CHAPTER 1

Introduction to Calculus

I 1.1 Velocity and Distance I

The right way to begin a calculus book is with calculus, This chapter will jump
directly into the two problems that the subject was invented to solve. You will see
what the questions are, and you will see an important part of the answer. There are
plenty of good things left for the other chapters, so why not get started?

The book begins with an example that is familiar to everybody who drives a car.
It is calculus in action—the driver sees it happening. The example is the relation
between the speedometer and the odometer. One measures the speed (or velocity);
the other measures the diszance traveled. We will write v for the velocity, and [ for
how far the car has gone. The two instruments sit together on the dashboard:

Fg. 1.1 Velocity v and total distance f (at one instant of time).

Notice that the units of measurement are different for v and . The distance [ is
measured in kilometers or miles (it is easier to say miles). The velocity v is measured
in km/hr or miles per hour. A unit of time enters the velocity but not the distance.
Every formula to compute » from f will have f divided by time.

The central question of calculus is the relation between v and f. 1
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Can you find v if you know f, and vice versa, and how? If we know the velocity over
the whole history of the car, we should be able to compute the total distance traveled.
In other words, if the speedometer record is complete but the odometer is missing,
its information could be recovered. One way to do it (without calculus) is to put in
a new odometer and drive the car all over again at the right speeds. That seems like
a hard way; calculus may be easier. But the point is that the information is there.
If we know everything about p, there must be a method to find f.

What happens in the opposite direction, when f is known? If you have a complete
record of distance, could you recover the complete velocity? In principle you could drive
the car, repeat the history, and read off the speed. Again there must be a better way.

The whole subject of calculus is built on the relation between v and f. The question
we are raising here is not some kind of joke, after which the book will get serious
and the mathematics will get started. On the contrary, | am serious now—and the
mathematics has already started. We need to know how to find the velocity from a
record of the distance. (That is called differentiation, and it is the central idea of
differential caleulus.) We also want to compute the distance from a history of the
velocity. {That is integration, and it is the goal of integral calculus.)

Diflerentiation goes from f to v; integration goes from » to f. We look first
at examples in which these pairs can be computed and understood.

CONSTANT VELOCITY

Suppose the velocity is fixed at v =60 (miles per hour). Then f increases at this
constant rate, After two hours the distance is f= 120 (miles). After four hours
f=1240 and after ¢t hours f=60t. We say that [ increases kinearly with time—its
graph is a straight line.

4 velocity v(r) distance fi)

60 Tt 1 = 6}

Area~:=240 :

> time /
2 4

Fig. 1.2 Constant velocity v = 60 and linearly increasing distance f= 60:.

Notice that this example starts the car at full velocity. No time is spent picking up
speed. (The velocity is a “step function.”) Notice also that the distance starts at zero;
the car is new, Those decisions make the graphs of v and [ as neat as possible. One
is the horizontal line v = 60. The other is the sloping line f= 60t. This v, f, t relation
needs algebra hut not calculus:

if v is constant and [ starts at zero then = bt

The opposite is also true. When S increases linearly, v is constant. The division by
time gives the slope. The distance is f; = 120 miles when the time is ¢; =2 hours.
Later f; = 240 at ¢, = 4. At both points, the ratio f/t is 60 miles/hour. Geometrically,
the velocity is the slope of the distance graph:

change in distance _ vt

slope = —— —=u
P change in time t
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60— v=60 7=20+ 601

Area 30

: - ,:—15
Area —15 1{2 —15 4 )
s (1R S - 5=-30 f=-30

Fig. 1.3 Straight lines f=20 4 60t (slope 60) and f= —30¢ (slope —30).

The slope of the [-graph gives the v-graph. Figure 1.3 shows two morce possibilitics:

1. The distance starts at 20 instead of 0. The distance formula changes from 60t
to 20+ 60t. The number 20 cancels when we compute change in distance—so
the slope is still 60.

2. When v is negative, the graph of f goes downward. The car goes backward and
the slope of f=—30tis v = — 30.

1 don't think speedometers go below zero. But driving backwards, it's not that safe
to watch. If you go fast enough, Toyota says they measure ‘““absolute values”—the
speedometer reads + 30 when the velocity is — 30. For the odometer, as far as [ know
it just stops. It should go backward.t

VELOCITY vs. DISTANCE: SLOPE vs. AREA

How do you compute f from ¢? The point of the question is to see f=ut on the
graphs. We want to start with the graph of v and discover the graph of /. Amazingly,
the opposite of slope is area.

The distance f is the area under the v-graph. When v is constant, the region under
the praph is a rectangle. Its height is », its width is ¢, and its area is ¢ times ¢. This is
integration, to go from v to f by computing the area. We are glimpsing two of the
central facts of calculus.

1A The slope of the f-graph gives the velocity v. The area under the v-graph
gives the distance f.

That is certainly not obvious, and I hesitated a long time before [ wrote it down in
this first section. The best way to understand it is to look first at more examples. The
whole point of calculus is to deal with velocities that are not constant, and from now
on v has several values.

EXAMPLE (Forward and back) There is a motion that you will understand right away,
The car goes forward with velocity ¥, and comes back at the same speed. To say it
more correctly. the celocity in the second part is — V. If the forward part lasts untii
t =3, and the backward part continues to t = 6, the car will come back where it started.
The total distance after both parts will be /=0,

+This actually happened in Ferris Buefier's Day Off, when the hero borrowed his father’s sports
car and ran up the mileage. At home he raised the car and drove in reverse. T forget if it
worked.
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} o(6) = slope of f(1) gy 1 FO
v locity V. locity -V
aron velocity YUYy
v 13 6
= f + y > f
area
arca 3 6
¥ i

Ag. 1.4  Velocities + ¥ and — V give motion forward and back, ending at f(6)=0.

The v-graph shows velocities + V and — V. The distance starts up with slope + V
and reaches f= 3V. Then the car starts backward. The distance goes down with slope
—V and returns to f=0at t=6.

Notice what that means. The total area “under™ the v-graph is zero! A negative
velocity makes the distance graph go downward (negative slope). The car is moving
backward. Area below the axis in the v-graph is counted as negative.

FUNCTIONS

This forward-back example gives practice with a crucially itnportant idea—the con-
cept of a *“function.” We seize this golden opportunity to explain functions:

The rumber v(t) is the value of the function v at the time ¢

The time ¢ is the inpuf to the function. The velocity v(z) at that time is the output.
Most people say ‘v of t”" when they read u(t). The number “v of 27 is the velocity
when t = 2. The forward-back example has v(2)= + V and v(4) = — V. The function
contains the whole history, like a memory bank that has a record of v at each .

It is simple to convert forward-back motion into a formula. Here is v(t):

+V if D<tr<3
v(t) = ? i =13

-V if 3<t<6

The right side contains the instructions for finding »(t). The input ¢ is converted into
the output + ¥V or — V. The velocity v(r} depends on t. In this case the function is
“discontinuous,” because the needle jumps at t = 3. The velocity is not defined at that
instant. There is no v(3). (You might argue that v is zero at the jump, but that leads
to trouble.) The graph of f has a corner, and we can’t give its slope.

The problem also involves a second function, namely the distance. The principie
behind f{r) is the same: f(1) is the distance at time t. 1t is the net distance forward,
and again the instructions change at t = 3. In the forward motion, f{f) equals Vit as
before. In the backward half, a calculation is built into the formula for f{t):

Pt if 0<r<g3
t=
/e Vi6—1) if 3<i<6

At the switching time the right side gives two instructions (one on each line). This
would be bad except that they agree: f(3)= 3V.t The distance function is “‘con-

+A function is only allowed one value f(t} or £{t) at each time 1.



1.1 Veloclly and Distance

tinuous.” There is no jump in f, even when there is a jump in ». After t = 3 the distance
decreases because of — Vt. At ¢t = 6 the second instruction correctly gives f{6}=0.

Notice something more. The functions were given by graphs before they were given
by formulas. The graphs tell you f and v at every time t—sometimes more clearly
than the formulas. The values f{t) and v(z) can aiso be given by tables or equations
or a set of instructions. (In some way all functions are instructions—the function
tells how to find f at time t.) Part of knowing j is knowing all its inputs and
outputs—its domain and range:

The domain of a furction is the set of inputs. The range is the set of outputs.

The domain of f consists of all times 0=t < 6. The range consists of all distances
0<f(t)< 3V. (The range of » contains only the two velocities +V and — V)
We mention now, and repeat later, that every “linear” function has a formula
S(ty=vt + C. Its graph is a line and v is the slope. The constant C moves the line up
and down. It adjusts the line to go through any desired starting point.

SUMMARY: MORE ABOUT FUNCTIONS

May I collect together the ideas brought out by this example? We had two functions
v and f. One was velocity, the other was distance. Each function had a domain,
and a range, and most important a graph. For the f-graph we studied the slope
{which agreed with v). For the v-graph we studied the area (which agreed with f).
Calculus produces functions in pairs, and the best thing a book can do early is to
show you more of them.

in input t — functionf{ — output f(t) in
the { input 2 —  functionv — output v(2) } the
domain input 7 - f()=2t+6 — f(H=2 range

Note about the definition of a functipn, The idea behind the symbol f(t) is absolutely
crucial to mathematics. Words don’t do it justice! By definition, a function is a “rule”
that assigns one member of the range to each member of the domain. Or, a function
is a set of pairs {t, f{r)) with no ¢ appearing twice. (These are “ordered pairs” because
we write t before f(r).) Both of those definitions are correct—but somehow they are
too passive,

In practice what matters is the active part. The number f{¢} is produced from the
number f. We read a graph, plug into a formula, solve an equation, run a computer
program. The input ¢ is “mapped” to the output f(t), which changes as ¢ changes.
Calculus is about the rate of change. This rate is our other function v.

[ fe—2y=21-3
range fin=2r+1 27 2 }
fn=-2=2r-1
| I ¥ 1T
range .
_ = domain
() f—— ¢ 0 t 4] + 4 {
domain | 1 l 2 3
1

Ag. 1.5 Subtracting 2 from [ aflects the range. Subtracting 2 from t aflects the domain.
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It is quite hard at the beginning, and not automatic, to see the difference between
f{ey— 2 and f(t — 2). Thosc arc both new functions, created out of the original f(r).
In f(r) — 2, we subtract 2 from all the distances. That moves the whole graph down.
In f{t—2), we subtract 2 from the time. That moves the graph over to the right.
Figure 1.5 shows both movements, starting from f{t)= 2: + 1. The formula to find
St —2)is 2(t — 2)+ 1, which is 2¢ — 3.

