=x+y+z=1

(Problem 25)

Sv+6y=20

Sv+0bv=c
¢ too small

=040

fmin =20

Fig. 13.23 Linear programming: f and g are linear, inequalities cut off x and y.

13.7 EXERCISES

Read-through questions

A restriction g(x, y)=k is called a _a_ . The minimizing Jwin 1§ 1 to the constraint curve g=k. The number 4
equations for f{x, y) subject to g =k are _ b . The number turns out to be the derivative of __g _ with respect to
4 is the Lagrange _ ¢ _, Geometrically, gradfis _ d _ to The Laprange function is L.=__i _ and the three equations

grad g at the minimum. That is because the __e _ curve f= forx,y,2Aare i __and _%_ _and _ |

h
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To minimize f=x? — y subject to g = x — p=0, the three
equations for x, y, Aare _m__ Thesolutionis __n . In this
example the curve flx, y=f,=_© isa_p whichis

a_totheline g =0 at (X0, Ymin)

With two constraints g{x, y, z) =k, and h(x, y, z} = k; there
are __t multipliers. The five unknownsarc __ 8 . The five
equations are __t . The level surface f=/,,is _ 4 to the
curve where g =4, and h=k,. Then grad fis _ v to this
curve,andsoaregradgand_ w . Thus_ x  isacombina-
tion of grad g and _ ¥ . With nine variables and six con-
straints, there will be __*  multipliers and eventually __ A
equations. If a constraintisan __ B g < k, then its multiplier
must satisfy 2 <0 at a minimum.

1 Example I minimized f=x?+ y* subject to 2x+ y=k.
Solve the constraint equation for y =k — 2x, substitute into
f. and minimize this lunction of x. The minimum is at (x, y) =

, where f=

Note: This direct approach reduces to ome unknown x,
Lagrange increases to x, y, 4. But Lagrange is belter when the
first step of solving for y is difficult or impossible.

Minimize and maximize f{x, y) in 2-6. Find x, y, and 4.
2f=x?ywithg=x24+y*=1

1 1
Jf=x+ywithg==+-=1
oy

4 f=3x+ywithg=x2+9)y2=1
§f=x?+)y' withg=x%4+3°=2

6 f=x+y with g=x'?p* =k With x = capital and y=
labor, g is 2 Cobb-Douglas function in economics. Draw two
of its level curves,

7 Find the point on the circle x? + y? = 13 where f = 2x — 3y
is a maximum. Explain the answer.

8 Maximize ax + by + cz subject to x% + y% + 2% = &%, Write
your answer as the Schwarz inequality for dot products:
(@bcy(xy.2ys_____ k

9 Find the plane z=ax+ by + ¢ that best fits the points
{xs ¥ Z) = (Oo 0, I); (ls 0’ 0}; (I’ Is 2): (0, 1, 2]‘ The answer a, b, c
minimizes the sum of (z — ax — by — c)* at the four points.

10 The base of a rangle is the top of a rectangle (5 sides,
combined area = 1}. What dimensions mintmize the distance
around?

11 Draw the hyperbola xy= —1 touching the circle g=
x? 4 y? = 2, The minimum of /= xy on the circle is reached
at the points . The equations f, = J.gx and f, ig,
are satisfied at those points with 1 =

12 Find the maximum of f=xy on the circle g = x* + y* =2
by solving f, = Ag, and f, = Ag, and substituting x and y into
J- Draw the level curve =/, that touches the circle.
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13 Draw the level curves of f = x? + y* with a closed curve C
across them to represent g{x, v)=k. Mark a point where C
crosses a level curve. Why is that point not a minimum of f
on C? Mark a point where C is tangent to a level curve. Is
that the minimum of fon C?

14 On the circle g=x? 4 y? =1, Example 5 of 13.6 mini-
mized f=xy — x — y. (a) Set up the three Lagrange equations
for x, y, i. (b) The first two equations give x =y =

(c) There is another solution for the special value 1= -i
when the equations become . This is easy to miss
but it gives f;, = — 1 at the poimt

Problems 1518 develop the theory of Lagrange multipliers.

15 (Sensitivity) Certainly L=f-—-A(g— k) has 8Lfgk=2A.
Since L =f,;, and g =k at the minimum point, this secms to
prove the key formula df,,;,/dk = 2. But x_;., Vmins 4, 2nd S0
all change with k. We need the total derivative of Lix, y, 4, k):

dL dLdx OLdy aLdﬂ. 8L dk

dk “oxdk T oyak T oddk T ok dk

Equation (1) at the minimum point should now yield the
sensitivity formula df,, /dk = 1.

