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C H A P T E R  1 

Introduction to Calculus 


1.4 Velocity and Distance 

The right way to begin a calculus book is with calculus. This chapter will jump 
directly into the two problems that the subject was invented to solve. You will see 
what the questions are, and you will see an important part of the answer. There are 
plenty of good things left for the other chapters, so why not get started? 

The book begins with an example that is familiar to everybody who drives a car. 
It is calculus in action-the driver sees it happening. The example is the relation 
between the speedometer and the odometer. One measures the speed (or velocity); 
the other measures the distance traveled. We will write v for the velocity, and f for 
how far the car has gone. The two instruments sit together on the dashboard: 

Fig. 1.1 Velocity v and total distance f (at one instant of time). 

Notice that the units of measurement are different for v and f.The distance f is 
measured in kilometers or miles (it is easier to say miles). The velocity v is measured 
in km/hr or miles per hour. A unit of time enters the velocity but not the distance. 
Every formula to compute v from f will have f divided by time. 

The central question of calculus is the relation between v and f. 



--- 
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Can you find v if you know f ,  and vice versa, and how? If we know the velocity over 
the whole history of the car, we should be able to compute the total distance traveled. 
In other words, if the speedometer record is complete but the odometer is missing, 
its information could be recovered. One way to do it (without calculus) is to put in 
a new odometer and drive the car all over again at the right speeds. That seems like 
a hard way; calculus may be easier. But the point is that the information is there. 
If we know everything about v,  there must be a method to find f .  

What happens in the opposite direction, when f is known? If you have a complete 
record of distance, could you recover the complete velocity? In principle you could drive 
the car, repeat the history, and read off the speed. Again there must be a better way. 

The whole subject of calculus is built on the relation between u and f .  The question 
we are raising here is not some kind of joke, after which the book will get serious 
and the mathematics will get started. On the contrary, I am serious now-and the 
mathematics has already started. We need to know how to find the velocity from a 
record of the distance. (That is called &@erentiation, and it is the central idea of 
dflerential calculus.) We also want to compute the distance from a history of the 
velocity. (That is integration, and it is the goal of integral calculus.) 

Differentiation goes from f to v; integration goes from v to f .  We look first 
at examples in which these pairs can be computed and understood. 

CONSTANT VELOCITY 

Suppose the velocity is fixed at v = 60 (miles per hour). Then f increases at this 
constant rate. After two hours the distance is f = 120 (miles). After four hours 
f = 240 and after t hours f = 60t. We say that f increases linearly with time-its 
graph is a straight line. 

4 velocity v ( t )  4 distancef ( t )  

v 2 4 0 ~ ~ s 1 ~ = " = 6 04 
Area 240 : I 

time t time t 

Fig. 1.2 Constant velocity v =60 and linearly increasing distance f=60t. 

Notice that this example starts the car at full velocity. No time is spent picking up 
speed. (The velocity is a "step function.") Notice also that the distance starts at zero; 
the car is new. Those decisions make the graphs of v and f as neat as possible. One 
is the horizontal line v = 60. The other is the sloping line f = 60t. This v, f ,  t relation 
needs algebra but not calculus: 

if v is constant and f starts at zero then f = vt. 

The opposite is also true. When f increases linearly, v is constant. The division by 
time gives the slope. The distance is fl = 120 miles when the time is t 1  = 2 hours. 
Later f' =240 at t ,  = 4. At both points, the ratio f / t  is 60 miles/hour. Geometrically, 
the velocity is the slope of the distance graph: 

change in distance - vt
slope = - v.

change in time t 
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Fig. 1.3 Straight lines f = 20 + 60t (slope 60) and f = -30t (slope -30). 

The slope of the f-graph gives the v-graph. Figure 1.3 shows two more possibilities: 

1. The distance starts at 20 instead of 0. The distance formula changes from 60t 
to 20 + 60t. The number 20 cancels when we compute change in distance-so 
the slope is still 60. 

2. When v is negative, the graph off  goes downward. The car goes backward and 
the slope of f  = -30t is v = -30. 

I don't think speedometers go below zero. But driving backwards, it's not that safe 
to watch. If you go fast enough, Toyota says they measure "absolute valuesw-the 
speedometer reads + 30 when the velocity is - 30. For the odometer, as far as I know 
it just stops. It should go backward.? 

VELOCITY vs. DISTANCE: SLOPE vs. AREA 

How do you compute f' from v? The point of the question is to see f = ut on the 
graphs. We want to start with the graph of v and discover the graph off.  Amazingly, 
the opposite of slope is area. 

The distance f is the area under the v-graph. When v is constant, the region under 
the graph is a rectangle. Its height is v, its width is t ,  and its area is v times t .  This is 
integration, to go from v to f by computing the area. We are glimpsing two of the 
central facts of calculus. 

1A The slope of the f-graph gives the velocity v. The area under the v-graph 
gives the distance f. 

That is certainly not obvious, and I hesitated a long time before I wrote it down in 
this first section. The best way to understand it is to look first at more examples. The 
whole point of calculus is to deal with velocities that are not constant, and from now 
on v has several values. 

EXAMPLE (Forward and back) There is a motion that you will understand right away. 
The car goes forward with velocity V, and comes back at the same speed. To say it 
more correctly, the velocity in the second part is - V. If the forward part lasts until 
t = 3, and the backward part continues to t = 6,  the car will come back where it started. 
The total distance after both parts will be f = 0. 

+This actually happened in Ferris Bueller's Day 08,when the hero borrowed his father's sports 
car and ran up the mileage. At home he raised the car and drove in reverse. I forget if it 
worked. 
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1u(r) = slope of f ( t )  

Fig. 1.4 Velocities + V and -V give motion forward and back, ending at f(6)=0. 

The v-graph shows velocities + V and -V. The distance starts up with slope + V 
and reaches f = 3V. Then the car starts backward. The distance goes down with slope 
-V and returns to f = 0 at t = 6 .  

Notice what that means. The total area "under" the v-graph is zero! A negative 
velocity makes the distance graph go downward (negative slope). The car is moving 
backward. Area below the axis in the v-graph is counted as negative. 

FUNCTIONS 

This forward-back example gives practice with a crucially important idea-the con-
cept of a "jiunction." We seize this golden opportunity to explain functions: 

The number v(t) is the value of the function t. at the time t. 

The time t is the input to the function. The velocity v(t) at that time is the output. 
Most people say "v oft" when they read v(t). The number "v of 2" is the velocity 
when t = 2. The forward-back example has v(2) = + V and v(4) = - V. The function 
contains the whole history, like a memory bank that has a record of v at each t. 

It is simple to convert forward-back motion into a formula. Here is v(t): 

The ,right side contains the instructions for finding v(t). The input t is converted into 
the output + V or - V. The velocity v(t) depends on t. In this case the function is 
"di~continuo~s,~ 'because the needle jumps at t = 3. The velocity is not dejined at that 
instant. There is no v(3). (You might argue that v is zero at the jump, but that leads 
to trouble.) The graph off' has a corner, and we can't give its slope. 

The problem also involves a second function, namely the distance. The principle 
behind f(t) is the same: f (t) is the distance at time t. It is the net distance forward, 
and again the instructions change at t = 3. In the forward motion, f(t) equals Vt as 
before. In the backward half, a calculation is built into the formula for f(t): 

At the switching time the right side gives two instructions (one on each line). This 
would be bad except that they agree: f (3)= 3 V . v h e  distance function is "con- 

?A function is only allowed one ~:alue,f'(r)  at each time ror ~ ( t )  
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tinuous." There is no jump in f, even when there is a jump in v. After t = 3 the distance 
decreases because of -Vt. At t = 6 the second instruction correctly gives f (6) = 0. 

Notice something more. The functions were given by graphs before they were given 
by formulas. The graphs tell you f and v at every time t-sometimes more clearly 
than the formulas. The values f (t) and v(t) can also be given by tables or equations 
or a set of instructions. (In some way all functions are instructions-the function 
tells how to find f at time t.) Part of knowing f is knowing all its inputs and 
outputs-its domain and range: 

The domain of a function is the set of inputs. The range is the set of outputs. 

The domain of f consists of all times 0 < t < 6. The range consists of all distances 
0 <f(t) < 3V. (The range of v contains only the two velocities + V and -V.) 
We mention now, and repeat later, that every "linear" function has a formula 
f (t) = vt + C. Its graph is a line and v is the slope. The constant C moves the line up 
and down. It adjusts the line to go through any desired starting point. 

SUMMARY: MORE ABOUT FUNCTIONS 

May I collect together the ideas brought out by this example? We had two functions 
v and f.  One was velocity, the other was distance. Each function had a domain, 
and a range, and most important a graph. For the f-graph we studied the slope 
(which agreed with v). For the v-graph we studied the area (which agreed with f). 
Calculus produces functions in pairs, and the best thing a book can do early is to 
show you more of them. 

input t + function f -, output f (t) " { input 2 + function u + output v(2) 1 the 
domain input 7 + f (t) = 2t + 6 + f (7)= 20 rangein 

Note about the definition of a function. The idea behind the symbol f (t) is absolutely 
crucial to mathematics. Words don't do it justice! By definition, a function is a "rule" 
that assigns one member of the range to each member of the domain. Or, a function 
is a set of pairs (t, f (t)) with no t appearing twice. (These are "ordered pairs" because 
we write t before f (t).) Both of those definitions are correct-but somehow they are 
too passive. 

In practice what matters is the active part. The number f (t) is produced from the 
number t. We read a graph, plug into a formula, solve an equation, run a computer 
program. The input t is "mapped" to the output f(t), which changes as t changes. 
Calculus is about the rate of change. This rate is our other function v. 

Fig. 1.5 Subtracting 2 from f affects the range. Subtracting 2 from t affects the domain. 



1 Introduction to Calculus 

It is quite hard at the beginning, and not automatic, to see the difference between 
f (t) - 2 and f (t - 2). Those are both new functions, created out of the original f (t). 
In f (t)- 2, we subtract 2 from all the distances. That moves the whole graph down. 
In f ( t  - 2), we subtract 2 from the time. That moves the graph over to the right. 
Figure 1.5 shows both movements, starting from f (t) = 2t + 1. The formula to find 
f (t - 2) is 2(t - 2) + 1, which is 2t - 3. 

A graphing calculator also moves the graph, when you change the viewing window. 
You can pick any rectangle A < t < B, C <f(t)  < D. The screen shows that part of 
the graph. But on the calculator, the function f ( t )remains the same. It is the axes that 
get renumbered. In our figures the axes stay the same and the function is changed. 

There are two more basic ways to change a function. (We are always creating new 
functions-that is what mathematics is all about.) Instead of subtracting or adding, 
we can multiply the distance by 2. Figure 1.6 shows 2f (t). And instead of shifting the 
time, we can speed it up. The function becomes f(2t). Everything happens twice as 
fast (and takes half as long). On the calculator those changes correspond to a 
"zoom"-on the f axis or the t axis. We soon come back to zooms. 

0 I t 0 I t 0 
domain 1 1 112 

Fig. 1.6 Doubling the distance or speeding up the time doubles the slope. 

1.1 EXERCISES 

Each section of the book contains read-through questions. They 
allow you to outline the section yourself-more actively than 
reading a summary. This is probably the best way to remember 
the important ideas. 

Starting from f(0)  = 0 at constant velocity v ,  the distance 
function is f ( t)= a . When f ( t )  = 55t the velocity is 
v = b . When f(t) = 55t + 1000 the velocity is still c 
and the starting value is f (0)= d . In each case v is the 

e of the graph off .  When f is negative, the graph 
of s goes downward. In that case area in the t.-graph 
counts as h . 

Forward motion from f (0)= 0 to f (2)= 10 has v = i . 
Then backward motion to f (4)= 0 has v = i . The dis- 
tance function is f (t)= 5t for 0 < t < 2 and then f (t)= k 

(not -5t). The slopes are I and m . The distance 
f(3) = n . The area under the v-graph up to time 1.5 is 

o . The domain o f f  is the time interval P , and the 
range is the distance interval q . The range of v(t) is only 
-1 . 

The value off (t) = 3t + 1 at t = 2 is f (2) = s . The value 
19 equals f ( t ). The difference f (4)-f (1) = u . That 
is the change in distance, when 4 - 1 is the change in v . 
The ratio of those changes equals w , which is the x 

of the graph. The formula for f (t) + 2 is 3t + 3 whereas 
f (t + 2) equals Y . Those functions have the same z 

as f :  the graph of f (t)+ 2 is shifted A and f (t + 2) is 
shifted B . The formula for f (5t) is C . The formula 
for 5f ( t )is D . The slope has jumped from 3 to E . 
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The set of inputs to a function is its F . The set of 
outputs is its G . The functions f (t) = 7 + 3(t -2) and 
f(t) = vt + C are t~ . Their graphs are I with slopes 
equal to J and K . They are the same function, if 
v =  L a n d C =  M . 

Draw the velocity graph that goes with each distance graph. 

1 If I f 

3 Write down three-part formulas for the velocities u(t) in 
Problem 2, starting from v(t) = 2 for 0 < t < 10. 

4 The distance in l b  starts with f (t) = 10- lot for 0 < t < 1. 
Give a formula for the second part. 

5 In the middle of graph 2a find f (15) and f (12) and f (t). 

6 In graph 2b find f(1.4T). If T= 3 what is f(4)? 

7 Find the average speed between t = 0 and t = 5 in graph 
la. What is the speed at t = 5? 

8 What is the average speed between t = 0 and t = 2 in graph 
1 b? The average speed is zero between t = 3and t = . 
9 (recommended) A car goes at speed u = 20 into a brick 

wall at distance f -4. Give two-part formulas for v(t) and 
f (t) (before and after), and draw the graphs. 

10 Draw any reasonable graphs of v(t) and f(t) when 
(a) the driver backs up, stops to shift gear, then goes fast; 
(b) the driver slows to 55 for a police car; 
(c) in a rough gear change, the car accelerates in jumps; 
(d) the driver waits for a light that turns green. 

11 Your bank account earns simple interest on the opening 
balance f (0). What are the interest rates per year? 

12 The earth's population is growing at v = 100 million a 
year, starting from f = 5.2 billion in 1990. Graph f (t) and find 
f (2000). 

Draw the distance graph that goes with each velocity graph. 
Start from f = 0 at t = 0 and mark the distance. 

13a 13b 

15 Write down formulas for v(t) in Problem 14, starting with 
v = -40 for 0 < t < 1. Find the average velocities to t = 2.5 
and t = 3T. 

16 Give 3-part formulas for the areas f (t) under v(t) in 13. 

17 The distance in 14a starts with f (t)= -40t for 0 < t < 1. 
Find f (t) in the other part, which passes through f = 0at t = 2. 

18 Draw the velocity and distance graphs if v(t) = 8 for 
O < t < 2 ,  f ( t ) = 2 0 + t  for 2 < t < 3 .  

19 Draw rough graphs of y = and y = ,/=and 
y = f i -4. They are "half-parabolas" with infinite slope at 
the start. 

20 What is the break-even point if x yearbooks cost 
$1200 + 30x to produce and the income is 40x? The slope of 
the cost line is (cost per additional book). If it goes 
above you can't break even. 

