CHAPTER 15

Vector Calculus

Chapter 14 introduced double and triple integrals. We went from | dx to [{ dx dy and
{ff dx dy dz. All those integrals add up small pieces, and the limit gives area or volume
or mass. What could be more natural than that? T regret to say, after the success of
those multiple integrals, that something is missing. It is even more regrettable that

_ we didn’t notice it, The missing piece is nothing less than the Fundamental Theorem
of Calculus.

The double integral H dx dy equals the area. To compute it, we did not use an
antiderivative of 1. At least not consciousiy. The method was almost trial and error,
and the hard part was to find the limits of integration. This chapter goes deeper, to
show how the step from a double integral to a single integral is really a new form of
the Fundamental Theorem—when it is done right.

Two new ideas are needed early, one pleasant and one not. You will like vector
Jields. You may not think so highly of line integrals. Those are ordinary single integrals
like § »(x)dx, but they go along curves instead of straight lines. The nice step dx
becomes the confusing step ds. Where | dx equals the length of the interval, | ds is
the length of the curve. The point is that regions are enclosed by curves, and we have
to integrate along them. The Fundamental Theorem in its two-dimensional form
(Green’s Theorem) connects a double integral over the region to a single integral along
its boundary curve.

The great applications are in science and engineering, where vector fields are so
natural. But there are changes in the language. Instead of an antidenivative, we speak
about a porential function. Instcad of the derivative, we take the “divergence” and
“curl” Instead of area, we compute flux and circulation and work, Examples come
first.

I /5.1 Veclor Fields INNGEGEGEGEGNNNENEENGNGN

For an ordinary scalar function, the input is 2 number x and the output is a number
f(x). For a vector field (or vector function), the input is a point (x, y) and the output
is a two-dimensional vector F(x, y). There is a “field” of vectors, one at every point, 549
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In three dimensions the input point is {x, y, z) and the output vector F has three
components,

DEFINITION Let R be a region in the xy plane. A vector field F assigns to every point
{x, ¥)in R a vector F{x, y) with two components:

F(x, y} = M(x, )i + N{x, V)j. (1}
This plane vector field involves two functions of two variables. They are the compo-
nents M and N, which vary from point to point. A vector has fixed components, a
vector fieid has varying components,

A three-dimensional vector field has components M(x, y,z) and N(x, y,z) and
P(x, v, z}. Then the vectors are F = Mi+ Nj + Pk.

EXAMPLE 1 The position vector at (x, y) is R=xi + yj. Its components are M =x
and N =y. The vectors grow larger as we leave the origin {Figure 15.1a). Their
direction is outward and their length is |R| = . /x> + y? = r. The vector R is boldface,
the number r is lightface.

EXAMPLE2 The vector field R/r consists of unit vectors u,, pointing outward. We
divide R = xi + yj by its length, at every point except the origin. The components
of R/r are M = x/r and N = y/r. Figure 15.1 shows a third field R/r?, whose length
is 1/r.

R u, R/~
'\ / [ -
™ N/ N/
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Fig. 15.4 The vector fields R and R:r and R;r? are radial. Lengths r and 1 and 1.

EXAMPLE 3 The spim field or rotation field or turning field goes around the origin

instead of away from it. The field is S. Its components are M = — y and N =x:
S = — i + xj also has length |S| = /(=) + x’ =». @)

S is perpendicular to R—their dot product is zero: S« R =(— y}(x) + (x}{3) =0. The
spin fields 8/r and S/r? have lengths 1 and 1/r:

Sy, : 1
2o ity has D=1 S i 2 has .
roor r xf 4yt xP4y r

r r

The unit vector 8/r is u,. Notice the blank at (0, 0}, where this field is not defined.

Fig. 45.2 The spin fields § and 8¢ and 8/r* go around the origin. Lengths r and 1 and 1.:r.
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EXAMPLE 4 A gradient field starts with an ordinary function f(x, y). The components
M and N are the partial derivatives f/dx and 4f/éy. Then the field F is the gradient
of f:

F=grad f=Vf={fiéxi+ ificy] 3

This vector field grad [ is everywhere perpendicular to the level curves f(x, y) =c. The
length |grad f| tells how fast fis changing (in the direction it changes fastest). Invent
a function like f=x?y, and you immediately have its gradient field F = 2xyi + x7j.
To repeat, M is df/éx and N is &f/dy.