A graphing calculator also moves the graph, when you change the viewing window.
You can pick any rectangle A <t < B, C<fif)< D. The screen shows that part of
the graph. But on the calculator. the function f(t) remains the same. It is the axes that
get renumbered. In our figures the axes stay the same and the function is changed.

There are two more basic ways to change a function. (We are always creating new
functions—that is what mathematics is all about.) Instead of subtracting or adding,
we can multiply the distance by 2. Figure 1.6 shows 2f(¢). And instead of shifting the
time, we can speed it up. The function becomes f{2t). Everything happens twice as
fast (and takes haif as long). On the calculator those changes correspond to a
“zoom™ —on the § axis or the t axis. We soon come back to zooms.

67
woge | f 2fy = 4042
slope 4
37 3
range flry=2r+ 1 2 2 =44+ 1

slope 2 slope 4

1 1
dennain
[ v ——— () ——f () ——+—
domain | | 142

Fig. 1.4 Doubling the distance or speeding up the time doubles the slope.

1.1 EXERCISES

Each section of the book contains read-through questions. They {not —357). The slopes are __ 1 and _m

allow you to outline the section yourself—more actively than
reading a summary. This is probably the best way to remember o . The domain of f is the time interval

the important ideas. range is the distance interval __a . The range of v{t} is only

Starting from f{0)=0 at constant velocity v, the distance
function is fit1)=_0 . When f{r}=55r the velocity is
. When f{r)= 53t + 1000 the velocity is still __¢

and the starting value is f{0)=_d  [n each case r is the
of the graph of f When __t  is negative, the graph
of _ g goes downward. In that case area in the ¢-graph

r

. The distance
fi3y=__n . The area under the p-graph up to time 1.5 is

Thevalueof fity=3r+latt =215 f(2)=

- 19 equals f(__t ). The difference f(4) —f{l) =

is the change in distance, when 4 -- 1 is the change in
The ratio of those changes equals _ w , which is the
of the graph. The formula for f{r)+2 is 3¢+ 3 whereas

St +2)equals _ ¥y . Those functions have the same
Forward motion from f{0)=010 f(2)=10hasv=_ i . as f° the graph of f{r)+ 2 is shifted __ &

and f{t+2) 15

Then backward motion to f(d)=0 has v=__j . The dis- shifted _ 8 . The formula for f(5r) is __€

tance function is fi(ry= 5 for 0 <1 < 2 and then f{r}— _ k

. The formula
for 5f(r)is _ D . The slope has jumped from 3 to
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The set of inputs to a function is its _ ¥, The set of
outputs is its _ & . The functions f{t)=7+ 3(t —2) and
J{@)=vt + Care _ H__. Their graphs are __| _ with slopes
equal to _ J  and _ K . They arc the same function, if

v=_1

and C=_M

Draw the velocity graph that poes with each distance graph.

1 E E
60 T 20 b
la 10 t f
+ } ¥ i !
2 4 6 1 2
2 301/ !
20+ ] 2b
101 2a /
+ + ¥ I3 + } »> }
10 20 30 T 2r ar

3 Write down three-part formulas for the velocities »{t) in
Problem 2, startmg from s{t) =2 for 0 <t < 10,

4 Thedistance in 1b starts with f{t)=10— 10t for0 e < 1.
Give a formula lor the second part.

S [n the middle of graph 2a find f(15) and f{12) and f{¢).
6 In graph 2b find f(14T). If T=13 what is f(4)?

7 Find the average speed between t =0 and t =3 in graph
la. What is the speed at ¢ = 5?

8 What is the average speed between t =0 and ¢ = 2 in graph
1b? The average speed is zero between t =1 and ¢ = .

9 (recommended) A car goes at speed v =20 into a brick
wall at distance f=4. Give two-part formulas for »{t) and
J(¢) {before and after), and draw the graphs.

10 Draw any reasonable graphs of v(t) and f(z) when
{a} the driver backs up, stops to shift gear, then goes fast;
{b) the driver slows to 55 for a police car;
(¢} in a rough gear change, the car accelerates in jumps;
(d) the driver waits for a light that turns green.

11 Your bank account eamns simple interest on the opening
balance f(0). What are the interest rates per year?

%
fn 80

y 2 : l 2

12 The earth’s population is growing at = 100 million a
year, starting from f= 5.2 billion in 1990. Graph f{t) and find
S(2000).

Draw the distance graph that goes with each velocity graph
Start from /=0 at ¢t = 0 and mark the distance.

13 [ 0
30J[ 30 1
—t—-
I R 2 4 6
13a -30 13b
14 v v
404 40
20 4 i
} > f 1
12 T 2T 3T
-4) 14a 14b

15 Write down lormulas for »(t) in Problem 14, starting with
p=—40 for 0 <t < 1. Find the average velocities to ¢t =2.5
and t=13T.

16 Give 3-part formulas for the areas f(t) under v(r} in 13.

17 The distance in 14a stars with f(f}=—40tfor 0 <L,
Find f(r)in the other part, which passes through f=0att =2,

18 Draw the velocity and distance graphs if o{t}=8 for
D<t<? f()=20+tfor2<5e<3,

19 Draw rough graphs of y= ﬁ and y=,/x—4 and
y= \/; —4. They are *‘half-parabglas™ with infinite slope at
the start.

20 What is the break-even point if x yearbooks cost
$1200 + 30x to produce and the income is 40x? The slope of
the cost line is (cost per additional book). If it goes
above you can't break even.

21 What are the domains and ranges of the distance functions
in 14a and 14b—all values of t and f(¢} if f{0)=(Q?

22 What is the range of v{t) in 14b? Why is t = [ not in the
domain of v(t) in 14a?

Problems 2328 involve linear functions f(t) = vt + C. Find the
constants v and C.

23 What linear function has f(0)=13 and f(2)=—11?

24 Find two linear functions whose domain is 0< ¢ <2 and
whose range is 1 £ f(1) <9

25 Find the linear function with f{1) =4 and slope 6.
26 What functions have f(t + 1) =f{t) + 27

27 Find the linear function with f{t+2)=f(t)+6 and
S =10.

28 Find the only f= ot that has f{2t) = 4f(1}. Show that every
J=1%at? has this propenty. To go times as far in
twice the time, you must accelerate.
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29 Sketch the graph of f(t) =|5—2¢| (absolute value) for
|t| < 2 and find iis slopes and range.

30 Sketch the graph of f(tf)=4 —~¢—{4—¢|for 2< 1< 5and
find its slope and range,

31 Suppose v =38 uptotime T, and after that v = —2. Starting
from zero, when docs f return to zero? Give formulas for u(z)
and f{z).

32 Suppose v=13 up to time T=4. What new velocity wiil
lead to f{7)=30if f{0} =07 Give formulas for o(t} and f{#).

33 What function F{C) converts Celsius temperature C to
Fahrenheit temperature F? The slope is which is
the number of Fahrenheit degrees equivalent to 1°C.

3 What function C(F) converts Fahrenheit to Celsius (or
Centigrade), and what is its slope?

35 What function converts the weight w in grams to the
weight f{w} in kilograms? Interpret the slope of f{w).

36 (Newspaper of March 1989) Ten hours after the accident
the alcohoi reading was .061. Blood alcohol is eliminated at
.D15 per hour. What was the reading at the time of the acci-
dent? How much later would it drop to .04 {the maximum set
by the Coast Guard)? The usual limit on drivers is .10 percent.

Which points hetween ¢ =0 and ¢ = 5 can be in the domain of
S{6)? With this domain find the range in 37-42.

T fit)=t—1 B r=1//t—1

39 f(r)=1t—4| (absolute value) 40 f(£)= 1/(t — 4)?

41 flin=2 42 f=2""

43 (a) Draw the graphof f(z) = 4t + 3 with domain 0 < 1 2.
Then give a formula and graph for
(b fin+1 © fit+ D)
(d) 4f(0) (e) san.

44 (a) Draw the graph of U{t) = step function = {0 for t < 0,
I for t =0}. Then draw
(b} U(t)+2
(d) 3U{)

(e} Ult+2)
{e) U

1.2 Calculus Without Limits

45 {a) Draw the graph of f(t)=t+1 for —1<t< 1. Find
the domain, range, slope, and formula for

(b) 2fey (@ Sfie—3) d) =S} (& f(=1)
46 X f(r)=1t—1 what are 2f(3t) and f{1 —¢) and f(t —1)}?
47 In the forward-back example find f(4T}and f(3 T). Venfy

that those agree with the areas “under” the p-graph in
Figure 1.4,

48 Find formulas for the outputs f;(¢) and f5(t) which come
from the input &:
(1) inside = input*3 {2) inside + input + 6
output = inside + 3 output « inside*3

Note BASIC and FORTRAN (and calculus itself) use =
instead of «. But the symbol « or = is in some ways better.
The instruction t « t + 6 produces a new ¢ equal to the old ¢
plus six. The equation ¢ =t + 6 is not intended.

49 Your computer can add and multiply. Starting with the
number ! and the input called ¢, give a list of instructions to
tead to these outputs:

L=+t LO=HULE) HO=AE+1)

50 1n fifty words or less explain what a function is.

The last questions are challenging but possible.
51 If f(r) =3t — 1 for 0 <t <2 give formulas (with domain)
and find the slopes of these six functions:

@ fit+2) (b} f{t)+2 © 2/()

(d) f(21) © fi=1) f} U@
52 For f{t)=vt + C find the formulas and slopes of

(@) 3/ +1 (b} f(3t+1) (¢) 27(4r)

d f(=0 €} S-S0 ) fUf()).
53 (hardest) The forward-back function is f(t)=2t for
0553, f()=12—2t for 3<t<6. Graph f{f{1)) and find
its four-part formula, First try t=1.5 and 3.
54 (a) Why is the letter X not the graph of a function?

(b} Which capital letters are the graphs of functions?

(c) Draw graphs of their slopes.