21 What are the domains and ranges of the distance functions 
in 14a and 14b-all values of t and f (t) if f (0)= O? 

22 What is the range of u(t) in 14b? Why is t = 1 not in the 
domain of v(t) in 14a? 

Problems 23-28 involve linear functions f (t)= vt + C. Find the 
constants v and C. 

23 What linear function has f (0)= 3 and f (2) = -1  l? 

24 Find two linear functions whose domain is 0 < t d 2 and 
whose range is 1 df (t)< 9. 

25 Find the linear function with f(1) = 4 and slope 6. 

26 What functions have f (t + 1)=f (t)+ 2? 

27 Find the linear function with f (t + 2) =f (t) + 6 and 
f (1)= lo. 

28 Find the only f = vt that has f (2t) = 4f (t). Show that every 
f = +at2 has this property. To go times as far in 
twice the time, you must accelerate. 
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29 Sketch the graph of f(t) = 15 -2tl (absolute value) for 
It(< 2 and find its slopes and range. 

30 Sketch the graph off (t) = 4 - t -14 - t( for 2 < t 6 5 and 
find its slope and range. 

31 Suppose v = 8 up to time T, and after that v = -2. Starting 
from zero, when does f return to zero? Give formulas for v(t) 
and f (t). 

32 Suppose v = 3 up to time T= 4. What new velocity will 
lead to f (7) = 30 if f (0) = O? Give formulas for u(t) and f (t). 

33 What function F(C) converts Celsius temperature C to 
Fahrenheit temperature F? The slope is , whish is 
the number of Fahrenheit degrees equivalent to 1°C. 

34 What function C(F) converts Fahrenheit to Celsius (or 
Centigrade), and what is its slope? 

35 What function converts the weight w in grams to the 
weight f (w) in kilograms? Interpret the slope of f (w). 

36 (Newspaper of March 1989) Ten hours after the accident 
the alcohol reading was .061. Blood alcohol is eliminated at 
.015 per hour. What was the reading at the time of the acci- 
dent? How much later would it drop to .04 (the maximum set 
by the Coast Guard)? The usual limit on drivers is .10 percent. 

Which points between t = 0 and t = 5 can be in the domain of 
f (t)? With this domain find the range in 37-42. 

37 f(t) = ,/= 38 f (t) = I/-

39 f (t) = ( t-41 (absolute value) 40 f (t) = l/(t -4).? 

43 (a) Draw the graph off (t) = i t  + 3 with domain 0 Q t d 2. 
Then give a formula and graph for 

(b) f ( t )  + 1 (c) f ( t  + 1) 
(dl 4f (0  (e) f (40. 

44 (a) Draw the graph of U(t) = step function = (0 for t < 0, 
1 for t > 0). Then draw 

(b) U(t) + 2 ( 4  U(t + 2) 
( 4  3UW (e) U(3t). 

45 (a) Draw the graph of f (t) = t + 1 for -1 Q t 6 1. Find 
the domain, range, slope, and formula for 

(b) 2f (0  ( 4  f (t -3) (d) -f (0 (el f k t ) .  

46 If f (t) = t - 1 what are 2f (3t) and f (1 -t) and f (t - I)? 

47 In the forward-back example find f (* T )and f(3T). Verify 
that those agree with the areas "under" the v-graph in 
Figure 1.4. 

48 Find formulas for the outputs fl(t) and fi(t) which come 
from the input t: 

(1) inside = input * 3 (2) inside + input + 6 
output = inside + 3 output t inside* 3 

Note BASIC and FORTRAN (and calculus itself) use = 
instead of t.But the symbol t or := is in some ways better. 
The instruction t + t + 6 produces a new t equal to the old t 
plus six. The equation t = t + 6 is not intended. 

49 Your computer can add and multiply. Starting with the 
number 1 and the input called t, give a list of instructions to 
lead to these outputs: 

f1 ( t )= t2+ t  f2(t)=fdfdt))  f3(t)=f1(t+l)-

50 In fifty words or less explain what a function is. 

The last questions are challenging but possible. 

51 If f (t) = 3t - 1 for 0 6 t Q 2 give formulas (with domain) 
and find the slopes of these six functions: 

(a) f (t + 2) (b) f ( t )  + 2 ( 4  2f ( 0  
( 4  f (2t) (e) f (- t) (f) f ( f  (t)). 

52 For f (t) = ut + C find the formulas and slopes of 

(a) 3f (0 + 1 (b) f(3t + 1) (c) 2f(4t) 
(dl f (- t) (el f (0  -f (0) (f) f ( f  (t)). 

53 (hardest) The forward-back function is f (t) = 2t for 
O<t  ~ 3 ,  f ( t )=  12-2t for 3 6 t d 6 .  Graph f(f(t)) and find 
its four-part formula. First try t = 1.5 and 3. 

54 (a) Why is the letter X not the graph of a function? 
(b) Which capital letters are the graphs of functions? 
(c) Draw graphs of their slopes. 

1.2 Calculus Without Limits 

The next page is going to reveal one of the key ideas behind calculus. The discussion 
is just about numbers-functions and slopes can wait. The numbers are not even 
special, they can be any numbers. The crucial point is to look at their differences: 

Suppose the numbers are f =  0 2 6 7 4 9 
Their differences are v = 2 4 1 - 3 5  

The differences are printed in between, to show 2 -0 = 2 and 6 -2 = 4 and 7 -6 = 1. 
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Notice how 4 - 7 gives a negative answer -3. The numbers in f can go up or down,
the differences in v can be positive or negative. The idea behind calculus comes when
you add up those differences:

2+4+1-3+5=9

The sum of differences is 9. This is the last number on the top line (in f). Is this an
accident, or is this always true? If we stop earlier, after 2 + 4 + 1, we get the 7 in f.
Test any prediction on a second example:

Suppose the numbers are f= 1 3 7 8 5 10
Their differences are v = 2 4 1 -3 5

The f's are increased by 1. The differences are exactly the same-no change. The
sum of differences is still 9. But the last f is now 10. That prediction is not right, we
don't always get the last f.

The first f is now 1. The answer 9 (the sum of differences) is 10 - 1, the last f
minus the first f. What happens when we change the f's in the middle?

Suppose the numbers are f= 1 5 12 7 10
Their differences are v = 4 7 -5 3

The differences add to 4 + 7 - 5 + 3 = 9. This is still 10 - 1. No matter what f's we
choose or how many, the sum of differences is controlled by the first f and last f.
If this is always true, there must be a clear reason why the middle f's cancel out.

The sum of differences is (5 - 1) + (12 - 5) + (7 - 12) + (10 - 7) = 10 - 1.

The 5's cancel, the 12's cancel, and the 7's cancel. It is only 10 - 1 that doesn't cancel.
This is the key to calculus!

EXAMPLE 1 The numbers grow linearly: f= 2 3 4 5 6 7
Their differences are constant: v = 1 1 1 1 1

The sum of differences is certainly 5. This agrees with 7 - 2 =fast -ffirst. The number
in v remind us of constant velocity. The numbers in f remind us of a straight lin
f= vt + C. This example has v = 1 and the f's start at 2. The straight line woul
come from f= t + 2.

EXAMPLE 2 The numbers are squares: f= 0 1 4 9 16
Their differences grow linearly: v = 1 3 5 7

1 + 3 + 5 + 7 agrees with 42 = 16. It is a beautiful fact that the first j odd number
always add up to j2. The v's are the odd numbers, the f's are perfect squares.

Note The letter j is sometimes useful to tell which number in f we are looking at
For this example the zeroth number is fo = 0 and the jth number is fj =j2. This is 
part of algebra, to give a formula for the f's instead of a list of numbers. We can als
use j to tell which difference we are looking at. The first v is the first odd numbe
v, = 1. The jth difference is the jth odd number vj = 2j- 1. (Thus v4 is 8 - I = 7.) I
is better to start the differences with j = 1, since there is no zeroth odd number vo.

With this notation the jth difference is vj =fj -f -1. Sooner or later you will get
comfortable with subscripts like j and j - 1, but it can be later. The important poin
is that the sum of the v's equals flast -first. We now connect the v's to slopes and th
f's to areas.

s
e
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4= 7
v4

v3 = 5

v2 = 3

1 =I

f4= 1

f 3 =9

f2=4

t f, = 1
t

1 2 3 4 1 2 3 4

Fig. 1.7 Linear increase in v = 1, 3, 5, 7. Squares in the distances f= 0, 1, 4, 9, 16.

0~~~~~~~ 1 nrdcin oCluu

Figure 1.7 shows a natural way to graph Example 2, with the odd numbers in v an
the squares in f. Notice an important difference between the v-graph and the f-graph
The graph of f is "piecewise linear." We plotted the numbers in f and connected
them by straight lines. The graph of v is "piecewise constant." We plotted the differ
ences as constant over each piece. This reminds us of the distance-velocity graphs
when the distance f(t) is a straight line and the velocity v(t) is a horizontal line.

Now make the connection to slopes:

distance up change in f
The slope of the f-graph is distance change in

distance across change in t

Over each piece, the change in t (across) is 1. The change in f (upward) is the differenc
that we are calling v. The ratio is the slope v/1l or just v. The slope makes a sudde
change at the breakpoints t = 1, 2, 3, .... At those special points the slope of th
f-graph is not defined-we connected the v's by vertical lines but this is ver
debatable. The main idea is that between the breakpoints, the slope of f(t) is v(t).

Now make the connection to areas:

The total area under the v-graph is flast -ffirst

d
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This area, underneath the staircase in Figure 1.7, is composed of rectangles. The base
of every rectangle is 1. The heights of the rectangles are the v's. So the areas also
equal the v's, and the total area is the sum of the v's. This area is flast -first.

Even more is true. We could start at any time and end at any later time
-not necessarily at the special times t = 0, 1, 2, 3, 4. Suppose we stop at t = 3.5.
Only half of the last rectangular area (under v = 7) will be counted. The total area is
1 + 3 + 5 + 2(7) = 12.5. This still agrees with flast -first = 12.5 - 0. At this new ending
time t = 3.5, we are only halfway up the last step in the f-graph. Halfway between
9 and 16 is 12.5.

This is nothing less than the Fundamental Theorem of Calculus. But we have only
sed algebra (no curved graphs and no calculations involving limits). For now the
heorem is restricted to piecewise linear f(t) and piecewise constant v(t). In Chapter 5

hat restriction will be overcome.

Notice that a proof of 1 + 3 + 5 + 7 = 42 is suggested by Figure 1.7a. The triangle
nder the dotted line has the same area as the four rectangles under the staircase.
he area of the triangle is ½. base . height = -4 8, which is the perfect 9quare 42
hen there are j rectangles instead of 4, we get .j. 2j =j2 for the area.
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The next examples show other patterns, where f and v increase exponentially or 
oscillate around zero. I hope you like them but I don't think you have to learn them. 
They are like the special functions 2' and sin t and cos t-except they go in steps. 
You get a first look at the important functions of calculus, but you only need algebra. 
Calculus is needed for a steadily changing velocity, when the graph off is curved. 

The last example will be income tax-which really does go. in steps. Then Sec- 
tion 1.3 will introduce the slope of a curve. The crucial step for curves is working 
with limits. That will take us from algebra to calculus. 

EXPONENTIAL VELOCITY AND DISTANCE 

Start with the numbers f = 1,2,4,8, 16. These are "powers of 2." They start with the 
zeroth power, which is 2' = 1. The exponential starts at 1 and not 0. After j steps there 
are j factors of 2, and & equals 2j. Please recognize the diflerence between 2j and j2  
and 2j. The numbers 2j grow linearly, the numbers j2grow quadratically, the numbers 
2' grow exponentially. At j = 10 these are 20 and 100 and 1024. The exponential 2' 
quickly becomes much larger than the others. 

The differences off = 1,2,4,8, 16 are exactly v = 1,2,4,8.. We get the same beauti- 
ful numbers. When the f's are powers of 2, so are the v's. The formula vj  = 2"-' is 
slightly different from & = 2j, because the first v is numbered v,. (Then v, = 2' = 1. 
The zeroth power of every number is 1, except that 0' is meaningless.) The two graphs 
in Figure 1.8 use the same numbers but they look different, because f is piecewise 
linear and v is piecewise constant. 

1 2 3 4 1 2 3 4 
Fig. 1.8 The velocity and distance grow exponentially (powers of 2). 

Where will calculus come in? It works with the smooth curve f (t)= 2'. This expo- 
nential growth is critically important for population and money in a bank and the 
national debt. You can spot it by the following test: v(t) is proportional to f (t). 

Remark The function 2' is trickier than t2. For f = t2 the slope is v = 2t. It is 
proportional to t and not t2. For f = 2' the slope is v = c2', and we won't find the 
constant c = .693 ... until Chapter 6. (The number c is the natural logarithm of 2.) 
Problem 37 estimates c with a calculator-the important thing is that it's constant. 

OSCILLATING VELOCITY AND DISTANCE 

We have seen a forward-back motion, velocity V followed by -V. That is oscillation 
of the simplest kind. The graph off  goes linearly up and linearly down. Figure 1.9 
shows another oscillation that returns to zero, but the path is more interesting. 

The numbers in f are now 0, 1, 1,0, -1, -l,O. Since f6 = 0 the motion brings us 
back to the start. The whole oscillation can be repeated. 



1 lnhoductlonto Calculus 

The differences in v are 1,0, -1, -1,0, 1. They add up to zero, which agrees with 
Jast -Airst. It is the same oscillation as in f (and also repeatable), but shifted in time. 

The f-graph resembles (roughly) a sine curve. The v-graph resembles (even more 
roughly) a cosine curve. The waveforms in nature are smooth curves, while these are 
"digitized"-the way a digital watch goes forward in jumps. You recognize that the 
change from analog to digital brought the computer revolution. The same revolution 
is coming in CD players. Digital signals (off or on, 0 or 1 )  seem to win every time. 

The piecewise v and f start again at t = 6. The ordinary sine and cosine repeat at 
t =2n. A repeating motion is periodic-here the "period" is 6 or 2n. (With t in degrees 
the period is 360-a full circle. The period becomes 2n when angles are measured in 
radians. We virtually always use radians-which are degrees times 2n/360.) A watch 
has a period of 12 hours. If the dial shows AM and PM, the period is . 

Fig. 1.9 Piecewise constant "cosine" and piecewise linear "sine." They both repeat. 

A SHORT BURST O F  SPEED 

The next example is a car that is driven fast for a short time. The speed is V until 
the distance reaches f = 1, when the car suddenly stops. The graph of f goes up 
linearly with slope V ,  and then across with slope zero: 

V upto  t = T  Vt up to t = T 
v(t) = f (0= 

0 after t = T 1 after t = T 

This is another example of "function notation." Notice the general time t and the 
particular stopping time T. The distance is f (t). The domain off (the inputs) includes 
all times t 3 0. The range of f (the outputs) includes all distances 0 ff < 1. 