16 (Theory behind 1) When g{x, y) =k is solved for p, it
gives a curve y= R{x). Then minimizing fx, y} along this
curve yields

af o dR 3 0OgdR
axtoyax ox Taydx

Those come from the __ rule: dffdx =0 at the mini-
mum and dg/dx =0 along the curve because g
Multiplying the second equation by 4 = {aﬁay)f(agfay) and
subtracting from the first gives =0. Also gffdy =
Adg/dy. These are the equations (1) for x, y, 4.

17 (Example of failure) i=f /g, breaks downif g, =0 at the
minimum point.
(@) g=x*—y*=0 does not allow negative y because
(b) When g =0 the minimum of f= x? + y is at the point
{c} At that point f, = which is
impossible.
(d) Draw the pointed curve g =0 to see why it is not tan-
gent to a level curve of f.

ig, becomes

18 {No maximum} Find a point on the line g=x+y=1
where f(x, ¥} = 2x + y is greaier tban 100 (or 1000}. Write out
grad f= 1 grad g to see that there is no solution.

19 Find the minimum of f=x*+2y*+z% if (x,y 2} is
restricted to the planes g=x+ y+z=0and h=x—z=1.

20 (a) Find by Lagrange multipliers the volume ¥ = xyz of
the largest box with sides adding up to x+y+z=k (b)
Check that 1 =dV,_,, /dk. fc) United Airlines accepts baggage
with x + y+z=108", If it changes to 111", approximately
how much (by 2) and exactly how much does V_,, increase?
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21 The planes x =0 and y =0 intersect in the line x=y =0,
which is the z axis. Write down a vector perpendicular to the
plane x =0 and a vector perpendicular to the plane y=0.
Find A, times the first vector plus i, times the second. This
combination is perpendicular to the line

22 Minimize f=x* + y* + z? onthe plane ax + by + cz =d—

one constraint and one multiplier. Compare f_;, with the

distance formula |d|/,/a® + b* + ¢2 in Section 11.2,

23 At the absolute minimum of f{x,y), the derivatives
are zero. If this point happens to fall on the curve

g{x, y) = k then the equations f, = g, and f, = ig, hold with
,1 =

Problems 2433 allow inequality constraints, optional but good.

24 Find the minimum of f=3x + 5y with the constraints g =
x+2y=4and h=x=0and H=y >0, using equations like
(M. Which multiplier is zero?

25 Figure 13.23 shows the constraint planeg=x+y+z=1
chopped off by the inequalities x>0, y2 0, z > 0. What are
the three “endpoints” of this triangle? Find the minimum and
maximum of f=4x — 2y + 5z on the triangle, by testing f at
the endpoints.

26 With an inequality constraint g < &, the multiplier at the
minimum satisfies A € 0. If & is increased, f,.,, goes down (since
A= dfo/dk). Explain the reasonirng: By increasing k, (more)
(fewer) points satisfy the constraints. Therefore (more) (fewer)
points are available to minimize £ Therefore f;, goes (up)
{down).

27 With an inequality constraint g < k, the multiplier at a
maximwn point satisfies A 2> 0. Change the reasoning in 26.

28 When the constraint h > k is a strict inequality h>k at
the minimum, the multiplier is 4 = 0. Explain the reasoning:
For a small increase in k, the sarme minimizer is still available
{(since h>k leaves room to move). Therefore f;, is
(changed)(unchanged), and i = df;,/dk is

29 Minimize f= x* + y* subject to the inequality constraint
x + y < 4. The minimum is obviously at . where f,
and f, are zero. The multiplier is 2= . A small
change from 4 will leave f ;.= so the sensitivity
dfi/dk still equals 2,

30 Minimize f=x? + y* subject to the inequality constraint
% +y =4, Now the minimum 5 at and the multi-
plieris 2= and [, = . A small change to
4 + dk changes f;, by what multiple of dk?

31 Minimizef=5x + 6ywithg=x+y=4and h=x>0and
H=y<0 Now 1,0 and the sign change destroys
Example 4. Show that equation (7) has no solution, and
choose x, y to make 5x + 6y < — 1000,

32 Minimizef=2x + 3y + 4zsubjecttog=x+y+z=1and
x, y, z 2 0. These constraints have multipliers 4, 20, 4, 20,
44 = 0. The equations are 2=4, + i,, , and 4=
A, + A4. Explain why 3; >0 and i, >0 and f;, = 2.

33 A wire 40" long is used to ecnclose one or two squares
(side x and side y). Maximize the total area x* + p* subject to
xz20,y20,4x+4y =40
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