The next page is going to reveal one of the key ideas behind calculus. The discussion
is just about numbers—functions and slopes can wait. The nuombers are not even
special, they can be any numbers. The crucial point is to look at their differences:

Suppose the numbers are f= 0 2 6 T 4 9

Their diflerences are v =

2 4 1 -3 5

The differences are printed in between, toshow 2 —0=2and6—-2=4and7-6=1.
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Notice how 4 — 7 gives a negative answer — 3. The numbers in f can go up or down,
the differences in v can be positive or negative. The idea behind calculus comes when

you add up those differences:
24+4+1-3+4+5=9

The sum of differences is 9. This is the last number on the top line (in f). Is this an
accident, or is this always true? If we stop earlier, after 2+ 4 + 1, we get the 7 in f.
Test any prediction on a second example:

Suppose the numbers are f=1 3 7 8 5 10
Their differences are v = 2 4 1 =3 5

The f’s are increased by 1. The differences are exactly the same—no change. The
sum of differences is still 9. But the last f is now 10. That prediction is not right, we
don’t always get the last f.

The first f is now 1. The answer 9 (the sum of differences) is 10 — 1, the last f
minus the first f. What happens when we change the f’s in the middle?

Suppose the numbers are f= 1 5 12 7 10
Their differences are v = 4 7 =53

The differences add to 4 +7 — 5+ 3 =9. This is still 10— 1. No matter what f’s we
choose or how many, the sum of differences is controlled by the first f and last f.
If this is always true, there must be a clear reason why the middle f’s cancel out.

The sum of differences is (5— 1)+ (12—=5)+(7—12)+(10—-7)=10—1.

The 5’s cancel, the 12’s cancel, and the 7’s cancel. It is only 10 — 1 that doesn’t cancel.
This is the key to calculus!

1B The differences of the s add up to (fias — fiirst)-

EXAMPLE1 The numbers grow linearly: f= 2 3 4 5 6 7
Their differences are constant: v = 1 1 1 1 1

The sum of differences is certainly 5. This agrees with 7 — 2 =f,.,, — first. The numbers
in v remind us of constant velocity. The numbers in f remind us of a straight line
f=uvt+ C. This example has v=1 and the f’s start at 2. The straight line would
come from f=1t+ 2.

EXAMPLE 2 The numbers are squares: f= 0 1 4 9 16
Their differences grow linearly: v=1 3 5 7

1 +3+ 5+ 7 agrees with 4> =16. It is a beautiful fact that the first j odd numbers
always add up to j%. The v’s are the odd numbers, the f’s are perfect squares.

Note The letter j is sometimes useful to tell which number in f* we are looking at.
For this example the zeroth number is f, =0 and the jth number is f;=j*. This is a
part of algebra, to give a formula for the f’s instead of a list of numbers. We can also
use j to tell which difference we are looking at. The first v is the first odd number
v, = l. The jth difference is the jth odd number v;=2j—=1. (Thus v, is 8 — 1 =7.) It
is better to start the differences with j = 1, since there is no zeroth odd number v,.

With this notation the jth difference is v;=f;—f;_,. Sooner or later you will get
comfortable with subscripts like j and j — 1, but it can be later. The important point
is that the sum of the v’s equals fi, — frir.- We now connect the v’s to slopes and the
f’s to areas.
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/ f;=16
vy=71 —
UJ:Z;_] // f;=_.“'
;=5 - g
: )& -f,‘_g
v, =3 ‘
5 h=4
U]=I - i
+ : . t h=1 i + - > |
1 2 3 4 1 2 3 4

Fig. 1.7 Linear increase in v= 1,3, 5, 7. Squares in the distances f=0, 1,4, 9, 16.

Figure 1.7 shows a natural way to graph Example 2, with the odd numbers in v and

the squares in f. Notice an important difference between the v-graph and the f-graph.

The graph of [ is “piecewise linear.” We plotted the numbers in f and connected

them by straight lines. The graph of v is “piecewise constant.” We plotted the differ-

ences as constant over each piece. This reminds us of the distance-velocity graphs,

when the distance f(t) is a straight line and the velocity v(t) is a horizontal line.
Now make the connection to slopes:

distance up change in f
. = =
distance across  change in t

The slope of the f~graph is

Over each piece, the change in t (across) is 1. The change in f (upward) is the difference

that we are calling v. The ratio is the slope v/1 or just v. The slope makes a sudden

change at the breakpoints r=1,2,3,.... At those special points the slope of the

f-graph is not defined—we connected the v’s by vertical lines but this is very

debatable. The main idea is that between the breakpoints, the slope of f(t) is v(t).
Now make the connection to areas:

The total area under the v-graph is [, — frirst-

This area, underneath the staircase in Figure 1.7, is composed of rectangles. The base
of every rectangle is 1. The heights of the rectangles are the v’s. So the areas also
equal the v's, and the total area is the sum of the v's. This area is fi,q — frirec-

Even more is true. We could start at any time and end at any later time
—not necessarily at the special times r=0, 1,2, 3,4, Suppose we stop at t=3.5.
Only half of the last rectangular area (under v = 7) will be counted. The total area is
1 +3+ 5+ 3(7) = 12.5. This still agrees with fi,¢ — fiire = 12.5— 0. At this new ending
time ¢ = 3.5, we are only halfway up the last step in the f-graph. Halfway between
9 and 161s 12.5.

AC  The v’s are slopes of f(t). The area under the v-graph is f(t.nq) —f (tyart).

This is nothing less than the Fundamental Theorem of Calculus. But we have only
used algebra (no curved graphs and no calculations involving limits). For now the
Theorem is restricted to piecewise linear f(z) and piecewise constant v(t). In Chapter 5
that restriction will be overcome.

Notice that a proof of 1 +3 + 5+ 7 =47 is suggested by Figure 1.7a. The triangle
under the dotted line has the same area as the four rectangles under the staircase.
The area of the triangle is - base * height = %+4 -8, which is the perfect square 42
When there are j rectangles instead of 4, we get 4+ 2j=j? for the area.
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The next examples show other patterns, where f and v increase exponentially or
oscillate around zero. I hope you like them but I don’t think you have to learn them.
They are like the special functions 2* and sin t and cos t—except they go in steps.
You get a first look at the important functions of calculus, but you only need algebra.
Calculus is needed for a steadily ckanging velocity, when the graph of [ is carved,

The last example will be income tax—which really does go, in steps, Then Sec-
tion 1.3 will introduce the slope of a curve. The crucial step for curves is working
with fimits. That will take us from algebra to calculus,

EXPONENTIAL VELOCITY AND DISTANCE

Start with the numbers f=1, 2, 4, 8, 16. These are “powers of 2.” They start with the
zeroth power, which is 2° = 1. The exponential starts at 1 and not 0. Alfter j steps there
are j factors of 2, and f; equals 2/. Please recognize the difference between 2j and j*
and 2. The numbers 2j grow linearly, the numbers j? grow quadratically, the numbers
2/ grow exponentially. At j =10 these are 20 and 100 and 1024. The exponential 2/
quickly becomes much larger than the others.

The differences of =1, 2,4, 8, 16 are exactly v = 1, 2, 4, 8. We get the same beauti-
ful numbers. When the (s are powers of 2, so are the v's. The formula v;=2/"" is
slightly different from f; =2/, because the first v is numbered v,. (Then v, =2°=1.
The zeroth power of every number is 1, except that 0° is meaningless.) The two graphs
in Figure 1.8 use the same numbers but they look different, because f is piecewise
linear and v is piecewise constant.

.=2j_|
UJ

v,=21
v =t ——l
1 2 3 4 i 2 3 4
HAg. 1.8 The velocity and distance grow exponentially {powers of 2).

Where will calculus come in? It works with the smooth curve f(1) = 2. This expo-
nential growth is critically important for population and money in a bank and the
nationai debt. You can spot it by the following test: v(t) is proportional to f(f).

Remark The function 2' is trickier than t2. For f=t? the slope is v=2¢, It is
proportional to t and not t2. For f=2' the slope is v=c2, and we won’t find the
constant ¢ = .693 ... until Chapter 6. {The number ¢ is the natural logarithm of 2.}
Problem 37 estimates ¢ with a calculator—the important thing is that it’s constant.

OSCILLATING VELOCITY AND DISTANCE

We have scen a forward-back motion, velocity V followed by — V. That is oscillation
of the simplest kind. The graph of f goes linearly up and linearly down. Figure 1.9
shows another oscillation that returns to zero, but the path is more interesting.

The numbers in f are now 0,1, 1,0, —1, —1, 0. Since fs =0 the motion brings us
back to the start. The whole oscillation can be repeated.

11
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The differences in v are 1,0, —1, —1,0, 1, They add up to zero, which agrees with
Jass — frira- It 18 the same oscillation as in f (and also repeatabie), but shifted in time.

The f-graph resembles (roughly) a sine curve, The v-graph resembles (even more
roughly) a cosime curve. The waveforms in nature are smooth curves, while these are
“digitized”—the way a digital watch goes forward in jumps. You recognize that the
change from analog to digital brought the computer revolution. The same revolution
is coming in CD players. Digital signals (off or on, 0 or 1} seem to win every time.

The piecewise v and [ start again at ¢ = 6. The ordinary sine and cosine repeat at
t = 2n. A repeating motion is periodic—here the “period™ is 6 or 2z, (With ¢ in degrees
the period is 360-—a full circle. The period becomes 2n when angles are measured in
radians. We virtually always use radians—which are degrees times 27/360.) A watch
has a period of 12 hours. If the dial shows am and PM™, the period is

w1} it

i ﬁ 5 6 ' o v
-] * 4 1

Fig. 1.9 Piecewise constant “cosine” and piecewise linear “sine.” They both repeat.

A SHORT BURST OF SPEED

The next example is a car that is driven fast for a short time. The speed is V until
the distance reaches =1, when the car suddenly stops. The graph of f goes up
linearly with slope V, and then across with siope zero:

V upto t=T Vit upto t=T
v(t) = fi=
0 after t=T 1 after =T

This is another example of “function notation.” Notice the generai time ¢ and the
particular stopping time T. The distance is f(¢). The domain of f (the inputs) includes
all times ¢ 2 0. The range of [ (the outputs) includes all distances 0 < f< 1.