Figure 1.10 allows us to compare three cars-a Jeep and a Corvette and a Maserati. 
They have different speeds but they all reach f = 1. So the areas under the v-graphs 
are all 1. The rectangles have height V and base T = 1/ V. 

v~ EQUAL AREAS EQUAL DISTANCES I I  

Maserati delta II function 
I I 

II steD 
vc - - - - - 7  1 

I Corvette 
v~ I 

I Jeep 
I 

T~ T~ 

Fig. 1.10 Bursts of speed with V, TM= Vc Tc = 'V, T,= 1. Step function has infinite slope. 

Optional remark It is natural to think about faster and faster speeds, which means 
steeper slopes. The f-graph reaches 1 in shorter times. The extreme case is a step 
function, when the graph of f goes straight up. This is the unit step U(t) ,which is 
zero up to t =0 and jumps immediately to U = 1 for t >0. 
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What is the slope of the step function? It is zero except at the jump. At that moment,
which is t = 0, the slope is infinite. We don't have an ordinary velocity v(t)-instead
we have an impulse that makes the car jump. The graph is a spike over the single
point t = 0, and it is often denoted by 6-so the slope of the step function is called
a "delta function." The area under the infinite spike is 1.

You are absolutely not responsible for the theory of delta functions! Calculus is
about curves, not jumps.

Our last example is a real-world application of slopes ands rates-to explain "how
taxes work." Note especially the difference between tax rates and tax brackets and
total tax. The rates are v, the brackets are on x, the total tax is f.

EXAMPLE 3 Income tax is piecewise linear. The slopes are the tax rates .15,.28,.31.

Suppose you are single with taxable income of x dollars (Form 1040, line 37-after
all deductions). These are the 1991 instructions from the Internal Revenue Service:

If x is not over $20,350, the tax is 15% of x.

If $20,350 < x < $49,300, the tax is $3052.50 + 28% of the amount over $20,350.

If x is over $49,300, the tax is $11,158.50 + 31% of the amount over $49,300.

he first bracket is 0 < x < $20,350. (The IRS never uses this symbol <, but I think
t is OK here. We know what it means.) The second bracket is $20,350 < x < $49,300.
he top bracket x > $49,300 pays tax at the top rate of 31%. But only the income in

hat bracket is taxed at that rate.
Figure 1.11 shows the rates and the brackets and the tax due. Those are not average

ates, they are marginal rates. Total tax divided by total income would be the average
ate. The marginal rate of.28 or .31 gives the tax on each additional dollar of income-
t is the slope at the point x. Tax is like area or distance-it adds up. Tax rate is like
lope or velocity-it depends where you are. This is often unclear in the news media.

T
i
T
t

r
r
i
s

A• 1 on -'.U IO

sup 180 =slope60 11,158-across 3

f(2)= 40
S• slpe 20 3,052-

k tax to pay f(x)
31%tax rate =

slope .28

15% taxable income
I I Y

2 5 2 5 20,350 49,300

v2 = 60

ov = 20

Fig. 1.11 The tax rate is v, the total tax is f. Tax brackets end at breakpoints.

Question What is the equation for the straight line in the top bracket?
Answer The bracket begins at x = $49,300 when the tax is f(x) = $11,158.50. The
slope of the line is the tax rate .31. When we know a point on the line and the slope,
we know the equation. This is important enough to be highlighted.

Section 2.3 presents this "point-slope equation" for any straight line. Here you see it
for one specific example. Where does the number $11,158.50 come from? It is the tax
at the end of the middle bracket, so it is the tax at the start of the top bracket.
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Figure 1.11 also shows a distance-velocity example. The distance at t = 2 is 
f (2)= 40 miles. After that time the velocity is 60 miles per hour. So the line with 
slope 60 on the f-graph has the equation 

f (t) = starting distance + extra distance =40 + 60(t -2). 

The starting point is (2'40). The new speed 60 multiplies the extra time t -2. The 
point-slope equation makes sense. We now review this section, with comments. 

Central idea Start with any numbers in f. Their differences go in v. Then the sum 
of those differences is ha,,-ffirst. 

Subscript notation The numbers are f,, fl ,  ... and the first difference is v, =fl-f,. 
A typical number is fi and the jth difference is v j  =fi -fi- . When those differences 
are added, all f's in the middle (like f,) cancel out: 

Examples fi =j or j2or 2'. Then vj = 1 (constant) or 2j - 1 (odd numbers) or 2'- '. 

Functions Connect the f's to be piecewise linear. Then the slope v is piecewise 
constant. The area under the v-graph from any t,,,,, to any ten, equals f (ten,)-f (t,,,,,). 

Units Distance in miles and velocity in miles per hour. Tax in dollars and tax rate 
in (dollars paid)/(dollars earned). Tax rate is a percentage like .28, with no units. 

1.2 EXERCISES 

Read-through questions 

Start with the numbers f = 1,6,2,5. Their differences are 
v = a .The sum of those differences is b .This is equal 
to f,,,, minus c . The numbers 6 and 2 have no effect on 
this answer, because in (6 - 1)+ (2 -6) + (5 -2) the numbers 
6 and 2 d . The slope of the line between f(0) = 1 and 
f (1) = 6 is e . The equation of that line is f (t) = f . 

With distances 1, 5, 25 at unit times, the velocities are 
g . These are the h of the f-graph. The slope of the 

tax graph is the tax i . If f(t) is the postage cost for t 
ounces or t grams, the slope is the i per k . For 
distances 0, 1,4,9 the velocities are I . The sum of the 
first j odd numbers is fi = m . Then flo is n and the 
velocity ulo is 0 . 

The piecewise linear sine has slopes P . Those form a 
piecewise q cosine. Both functions have r equal to 
6, which means that f (t + 6) = s for every t. The veloci- 
ties v = 1,2,4,8, ... have vj = t . In that case fo = 1 and 
jj.= u . The sum of 1,2,4,8, 16 is v . The difference 
2J -2'- ' equals w . After a burst of speed V to time T, 
the distance is x . If f(T) = 1 and V increases, the burst 
lasts only to T = Y . When V approaches infinity, f (t) 
approaches a function. The velocities approach a 

A function, which is concentrated at t = 0 but has area 
B under its graph. The slope of a step function is c . 

Problems 1-4 are about numbers f and differences v. 

1 From the numbers f = 0,2,7,10 find the differences u and 
the sum of the three v's. Write down another f that leads 
to the same v's. For f =  0,3,12,10 the sum of the u's is 
still . 
2 Starting from f = 1,3,2,4 draw the f-graph (linear pieces) 

and the v-graph. What are the areas "under" the u-graph that 
add to 4 - l? If the next number in f is 11, what is the area 
under the next v? 

3 From v = 1,2, 1'0, -1 find the f's starting at fo = 3. 
Graph v and f. The maximum value of f occurs when 
v =  . Where is the maximum f when u = 1,2,1, -l?  

4 For f = 1, b, c, 7 find the differences vl  ,u2, v, and add 
them up. Do the same for f = a, b, c, 7. Do the same for 
f =a, b, c, d. 

Problems 5-11 are about linear functions and constant slopes. 

5 Write down the slopes of these linear functions: 
(a) f ( t )=  1.lt (b) f ( t )=  1 -2t (c) f ( t )=4+  5(t -6). 

Compute f (6) and f (7) for each function and confirm that 
f (7) -f (6) equals the slope. 

6 If f (t) = 5 + 3(t - 1) and g(t) = 1.5 + 2S(t - 1) what is 
h(t) =f (t) -g(t)? Find the slopes of f, g, and h. 
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=Suppose ~ ( t )  2 for t < 5 and v(t) =3 for t > 5. 
(a) If f (0)=0 find a two-part formula for f (t). 
(b) Check that f (10) equals the area under the graph of 
v(t) (two rectangles) up to t = 10. 

Suppose u(t) = 10 for t < 1/10, v(t) =0 for t > 1/10. Start- 
ing from f (0)= 1 find f (t) in two pieces. 

9 Suppose g(t) =2t + 1 and f (t)=4t. Find g(3) and f (g(3)) 
and f(g(t)). How is the slope of f(g(t)) related to the slopes 
of f and g? 

10 For the same functions, what are f (3) and g(f (3)) and 
g(f (t))? When t is changed to 4t, distance increases 
times as fast and the velocity is' multiplied by . 
11 Compute f (6) and f (8) for the functions in Problem 5. 
Confirm that the slopes v agree with 

f (8)-f (6) -
-

change in f
slope = 

8 -6 change in t ' 

Problems 12-18 are based on Example 3 about income taxes. 

12 What are the income taxes on x=$10,000 and 
x =$30,000 and x =$50,000? 

13 What is the equation for income tax f(x) in the second 
bracket $20,350 <x <$49,300? How is the number 1 1,158.50 
connected with the other numbers in the tax instructions? 

14 Write the tax function F(x) for a married couple if the IRS 
treats them as two single taxpayers each with taxable income 
x/2. (This is not done.) 

15 In the 15% bracket, with 5% state tax as a deduction, the 
combined rate is not 20% but . Think about the tax 
on an extra $100. 

16 A piecewise linear function is continuous when f (t) at the 
end of each interval equals f (t) at the start of the following 
interval. If f (t)= 5t up to t = 1 and v(t) =2 for t > 1, define 
f beyond t = 1 so it is (a) continuous (b) discontinuous. 
(c) Define a tax function f(x) with rates .15 and .28 so you 
would lose by earning an extra dollar beyond the breakpoint. 

17 The difference between a tax credit and a deduction from 
income is the difference between f (x)-c and f (x -d). Which 
is more desirable, a credit of c = $1000 or a deduction of 
d =$1000, and why? Sketch the tax graphs when f (x)= .15x. 

18 The average tax rate on the taxable income x is a(x) = 
f (x)/x. This is the slope between (0,O) and the point (x, f (x)). 
Draw a rough graph of a(x). The average rate a is below the 
marginal rate v because . 

Problems 19-30 involve numbers fo, f,,f2, ...and their differ- 
ences vj =& -&-, .They give practice with subscripts 0, . . .,j. 
19 Find the velocities v,, v2, v3 and formulas for vj and &: 
(a) f= l ,3 ,5 ,7  ... (b) f=0,1,0,1, ... (c) f=O,$,$,i ,... 

20 Find f,, f2, f3 and a formula for fi with fo =0: 
(a) v=l ,2 ,4 ,8,... (b) u = - l , l , - l , l ,  ... 

21 The areas of these nested squares are 12, 22, 32, . . . . What 
are the areas of the L-shaped bands (the differences between 
squares)? How does the figure show that I + 3 + 5 +7 =42? 

22 From the area under the staircase (by rectangles and then 
by triangles) show that the first j whole numbers 1 to j add 
up to G2+&. Find 1 +2 + .-.+ 100. 

23 If v=1,3,5 ,... then&=j2.  If v =  I, 1, 1 ,... then &= 
. Add those to find the sum of 2,4,6, ...,2j. Divide 

by 2 to find the sum of 1,2,3, ...,j. (Compare Problem 22.) 

24 True (with reason) or false (with example). 
(a) When the f's are increasing so are the 0's. 
(b) When the v's are increasing so are the f's. 
(c) When the f's are periodic so are the 0's. 
(d) When the v's are periodic so are the f 's. 

25 If f(t)= t2, compute f (99) and f (101). Between those 
times, what is the increase in f divided by the increase in t? 

26 If f (t)= t2 + t, compute f (99) and f (101). Between those 
times, what is the increase in f divided by the increase in t? 

27 If & =j2+j + 1 find a formula for vj. 

28 Suppose the 0's increase by 4 at every step. Show by 
example and then by algebra that the "second difference" 
&+ -2& +&- ,equals 4. 

29 Suppose fo =0 and the v's are 1, 3, 4, $, 4, 4, 4, .... For 
which j does & = 5? 

30 Show that aj =&+,-2fj +fj- ,always equals vj+ ,-vj. If 
v is velocity then a stands for . 

Problems 31-34 involve periodic f's and v's (like sin t and 
cos t). 

31 For the discrete sine f=O, 1, 1,0, -1, -1,O find the 
second differences al =f2 -2f1 +.fo and a2 =f, -2f2 +fland 
a3. Compare aj with &. 
32 If the sequence v,, v2, ... has period 6 and wl, w2, ... has 
period 10, what is the period of v, + w,, v2 + w2, ...? 

33 Draw the graph of f(t) starting from fo =0 when v = 1, 
-1, -1, 1. If v has period 4 find f(12), f(l3), f(lOO.l). 
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34 Graph f(t) from f o = O  to f 4 = 4  when v =  1,2, l,O. If v 44 Graph the square wave U(t) -U(t - 1). If this is the veloc- 
has period 4, find f (1 2) and f (1 4) and f (1 6). Why doesn't f ity v(t), graph the distance f(t). If this is the distance f (t), 
have period 4? graph the velocity. 

Problems 35-42 are about exponential v's and f 's. 45 Two bursts of speed lead to the same distance f = 10: 

35 Find the v's for f = 1,3,9,27. Predict v, and vj. Algebra v =  tot=.001 v = v t o t =  . 
gives 3j - 3j- = (3 - 1)3j- '. As V+ co the limit of the f (t)'s is 
36 Find 1 + 2 + 4 +  +32 and also 1 + j + d +  +&.- a -

46 Draw the staircase function U(t) + U(t - 1)+ U(t -2). Its 
37 Estimate the slope of f (t)=2' at t =0. Use a calculator slope is a sum of three functions. 
to compute (increase in f )/(increase in t) when t is small: 

f (t) -f (0) 2 - 1 2.l - 1 2.O' - 1 2.0°1 - 1 47 Which capital letters like L are the graphs of functions 
- and -and -and - when steps are allowed? The slope of L is minus a delta func- 

t 1 .I .o1 .001 . tion. Graph the slopes of the others. 

38 Suppose fo = I and vj  = 2fi - ,. Find f,. 
48 Write a subroutine FINDV whose input is a sequence 

39 (a) From f = 1, j , b ,  find v,, v,, v ,  and predict vj. fo, f,, ...,f, and whose output is v,, v,, ...,v,. Include 
(b) Check f3 -fo = v, + v2 + v3 and fi-A- = vj. graphical output if possible. Test on fi = 2j and j2 and 2j. 

40 Suppose vj  = rj. Show that fi = (rj' '- l)/(r- 1) starts 49 Write a subroutine FINDF whose input is v,, ...,v, and 
from fo = 1 and has fj-fi-, = uj. (Then this is the correct fo, and whose output is fo, f,,  ...,f,. The default value of fo
fi = 1 + r + + r j  = sum of a geometric series.) is zero. Include graphical output if possible. Test vj =j. 

41 From fi =(- 1)' compute vj. What is v,  + v2 + + vj? 
50 If FINDV is applied to the output of FINDF, what 

42 Estimate the slope of f (t) = et at t = 0. Use a calculator sequence is returned? If FINDF is applied to the output of 
that knows e (or else take e = 2.78) to compute FINDV, what sequence is returned? Watch fo. 

f(t)-f(0) 
-

e - 1 e.' - 1 e-O1- 1 51 Arrange 2j and j2and 2' and 4in increasing order and -and -
t 1 . I  .01 - (a) when j is large: j =9 (b) when j is small: j =&. 

Problems 43-47 are about U(t) = step from 0 to 1 at t =0. 52 The average age of your family since 1970 is a piecewise 
43 Graph the four functions U(t - 1) and U(t) -2 and U(3t) linear function A(t). Is it continuous or does it jump? What 
and 4U(t). Then graph f (t) =4U(3t - 1)-2. is its slope? Graph it the best you can. 

1.3 The Velocity at an Instant 

We have arrived at the central problems that calculus was invented to solve. There 
are two questions, in opposite directions, and I hope you could see them coming. 

1. If the velocity is changing, how can you compute the distance traveled? 
2. If the graph of f(t) is not a straight line, what is its slope? 

Find the distance from the velocity, find the velocity from the distance. Our goal is 
to do both-but not in one section. Calculus may be a good course, but it is not 
magic. The first step is to let the velocity change in the steadiest possible way. 

Question 1 Suppose the velocity at each time t is v(t) = 2t. Find f (t). 

With zr= 2t, a physicist would say that the acceleration is constant (it equals 2). The 
driver steps on the gas, the car accelerates, and the speedometer goes steadily up. 
The distance goes up too-faster and faster. If we measure t in seconds and v in feet 
per second, the distance f comes out in feet. After 10 seconds the speed is 20 feet 
per second. After 44 seconds the speed is 88 feetlsecond (which is 60 miles/hour). 
The acceleration is clear, but how far has the car gone? 
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Question 2 The distance traveled by time t is f ( t )= t2 .  Find the velocity v(t). 

The graph off ( t )= t2  is on the right of Figure 1.12. It is a parabola. The curve starts 
at zero, when the car is new. At t = 5 the distance is f = 25. By t = 10, f reaches 100. 

Velocity is distance divided by time, but what happens when the speed is changing? 
Dividing f =  100 by t = 10 gives v = 10-the average veEocity over the first ten 
seconds. Dividing f = 121 by t = 11 gives the average speed over 11 seconds. But how 
do we find the instantaneous velocity-the reading on the speedometer at the exact 
instant when t = lo? 

change in 
distance 
( t  + h)2 -

time t t t + h  t 

Fig. 1.12 The velocity v =2t is linear. The distance f= t2 is quadratic. 

I hope you see the problem. As the car goes faster, the graph of t 2  gets steeper- 
because more distance is covered in each second. The average velocity between t = 10 
and t = 11 is a good approximation-but only an approximation-to the speed at 
the moment t = 10. Averages are easy to find: 

average velocity is f (1 1) -f (10) -- 121 - 100 
= 21.

11- 10 1 

The car covered 21 feet in that 1 second. Its average speed was 21 feetlsecond. Since 
it was gaining speed, the velocity at the beginning of that second was below 21. 

Geometrically, what is the average? It is a slope, but not the slope of the curve. 
The average velocity is the slope of a straight line. The line goes between two points 
on the curve in Figure 1.12. When we compute an average, we pretend the velocity 
is constant-so we go back to the easiest case. It only requires a division of distance 
by time: 

change in f
average velocity = 

change in t ' 

Calculus and the Law You enter a highway at 1 :00. If you exit 150 miles away at 
3 :00, your average speed is 75 miles per hour. I'm not sure if the police can give you 
a ticket. You could say to the judge, "When was I doing 75?" The police would have 
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to admit that they have no idea-but they would have a definite feeling that you 
must have been doing 75 sometime.? 

We return to the central problem-computing v(10) at the instant t = 10. The 
average velocity over the next second is 21. We can also find the average over the 
half-second between t = 10.0 and t = 10.5. Divide the change in distance by the change 
in time: 

f (10.5) -f (10.0) - (10.5)2- (10.0)2- 110.25 - 100 
= 20.5. 

10.5 - 10.0 .5 .5 

That average of 20.5 is closer to the speed at t = 10. It is still not exact. 
The way to find v(10) is to keep reducing the time interval. This is the basis for 

Chapter 2, and the key to differential calculus. Find the slope between points that are 
closer and closer on the curve. The "limit" is the slope at a single point. 

Algebra gives the average velocity between t = 10 and any later time t = 10 + h. 
The distance increases from lo2 to (10 + h)l. The change in time is h. So divide: 

This formula fits our previous calculations. The interval from t = 10 to t = 11 had 
h = 1, and the average was 20 + h = 21. When the time step was h =i,the average 
was 20 + 4= 20.5. Over a millionth of a second the average will be 20 plus 
1/1,000,000-which is very near 20. 

Conclusion: The velocity at t = 10 is v = 20. That is the slope of the curve. It agrees 
with the v-graph on the left side of Figure 1.12, which also has v(10) = 20. 

We now show that the two graphs match at all times. If f (t) = t 2  then v(t) = 2t. 
You are seeing the key computation of calculus, and we can put it into words before 
equations. Compute the distance at time t + h, subtract the distance at time t, and 
divide by h. That gives the average velocity: 

This fits the previous calculation, where t was 10. The average was 20 + h. Now the 
average is 2t + h. It depends on the time step h, because the velocity is changing. But 
we can see what happens as h approaches zero. The average is closer and closer to 
the speedometer reading of 2t, at the exact moment when the clock shows time t: 

I 1E As h approaches zero, the average velooity 2t + h approaches v(t )  = 2t. I 
Note The computation (3) shows how calculus needs algebra. If we want the whole 
v-graph, we have to let time be a "variable." It is represented by the letter t. Numbers 
are enough at the specific time t = 10 and the specific step h = 1-but algebra gets 
beyond that. The average between any t and any t + h is 2t + h. Please don't hesitate 
to put back numbers for the letters-that checks the algebra. 

+This is our first encounter with the much despised "Mean Value Theorem." If the judge can 
prove the theorem, you are dead. A few u-graphs and f-graphs will confuse the situation 
(possibly also a delta function). 
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There is also a step beyond algebra! Calculus requires the limit of the average. As 
h shrinks to zero, the points on the graph come closer. "Average over an interval" 
becomes "velocity at an instant.'' The general theory of limits is not particularly 
simple, but here we don't need it. (It isn't particularly hard either.) In this example 
the limiting value is easy to identify. The average 2t + h approaches 2t, as h -, 0. 

What remains to do in this section? We answered Question 2-to find velocity 
from distance. We have not answered Question 1. If v(t) = 2t increases linearly with 
time, what is the distance? This goes in the opposite direction (it is integration). 

The Fundamental Theorem of Calculus says that no new work is necessary. Zfthe 
slope o f f  (t) leads to v(t), then the area under that v-graph leads back to the f-graph. 
The odometer readings f = t2 produced speedometer readings v = 2t. By the Funda- 
mental Theorem, the area under 2t should be t2. But we have certainly not proved 
any fundamental theorems, so it is better to be safe-by actually computing the area. 

Fortunately, it is the area of a triangle. The base of the triangle is t and the height 
is v = 2t. The area agrees with f (t): 

area = i(base)(height)= f(t)(2t)= t2. (4) 

EXAMPLE 1 The graphs are shifted in time. The car doesn't start until t = 1. Therefore 
v =  0 and f = O  up to that time. After the car starts we have v =  2(t - 1) and 
f = (t - You see how the time delay of 1 enters the formulas. Figure 1.13 shows 
how it affects the graphs. 

Fig. 1.13 Delayed velocity and distance. The pairs v = at + b and f= $at2+ bt. 

EXAMPLE 2 The acceleration changes from 2 to another constant a. The velocity 
changes from v = 2t to v = at. The acceleration is the slope ofthe velocity curve! The 
distance is also proportional to a, but notice the factor 3: 

acceleration a 9 velocity v = at 9 distance f = fat2. 

If a equals 1, then v = t and f = f t2. That is one of the most famous pairs in calculus. 
If a equals the gravitational constant g, then v = gt is the velocity of a falling body. 
The speed doesn't depend on the mass (tested by Galileo at the Leaning Tower of 
Pisa). Maybe he saw the distance f = &gt2more easily than the speed v = gt. Anyway, 
this is the most famous pair in physics. 
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EXAMPLE 3 Suppose f (t) = 3t + t2. The average velocity from t to t + h is 

f (t + h) -f (t) - 3(t + h) + (t + h)2 - 3t - t2 -
Vave = h h 

The change in distance has an extra 3h (coming from 3(t + h) minus 3t). The velocity 
contains an additional 3 (coming from 3h divided by h). When 3t is added to the 
distance, 3 is added to the velocity. If Galileo had thrown a weight instead of dropping 
it, the starting velocity vo would have added vot to the distance. 

FUNCTIONS ACROSS TIME 

The idea of slope is not difficult-for one straight line. Divide the change in f by 
the change in t. In Chapter 2, divide the change in y by the change in x. Experience 
shows that the hard part is to see what happens to the slope as the line moves. 

Figure 1.l4a shows the line between points A and B on the curve. This is a "secant 
line." Its slope is an average velocity. What calculus does is to bring that point B 
down the curve toward A. 

1 speed 

Fig. 1.14 Slope of line, slope of curve. Two velocity graphs. Which is which? 

. Question I What happens to the "change in f "-the height of B above A? 
Answer The change in f decreases to zero. So does the change in t. 

Question 2 As B approaches A, does the slope of the line increase or decrease? 
Answer I am not going to answer that question. It is too important. Draw another 
secant line with B closer to A. Compare the slopes. 

This question was created by Steve Monk at the University of Washington-where 
57% of the class gave the right answer. Probably 97% would have found the right 
slope from a formula. Figure 1.14b shows the opposite problem. We know the veloc- 
ity, not the distance. But calculus answers questions about both functions. 

Question 3 Which car is going faster at time t = 3/4? 
Answer Car C has higher speed. Car D has greater acceleration. 

Question 4 If the cars start together, is D catching up to C at the end? Between 
t = $  and t = 1, do the cars get closer or further apart? 
Answer This time more than half the class got it wrong. You won't but you can see 
why they did. You have to look at the speed graph and imagine the distance graph. 
When car C is going faster, the distance between them . 
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To repeat: The cars start together, but they don't finish together. They reach the 
same speed at t = 1, not the same distance. Car C went faster. You really should draw 
their distance graphs, to see how they bend. 

These problems help to emphasize one more point. Finding the speed (or slope) is 
entirely different from finding the distance (or area): 

1. To find the slope of the f-graph at a'particular time t, you don't have to know 
the whole history. 

2. To find the area under the v-graph up to a particular time t, you do have to 
know the whole history. 

A short record of distance is enough to recover v(t). Point B moves toward point A. 
The problem of slope is local-the speed is completely decided by f (t) near point A. 

In contrast, a short record of speed is not enough to recover the total distance. We 
have to know what the mileage was earlier. Otherwise we can only know the increase 
in mileage, not the total. 

1.3 EXERCISES 

Read-through questions 

Between the distances f (2) = 100 and f (6)= 200, the average 
velocity is a . If f(t) = i t 2  then f (6)= b and 
f(8) = c . The average velocity in between is d . The 
instantaneous velocities at t = 6 and t = 8 are e and 

f . 

The average velocity is computed from f (t) and f (t + h) by 
uave= g . If f ( t ) = t 2  then o,,,= h . From t = l  to 
t = 1.1 the average is 1 . The instantaneous velocity 
is the I of u,,,. If the distance is f (t)= +at2 then the 
velocity is u(t) = k and the acceleration is 1 . 

On the graph of f(t), the average velocity between A and 
B is the slope of m . The velocity at A is found by n . 
The velocity at B is found by 0 . When the velocity is 
positive, the distance is P . When the velocity is increas- 
ing, the car is q . 

1 Compute the average velocity between t = 5 and t = 8: 

(a) f (0= 6t (b) f (t)= 6t + 2 
(c) f(t) =+at2 (d) f(t)=' t- t2 

( 4  f ( t )  = 6 (f) u(t) = 2t 

2 For the same functions compute [ f(t + h) -f (t)]/h. This 
depends on t and h. Find the limit as h -,0. 

3 If the odometer reads f (t) = t2 + t (f in miles or kilo- 
meters, t in hours), find the average speed between 

(a) t = l  and t = 2  
(b) t = 1 and t = 1.1 
(c) t = l  a n d t = l + h  
(d) t = 1 and t = .9 (note h = - .l) 

4 For the same f (t) = t2 + t, find the average speed between 
(a) t = O a n d l  (b) t = O a n d +  (c) t=Oandh.  

5 In the answer to 3(c), find the limit as h + 0. What does 
that limit tell us? 

6 Set h = 0 in your answer to 4(c). Draw the graph of 
f(t)= t2 + t and show its slope at t = 0. 

7 Draw the graph of v(t) = 1 + 2t. From geometry find 
the area under it from 0 to t. Find the slope of that area 
function f (t). 

8 Draw the graphs of v(t) = 3 -2t and the area f(t). 

9 True or false 
(a) If the distance f (t) is positive, so is v(t). 
(b) If the distance f (t) is increasing, so is u(t). 
(c) If f (t) is positive, v(t) is increasing. 
(d) If v(t) is positive, f (t) is increasing. 

10 If f(t) = 6t2 find the slope of the f-graph and also the 
v-graph. The slope of the u-graph is the 

11 Iff (t) = t 2  what is the average velocity between t = .9 and 
t = 1.1? What is the average between t -h and t + h? 

12 (a) Show that for f (t) = *at2 the average velocity between 
t -h and t +'h is exactly the velocity at t. 
(b) The area under v(t) = at from t -h to t + h is exactly 
the base 2h times 

13 Find f (t) from u(t) = 20t iff (0) = 12. Also if f (1) = 12. 

14 True or false, for any distance curves. 
(a) The slope of the line from A to B is the average velocity 
between those points. 
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(b) Secant lines have smaller slopes than the curve. Find the area under u(t) between t =0 and t = 1,2,3,4,5,6. 
(c) If f (t) and F(t) start together and finish together, the Plot those points f (1),. . . ,f (6) and draw the complete piece- 
average velocities are equal. wise parabola f (t). 

(d) If v(t) and V(t) start together and finish together, the 21 Draw the graph of f (t) = (1- t2( for 0 < t <2. Find a 
increases in distance are equal. three-part formula for u(t). 

15 When you jump up and fall back your height is y =2t - t2 22 Draw the graphs of f (t) for these velocities (to t =2): 
in the right units. (a) v(t) = 1 - t 

(a) Graph this parabola and its slope. (b) ~ ( t )  = 11 - tl 
(b) Find the time in the air and maximum height. (c) ~ ( t )  =(1 - t) + 1 1 - t 1. 
(c) Prove: Half the time you are above y =2. 

23 When does f (t) = t2 -3t reach lo? Find the average 
Basketball players "hang" in the air partly because of (c). velocity up to that time and the instantaneous velocity at that 
16 Graph f (t) = t2 and g(t) =f (t) -2 and h(t) =f (2t), all time. 
from t =0 to t = 1. Find the velocities. 24 If f (t) =*at2 + bt + c, what is v(t)? What is the slope of 

17 (Recommended) An up and down velocity is v(t) =2t for v(t)? When does f (t) equal 41, if a =b =c = I? 

t < 3, v(t) = 12 -2t for t 2 3. Draw the piecewise parabola 25 If f (t) = t2 then v(t) =2t. Does the speeded-up function 
f(t). Check that f (6)=area under the graph of u(t). f(4t) have velocity v(4t) or 4u(t) or 4v(4t)? 