Figure 1.10 allows us to compare three cars—a Jeep and a Corvette and a Maserati.
They have different speeds but they all reach f= 1. So the areas under the s-graphs
are all 1. The rectangles have height V and base T=1/V.

Vi EQUAL AREAS EQUAL DISTANCES "

Maserati delta :: function

n step

Vol -} - i+ ‘

¢ j| Corvette : function
v, t !
I Jeep i
— —_—
Ty T¢ L Tu T¢ T,

Ag. 1.40 Bursts of speed with Vi, Ty, = Vo Te = ¥, T; = L. Step function has infinite slope.

Optional remark 1t is naturai to think about faster and faster speeds, which means
steeper slopes. The f-graph reaches ] in shorter times. The extreme case is a sfep
JSunction, when the graph of f goes straight up. This is the unit step U{t), which is
zero up to t =0 and jumps immediately to U =1 for t > 0.
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What is the slope of the step function? 1t is zero except at the jump. At that moment,
which is t = 0, the slope is infinite. We don’t have an ordinary velocity v(t)—instead
we have an impulse that makes the car jump. The graph is a spike over the single
point t =0, and it is often denoted by é6—so the slope of the step function is called
a “delta function.” The area under the infinite spike is 1.

You are absolutely not responsible for the theory of delta functions! Calculus is
about curves, not jumps.

Qur last example is a real-world application of slopes and rates—to explain “how
taxes work.” Note especially the difference between tax rates and tax brackets and
total tax. The rates are v, the brackets are on x, the total tax is f.

EXAMPLE 3 Income tax is piecewise linear. The slopes are the tax rates .15, .28, 31.

Suppose you are single with taxable income of x dollars (Form 1040, line 37—after
all deductions). These are the 1991 instructions from the Internal Revenue Service:

If x is not over $20,350, the tax is 15% of x.
If $20,350 < x < $49,300, the tax is $3052.50 4+ 28% of the amount over $20,350.
If x is over $49,300, the tax is $11,158.50 + 31% of the amount over $49,300.

The first bracket is 0 < x < $20,350. (The IRS never uses this symbol <, but I think
it is OK here. We know what it means.) The second bracket is $20,350 < x < $49,300.
The top bracket x > $49,300 pays tax at the top rate of 31%. But only the income in
that bracket is taxed at that rate.

Figure 1.11 shows the rates and the brackets and the tax due. Those are not average
rates, they are marginal rates. Total tax divided by total income would be the average
rate. The marginal rate of .28 or .31 gives the tax on each additional dollar of income—
it is the slope at the point x. Tax is like area or distance—it adds up. Tax rate is like
slope or velocity—it depends where you are. This is often unclear in the news media.

folen tax to pay flx)
Seem— p 180 119
: 'u'r ss 3| 11,158 tax rate = 31%
: e slope .28
area |
180 | _
area | | f(2)=40 : 3652 15% bl
40 1 Ly _ slope 20 ; 2, . ) et
2 . < 5 20350 49,300

Fig. 1.41 The tax rate is v, the total tax is f. Tax brackets end at breakpoints.

Question What is the equation for the straight line in the top bracket?

Answer The bracket begins at x = $49,300 when the tax is f(x)=$11,158.50. The
slope of the line is the tax rate .31. When we know a point on the line and the slope,
we know the equation. This is important enough to be highlighted.

1D For x in the top bracket the tax is f(x)=$11,158.50 + .31 (x — $49,300).
This is the tax on $49,300 plus the extra tax on extra income.

Section 2.3 presents this “point-slope equation” for any straight line. Here you see it
for one specific example. Where does the number $11,158.50 come from? It is the tax
at the end of the middle bracket, so it is the tax at the start of the top bracket.
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Figure 1.11 also shows a distance-velocity example. The distance at t=2 is
J(2) =40 miles. After that time the velocity is 60 miles per hour. So the line with
slope 60 on the f-graph has the equation

() =starting distance + extra distance = 40 + 60(t — 2).
The starting point is {2, 40). The new speed 60 multiplies the extra time ¢ — 2. The
point-slope equation makes sense. e row review this section, with comments.

Central idea Start with any numbers in [, Their differences go in v. Then the sum
of those differences is f,; — friret-

Subscript notation The numbers are fj, f;, ... and the first difference is v, =1, —f;.
A typical number is f; and the jth difference is v;=f; —f;_ ;. When those differences
are added, all f’s in the middle (like f,) cancel out:

o0t =L L)+ (- L)+ H L fim) = e
Examples f,=j or j* or 2. Then v;= | (constant) or 2j — 1 (odd numbers) or 2/ 1,

Functions Connect the f's to be piecewise linear. Then the slope v is piecewise
constant. The area under the v-graph from any ¢, to any t.,q equals f{t..4) —f{tyec):

Units Distance in miles and velocity in miles per hour. Tax in dollars and tax rate
in (dollars paid)/(dollars earned). Tax rate is a percentage like .28, with no units.

1.2 EXERCISES

Read-through questions

Start with the numbers f=1,6,2, 5. Their differences are
v=_0  Thesum of those differencesis __ & . This is equal
t0 fl, minus € . The numbers 6 and 2 have no effect on
this answer, because in (6 — 1) + (2 — 6) + (5 — 2} the numbers
6and 2 _d ., The slope of the line between f(0)=1 and

f{l)==61is _#® . The equation of that line is f{f)=_ !

With distances 1, 5, 25 at unit times, the velocities are
@__ . These are the _ b of the f~graph. The slope of the

tax graph is the tax __ 1 . If f(¢) is the postage cost for ¢
ounces Or ¢ grams, the slope is the _ ]  per _ k , For
distances 0, 1, 4,9 the velocities are __{ . The sum of the

first j odd numbers is f;=_m _ Then fsis _n _ and the
velocity vyp 15 _ ©

The piecewise linear sine has slopes __ B, Those form a
piecewise __Q___ cosine. Both functions have __r_ equal to
6, which means that f{t +6)=__s _for every 1. The veloci-
tiesv=1,2,4,8,... have y;=_ Y . In that case f,=1 and
Si=_4 . Thesumof1,2,4,8,16is_v . The difference
2/—2/"1 equals _ w ., After a burst of speed V to time T,
the distance is __x _ If f(T) =1 and V increases, the burst
lasts only to T=_¥ . When V approaches infinity, f{(t)
approaches a __ ¢  function. The velocities approach a

A__ function, which is concentrated at ¢ =0 but has area

B under its graph. The slope of a step function is _ €

Problems 1-4 are about numbers [ and differences v.

1 From the numbers /=0, 2, 7, 10 find the differences ¢ and
the sum of the three v's. Write down another f that leads
to the same »'s. For f=0,3,12,10 the sum of the ¢'s is
still

2 Starting from f=1, 3, 2, 4 draw the f-graph (linear pieces)
and the p-graph, What are the areas “under” the s-graph that
add to 4 — I? If the next number in f is 11, what is the area
under the next »?

3 From v=1,2,1,0, —1 find the f’s starting at f;=13.
Graph v and f. The maximum value of f occurs when
= . Where is the maximum f whenv=1,2,1, -1?

4 For f=1,b,c,7 find the differences v,, v, 0, and add
them up. Do the same for f=a,b,¢, 7. Do the same for
f=a,b,c,d

Problems 5--11 are about linear fuections and constant slopes.

5 Write down the slopes of these linear functions:
) fy=11r () f(H=1-2t () f{)=4+5(t—6).
Compute f(6) and f(7) for each function and confirm that
J (7 —f(6) equals the slope.

6 If f()=5+3(t—1) and g(t)=15+2.5(¢—1) what is
h{t) = /() — g(t)? Find the slopes of f, g, and h.
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7 Suppose v(t)=2fort <5 and v(t)=3 fort> 5.
(a) ¥ f{0)=0 find a two-part formula for f(z).
(b) Check that f(10) equals the area under the graph of
u(t) (two rectangles) up to ¢ =10.

8 Suppose oft) = 10 for ¢ < 1/10, v{t) =0 for ¢ > 1/10, Start-
ing from f(0)=1 find f{t} in two pieces,

9 Suppose g{t) =2t + 1 and f(t)= 4. Find g(3) and f(g(3))
and f(g(r}). How is the slope of f(g(t)) related to the slopes
of f and g?

10 For the same functions, what are f{3) and g(f(3)) and

g(f(1))? When t is changed to 4¢, distance increases
times as fast and the velocity is multiplied by

11 Compute f(5) and f(8) for the functions in Problem 5.
Confirm that the slopes v agree with

_ f(8})—f(6) changein f
" 8-6  chamgeint¢’

slope

Problems 12-18 are based on Example 3 about income taxes.

12 What are the income taxes on x=35§10,000 and
x =$30,000 and x = $50,0007

13 What is the equation for income tax f(x} in the second
bracket $20,350 £ x < $49,3007 How is the number 11,158.50
connected with the other numbers in the tax instructions?

14 Wrile the tax function F(x) for 2 married couple if the IRS
treats them as two single taxpayers each with taxable income
x/2. (This is not done.)

15 In the 15% bracket, with 5% state tax as a deduction, the
combined rate is not 20% but . Think about the tax
on an extra $100.

16 A piecewise linear function is continwous when f(t) at the
end of cach interval equals f(t) at the start of the following
interval. If f(f}=5t up to t =1 and v(t)=2 for ¢ > 1, define
f beyond ¢t=1 so it is {a) continuous {b)} discontinuous.
(c) Define a tax function f(x) with rates .15 and .28 so you
would lose by earning an extra dollar beyond the breakpoint.

17 The difference between a tax credit and a deduction from
income is the difference between f(x) — c and f{x — d). Which
is more desirable, a credit of ¢ =%$1000 or a deduction of
d = %1000, and why? Sketch the tax graphs when f(x)=.15x.

18 The average tax rate on the taxable income x is a{x) =
S (x){x. This is the slope between {0, 0) and the point (x, f(x)),
Draw a rough graph of a(x). The average rate a is below the
marginal rate v because .

Problems 19-30 involve oumbers [, f,. f, ... and their differ-
ences v; =f; — f;_. They give practice with subscripts 0, ._., j.

19 Find the velocities vy, v, v; and formulas for »; and f}:

@ f=1,357... b f=01,01,.. ) f=0424,..