18 Suppose v(t) = t for t <2 and v(t) = 2 for t 2 2. Draw the 26 If f (t) = t - t2 find v(t) and f (3t). Does the slope of f (3t) 
graph off (t) out to t = 3. equal v(3t) or 3v(t) or 3v(3t)? 

19 Draw f (t) up to t =4 when u(t) increases linearly from 27 For f (t) = tZ  find vaVe(t) between 0 and t. Graph vave(t) 
(a) 0 to 2 (b) - I t 0 1  (c) -2 to 0. and v(t). 

how can you find 20 (Recommended) Suppose v(t) is the piecewise linear sine 28 If you know the average velocity uaVe(t), 
function of Section 1.2. (In Figure 1.8 it was the distance.) the distance f (t)? Start from f (0)=0. 

1.4 Circular Motion 

This section introduces completely new distances and velocities-the sines and cosines 
from trigonometry. As I write that last word, I ask myself how much trigonometry it 
is essential to know. There will be the basic picture of a right triangle, with sides cos t 
and sin t and 1. There will also be the crucial equation (cos t )2+ (sin t )2= 1, which 
is Pythagoras' law a' + b2 = c2. The squares of two sides add to the square of the 
hypotenuse (and the 1 is really 12). Nothing else is needed immediately. If you don't 
know trigonometry, don't stop-an important part can be learned now. 

You will recognize the wavy graphs of the sine and cosine. W e  intend to Jind the 
slopes of those graphs. That can be done without using the formulas for sin(x + y) 
and cos (x + y)-which later give the same slopes in a more algebraic way. Here it is 
only basic things that are needed.? And anyway, how complicated can a triangle be? 

Remark You might think trigonometry is only for surveyors and navigators (people 
with triangles). Not at all! By far the biggest applications are to rotation and vibration 
and oscillation. It is fantastic that sines and cosines are so perfect for "repeating 
motionw-around a circle or up and down. 

?Sines and cosines are so important that I added a review of trigonometry in Section 1.5. But 
the concepts in this section can be more valuable than formulas. 
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1 

f = sin t 

1

sin t 

- 1 
COS t 

Fig. 1.15 As the angle t changes, the graphs show the sides of the right triangle. 

Our underlying goal is to offer one more example in which the velocity can be 
computed by common sense. Calculus is mainly an extension of common sense, but 
here that extension is not needed. We will find the slope of the sine curve. The straight 
line f = v t  was easy and the parabola f = +at2 was harder. The new example also 
involves realistic motion, seen every day. We start with circular motion, in which the 
position is given and the velocity will be found. 

A ball goes around a circle of radius one. The center is at x = 0, y = 0 (the origin). 
The x and y coordinates satisfy x 2  + y2 = 12, to keep the ball on the circle. We specify 
its position in Figure 1.16a by giving its angle with the horizontal. And we make the 
ball travel with constant speed, by requiring that the angle is equal to the time t. The 
ball goes counterclockwise. At time 1 it reaches the point where the angle equals 1. 
The angle is measured in radians rather than degrees, so a full circle is completed at 
t = 271 instead of t = 360. 

The ball starts on the x axis, where the angle is zero. Now find it at time t: 

The ball is at the point where x= cos t and y = sin t. 

This is where trigonometry is useful. The cosine oscillates between 1 and -1, as the 
ball goes from far right to far left and back again. The sine also oscillates between 1 
and - 1, starting from sin 0 = 0. At time 7112 the sine (the height) increases to one. 
The cosine is zero and the ball reaches the top point x = 0, y = 1. At time 71 the cosine 
is -1 and the sine is back to zero-the coordinates are (- 1,O). At t = 271 the circle 
is complete (the angle is also 271), and x = cos 27~ = 1, y = sin 271 = 0. 

vertical 
velocity 

vertical 
distance 

Fig. 1.16 Circular motion with speed 1, angle t, height sin t, upward velocity cos t .  
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Important point: The distance around the circle (its circumference) is 2nr = 2n, 
because the radius is 1. The ball travels a distance 2n in a time 2n. The speed equals 
1. It remains to find the velocity, which involves not only speed but direction. 

Degrees vs. radians A full circle is 360 degrees and 271 radians. Therefore 

1 radian = 36012~ degrees = 57.3 degrees 

1 degree = 2711360 radians = .01745 radians 

Radians were invented to avoid those numbers! The speed is exactly 1, reaching t 
radians at time t. The speed would be .01745, if the ball only reached t degrees. The 
ball would complete the circle at time T = 360. We cannot accept the division of the 
circle into 360 pieces (by whom?), which produces these numbers. 

To check degree mode vs. radian mode, verify that sin lo  z .017 and sin 1 = 34. 

VELOCITY OF THE BALL 

At time t, which direction is the ball going? Calculus watches the motion between t 
and t + h. For a ball on a string, we don't need calculus-just let go. The direction 
of motion is tangent to the circle. With no force to keep it on the circle, the ball goes 
oflon a tangent. If the ball is the moon, the force is gravity. If it is a hammer swinging 
around on a chain, the force is from the center. When the thrower lets go, the hammer 
takes off-and it is an art to pick the right moment. (I once saw a friend hit by a 
hammer at MIT. He survived, but the thrower quit track.) Calculus will find that 
same tangent direction, when the points at t and t + h come close. 

The "velocity triangle" is in Figure 1.16b. It is the same as the position triangle, 
but rotated through 90". The hypotenuse is tangent to the circle, in the direction the 
ball is moving. Its length equals 1 (the speed). The angle t still appears, but now it is 
the angle with the vertical. The upward component of velocity is cos t, when the upward 
component of position is sin t. That is our common sense calculation, based on a 
figure rather than a formula. The rest of this section depends on it-and we check 
v = cos t at special points. 

At the starting time t = 0, the movement is all upward. The height is sin 0 = 0 and 
the upward velocity is cos 0 = 1. At time ~ 1 2 ,  the ball reaches the top. The height is 
sin 4 2  = 1 and the upward velocity is cos n/2 = 0. At that instant the ball is not 
moving up or down. 

The horizontal velocity contains a minus sign. At first the ball travels to the left. 
The value of x is cos t, but the speed in the x direction is -sin t. Half of trigonometry 
is in that figure (the good half), and you see how sin2 t + cos2 t = 1 is so basic. 
That equation applies to position and velocity, at every time. 

Application of plane geometry: The right triangles in Figure 1.16 are the same size 
and shape. They look congruent and they are-the angle t above the ball equals the 
angle t at the center. That is because the three angles at the ball add to 180". 

OSCILLATION: UP AND DOWN MOTION 

We now use circular motion to study straight-line motion. That line will be the y axis. 
Instead of a ball going around a circle, a mass will move up and down. It oscillates 
between y = 1 and y = - 1. The mass is the "shadow of the ball," as we explain in a 
moment. 
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There is a jumpy oscillation that we do not want, with v = 1 and v = -1. That 
"bang-bang" velocity is like a billiard ball, bouncing between two walls without 
slowing down. If the distance between the walls is 2, then at t = 4 the ball is back to 
the start. The distance graph is a zigzag (or sawtooth) from Section 1.2. 

We prefer a smoother motion. Instead of velocities that jump between +1 and -1, 
a real oscillation slows down to zero and gradually builds up speed again. The mass 
is on a spring, which pulls it back. The velocity drops to zero as the spring is fully 
stretched. Then v is negative, as the mass goes the same distance in the opposite 
direction. Simple harmonic motion is the most important back and forth motion, 
while f = vt and f = fat2 are the most important one-way motions. 

) 
turn 

( . p = m s t ; / / / J  
U P  


fup = sin t 
down 

turn 

Fig. 1.17 Circular motion of the ball and harmonic motion of the mass (its shadow). 

How do we describe this oscillation? The best way is to match it with the ball on 
the circle. The height of the ball will be the height of the mass. The "shadow of the 
ball" goes up and down, level with the ball. As the ball passes the top of the 
circle, the mass stops at the top and starts down. As the ball goes around the bottom, 
the mass stops and turns back up the y axis. Halfway up (or down), the speed is 1. 

Figure 1.17a shows the mass at a typical time t. The height is y =f (t)= sin t, level 
with the ball. This height oscillates between f = 1 and f = -1. But the mass does not 
move with constant speed. The speed of the mass is changing although the speed of 
the ball is always 1 .  The time for a full cycle is still 2n, but within that cycle the mass 
speeds up and slows down. The problem is to find the changing velocity u. Since the 
distance is f = sin t, the velocity will be the slope of the sine curve. 

THE SLOPE OF THE SINE CURVE 

At the top and bottom (t = n/2 and t = 3~12) the ball changes direction and v = 0. 
The slope at the top and bottom of the sine curve is zero.? At time zero, when the ball 
is going straight up, the slope of the sine curve is v = 1. At t = n,when the ball and 
mass and f-graph are going down, the velocity is v = -1. The mass goes fastest at 
the center. The mass goes slowest (in fact it stops) when the height reaches a maximum 
or minimum. The velocity triangle yields v at every time t. 

To find the upward velocity of the mass, look at the upward velocity of the ball. 
Those velocities are the same! The mass and ball stay level, and we know v from 
circular motion: The upward velocity is v = cos t. 

?That looks easy but you will see later that it is extremely important. At a maximum or 
minimum the slope is zero. The curve levels off. 
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Figure 1.18 shows the result we want. On the right, f = sin t gives the height. On 
the left is the velocity v = cos t. That velocity is the slope of the f-curve. The height 
and velocity (red lines) are oscillating together, but they are out of phase-just as 
the position triangle and velocity triangle were at right angles. This is absolutely 
fantastic, that in calculus the two most famous functions of trigonometry form a pair: 
The slope of the sine curve is given by the cosine curve. 

When the distance is f (t) = sin t, the velocity is v(t)= cos t .  

Admission of guilt: The slope of sin t was not computed in the standard way. 
Previously we compared (t + h)' with t2,and divided that distance by h. This average 
velocity approached the slope 2t as h became small. For sin t we could have done the 
same: 

change in sin t sin (t + h) - sin t 
average velocity = 

change in t 
--

h (1) 

This is where we need the formula for sin (t + h), coming soon. Somehow the ratio in 
(1) should approach cosmtas h -,0. (It d,oes.)The sine and cosine fit the same pattern 
as t2 and 2 t o u r  shortcut was to watch the shadow of motion around a circle. 

Fig. 1.I 8 v = cos t when f = sin t (red); v = -sin t when f = cos t (black). 

Question 1 What if the ball goes twice as fast, to reach angle 2t at time t? 

Answer The speed is now 2. The time for a full circle is only n. The ball's position 
is x = cos 2t and y = sin 2t. The velocity is still tangent to the circle-but the tangent 
is at angle 2t where the ball is. Therefore cos 2t enters the upward velocity and 
-sin 2t enters the horizontal velocity. The difference is that the velocity triangle is 
twice as big. The upward velocity is not cos 2t but 2 cos 2t. The horizontal velocity 
is -2 sin 2t. Notice these 2's! 

Question 2 What is the area under the cosine curve from t = 0 to t = n/2? 

You can answer that, if you accept the Fundamental Theorem of Calculus-
computing areas is the opposite of computing slopes. The slope of sin t is cos t, so the 
area under cos t is the increase in sin t. No reason to believe that yet, but we use it 
anyway. 

From sin 0 = 0 to sin n/2 = 1, the increase is 1. Please realize the power of calculus. 
No other method could compute the area under a cosine curve so fast. 
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THE SLOPE OF THE COSINE,CURVE 

I cannot resist uncovering another distance and velocity (another f-v pair) with no 
extra work. This time f is the cosine. The time clock starts at the top of the circle. 
The old time t = n/2is now t = 0.The dotted lines in Figure 1.18 show the new start. 
But the shadow has exactly the same motion-the ball keeps going around the circle, 
and the mass follows it up and down. The f-graph and v-graph are still correct, both 
with a time shift of 4 2 .  

The new f-graph is the cosine. The new v-graph is minus the sine. The slope of the 
cosine curve follows the negative of the sine curve. That is another famous pair, twins 
of the first: 

When the distance is f (t)= cos t, the velocity is v(t) = - sin t. 

You could see that coming, by watching the ball go left and right (instead of up and 
down). Its distance across is f = cos t. Its velocity across is v = -sin t. That twjn pair 
completes the calculus in Chapter 1 (trigonometry to come). We review the ideas: 

v is the velocity 
the slope of the distance curve 
the limit of average velocity over a short time 
the derivative of f. 

f is the distance 
the area under the velocity curve 
the limit of total distance over many short times 
the integral of v. 

Differential calculus: Compute v from f . Integral calculus: Compute f from v. 

With constant velocity, f equals vt. With constant acceleration, v = at and f = t a t  2. 

In harmonic motion, v = cos t and f = sin t .  One part of our goal is to extend that 
list-for which we need the tools of calculus. Another and more important part is 
to put these ideas to use. 

Before the chapter ends, may I add a note about the book and the course? The 
book is more personal than usual, and I hope readers will approve. What I write is 
very close to what I would say, if you were in this room. The sentences are spoken 
before they are written.? Calculus is alive and moving forward-it needs to be taught 
that way. 

One new part of the subject has come with the computer. It works with a finite 
step h, not an "infinitesimal" limit. What it can do, it does quickly-even if it cannot 
find exact slopes or areas. The result is an overwhelming growth in the range of 
problems that can be solved. We landed on the moon because f and v were so 
accurate. (The moon's orbit has sines and cosines, the spacecraft starts with v = at 
and f = )at2. Only the computer can account for the atmosphere and the sun's gravity 
and the changing mass of the spacecraft.) Modern mathematics is a combination of 
exact formulas and approximate computations. Neither part can be ignored, and I 
hope you will see numerically what we derive algebraically. The exercises are to help 
you master both parts. 

t o n  television you know immediately when the words are live. The same with writing. 
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The course has made a quick start-not with an abstract discussion of sets or 
functions or limits, but with the concrete questions that led to those ideas. You have 
seen a distance function f and a limit v of average velocities. We will meet more 
functions and more limits (and their definitions!) but it is crucial to study important 
examples early. There is a lot to do, but the course has definitely begun. 

1.4 EXERCISES 
Read-through questions 

A ball at angle t on the unit circle has coordinates x = a 
and y = b . It completes a full circle at t = c . Its speed 
is d . Its velocity points in the direction of the e , 
which is f to the radius coming out from the center. The 
upward velocity is g and the horizontal velocity is h . 

A mass going up and down level with the ball has height ' 

f(t)= i . This is called simple i motion. The velocity 
is u(t) = k . When t = n/2 the height is f = I and the 
velocity is v = m . If a speeded-up mass reaches f= sin 2t 
at time t, its velocity is v = n . A shadow traveling under 
the ball has f= cos t and v = o . When f is distance = 
area = integral, v is P = q = r . 

1 For a ball going around a unit circle with speed 1, 
(a) how long does it take for 5 revolutions? 
(b) at time t = 3n/2 where is the ball? 
(c) at t = 22 where is the ball (approximately)? 

2 For the same motion find the exact x and y coordinates 
at t = 2x13. At what time would the ball hit the x axis, if it 
goes off on the tangent at t = 2n/3? 