20 Find f;, f,, f; and a formula for f; with fo=0:
@ v=1,248, .. ®) v=—1,1,—1,1, ...
21 The areas of these nested squares are 12,22, 32, ..., What

are the areas of the L-shaped bands (the differences between
squares)? How does the figure show that | + 34 54 7=427

7

21 From the area under the staircase (by rectangles and then
by triangles) show that the first j whole numbers 1 to j add
up to 3i2+ 4, Find 1+ 2+ - + 100,
2 1f v=1,3,5,... then' ;=72 I v=1,1,1,... then f;=
. Add those to find the sum of 2,4, 6, ..., 2j. Divide

by 2 to find the sum of 1,2, 3, ..., j. (Compare Problem 22.)
24 True (with reason) or falkse (with example).

(a) When the f’s are increasing so are the v's.

(b) When the »’s are increasing so are the fs.

(c) When the f’s are periodic so are the v's.

{d) When the v's are periodic so are the J™s.

25 If f{ty=t? compute f(99) and f(101). Between those
times, what is the increase in f divided by the increase in ¢?

26 If f{)=1¢*+1¢, compute f(99) and f(101). Between those
times, what is the increase in f divided hy the increase in ¢?

27 1 f;=j*+j+1 find a formula for v;.

28 Suppose the s increase by 4 at every step. Show by
example and then by algebra that the “second diflerence”

Siv1—2fi+f;-1 equals 4.
29 Suppose fyb=0and thervsare 1,4, 4,4, 1.1, . .... For
which j does f; =57

30 Show thatay=f;. —2f;+f;-1 alwaysequals v;,, —v;. If
v is velocity then a stands for .

Problems 31-34 involve periodic s and v’s (like sin ¢ and

cos t).

31 For the discrete sine f=0,1,1,0, —1, —1,0 find the
second differences a, =f, — 2f; + fpand a; =f; — 2f; + f; and
a;. Compare g, with f}.

32 If the sequence ¢, 13, ... has period 6§ and w,, w,, ... has
peried 10, what is the period of vy + wy, v; + w,, .7

33 Draw the graph of f{¢) starting from f; =0 when v =1,
—1, =1, 1. If v has period 4 find f(12), f£(13), f(100.1).

15
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3 Graph f{) from =010 fy=4 whenv=1,2,1,0. If v
has period 4, find f(12) and f(14) and f(16). Why doesnt f
have period 47

Problems 3542 are about exponential v’s and (s,

35 Find the s for f=1,3,9, 27 Predict v, and v;. Algebra
gives 3 — 31 = (3 - )3/~ 1,

3% Find 1 +2+4+ - +32andalso [+4+4+ - +4.

37 Estimate the slope of f(t)=2% at t =0. Use a calculator
to compute (increase in f)/(increase in t) when ¢ is small:
—fy 2-1 211 20—
=1 _2-1

2.001 _ |
7 1 7 20— and g

38 Suppose fo=1and v;=2f;_,. Find f,.
39 (a) From f=1,4, 1, § find v, v, v; and predict v;.
(b) Check f_} '_fa =0+ U+ 0; and ,)':"_J'_’f—l =Uj.
40 Suppose v;=r/, Show that f;=(+*'-1)/(r—1) starts

from fo=1 and has f;—f,_, =v;. (Then this is the correct
Si=1+4r+ < +ri=sum of a geometric series.)

41 From f;=(—I) compute v;. What is v, + v, + --- +1,?
42 Estimate the slope of f(t)=¢' at r =0, Use a calculator
that knows e (or else take e = 2,78) to compute

JO—fO) _e— el —1

1 E'm—l
— =——1 and K and o

Problems 43-47 arc about U(r) =step from 0 to 1 at ¢ =0.

43 Graph the four functions U{t — tyand U(¢) —2 and U(3¢)
and 4U{t). Then graph f(1)=4U3t-1)—-2.

1.3 The Velocity at an Instant

44 Graph the square wave U{t) — U(t — 1). I this is the veloc-
ity v(t), graph the distance f{¢). If this is the distance f{t),
graph the velocity.

45 Two bursts of speed lead to the same distance f= 10
v= to ¢ =.001
As V- @ the limit of the f{t)s is

v=VFiot=

46 Draw the staircase function U(t) + Ut — i)+ Ut — 2). Its
slope is a sum of three functions.

47 Which capital letters like L are the graphs of functions
when steps are allowed? The slope of L is minus a delta func-
tion. Graph the slopes of the others.

48 Write a subroutine FINDY whose input is a sequence
Jfos f1, ... fx and whose output is v, v, ..., vy. Include
graphical output if possible. Test on f;=2j and j* and 2/,

49 Write a subroutine FINDF whose input is oy, ..., by 2nd
fo. and whose output is f, f;, ..., fx. The default value of f;
is zero. Include graphical output if possible. Test v;=j.

50 If FINDYV is applied to the output of FINDF, what
sequence is returned? If FINDF is applied to the output of
FINDY, what sequence is returned? Watch f,,.

51 Arrange 2 and j2 and 2/ and ./j in increasing order
{a) when j is large; j=9 (b} when j is small: j=4.

§2 The average age of your family since 1970 is a piecewise
linear function A(t). Is it continuous or does it jump? What
is its slope? Graph it the best you can,

We have arrived at the central problems that calcujus was invented to solve. There
are two questions, in opposite directions, and [ hope you could see them coming.

1. If the velocity is changing, how can you compute the distance traveled?
2. If the graph of f{t) is not a straight line, what is its slope?

Find the distance from the velocity, find the velocity from the distance. Our goal is
to do both-—but not in one section. Calculus may be a good course, but it is not
magic. The first step is to let the velocity change in the steadiest possible way.

Question 4 Suppose the velocity at each time t Is v(t) = 2t. Find f(1).

With v= 2t, a physicist would say that the acceleration is constant (it equals 2). The
driver steps on the gas, the car accelerates, and the speedometer goes steadily up.
The distance goes up too—faster and faster. If we measure t in seconds and v in feet
per second, the distance f comes out in feet. After 10 seconds the speed is 20 feet
per second. After 44 seconds the speed is 88 feet/second (which is 60 miles/hour).
The acceleration is clear, but how far kas the car gone?



1.3 The VelocHy of an Instant

Question 2 The distance traveled by time t is f(t) = t*. Find the velocity oft).

The graph of f(¢t) =t is on the right of Figure 1.12. Tt is a parabola. The curve starts
at zero, when the car is new. At ¢ = 5 the distance is f= 25. By £ = 10, f reaches 100,

Velocity is distance divided by time, but what happens when the speed is changing?
Dividing f= 100 by t= 10 gives v= 10—the average velocity over the first ten
seconds, Dividing f= 121 by ¢ = 11 gives the average speed over 11 seconds. But how
do we find the instantaneous velocity—the reading on the speedometer at the exact
instant when ¢t = 10?

: change in slope 2: + A
; distance approaches
V(42 -2 v="2

2tk + B2

lime f f r+h t

Ag. 1.12 The velocity v = 2¢ is linear. The distance /=t is quadratic.

I hope you see the problem. As the car goes faster, the graph of t? gets steeper—
because more distance is covered in each second, The average velocity between t = 10
and t =11 is a good approximation—but only an approximation—to the speed at
the moment ¢ = 10. Averages are easy to find:

distance at t =10 is f(10) = 10 = 100 distance at t= 11 is f(11)= 112 =121

11— (1 121 - 100
average velocity is il I 1)_{(() 0_ I =

21

The car covered 21 feet in that 1 second. Its average speed was 21 feet/second. Since
it was gaining speed, the velocity at the beginning of that second was below 21,

Geometrically, what is the average? It is a slope, but not the slope of the curve.
The average velocity is the slope of a straight line. The line goes between two points
on the curve in Figure 1.12. When we compute an average, we pretend the velocity
is constant—so we go back to the easiest case. It only requires a division of distance
by time:

, change in
average velocity = change in f

(1)

change in t

Calculus gnd the Law You enter a highway at 1:00. If you exit 150 miles away at
3:00, your average speed is 75 miles per hour. I'm not sure if the police can give you
a ticket. You could say to the judge, *“When was [ doing 757" The police would have

17
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to admit that they have no idea—but they would have a definite feeling that you
must have been doing 75 sometime.t

We return to the central problem—computing ©(10) at the instant t =10. The
average velocity over the next second is 21. We can also find the average over the
half-second between t = 10.0 and ¢ = 10.5. Divide the change in distance by the change
in time:

£10.5) - f(10.0) _ (10.5 — (10.0)* 11025 - 100
10.5-10.0 5 5

That average of 20.5 is closer to the speed at ¢ = 10. It is still not exact.

The way to find v(10) is to keep reducing the time interval. This is the basis for
Chapter 2, and the key to differential calculus. Find the slope between points that are
closer and closer on the curve. The “limit™ is the slope at a single point.

=20.5,

Algebra gives the average velocity between 1 = 10 and any later time ¢t =10+ h.
The distance increases from 10% to (10 + k)%, The change in time is k. So divide:

10+ H)2 — 10 100+ 20h+ A% — 100
Uaveragc=( 0 11 0 = 0 h =20+ h (2}

This formula fits our previous calculations. The interval from ¢ =10 to ¢t =11 had
h=1, and the average was 20+ h=21. When the time step was h= 4, the average
was 20+ +=20.5. Over a millionth of a second the average will be 20 plus
1/1,000,000-—which is very near 20.

Conclusion: The velocity ar ¢ = 10 is v=20. That is the slope of the curve. It aprees
with the v-graph on the left side of Figure 1.12, which also has v{10} = 20.

We now show that the two graphs match at all times. If f(z)=¢? then o{t)= 2t.
You are seeing the key computation of calculus, and we can put it into words before
equations. Compute the distance at time ¢ + h, subtract the distance at time ¢, and
divide by h. That gives the average velocity:

+ _ 2 L2 2 + 2.2
vm=f[t };l) f[r)={t+hil "t +2thhh I=2x+h. 6)

This fits the previous calculation, where t was 10. The average was 20 + h. Now the
average is 2t + h. It depends on the time step h, because the velocity is changing. But
we can see what happens as h approaches zero. The average is closer and closer to
the speedometer reading of 2, at the exact moment when the clock shows time ¢

1E As h approaches zero, the average velocity 2t + h approaches vft) = 2t.

Note The computation (3) shows how calculus needs algebra. If we want the whole
v-graph, we have to let time be a “variable.” It is represented by the letter ¢. Numbers
are enough at the specific time ¢ = 10 and the specific step h=1—but algebra gets
beyond that. The average between any ¢t and any ¢ + h is 2t + h. Please don’t hesitate
to put back numbers for the letters—that checks the algebra.

+This is our first encounter with the much despised **Mean Value Theorem.” If the judge can
prove the theorem, you are dead. A few v-graphs and f-graphs will confuse the situation
{(possibly also a delta function),
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There is also a step beyond algebra! Calculus requires the &mit of the average. As
k shrinks to zero, the points on the graph come closer. “Average over an interval”
becomes “velocity at an instant.” The general theory of limits is not particularly
simple, but here we don’t need it, (It isn’t particularly hard either.} In this example
the limiting value is easy to identify. The average 2t + h approaches 2t, as h— 0.

What remains to do in this section? We answered Question 2—to find velocity
from distance. We have not answered Question 1. If v{t) = 2t increases linearly with
time, what is the distance? This goes in the opposite direction (it is integration).

The Fundamental Theorem of Calculus says that no new work is necessary, If the
slope of f(t) leads to v(t), then the area under that v-graph leads back to the [-graph.
The odometer readings f= t* produced speedometer readings v = 2¢. By the Funda-
mental Theorem, the area under 2t should be t?. But we have certainly not proved
any fundamental theorems, so it is better to be safe—by actually computing the area.

Fortunately, it is the area of a triangle. The base of the triangie is t and the height
is v=2¢t. The area agrees with f(t):

area = }(base)(height) = ${¢)(2t) = +2. 4
EXAMPLE 1 The graphs are shifted in time. The car doesn’t start until £ = 1. Therefore
v=0 and f=0 up to that time. After the car starts we have v=2(tr— 1) and

f={t—1)*. You see how the time delay of 1 enters the formulas. Figure 1.13 shows
how it affects the graphs.

v=2(-1

1
L/

1 2 ] 2 i 2 1
Fig. 113 Delayed velocity and distance, The pairs v=at +b and f=14at> + bt.

EXAMPLE 2 The acceleration changes from 2 to another constant a. The velocity
changes from v= 2t to v = at. The acceleration is the slope of the velocity curve! The
distance is also proportional to a, but notice the factor %:

acceleration a <+ velocity p=at <= distance f= fat’

If @ equals 1, then v =t and f= §t. That is one of the most famous pairs in calculus.
If a equals the gravitational constant g, then v = gt is the velocity of a falling body.
The speed doesn’t depend on the mass (tested by Galileo at the Leaning Tower of
Pisa). Maybe he saw the distance f= }g#* more easily than the speed v = g¢. Anyway,
this is the most famous pair in physics.
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EXAMPLE 3 Suppose f(t)=3t+ t*. The average velocity from t to ¢t + h is

; _SeHR ) _ e+t —3t-1?
ave h - h .

The change in distance has an extra 3k (coming from 3(t + h) minus 3t). The velocity
contains an additional 3 (coming from 3h divided by k). When 3t is added to the
distance, 3 is added to the velocity, If Galileo had thrown a weight instead of dropping
it, the starting velocity v, would have added vyt to the distance.

FUNCTIONS ACROSS TIME

The idea of slope is not difficult—for one straight line. Divide the change in f by
the change in . In Chapter 2, divide the change in y by the change in x. Experience
shows that the hard part is to see what happens to the slope as the line moves,

Figure 1.14a shows the line between points A and B on the curve. This is a “secant
line.”” Its slope is an awverage velocity. What calculus does is to bring that point B
down the curve toward A.

speed
fu+hy 601 s
car C
vorf?
ot 30t
car D
' : } : ¢ 7 forv?
' t+h 1 1 3 1
4 2 4 L

Fg. 4.14  Siope of line, slope of curve. Two velocity graphs. Which is which?

. Question 1 What happens to the “change in " —the height of B above A?

Answer The change in f decreases to zero. So does the change in .

Question2 As B approaches A, does the slope of the line increase or decrease?
Answor [ am not going to answer that question. It is too important. Draw another
secant line with B closer to 4. Compare the slopes.

This question was created by Steve Monk at the University of Washington—where
57% of the class gave the right answer. Probably 97% would have found the right
slope from a formula. Figure 1.14b shows the opposite probiem. We know the veloc-
ity, not the distance. But calculus answers questions about both functions.

Queslion 3 Which car is going faster at time t = 3/4?
Answer Car C has higher speed. Car D has greater acceleration.

Question 4 If the cars start together, is D catching up to C at the end? Between
t=4%and t=1, do the cars get closer or further apart?

Answer This time more than half the class got it wrong. You won’t but you can see
why they did. You have to look at the speed graph and imagine the distance graph.
When car C is going faster, the distance between them
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To repeat: The cars start together, but they don’t finish together. They reach the
same speed at t = 1, not the same distance. Car C went faster. You really should draw

their distance graphs, to see how they bend.

These problems help to emphasize one more point. Finding the speed (or slope) is
entirely different from finding the distance (or area):

1. To find the slope of the f-graph at a-particular time ¢, you don’t have to know

the whole history.

2. To find the aree under the v-graph up to a parlicular time £, you do have to

know the whole history.

A short record of distance is enough to recover v(t). Point B moves toward point 4,
The problem of slope is local—the speed is completely decided hy f(¢t) near point A,

In contrast, a short record of speed is not encugh to recover the total distance. We
have to know what the mileage was earlier. Otherwise we can only know the increase

in mileage, not the total.

1.3 EXERCISES

Read-through guestions

Between the distances f(2) = 100 and f{6) = 200, the average
velocity is _ @ . If f(1)=4¢*> then f(6}=_Db_ and
f(8)=_< . The average velocity in betweenis _ @ The

instantaneous velocities at t=6 and t=8 are _ @ and
t

The average velocity is computed from f{¢) and f{r + k) by
Voe=_8 . If f{t)=t? then v,,,=_N , From t=1 to
t=1.1 the average ts __! . The instantaneous velocity
is the _ 1 of p,,.. If the distance is f(t)=13}ar? then the

velocity is o{ty=__&__ and the acceleration is __ |

On the graph of f{(¢), the average velocity between A4 and
Bis the slope of _m . The velocity at A isfound by _ n .
The velocity at B ts found by __ @ . When the velocity is
positive, the distance is _ ® . When the velocity is increas-

ing, the caris __Q

1 Compute the average velocity between t = 5 and = §:

(@ fiy==6t {b) fi)="6t+2
© Sf(ty=1a’ W) f)=1—1?
€ fie)=6 ) v(t)=2¢

2 For the same functions compute [ f{t + ) —f()]/h. This
depends on t and k, Find the limit as h — 0.

3 If the odometer reads f{t)=t>*+t {f in miles or kilo-
meters, ¢ in hours), find the average speed between
(a) t=1and t=2
(b)t=landt=1.1
{c)t=landr=1+k
{d) t=1and t=.9 (note h=—-.1)

4 For the same f{t)= ¢? + ¢, find the average speed between
(a) t=0and 1 (b} ¢t=0and} {(c) t=0and &

5 In the answer to 3{c), find the limit as h — 0. What does
that limit tell us?

6 Set h=0 in your answer to 4{c). Draw the graph of
S{t}=1t%+t and show its slope at t = (.

7 Draw the graph of s(t)=1+2t. From geometry find
the area under it from 0 to t. Find the slope of that area
function f(¢). :

8 Draw the graphs of »(t) =3 — 2 and the area f{z).

9 True or false
{a) I the distance f{t) is positive, so is o{t).
{b) If the distance f(¢) is increasing, so is v{t).
{€) If f{t) is positive, ¥(r) is increasing.
(d) If o(t) is positive, f(r) is increasing.

10 If f(:)=6t* find the slope of the f-graph and also the
v-graph. The slope of the v-graph is the .

11 If f(r}=t* what is the average velocity between : = 9 and
=1.17 What is the average between { —h and 1 + h?

12 (a) Show that for f{(t) = fat? the average velocity between
t —h and ¢ + & is exactly the velocity at ¢,
(b} The area under v(t) = at from ¢t —h to ¢ + h is exactly
the base 2k times .

13 Find f(r} from vz} = 20¢ if £(0)=12. Also if f(1)=12.

14 True or faise, for any distance curves.

{a) The slope of the line from A to Bis the average velocity
between those points,
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{b) Secant lines have smaller slopes than the curve,

(c) If f{t) and F(t) start together and finish together, the
average velocities are equal.

(d) If o{t) and F{t) start together and finish together, the
increases in distance are equal.
15 When you jump up and fall back your height is y = 2¢ — ¢*
in the right units.
(a} Graph this parabola and its slope.
(b) Find the time in the air and maximum height.
(c} Prove: Half the time you gre above y = 1.
Basketball players “hang” in the air partly because of (c).
16 Graph f(t}=1t* and g(t)=f(t}—2 and h{)=,(2t), all
from ¢ =0 to ¢t = 1. Find the velocities.
17 (Recommended} An up and down velocity is v(t) = 2t for

€3, vft)=12— 2t for ¢ = 3. Draw the piecewise parabola
S(t). Check that f(6) = area under the graph of o(t).

18 Suppose v(t) =1 for t €2 and v{t)=2 for t 2 2. Draw the
graph of f(¢) out to t = 3.

19 Draw f(1) up to 1 = 4 when u(t) increases linearly from
{a 0to 2 by —1to1l (c) —2to 0.

20 (Recommended) Suppose »ff) is the piecewise linear sine
function of Section 1.2. {In Figure 1.8 it was the distance.}

1.4 Circuiar Motion

Find the area under vt) between t =0 and t=1,2,3,4,5,6
Plot those points f{1), ..., f(6) and draw the complete piece-
wise parabola f(t).

21 Draw the graph of f(t}={1—t?| for 0<¢t<2 Find a
three-part formula for v{t).
22 Draw the graphs of f(¢) for these velocities {to t = 2):
(@) vit)=1—1¢
(b) vity=|1—1|
&) v(t}={1—-8)+{1—1|
13 When does f(t)=1*—3r reach 10? Find the average

velocity up to that time and the instantaneous velocity at that
time.