3 A ball goes around a circle of radius 4. At time t (when it 
reaches angle t) find 

(a) its x and y coordinates 
(b) the speed and the distance traveled 
(c) the vertical and horizontal velocity. 

4 On a circle of radius R find the x and y coordinates at 
time t (and angle t). Draw the velocity triangle and find the 
x and y velocities. 

5 A ball travels around a unit circle (raalus 1) with speed 3, 
starting from angle zero. At time t, 

(a) what angle does it reach? 
(b) what are its x and y coordinates? 
(c) what are its x and y velocities? This part is harder. 

6 If another ball stays n/2 radians ahead of the ball with 
speed 3, find its angle, its x and y coordinates, and its vertical 
velocity at time t. 

7 A mass moves on the x axis under or over the original 
ball (on the unit circle with speed 1). What is the position 
x =f (t)? Find x and v at t = 4 4 .  Plot x and v up to t = n. 

8 Does the new mass (under or over the ball) meet the old 
mass (level with the ball)? What is the distance between 
the masses at time t? 

9 Draw graphs of f(t) = cos 3t and cos 2nt and 271 cos t, 
marking the time axes. How long until each f repeats? 

10 Draw graphs of f = sin(t + n) and v = cos (t + n). This 
oscillation stays level with what ball? 

11 Draw graphs of f= sin ( 4 2  - t) and v = -cos (n/2 - t). 
This oscillation stays level with a ball going which way start- 
ing where? 

12 Draw a graph of f(t) = sin t + cos t. Estimate its greatest 
height (maximum f )  and the time it reaches that height. By 
computing f check your estimate. 

13 How fast should you run across the circle to meet the ball 
again? It travels at speed 1. 

14 A mass falls from the top of the unit circle when the ball 
of speed 1 passes by. What acceleration a is necessary to meet 
the ball at the bottom? 

Find the area under v = cos t from the change in f= sin t: 

15 from t = O  to t = n  j6 from t = 0 to t = n/6 

17 from t = O  to t = 2 n  18 from t = n/2 to t = 3x12. 

19 The distance curve f= sin 4t yields the velocity curve 
v = 4 cos 4t. Explain both 4's. 

20 The distance curve f = 2 cos 3t yields the velocity curve 
v = -6 sin 3t. Explain the -6. 

21 The velocity curve v = cos 4t yields the distance curve 
f = $ sin 4t. Explain the i. 
22 The velocity v = 5 sin 5t yields what distance? 



23 Find the slope of the sine curve at t = 4 3  from v = cos t. The oscillation x = 0, y = sin t goes (1)up and down (2)between 
Then find an average slope by dividing sin n/2 -sin 4 3  by -1 and 1 (3) starting from x = 0, y = 0 (4) at velocity 
the time difference 4 2  -43.  v = cos t. Find (1)(2)(3)(4) for the oscillations 31-36. 

24 The slope of f = sin t at t = 0 is cos 0 = 1. Compute 31 x=cost,  y=O 32 x = 0, y = sin 5t 
average slopes (sin t)/t for t = 1, .l, .01, .001. 

33 x=O, y=2sin(t+O) 34 x=cost,  y=cost  

The ball at x = cos t, y = sin t circles (1) counterclockwise 35 x=O, y=-2cos i t  36 x=cos2t, y=sin2t 
(2)with radius 1 (3)starting from x = 1, y = 0 (4)at speed 1. 
Find (1)(2)(3)(4) for the motions 25-30. 37 If the ball on the unit circle reaches t degrees at time t, 

find its position and speed and upward velocity. 
25 x=cos3t, y=-sin3t 

38 Choose the number k so that x = cos kt, y = sin kt com- 
26 x = 3 cos 4t, y = 3 sin 4t pletes a rotation at t = 1. Find the speed and upward velocity. 
27 x = 5 sin 2t, y = 5 cos 2t 39 If a pitcher doesn't pause before starting to throw, a balk 

is called. The American League decided mathematically that 
there is always a stop between backward and forward motion, 
even if the time is too short to see it. (Therefore no balk.) Is 

30 x =cos (- t), y = sin (- t) that true? 

1.5 A Review of Trigonometry 

Trigonometry begins with a right triangle. The size of the triangle is not as important 
as the angles. We focus on one particular angle-call it 8-and on the ratios between 
the three sides x, y, r. The ratios don't change if the triangle is scaled to another 
size. Three sides give six ratios, which are the basic functions of trigonometry: 

n r 1 
cos 8 = -

x 
= 

near side set 8 =  - =  -
r hypo tenuse x cos 8 

sin 8 = -
y 

= 
opposite side csc 8 = -r = -1 

r hypotenuse y sin 8R 
X 

I y  
y opposite side x 1 

tan 8 = - = cot g = - = -
Fig. 1.19 x near side y tan 8 

Of course those six ratios are not independent. The three on the right come directly 
from the three on the left. And the tangent is the sine divided by the cosine: 

Note that "tangent of an angle" and "tangent to a circle" and "tangent line to a 
graph" are different uses of the same word. As the cosine of 8 goes to zero, the tangent 
of 8 goes to infinity. The side x becomes zero, 8 approaches 90", and the triangle is 
infinitely steep. The sine of 90" is y/r = 1. 

Triangles have a serious limitation. They are excellent for angles up to 90°, and 
they are OK up to 180", but after that they fail. We cannot put a 240" angle into a 
triangle. Therefore we change now to a circle. 
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Fig. 1.20 Trigonometry on a circle. Compare 2 sin 8 with sin 28 and tan 8 (periods 2n, n, n). 

Angles are measured from the positive x axis (counterclockwise). Thus 90" is 
straight up, 180" is to the left, and 360" is in the same direction as 0". (Then 450" is 
the same as 90°.) Each angle yields a point on the circle of radius r. The coordinates 
x and y of that point can be negative (but never r). As the point goes around the 
circle, the six ratios cos 8, sin 9, tan 8, .. . trace out six graphs. The cosine waveform 
is the same as the sine waveform-just shifted by 90". 

One more change comes with the move to a circle. Degrees are out. Radians are 
in. The distance around the whole circle is 2nr. The distance around to other points 
is Or. We measure the angle by that multiple 8. For a half-circle the distance is m, 
so the angle is n radians-which is 180". A quarter-circle is 4 2  radians or 90". 
The distance around to angle 8 is r times 8. 

When r = 1 this is the ultimate in simplicity: The distance is 8. A 45" angle is Q of 
a circle and 27118 radians-and the length of the circular arc is 27~18.Similarly for 1": 

360" = 2n radians 1" = 27~1360radians 1 radian = 3601271 degrees. 

An angle going clockwise is negative. The angle -n /3  is -60" and takes us 4of the 
wrong way around the circle. What is the effect on the six functions? 

Certainly the radius r is not changed when we go to -8. Also x is not changed 
(see Figure 1.20a). But y reverses sign, because -8 is below the axis when +8 is 
above. This change in y affects y/r and y / x  but not xlr: 

The cosine is even (no change). The sine and tangent are odd (change sign). 
The same point is 2 of the right way around. Therefore 2 of 2n radians (or 300") 

gives the same direction as -n /3  radians or -60". A diflerence of 2n makes no 
di$erence to x ,  y, r.  Thus sin 8 and cos 8 and the other four functions have period 27~. 
We can go five times or a hundred times around the circle, adding 10n or 200n to 
the angle, and the six functions repeat themselves. 

EXAMPLE Evaluate the six trigonometric functions at 8 = 2n/3 (or 8 = -4 4 3 ) .  

This angle is shown in Figure 1.20a (where r = 1). The ratios are 

cos 8 = x/r  = -1/2 sin 8 = y/r = &/2 tan 8 = y /x  = -& 
sec e = - 2 csc e = 2/& cot e =  -i/d 

Those numbers illustrate basic facts about the sizes of four functions: 

The tangent and cotangent can fall anywhere, as long as cot 8 = l/tan 8. 
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The numbers reveal more. The tangent -3 is the ratio of sine to cosine. The 
secant -2 is l/cos 8. Their squares are 3 and 4 (differing by 1). That may not seem 
remarkable, but it is. There are three relationships in the squares of those six numbers, 
and they are the key identities of trigonometry: 

Everything flows fvom the Pythagoras formula x2 + y2 = r2. Dividing by r2 gives 
( ~ / r ) ~+ (y/r)2= 1. That is cos2 8+ sin28= 1. Dividing by x2 gives the second identity, 
which is 1 + ( y / ~ ) ~  Dividing by y2 gives the third. All three will be needed = ( r / ~ ) ~ .  
throughout the book-and the first one has to be unforgettable. 

DISTANCES AND ADDITION FORMULAS 

To compute the distance between points we stay with Pythagoras. The points are in 
Figure 1.21a. They are known by their x and y coordinates, and d is the distance 
between them. The third point completes a right triangle. 

For the x distance along the bottom we don't need help. It is x, - xl (or Ix2 - x1I 
since distances can't be negative). The distance up the side is ly2 -y, 1. Pythagoras 
immediately gives the distance d: 

distance between points = d = J(x2 - x , ) ~+ (y2- y1)'. (1) 

x=coss  
y = sin s 

Fig. 1.21 Distance between points and equal distances in two circles. 

By applying this distance formula in two identical circles, we discover the cosine 
of s - t. (Subtracting angles is important.) In Figure 1.2 1 b, the distance squared is 

d2= (change in x ) ~  + (change in y)* 

= (COSs - cos t)* + (sin s - sin t)2. (2) 
Figure 1 . 2 1 ~  shows the same circle and triangle (but rotated). The same distance 
squared is 

d2= (cos(s - t) - + (sin (s - t))2. (3) 
Now multiply out the squares in equations (2) and (3). Whenever (co~ine)~ + (sine)2 
appears, replace it by 1. The distances are the same, so (2) = (3): 

(2) = 1 + 1 - 2 cos s cos t - 2 sin s sin t 
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After canceling 1 + 1 and then -2, we have the "addition formula" for cos (s - t): 

The cosine of s - t equals cos s cos t + sin s sin t. (4) 

The cosine of s + t equals cos s cos t - sin s sin t. (5) 

The easiest is t = 0. Then cos t = 1 and sin t = 0. The equations reduce to cos s = cos s. 
To go from (4) to (5) in all cases, replace t by - t. No change in cos t, but a "minus" 

appears with the sine. In the special case s =  t, we have cos(t + t )=  
(COS t)(cos t) - (sin t)(sin t). This is a much-used formula for cos 2t: 

Double angle: cos 2t = cos2 t - sin2 t = 2 cos2 t - 1 = 1 - 2 sin2 t. (6) 

I am constantly using cos2 t + sin2 t = 1, to switch between sines and cosines. 
We also need addition formulas and double-angle formulas for the sine of s - t 

and s + t and 2t. For that we connect sine to cosine, rather than (sine)2 to (co~ine)~.  
The connection goes back to the ratio y/r in our original triangle. This is the sine of 
the angle 0 and also the cosine of the complementary angle 7112 - 0: 

sin 0 = cos (7112 - 0) and cos 0 = sin (7112 - 0). (7) 

The complementary angle is 7112 - 0 because the two angles add to 7112 (a right angle). 
By making this connection in Problem 19, formulas (4-5-6) move from cosines to 
sines: 

sin (s - t) =sin s cos t - cos s sin t (8) 

sin(s + t) = sin s cos t + cos s sin t (9) 

sin 2t = sin(t + t) = 2 sin t cos t (10) 

I want to stop with these ten formulas, even if more are possible. Trigonometry is 
full of identities that connect its six functions-basically because all those functions 
come from a single right triangle. The x, y, r ratios and the equation x2 + y2 = r2 can 
be rewritten in many ways. But you have now seen the formulas that are needed by 
ca1culus.t They give derivatives in Chapter 2 and integrals in Chapter 5. And it is 
typical of our subject to add something of its own-a limit in which an angle 
approaches zero. The essence of calculus is in that limit. 

Review of the ten formulas Figure 1.22 shows d2 = (0 - $)2+ (1 - -12)~. 

71 71 71 71 71 71 71 71 71 
cos - = cos - cos - + sin -

71 
sin - (s - t) sin -= sin - cos - - cos - sin -

6 2 3 2 3 6 2 3 2 3 

571 71 71 71 71 571 71 71 71 
cos -= cos - cos - - sin - sin - (s + t) sin -= sin - cos - + cos -

71 
sin -

6 2 3 2 3 6 2 3 2 3 

71 71 71 
(2t) sin 2 - = 2 sin - cos -

3 3 3 

71 71sin - = cos -71 = 112cos 2 = sin - = -12 (4-0)6 3 6 3 

tcalculus turns (6) around to cos2 t =i(1 + cos 2t) and sin2 t =i(1 -cos 2t). 
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Fig. 1.22 

1.5 EXERCISES 
Read-through questions 

Starting with a a triangle, the six basic functions are the 
b of the sides. Two ratios (the cosine x/r and the c ) 

are below 1. Two ratios (the secant r/x and the d ) are 
above 1. Two ratios (the e and the f ) can take any 
value. The six functions are defined for all angles 8, by chang- 
ing from a triangle to a g . 

The angle 8 is measured in h . A full circle is 8 = i , 
when the distance around is 2nr. The distance to angle 8 is 

I . All six functions have period k . Going clockwise 
changes the sign of 8 and I and m . Since cos (- 9) = 
cos 8, the cosine is n . 

Coming from x2+ y2= r2 are the three identities 
sin2 8 + cos2 8 = 1 and 0 and P . (Divide by r2 and 

q and r .) The distance from (2, 5) to (3, 4) is 
d = s . The distance from (1, 0) to (cos (s -t), sin (s -t)) 
leads to the addition formula cos (s - t) = t . Changing 
the sign of t gives cos (s + t) = u . Choosing s = t gives 
cos 2t = v or w . Therefore i ( l +  cos 2t) = x , 
a formula needed in calculus. 

1 In a 60-60-60 triangle show why sin 30" =3. 
2 Convert x, 371, -7114 to degrees and 60°, 90°, 270" to 

radians. What angles between 0 and 2n correspond to 
8 = 480" and 8 = -I0? 

3 Draw graphs of tan 8and cot 8 from 0to 2n. What is their 
(shortest) period? 

4 Show that cos 28 and cos2 8 have period n and draw them 
on the same graph. 

5 At 8= 3n/2 compute the six basic functions and check 
cos2 8 + sin2 8, sec2 0 - tan2 8, csc2 8 -cot2 8. 

6 Prepare a table showing the values of the six basic func- 
tions at 8 = 0, 7114, n/3, ~ / 2 ,  n. 

7 The area of a circle is nr2. What is the area of the sector 
that has angle 8? It is a fraction of the whole area. 

8 Find the distance from (1, 0) to (0, 1)along (a) a straight 
line (b) a quarter-circle (c) a semicircle centered at (3,i). 