24 If f(t)=4at2 + bt + ¢, what is v(t)? What is the slope of
v(t)? When does f(t)equal 41, f a=b=c=1?

25 If f{t)=1¢7 then v(t)= 2t. Does the speeded-up function
f{41) have velogity v(4¢) or du(t) or 4v(4)?

26 If f(t)=1t—1? find »(t) and f(3t). Does the slope of f(31)
equal v(3t) or 3u(t) or Ju(3:)?

27 For f(t)=1? find u,,.(t) between 0 and ¢. Graph v,.,(!)
and »(f).

28 If you know the average velocity ,,.(t), how can you find
the distance f(t)? Start from f{0)=0.

This section introduces completely new distances and velocities—the sines and cosines
from trigonometry. As 1 write that last word, I ask myself how much trigonometry it
is essential to know. There will be the basic picture of a right triangle, with sides cos ¢
and sin ¢t and 1. There will also be the crucial equation {(cos 1) + (sin t}* = 1, which
is Pythagoras’ law a® + % = ¢*. The squares of two sides add to the square of the
hypotenuse {(and the 1 is really 12). Nothing else is needed immediately. If you don’t
know trigonometry, don’t stop—an important part can be learned now.

You will recognize the wavy graphs of the sine and cosine. We intend to find the
slopes of those graphs. That can be done without using the formulas for sin(x + y)
and cos (x + y)—which later give the same slopes in a more algebraic way. Here it is
only basic things that are needed.} And anyway, how complicated can a triangle be?

Remark You might think trigonometry is only for surveyors and navigators (people
with triangles). Not at all! By far the biggest applications are to rotation and vibration
and escillation. 1t is fantastic that sines and cosines are so perfect for “repeating

motion” —around a circle or up and down.

tSines and cosines are so important that | added a review of trigonometry in Section 1.5. But
the concepts in this section can be more valuable than formulas.
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1~ I

v=coss f=sint

I /‘: 90°  180° 270°
radians

cos f

Fig. .45 As the angle t changes, the graphs show the sides of the right triangle.

Qur underlying goal is to offer one more example in which the velocity can be
computed by commeon sense. Calculus is mainly an extension of common sense, but
here that extension is not needed. We wiil find the slope of the sine curve. The straight
line f=ut was easy and the parabola f=Jat® was harder. The new example also
involves realistic motion, seen every day. We start with circufer motion, in which the
position is given and the velocity will be found.

A ball goes around a circle of radins one. The center is at x =0, y = 0 (the origin).
The x and y coordinates satisfy x? + y? = 1 to keep the ball on the circle. We specify
its position in Figure 1.16a by giving its angle with the horizontal. And we make the
ball travel with constant speed, by requiring that the angle is equal to the time . The
ball goes counterclockwise. At time 1 it reaches the point where the angle equals 1.
The angle is measured in radians rather than degrees. so a full circle is completed at
t = 2r instead of ¢ = 360.

The bail starts on the x axis, where the angle is zero. Now find 1t at time ¢:

The ball is ar the point where x = cos t and y = sin .

This is where trigonometry is useful. The cosine oscillates between 1 and —1, as the
ball goes from far right to far left and back again. The sine aisc oscillates between |
and —1, starting from sin 0 = 0. At time ;2 the sine (the height) increases te one.
The cosine is zcro and the ball reaches the top point x =0, y = 1. At time = the cosine
18 — 1 and the sine 1s back to zero—the coordinates are {(—1, 0). At t = 2 the circle
is compilete (the angle is also 27}, and x=cos 2z =1, y=sin 2r =0.

vertical

speed | ~ velocity

vertical
distance

Fig. 116 Circular motion with speed I, angle r, height sin . upward velocity cos ¢.
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Important point: The distance around the circle (its circumference) is 2nr = 2n,
because the radius is 1. The ball travels a distance 2z in a time 2n. The speed equals
1. It remains to find the velocity, which involves not only speed but direction.

Degrees vs. radians A full circle is 360 degrces and 27 radians. Therefore
1 radian = 360/2n dcgrees = 57.3 degrees
1 degree = 2n/360 radians & .01745 radians

Radians were invented to avoid those numbers! The speed is exactly 1, reaching ¢
radians at time t. The speed would be .01745, if the ball only reached ¢ degrees. The
ball would complete the circle at time T= 360. We cannot accept the division of the
circle into 360 pieces (by whom?), which produces these numbers.

To check degree mode vs. radian mode, verify that sin 1° =~ 017 and sin 1 2 .84.

VELOC!TY OF THE BALL

At time ¢, which direction is the ball going? Calculus watches the motion between ¢
and t + h. For a ball on a string, we don't need calculus—just let go. The direction
of motion is tangen! to the circle. With no force to keep it on the circle, the ball goes
off on a tangent. If the ball is the moon, the force is gravity. If it is a hammer swinging
around on a chain, the force is from the center, When the thrower lets go, the hammer
takes off—and it is an art to pick the right moment. (I once saw a friend hit by a
hammer at MIT. He survived, but the thrower quit track.) Calculus will find that
same tangent direction, when the points at t and ¢t + h come close,

The “velocity triangle” is in Figure 1.16b. It is the same as the position triangle,
but rotated through 90°. The hypotenuse is tangent to the circle, in the direction the
ball is moving. Its length equals 1 (the speed). The angle ¢ still appears, but now it is
the angle with the vertical. The upward component of velocity is cos t, when the upward
component of position is sin ¢. That is our common sense calculation, based on a
figure rather than a formula. The rest of this section depends on it—and we check
v =cos t at special points.

At the starting time t = 0, the movement is all upward. The height is sin 0 =0 and
the upward velocity is cos 0 = 1. At time n/2, the ball reaches the top. The height is
sin n/2=1 and the upward velocity is cos n/2 = 0. At that instant the ball is not
moving up or down.

The horizontal velocity contains a minus sign. At first the ball travels to the left.
The value of x is cos ¢, but the speed in the x direction is —sin t. Half of trigonometry
is in that figure (the good half), and you see how sin?¢+cos’t=1 is so basic.
That equation applies to position and velocity, at every time.

Application of plane geometry: The right triangles in Figure 1.16 are the same size
and shape. They look congruent and they are—the angle ¢+ above the ball equals the
angle t at the center, That is because the three angles at the bail add to 180°.

OSCILLATION: UP AND DOWN MOTION

We now use circular motion to study straight-line motion. That line will be the y axis.
Instead of a ball going around a circle, a mass will move up and down. It oscillates
between y=1 and y = — 1. The mass is the “shadow of the ball,”” as we explain in a
moment.
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There is a jumpy oscillation that we do not want, with v=1 and v= —1. That
“bang-bang” velocity is like a billiard ball, bouncing between two walls without
slowing down. If the distance between the walls is 2, then at ¢ = 4 the ball is back to
the start, The distance graph is a zigzag (or sawtooth) from Section 1.2.

We prefer a smoother motion. Instead of velocities that jump between +1 and —1,
a real oscillation slows down to zero and gradually builds up speed again. The mass
is on a spring, which pulls it back. The velocity drops to zero as the spring is fully
stretched. Then v is negative, as the mass goes the same distance in the opposite
direction. Simple harmonic motion is the most important back and forth motion,
while f= vt and = 4ar? are the most important one-way motions.

R et
sin—=1 | cos —=0 turn
2 . 2
1
1
sin0=0 4 cosO=1 up
.
sinm=10 + cos T=-1 down
I
1
sin3—“=—] ! ::053—11:0 tum
2 2

Ag. 4.47 Circular motion of the ball and harmonic motion of the mass (its shadow).

How do we describe this oscillation? The best way is to match it with the ball on
the circle. The keight of the ball will be the height of the mass. The “shadow of the
hail” goes up and down, level with the ball. As the ball passes the top of the
circle, the mass stops at the top and starts down. As the ball goes around the bottom,
the mass stops and turns back up the y axis. Halfway up (or down), the speed is 1.

Figure 1.17a shows the mass at a typical time t. The height is y = f(t) = sin ¢, level
with the ball. This height osciliates between f=1 and f= —1. But the mass does not
move with constant speed. The speed of the mass is changing although the speed of
the ball is always 1. The time for a full cycle is still 2x, but within that cycle the mass
speeds up and slows down. The problem is to find the changing velocity v. Since the
distance is f=sin ¢, the velocity will be the slope of the sine curve.

THE SLOPE OF THE SINE CURVE

At the top and bottom (¢ = n/2 and t = 3=/2) the ball changes direction and v = 0.
The slope at the top and bottom of the sine curve is zero.t At time zero, when the ball
is going straight up, the slope of the sine curve is v = 1. At 1 = n, when the bail and
mass and f-graph are going down, the velocity is v = —1. The mass goes fastest at
the center. The mass goes slowest (in fact it stops) when the height reaches a maximum
or minimum, The velocity triangle yields v at every time ¢.

To find the upward velocity of the mass, look at the upward velocity of the ball.
Those velocities are the same! The mass and ball stay level, and we know v from
circular motion: The apward velocity is v=cos t.

tThat looks easy but you will sec later that it is extremely important. At @ maximum or
minimum the slope is zero. The curve levels ofl.

25



26

1 Infroduction fo Caleulus

Figure 1.18 shows the result we want. On the right, f=sin t gives the height. On
the left is the velocity » = cos 1. That velocity is the slope of the f-curve. The height
and velocity (red lines) are oscillating together, but they are out of phase—just as
the position triangle and velocity triangle were at right angles, This is absolutely
fantastic, that in calculus the two most famous functions of trigonometry form a pair:
The slope of the sine curve is given by the cosine curve.

When the distance is {(t) = sin t, the velocity is v(t) = cos 1.

Admission of guilt: The slope of sin ¢ was not computed in the standard way.
Previously we compared (¢ + h)? with ¢2, and divided that distance by k. This average
velocity approached the slope 2t as h became small. For sin ¢ we could have done the
same:
change insin ¢ _ sin(t + k) —sin ¢ )

change in t h '

average velocity =

This is where we need the formula for sin (t + ), coming soon. Somehow the ratio in
(1) shouid approach cos't as h — 0. (It does.) The sine and cosine fit the same pattern
as t? and 2t—our shortcut was to watch the shadow of motion around a circle.