9 Find the distance d from (1,O) to (4, &/2) and show on 
a circle why 6d is less than 2n. 

10 In Figure 1.22 compute d2 and (with calculator) 12d. Why 
is 12d close to and below 2n? 

11 Decide whether these equations are true or false: 

sin 8 1 +cos 8 
(a) ------= ----

1 -cos 8 sin 8 

sec 8 + csc 8 
= sin 8 + cos 8 

(b) tan e +cot e 
(c) cos 8 -sec 8 = sin 0 tan 8 
(d) sin (2n -8) = sin 8 

12 Simplify sin (n -O), cos (n-8), sin (n/2 + 8), cos (n/2 + 8). 

13 From the formula for cos(2t + t) find cos 3t in terms of 
cos t. 

14 From the formula for sin (2t + t) find sin 3t in terms of 
sin t. 

15 By averaging cos (s - t) and cos (s + t) in (4-5) find a for- 
mula for cos s cos t. Find a similar formula for sin s sin t. 

16 Show that (cos t + i sin t)2 = cos 2t + i sin 2t, if i2 = -1. 

17 Draw cos 8 and sec 8 on the same graph. Find all points 
where cos B = sec 8. 

18 Find all angles s and t between 0 and 2n where sin (s + t) = 
sin s + sin t. 

19 Complementary angles have sin 8 = cos (n/2 -8). Write 
sin@+ t) as cos(n/2 -s - t) and apply formula (4) 
with n/2 -s instead of s. In this way derive the addition 
formula (9). 

20 If formula (9) is true, how do you prove (8)? 

21 Check the addition formulas (4-5) and (8-9) for 
s = t = n/4. 

22 Use (5) and (9) to find a formula for tan (s + t). 
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In 23-28 find every 8 that satisfies the equation. (1) show that the side PQ has length 

23 sin 8 =  -1 24 sec 8 = -2 d2=a2+b2-2ab cos 8 (law of cosines). 

25 sin 8 =cos 8 26 sin 8 =8 32 Extend the same!riangle to a parallelogram with its fourth 

27 sec2 8 +csc2 8 = 1 28 tan 8 = 0  corner at R =(a +b cos 0, b sin 8). Find the length squared of 

29 Rewrite cos 8 +sin 0 as f i sin(8+4) by choosing the 
the other diagonal OR. 

correct "phase angle" 4. (Make the equation correct at Draw graphs for equations 33-36, and mark three points. 
8 =0. Square both sides to check.) 

33 y =sin 2x 34 y = 2  sin xx 
30 Match a sin x +b cos x with A sin (x +4). From equation 35 y =3 cos 2xx 
(9) show that a =A cos 4 and b =A sin 4. Square and add to 36 y=sin x+cos x 

find A = .Divide to find tan 4 =bla. 37 Which of the six trigonometric functions are infinite at 

31 Draw the base of a triangle from the origin 0 = (0'0) to what angles? 

P =(a, 0). The third corner is at Q =(b cos 8, b sin 8). What 38 Draw rough graphs or computer graphs of t sin t and 
are the side lengths OP and OQ? From the distance formula sin 4t sin t from 0 to 2n. 

1.6 1-Thousand Points of Light A 


The graphs on the back cover of the book show y = sin n. This is very different 
from y = sin x. The graph of sin x is one continuous curve. By the time it reaches 
x = 10,000, the curve has gone up and down 10,000/27r times. Those 1591 oscillations 
would be so crowded that you couldn't see anything. The graph of sin n has picked 
10,000 points from the curve-and for some reason those points seem to lie on more 
than 40 separate sine curves. 

The second graph shows the first 1000 points. They don't seem to lie on sine curves. 
Most people see hexagons. But they are the same thousand points! It is hard to believe 
that the graphs are the same, but I have learned what to do. Tilt the second graph 
and look from the side at a narrow angle. Now the first graph appears. You see 
"diamonds." The narrow angle compresses the x axis-back to the scale of the first 
graph. 

1-


The effect of scale is something we don't think of. We understand it for maps. 
Computers can zoom in or zoom out-those are changes of scale. What our eyes see 
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depends on what is "close." We think we see sine curves in the 10,000 point graph, 
and they raise several questions: 

1. Which points are near (0, O)? 
2. How many sine curves are there? 
3. Where does the middle curve, going upward from (0, 0), come back to zero? 

A point near (0,O) really means that sin n is close to zero. That is certainly not true 
of sin 1 (1 is one radian!). In fact sin 1 is up the axis at .84, at the start of the seventh 
sine curve. Similarly sin 2 is .91 and sin 3 is .14. (The numbers 3 and .14 make us 
think of n. The sine of 3 equals the sine of n - 3. Then sin . l4  is near .14.) Similarly 
sin 4, sin 5, , sin 21 are not especially close to zero. . . . 

The first point to come close is sin 22. This is because 2217 is near n. Then 22 is 
close to 771, whose sine is zero: 

sin 22 = sin (7n - 22) z sin (- .01) z - .01. 

That is the first point to the right of (0,O) and slightly below. You can see it 
graph 1, and more clearly on graph 2. It begins a curve downward. 

The next point to come close is sin 44. This is because 44 is just past 14n. 

44 z 14n + .02 so sin 44 z sin .02 z .02. 

This point (44, sin 44) starts the middle sine curve. Next is (88, sin 88). 
Now we know something. There are 44 curves. They begin near the heights sin

sin 1, . . . , sin 43. Of these 44 curves, 22 start upward and 22 start downward. I w
confused at first, because I could only find 42 curves. The reason is that sin 11 equ
- 0.99999 and sin 33 equals .9999. Those are so close to the bottom and top that y
can't see their curves. The sine of 11 is near - 1 because sin 22 is near zero. It
almost impossible to follow a single curve past the top-coming back down it is n
the curve you think it is. 

The points on the middle curve are at n = 0 and 44 and 88 and every number 44
Where does that curve come back to zero? In other words, when does 44N co
very close to a multiple of n? We know that 44 is 14n + .02. More exactly 44
14n + .0177. So we multiply .0177 until we reach n: 

if N=n/.0177 then 44N=(14n+.0177)N3 14nN+n.  

on 
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This gives N = 177.5. At that point 44N = 7810. This is half the period of the sine
curve. The sine of 7810 is very near zero. 

If you follow the middle sine curve, you will see it come back to zero above 7810.
The actual points on that curve have n = 44 177 and n = 44 178, with sines just 
above and below zero. Halfway between is n = 7810. The equation for the middle sine
curve is y = sin (nx/78lO). Its period is 15,620-beyond our graph. 

Question The fourth point on that middle curve looks the same as the fourth point
coming down from sin 3. What is this "double point?" 
Answer 4 times 44 is 176. On the curve going up, the point is (176, sin 176). On the
curve coming down it is (1 79, sin 179). The sines of 176 and 179 difler only by .00003.

The second graph spreads out this double point. Look above 176 and 179, at the
center of a hexagon. You can follow the sine curve all the way across graph 2. 

Only a little question remains. Why does graph 2 have hexagons? I don't know.
The problem is with your eyes. To understand the hexagons, Doug Hardin plotted
points on straight lines as well as sine curves. Graph 3 shows y = fractional part of 
n/2x. Then he made a second copy, turned it over, and placed it on top. That
produced graph 4-with hexagons. Graphs 3 and 4 are on the next page. 
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This is called a Moivt pattevn. If you can get a transparent copy of graph 3, and 
turn it slowly over the original, you will see fantastic hexagons. They come from 
interference between periodic patterns-in our case 4417 and 2514 and 1913 are near 
271. This interference is an enemy of printers, when color screens don't line up. It can 
cause vertical lines on a TV. Also in making cloth, operators get dizzy from seeing 
Moire patterns move. There are good applications in engineering and optics-but 
we have to get back to calculus. 

1.7 Computing in Calculus 

Software is available for calculus courses-a lot of it. The packages keep getting 
better. Which program to use (if any) depends on cost and convenience and purpose. 
How to use it is a much harder question. These pages identify some of the goals, and 
also particular packages and calculators. Then we make a beginning (this is still 
Chapter 1) on the connection of computing to calculus. 

The discussion will be informal. It makes no sense to copy the manual. Our aim 
is to support, with examples and information, the effort to use computing to help 
learning. 

For calculus, the gveatest advantage of the computev is to o$er graphics. You see 
the function, not just the formula. As you watch, f ( x )  reaches a maximum or a 
minimum or zero. A separate graph shows its derivative. Those statements are not 
100% true, as everybody learns right away-as soon as a few functions are typed in. 
But the power to see this subject is enormous, because it is adjustable. If we don't 
like the picture we change to a new viewing window. 

This is computer-based graphics. It combines numerical computation with 
gvaphical computation. You get pictures as well as numbers-a powerful combination. 
The computer offers the experience of actually working with a function. The domain 
and range are not just abstract ideas. You choose them. May I give a few examples. 

EXAMPLE I Certainly x3 equals 3" when x = 3. Do those graphs ever meet again'? 
At this point we don't know the full meaning of 3", except when x is a nice number. 
(Neither does the computer.) Checking at x = 2 and 4, the function x3 is smaller 
both times: 23 is below 3* and 43 = 64 is below 34 = 81. If x3 is always less than 3" 
we ought to know-these are among the basic functions of mathematics. 
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The computer will answer numerically or graphically. At our command, it solves 
x3 = 3X. At another command, it plots both functions-this shows more. The screen 
proves a point of logic (or mathematics) that escaped us. If the graphs cross once, 
they must cross again-because 3" is higher at 2 and 4. A crossing point near 2.5 is 
seen by zooming in. I am less interested in the exact number than its position-it 
comes before x = 3 rather than after. 

A few conclusions from such a basic example: 

1. A supercomputer is not necessary. 
2. High-level programming is not necessary. 
3. We can do mathematics without completely understanding it. 

The third point doesn't sound so good. Write it differently: We can learn mathematics 
while doing it. The hardest part of teaching calculus is to turn it from a spectator 
sport into a workout. The computer makes that possible. 

EXAMPLE 2 (mental computer) Compare x2 with 2X. The functions meet at x = 2. 
Where do they meet again? Is it before or after 2? 

That is mental computing because the answer happens to be a whole number (4). 
Now we are on a different track. Does an accident like Z4 = 42 ever happen again? 
Can the machine tell us about integers? Perhaps it can plot the solutions of xb = bx. 
I asked Mathernatica for a formula, hoping to discover x as a function of b-but the 
program just gave back the equation. For once the machine typed HELP icstead of 
the user. 

Well, mathematics is not helpless. I am proud of calculus. There is a new exercise 
at the end of Section 6.4, to show that we never see whole numbers again. 

EXAMPLE 3 Find the number b for which xb = bx has only one solution(at x = b). 

When b is 3, the second solution is below 3. When b is 2, the second solution (4) is 
above 2. If we move b from 2 to 3, there must be a special "double point"-where 
the graphs barely touch but don't cross. For that particular b-and only for that 
one value-the curve xb never goes above bx. 

This special point b can be found with computer-based graphics. In many ways it 
is the "center point of calculus." Since the curves touch but don't cross, they are 
tangent. They have the same slope at the double point. Calculus was created to work 
with slopes, and we already know the slope of x2. Soon comes xb. Eventually we 
discover the slope of bx, and identify the most important number in calculus. 

The point is that this number can be discovered first by experiment. 

EXAMPLE 4 Graph y(x) = ex- xe. Locate its minimum. 

The next example was proposed by Don Small. Solve x4 - 1 l x 3  + 5x - 2 = 0.The 
first tool is algebra-try to factor the polynomial. That succeeds for quadratics, and 
then gets extremely hard. Even if the computer can do algebra better than we can, 
factoring is seldom the way to go. In reality we have two good choices: 

1. (Mathematics)Use the derivative. Solve by Newton's method. 
2. (Graphics)Plot the function and zoom in. 

Both will be done by the computer. Both have potential problems! Newton's method 
is fast, but that means it can fail fast. (It is usually terrific.) Plotting the graph is also 
fast-but solutions can be outside the viewing window. This particular function is 
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zero only once, in the standard window from -10 to 10. The graph seems to be 
leaving zero, but mathematics again predicts a second crossing point. So we zoom 
out before we zoom in. 

The use of the zoom is the best part of graphing. Not only do we choose the domain 
and range, we change them. The viewing window is controlled by four numbers. They 
can be the limits A <x <B and C d y d D. They can be the coordinates of two 
opposite corners: (A, C) and (B, D). They can be the center position (a, b) and the 
scale factors c and d. Clicking on opposite corners of the zoom box is the fastest way, 
unless the center is unchanged and we only need to give scale factors. (Even faster: 
Use the default factors.) Section 3.4 discusses the centering transform and zoom 
transform-a change of picture on the screen and a change of variable within the 
function. 

EXAMPLE 5 Find all real solutions to x4 - 1 lx3 + 5x - 2 =0. 

EXAMPLE 6 Zoom out and in on the graphs of y = cos 40x and y = x sin (llx). 
Describe what you see. 

U(AMpLE 7 What does y = (tan x - sin x)/x3 become at x = O? For small x the 
machine eventually can't separate tan x from sin x. It may give y = 0. Can you get 
close enough to see the limit of y? 

For these examples, and for most computer exercises in this book, a menu-driven 
system is entirely adequate. There is a list of commands to choose from. The user 
provides a formula for y(x), and many functions are built in. A calculus supplement 
can be very useful-MicroCalc or True BASIC or Exploring Calculus or MPP (in 
the public domain). Specific to graphics are Surface Plotter and Master Grapher and 
Gyrographics (animated). The best software for linear algebra is MATLAB. 

Powerful packages are increasing in convenience and decreasing in cost. They are 
capable of symbolic computation-which opens up a third avenue of computing in 
calculus. 

SYMBOLIC COMPUTATION 

In symbolic computation, answers can be formulas as well as numbers and graphs. 
The derivative of y = x2 is seen as "2x." The derivative of sin t is "cos t." The slope 
of bx is known to the program. The computer does more than substitute numbers 
into formulas-it operates directly on the formulas. We need to think where this fits 
with learning calculus. 

In a way, symbolic computing is close to what we ourselves do. Maybe too close- 
there is some danger that symbolic manipulation is all we do. With a higher-level 
language and enough power, a computer can print the derivative of sin(x2). So why 
learn the chain rule? Because mathematics goes deeper than "algebra with formulas." 
We deal with ideas. 

I want to say clearly: Mathematics is not formulas, or computations, or even proofs, 
but ideas. The symbols and pictures are the language. The book and the professor 
and the computer can join in teaching it. The computer should be non-threatening 
(like this book and your professor)-you can work at your own pace. Your part is 
to learn by doing. 

EXAMPLE 8 A computer algebra system quickly finds 100 factorial. This is loo! = 
(100)(99)(98)... (1). The number has 158 digits (not written out here). The last 24 
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digits are zeros. For lo! = 3628800 there are seven digits and two zeros. Between 10 
and 100, and beyond, are simple questions that need ideas: 

1. How many digits (approximately) are in the number N!? 
2. How many zeros (exactly) are at the end of N!? 

For Question 1,the computer shows more than N digits when N = 100. It will never 
show more than N2 digits, because none of the N terms can have more than N digits. 
A much tighter bound would be 2N, but is it true? Does N! always have fewer than 
2N digits? 

For Question 2, the zeros in lo! can be explained. One comes from 10, the other 
from 5 times 2. (10 is also 5 times 2.) Can you explain the 24 zeros in loo!? An idea 
from the card game blackjack applies here too: Count the$ves. 

Hard question: How many zeros at the end of 200!? 

The outstanding package for full-scale symbolic computation is Mathematica. It 
was used to draw graphs for this book, including y = sin n on the back cover. The 
complete command was List Plot [Table [Sin [n], (n, 10000)]]. This system has rewards 
and also drawbacks, including the price. Its original purpose, like MathCAD and 
MACSYMA and REDUCE, was not to teach calculus-but it can. The computer 
algebra system MAPLE is good. 

As  I write in 1990, DERIVE is becoming well established for the PC. For the 
Macintosh, Calculus TIL is a "sleeper" that deserves to be widely known. It builds 
on MAPLE and is much more accessible for calculus. An important alternative is 
Theorist. These are menu-driven (therefore easier at the start) and not expensive. 

I strongly recommend that students share terminals and work together. Two at a 
terminal and 3-5 in a working group seems to be optimal. Mathematics can be 
learned by talking and writing-it is a human activity. Our goal is not to test but to 
teach and learn. 

Writing in Calculus May I emphasize the importance of writing? We totally miss it, 
when the answer is just a number. A one-page report is harder on instructors as well 
as students-but much more valuable. A word processor keeps it neat. You can't 
write sentences without being forced to organize ideas-and part of yourself goes 
into it. 

I will propose a writing exercise with options. If you have computer-based graph- 
ing, follow through on Examples 1-4 above and report. Without a computer, pick a 
paragraph from this book that should be clearer and make it clearer. Rewrite it with 
examples. Identify the key idea at the start, explain it, and come back to express it 
differently at the end. Ideas are like surfaces-they can be seen many ways. 

Every reader will understand that in software there is no last word. New packages 
keep coming (Analyzer and EPIC among them). The biggest challenges at this 
moment are three-dimensional graphics and calculus workbooks. In 30, the problem 
is the position of the eye-since the screen is only 20. In workbooks, the problem is 
to get past symbol manipulation and reach ideas. Every teacher, including this one, 
knows how hard that is and hopes to help. 

GRAPHING CALCULATORS 

The most valuable feature for calculus-computer-based graphing-is available on 
hand calculators. With trace and zoom their graphs are quite readable. By creating 
the graphs you subconsciously learn about functions. These are genuinely personal 
computers, and the following pages aim to support and encourage their use. 
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Programs for a hand-held machine tend to be simple and short. We don't count 
the zeros in 100 factorial (probably we could). A calculator finds crossing points and 
maximum points to good accuracy. Most of all it allows you to explore calculus by 
yourself. You set the viewing window and define the function. Then you see it. 

There is a choice of calculators-which one to buy? For this book there was also 
a choice-which one to describe? To provide you with listings for useful programs, 
we had to choose. Fortunately the logic is so clear that you can translate the instruc- 
tions into any language-for a computer as well as a calculator. The programs given 
here are the "greatest common denominator" of computing in calculus. 

The range of choices starts with the Casio fx 7000G-the first and simplest, with 
very limited memory but a good screen. The Casio 7500,8000, and 8500 have increas- 
ing memory and extra features. The Sharp EL-5200 (or 9000 in Canada and Europe) 
is comparable to the Casio 8000. These machines have algebraic entry-the normal 
order as in y = x + 3. They are inexpensive and good. More expensive and much 
more powerful are the Hewlett-Packard calculators-the HP-28s and HP-48SX. 
They have large memories and extensive menus (and symbolic algebra). They use 
reverse Polish notation-numbers first in the stack, then commands. They require 
extra time and effort, and other books do justice to their amazing capabilities. It is 
estimated that those calculators could get 95 on a typical calculus exam. 

While this book was being written, Texas Instruments produced a new graphing 
calculator: the TI-81. It is closer to the Casio and Sharp (emphasis on graphing, easy 
to learn, no symbolic algebra, moderate price). With earlier machines as a starting 
point, many improvements were added. There is some risk in a choice that is available 
only At before this textbook is published, and we hope that the experts we asked are 
right. Anyway, our programs are Jbr the TI-81. It is impressive. 

These few pages are no substitute for the manual that comes with a calculator. A 
valuable supplement is a guide directed especially at calculus-my absolute favorites 
are Calculus Activities for Graphic Calculators by Dennis Pence (PWS-Kent, 1990 for 
the Casio and Sharp and HP-28S, 1991 for the TI-81). A series of Calculator Enhance- 
ments, using HP's, is being published by Harcourt Brace Jovanovich. What follows 
is an introduction to one part of a calculus laboratory. Later in the book, we supply 
TI-81 programs close to the mathematics and the exercises that they are prepared 
for. 

A few words to start: To select from a menu, press the item number and E N T E R .  
Edit a command line using D E L(ete) and I N S(ert). Every line ends with 
E N T E R .  For calculus select radians on the M 0 D E screen. For powers use * . For 
special powers choose x2, x- l ,  &.Multiplication has priority, so (-)3 + 2 x 2 
produces 1. Use keys for S I N ,  I F , I S, .. . When you press letters, I multiplies S . 

If a program says 3 + C ,  type 3 S T 0 C E N T E R .  Storage locations are A to Z 
or Greek 8. 

Functions A graphing calculator helps you (forces you?) to understand the concept 
of a function. It also helps you to understand specific functions-especially when 
changing the viewing window. 

To evaluate y = x2 - 2x just once, use the home screen. To define y(x) for repeated 
use, move to the function edit screen: Press M 0 D E, choose F u n c t io n, and press 
Y =. Then type in the formula. Important tip: for X on the TI-81, the key X I T is faster 
than two steps A L p h a X.  The Y = edit screen is the same place where the formula 
is needed for graphing. 
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Example Y I = X ~ - ~ XENTERontheY=screen. 4 ST0  X ENTERonthehome 
screen. Y 1 E N T E R on the Y-VARS screen. The screen shows 8, which is Y(4). The 
formula remains when the calculator is off. 

Graphing You specify the X range and Y range. (We should say X domain but we 
don't.) The screen is a grid of 96 x 64 little rectangles called "pixels." The first column 
of pixels represents X m i n and the last column is X m a x . Press R A N G E to reset. 
With X r e s = 1 the function is evaluated 96 times as it is graphed. X s c L and Y s c L 
give the spaces between ticks on the axes. 

The Z 0 0 M menu is a fast way to set ranges. Z 0 0 M S t a n d a r d gives the default 
-1O<x<10, -10<y<10. Z O O M  T r i g  gives - 2 n < x < h ,  - 3 < y < 3 .  

The keystroke G R A P H shows the graphing screen with the current functions. 

Example Set the ranges (-)2 < X < 3 and (-) 150 < Y 6 50. Press Y = and store 
Y1 = X  (in ~ A T H ) ~ - 2 8 X ~ + l 5 ~ + 3 6  E N T E R .  Press GRAPH. You won't see 
much of the graph! Press R A N G E and reset (-)I 0 < X < 30, (-)4000 < Y < 2300. 
Press G R A P H.  See a cubic polynomial. 

"Smart Graph" recalls the graph instantly without redrawing it, if no settings have 
changed. The D R A W  menu is for points, lines, and shaded regions. This is perfect for 
our piecewise linear functions-just connect the breakpoints with lines. In Section 3.6 
the lines show an iteration by its "cobweb." 

Programming This book contains programs that you can type in once and save. 
We chose Autoscaling, Newton's Method, Secant Method, Cobweb Iteration, and 
Numerical Integration. You will create others-to do calculations or to add features 
that are not available as single keystrokes. The calculator is like a computer, with a 
fairly small set of instructions. One digerence: Memory is too precious to store com- 
ments with the code. You have to see the logic by rereading the program. 

To enter the world of programming, press P R G M. Each P R G M submenu lists all 
programs by name-a digit, a letter, or 6 (37 names). The program title has up to 
eight characters. Select the E D I T submenu and press G for the edit screen. Type the 
title G R A P H S and press E N T E R .  Practice on this one: 

: " x ~ + x "  ST0 (Y-VARS) Y1 ENTER 
:"X-1" ST0 (Y-VARS) Y2 ENTER 
: ( P R G M ) ( I / O l  D i s p G r a p h  

The menus to call are in parentheses. Leave the edit screen with Q U  I T (not 
C L E A R -that erases the line with the cursor). Set the default window by Z 0 0 M 
S t a n d a r d .  

To execute, press P R G M ( E X E C G E N T E R .  The program draws the graphs. It 
leaves Y 1 and Y 2 on the Y = screen. To erase the program from the home screen, 
press (PRGM)(ERASE)G.  Practice again by creating P r gw 2 :F U N C . Type:TXST0 Y and : (PRGM) ( I / O ) D i  s p  Y. Movetothehomescreen,store 
X by 4 ST0 X ENTER, and execute by (PRGM) (EXEC12 ENTER. Also try 
X = - 1. When it fails to imagine i, select 1 :G o t  o E r r o r .  

Piecewise functions and Input (to a running program). The definition of a piecewise 
function includes the domain of each piece. Logical tests like " I F X 2 7 " determine 
which domain the input value X falls into. An I F statement only affects the following 
line-which is executed when T E S T = 1 (meaning true) and skipped when T E S T =0 
(meaning false). I F commands are in the P R G M ( C T L submenu; T E S T calls the 
menu of inequalities. 
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An input value X = 4 need not be stored in advance. Program P stops while 
running to request input. Execute with P E  N  T  E  R  after selecting the P R G M ( E X E  C  > 
menu. Answer ? with 4 and E N T  E  R. After completion, rerun by pressing E  N  T E R 
again. The function is y = 14 - x if x < 7, y = x if x > 7. 

P r g m P :  P I E C E S  
:Di s p  " x = "  P G R M  (I1 0 )  Ask for input 
: I n p u t  X PGRM ( 1 1 0 )  Screen ? E N T E R  X 
: 1 4 - X - + Y  First formula for all X 
: I f  7 < X  PRGM ( C T L )  T E S T  
: X + Y  Overwrite if T E S T = 1 
:D i s p  Y Display Y(X) 

Overwriting is faster than checking both ends A <X <B for each piece. Even faster: 
a whole formula (14 -X)(X < 7) + (X)(7 <X) can go on a single line using 1 and 0 
from the tests. Compute-store-display Y(X) as above, or define Y 1 on the edit screen. 

Exercise Define a third piece Y = 8 + X if X < 3. Rewrite P using Y 1 = . A product 
of tests ( 3 < X > ( X < 7 1 evaluates to 1 if all true and to 0 if any false. 

TRACE and ZOOM The best feature is graphing. But a whole graph can be like a 
whole book-too much at once. You want to focus on one part. A computer or 
calculator will trace along the graph, stop at a point, and zoom in. 

There is also Z 0  0  M 0 U T, to widen the ranges and see more. Our eyes work the 
same way-they put together information on different scales. Looking around the 
room uses an amazingly large part of the human brain. With a big enough computer 
we can try to imitate the eyes-this is a key problem in artificial intelligence. With 
a small computer and a zoom feature, we can use our eyes to understand functions. 

Press T R A C E to locate a point on the graph. A blinking cursor appears. Move 
left or right-the cursor stays on the graph. Its coordinates appear at the bottom of 
the screen. When x changes by a pixel, the calculator evaluates y(x). To solve y(x) = 0, 
read off x at the point when y is nearest to zero. To minimize or maximize y(x), read 
off the smallest and largest y. In all these problems, zoom in for more accuracy. 

To blow up a figure we can choose new ranges. The fast way is to use a Z 0  0  M 
command. Forapresetrange,use Z O O M  S t a n d a r d  or Z O O M  T r  ig.Toshrink 
or stretch by X F a c t or Y F a c t (default values 4), use Z 0  0  M In or Z 0  0  M 0  u  t . 
Choose the center point and press E N T E  R. The new graph appears. Change those 
scaling factors with Z 0  0  M S e t F a c t o r s . Best of all, create your own viewing 
window. Press Z 0 0 M Bo x . 

To draw the box, move the cursor to one corner. Press E N T E R and this point is 
a small square. The same keys move a second (blinking) square to the opposite 
corner-the box grows as you move. Press E  N  T  E  R, and the box is the new viewing 
window. The graphs show the same function with a change of scale. Section 3.4 will 
discuss the mathematics-here we concentrate on the graphics. 

EXAMPLE9 Place : Y l = X  s i n  ( 1 / X I  intheY=editscreen.PressZOOM T r i g  
for a first graph. Set X F a c t = 1 and Y F a c t = 2.5. Press Z 0  0  M In with center at 
(O,O).Toseealargerpicture,use X F a c t  = 10and Y F a c t  = 1.Then Zoom Out 
again. As X gets large, the function X sin ( l /X) approaches . 

Now return to Z 0  0  M T r i g . Z o o m In with the factors set to 4 (default). Zoom 
again by pressing E  N  T E R. With the center and the factors fixed, this is faster than 
drawing a zoom box. 
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EXAMPLE 10 Repeat for the more erratic function Y = sin (l/X). After Z0  0  M Tr ig , 
create a box to see this function near X = .01. The Y range is now 

Scaling is crucial. For a new function it can be tedious. A formula for y(x) does 
not easily reveal the range of y's, when A <x <B is given. The following program is 
often more convenient than zooms. It samples the function L= 19 times across the 
x-range (every 5 pixels). The inputs Xmin, Xmax, Y, are previously stored on other 
screens. After sampling, the program sets the y-range from C = Ymin to D = Ymax 
and draws the graph. 

Notice the loop with counter K. The loop ends with the command I S > ( K,L , 
which increases K by 1 and skips a line if the new K exceeds L. Otherwise the 
command G o t o 1 restarts the loop. The screen shows the short form on the left. 

Example: Y l  =x3+10x2-7x+42 with range Xrnin=-12 and Xrnax=lO. 
Set tick spacing X s c l = 4  and Yscl=250.  Execute with PRGM (EXEC) A 
E NTE R. For this program we also list menu locations and comments. 

PrgmA :AUTOSCL Menu (Submenu) Comment 
: A l l - O f f  Y -V A R S ( 0 F F Turn off functions 
:Xm in+A  V A R S  (RNG) Store X m i  n using ST0 
: 1 9 + L  Store number of evaluations (19) 
: (Xmax-A) / L +  H Spacing between evaluations 
: A + X  Start at x = A 
:Y1 + C  Y -V A R S ( Y ) Evaluate the function 
: C + D  Start C and D with this value 
:I+K Initialize counter K = 1 
: L b l  I PR G M ( C TL ) Mark loop start 
:AtKH + X Calculate next x 
:Y1 + Y  Evaluate function at x 
: I F  Y < C  PGRM (CTL) New minimum? 
: Y + C  Update C 
: I F  D c Y  PRGM (CTL) New maximum? 
: Y + D  Update D 
: I S >  (K,L) PRGM (CTL) Add 1 to K, skip G o t o  if > L  
: G o t o  1  PRGM (CTL) Loop return to L b l  1  
:YI-On Y - V A R S  ( O N )  Turnon Y1 
:C+Ymin  ST0 V A R S  ( R N G )  Set Y m i n = C  
:D+Ymax ST0 V A R S  (RNG) Set Ymax=D 
: D i s p G r a p h  PR G M ( I/ 0 1 Generate graph 
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