! v=Cost \ ! F=sint f
!

Fig. 4.48 p=cost when f=sin{ {red), v = —sin t when f=cos ¢ (black).

Question 1 What if the ball goes twice as fast, to reach angle 2t at time ?

Answer The speed is now 2. The time for a fuil circle is only n. The ball's position
is x = cos 2t and y = sin 2r. The velocity is still tangent to the circle—but the tangent
is at angle 2t where the ball is. Therefore cos 2t enters the upward velocity and
—sin 2t enters the horizontal velocity. The difference is that the velocity triangle is
twice as big. The upward velocity is not cos 2t but 2 cos 2t. The horizontal velocity
s —2sin 2¢t, Notice these 2s!

Question 2 What is the area under the cosine curve fromt =0 to t = /2?7

You can answer that, if you accept the Fundamentai Theorem of Calculus—
computing arcas is the oppasite of computing slopes. The slope of sin t is cos ¢, so the
area under cos ¢ is the increase in sin t. No reason 1o believe that yet, but we use it
anyway.

From sin 0 =0 to sin n/2 = 1, the increase is 1. Please realize the power of calculus.
No other method could compute the area under a cosine curve so fast.
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THE SLOPE OF THE COSINE CURVE

I cannot resist uncovering another distance and velocity (another f-v pair) with no
extra work. This time f is the cosine., The time clock starts at the top of the circle.
The old time ¢ = #/2 is now t = 0. The dotted lines in Figure 1.18 show the new start.
But the shadow has exactly the same motion—the hall keeps going around the circle,
and the mass follows it up and down. The f-graph and v-graph are still correct, both
with a time shift of x/2.

The new f-graph is the cosine. The new v-graph is minus the sine. The slope of the
cosine curve follows the negative of the sine curve. That is another famous pair, twins
of the first:

When the distance is f(t) = cos t, the velocity is v(t)= —sin t.

You could see that coming, by watching the ball go left and right (instead of up and
down). Its distance across is f= cos t. Its velocity across is v = —sin r. That twin pair
completes the calcolus in Chapter 1 (trigonometry to come). We review the ideas:

v is the velocity
the slope of the distance curve
the limit of average velocity over a short time
the derivative of f.

S is the distance
the area under the velocity curve
the fimit of total distance over many short times
the integral of v.

Differential calculus: Compute v from f. Integral calculus. Compute f from v.

With constant velocity, f equals pt. With constant acceleration, v = at and f= ka2,
In harmonic motion, v=cos ¢t and f=sin £. One part of our goal is to extend that
list—for which we need the tools of calculus. Another and more important part is
to put these ideas to use.

Before the chapter ends, may I add a note about the book and the course? The
book is more personal than usual, and I hope readers will approve. What I write is
very close to what T would say, if you were in this room. The sentences are spoken
before they are written.t Calculus is alive and moving forward—it needs to be taught
that way.

One new part of the subject has come with the computer. It works with a finite
step h, not an “infinitesimal” limit. What it can do, it does quickly-—even if it cannot
find exact slopes or areas. The result is an overwhelming growth in the range of
problems that can be solved. We landed on the moon because ' and v were s0
accurate. (The moon’s orbit has sines and cosines, the spacecraft starts with v=at
and f'= 1at?. Only the computer can account for the atmosphere and the sun’s gravity
and the changing mass of the spacecraft.) Modern mathematics is a combination of
exact formulas and approximate computations. Neither part can be ignored, and 1
hope you will see numerically what we derive algebraically. The exercises are to help
you master both parts.

1On television you know immediately when the words are live. The same with writing,
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The course has made a quick start—not with an abstract discussion of sets or
functions or limits, but with the concrete questions that led to those ideas. You have
seen a distance function f and a limit v of average velocities, We will meet more
functions and more limits (and their definitions!) but it is crucial to study important
examples early. There is a lot to do, but the course has definitely begun.

1.4 EXERCISES

Read-through questions

A ball at angle r on the unit circle has coordinates x=__ @

andy=_b  Itcompletesafullcircleatt=__c . Itsspeed
is _d . Its velocity points in the direction of the _e |
whichis __t to the radius coming out from the center. The

upward velocity is __ g and the horizontal velocityis __b

A mass going up and down level with the ball has height -

fit)=__1 . Thisiscalled simple __) _motion. The velocity
isv(f)=_ % . Whent=n/2the hetghtis f=_ 1 and the
velocity ts = _ m . If a speeded-up mass reaches f=sin 2t
at time ¢, its velocity is p=__n__, A shadow traveling under

the ball has f=cost and v =_ o . When f is distance =
area =integral, vis _® =_4aq =_s

1 For a ball going around a unit circle with speed |,
{a) how long does it take for 5 revolutions?
(b) at time ¢ = 3n/2 where is the ball?
(c) at t =22 where is the ball (approximately)?

2 For the same motion find the exact x and y coordinates
at ¢ =2n/3. At what time would the ball hit the x axis, il it
goes off on the tangent at t = 2x/3?

3 A ball goes around a circle of radius 4. At time ¢ (when it
reaches angle ) find

(a) its x and y coordinates
{b) the speed and the distance traveled
{c) the vertical and horizonta! velocity.
4 On a circle of radius R find the x and y coordinates at

time ¢t (and angle 1). Draw the velocity triangle and find the
x and y velocities.

5 A ball travels around a unit circle (raaius 1} with speed 3,
starting from angle zero. At time ¢,

(a) what angle does it reach?
(b} what are its x and y coordinates?
(<} what are its x and y velocities? This part is harder.
6 If another ball stays n/2 radians ahead of the ball with

speed J, find its angle, its x and y coordinates, and its vertical
velocity at time .

7 A mass moves on the x axis under or over the original
ball {(on the unit circle with speed 1). What is the position
x=f{t)? Find x and v at t =n/4. Plot x and pup to t =n#.

8 Does the new mass (under or over the ball) meet the old
mass (level with the ball)? What is the distance between
the masses at fime £?

9 Draw graphs of f(t}=co§ 3¢t and cos 2nt and 2mcost,
marking the time axes. How long until each f repeats?

10 Draw graphs of f=sin{r+a) and v =cos{t+ n). This
oscillation stays level with what ball?

1t Draw graphs of f=sin(n/2 —{) and v= —cos(nf2 —¢).
This oscillation stays level with a ball going which way start-
ing where?

12 Draw a graph of f(¢) =sin f + cos t. Estimate its greatest
height (maximum f) and the time it reaches that height. By
computing f2 check your estimate.

13 How [ast should you run across the circle to meet the ball
again? It travels at speed 1.

14 A mass falls from the top of the unit circle when the ball
of speed 1 passes by. What acceleration & is necessary to meet
the ball at the bottom?

Find the area under v = cos ¢ from the change in f=sin
15 fromt=0tot=m }6 fromt=0tot=n/6
17 fromt=0tot=2n 18 from t ==/2 to ¢ = 3nf2.

19 The distance curve f=sin 4t yields the velocity curve
v =4 cos 4. Explain both 4's.

20 The distance curve f=2 cos 3t yields the velocity curve
v = — 6 sin 3¢. Explain the —6.

21 The velocity curve v=cos 4t yields the distance curve
f==4%sin 4¢. Explain the .

22 The velocity v = 5 sin 5t yields what distance?
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23 Find the slope of the sine curve at ¢ =#/3 from v =cos t.
Then find an average slope by dividing sin =/2 —sin n/3 by
the time difference n/2 — n/3.

The oscillation x = 0, y = sin ¢ goes (1) up and down (2) between
—1 aod 1 (3) starting from x=0, y=0 (4) at velocity
v =cos {. Find (1}(2)(3){4} [or the oscillations 31-36.

24 The slope of f=sint at t=0 is cos 0=1. Compute
average slopes (sin ¢)/t for ¢ =1, .1, .01, .001.

3l x=cos¢, =0
33 x=0, y=2sin(t + 0)
35 x=0,y=—2cos 4t

32 x=0, y=sin 5t

M x=cost, p=cos!

The ball at x=cost, y=sin ¢ circles (1) counterclockwise
(2) with radius 1 (3) starting from x=1, y=0 (4) at speed 1.
Find {1}(2)(3)(4) for the motions 25-30.

25 x=cos 3, y=—sin 3t

36 x =cos?t, y=sin?¢

37 If the ball on the unit circle reaches t degrees at time ¢,
find its position and speed and uwpward velocity.

. 28 Choose the number k so that x =cos kt, y =sin kt com-
26 x =3 cos 4, y =3 sin 4t pletes a rotation at ¢ = 1. Find the speed and upward velocity.
77 x=3sindt, y=3cos 39 If a pitcher doesn’t pause before starting to throw, a balk
is called. The American League decided mathematically (hat
there is always a stop between backward and forward motion,
even if the time is too short to see it. (Therefore no balk.) Is

that true?

28 x=1+cost, y=sint
29 x=cos(t+ 1), y=sin(t + 1)
30 x =cos(—t), y=sin{—t)

I 1.5 AReview of Trigonometry NN

Trigonometry begins with a right triangle. The size of the trangle is not as important
as the angles. We focus on one particular angle—call it #—and on the ratios between
the three sides x, y,r. The ratios don't change if the triangle is scaled to another
size. Three sides give six ratios, which are the basic functions of trigonometry:

x  near side r 1
cos = - = ———— sec=—-=
r hypotenuse x cosf
r
Y ) opposite side 1
sin 0 = 2 = 2PPOSTC S1C¢ cscf=1= .
r  hypotenuse y siné@
3 y _ opposite side x 1
tan == ——— cot@===
Fig. 1.19 X near side y tand

Of course those six ratios are not independent. The three on the right come directly
from the three on the left. And the tangent is the sine divided by the cosine:

Note that “tangent of an angle” and “tangent to a circle” and “tangent line to a
graph” are different nses of the same word. As the cosine of 8 goes to zero, the tangent
of & goes to infinity. The side x becomes zero, § approaches 90°, and the triangle is
infinitely steep. The sine of 90° is y/r=1.

Triangles have a serious limitation. They are excellent for angles up to 90°, and
they are OK up to 180°, but after that they fail. We cannot put a 240° angle into a
triangle. Therefore we change now to a circle.
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