For every vecter field you should ask two questions: Is i a gradient field? If so,
what is {7 Here are answers for the radial fields and spin fields:

45A The radial fields R and R/r and R/r? are all gradient fields.
The spin fields S and $/r are not gradients of any f(x, y).
The spin field S/#? is the gradient of the polar angle 8 = tan ™ (y/x).

The derivatives of f=4(x2 + y?) are x and y. Thus R is a gradient field. The gradient
of f=r is the unit vector R/r pointing outwards. Both fields are perpendicular to
circles around the origin. Those are the level curves of f=3r* and f=r.

Question Is every R/r" a gradient field?
Answer Yes. But among the spin fields, the only gradient is S/r2.

A major goal of this chapter is te recognize gradient fields by a simple test. The
rejection of S and S/r will be interesting. For some reason — yi + xj is rejected and
yi+ xj is accepted. (It is the gradient of ) The acceptance of S/r* as the
gradient of f= @ contains a surprise at the origin (Section 15.3).

Gradient fields are called conservative. The function f is the potemtial function.
These words, and the next examples, come from physics and engineering.

EXAMPLE 5 The relocity field is V and the flow field is pV.

Suppose fluid moves steadily down a pipe. Or a river flows smoothly (no waterfall).
Or the air circulates in a fixed pattern. The velocity can be diflerent at diflerent points,
but there is no change with time, The velocity vector V gives the direction of flow
and speed of fiow at every point.

In reality the velocity field is V(x, y, z), with three components M, N, P. Those are
the velocities vy, vy, 5 in the x, y, z directions. The speed |V]| is the length: |V|* =
v¥ +vi+0v3. In a “plane flow” the k component is zero, and the velocity field is
v i+ v,j=Mi+ Nj

gravity

gravity -

F=-R/
Fig. 15.3 A steady velocity field ¥V and two force fields F.
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For a compact disc or a turning wheel, ¥ is a spin field (V = &S, @ = angular
velocity). A tornado might be closer to V = 8§/r* (except for a dead spot at the center).
An explosion could have ¥ =R/r?. A quieter example is flow in and out of a lake
with steady rain as a source term,

The fiow field pV is the density p times the velocity field. While V gives the rate of
movement, pV gives the rate of movement of mass. A preater density means a greater
rate [p¥| of “mass transport.” It is like the number of passengers on a bus times the
speed of the bus.

EXAMPLE & Force fields from gravity: F is downward in the classroom, F is radial
in space.

When pravity pulls downward, it has only one nonzero component: F = — mgk. This
assumes that vectors to the center of the Earth are parallel—almost true in a class-
room, Then F is the gradient of —mgz (note df/dz = —mg).

In physics the usual potential is not —mgz but +mgz. The force field is minus grad |
aiso in electrical engineering. Electrons flow from high potential to low potential.
The mathematics is the same, but the sign is reversed.

In space, the force is radial inwards: F = — mMGR/r®. Its magnitude is propor-
tional to 1/r? (Newton’s inverse square law). The masses are m and M, and the
gravitational constant is G = 6.672 x 10~ !! —with distance in meters, mass in kilo-
grams, and time in seconds. The dimensions of G are (force)(distance)?/(mass)®. This
is different from the acceleration g = 9.8m/sec?, which already accounts for the mass
and radius of the Earth,

Like all radial fields, gravity is a gradient field. It comes from a potential f-

mMG &  mMGx af mMGy of mMGz

=-— d — d d —=— .
) N ;s an 3y P r )

EXAMPLE 7 (a short example) Current in a wire produces a magnetic field B. 1t is
the spin field S/r* around the wire, times the strength of the current.

STREAMLINES AND LINES OF FORCE

Drawing a vector field is not always easy. Even the spin field looks messy when the
vectors are too long (they go in circles and fall across each other). The circles give a
clearer picture than the vectors. In any hield, the vectors are tangent to “field limes”—
which in the spin case are circles.

DEFINITION  C is a field line or imtegral curve if the vectors F{x, y) are tangent to C.
The slope dy/dx of the curve C equals the slope N/M of the vector F = Mi + Nj:

dy _Nxy (_ _x :
ax Mmy for the spin field |. (6

We are still drawing the field of vectors, but now they are infinitesimally short.
They are connected into curves! What is lost is their length, because 8 and S/r and
S§/7* all have the same field lines (circles). For the position field R and gravity field
R/r3, the field lines are rays from the origin. In this case the “curves” are actually
straight.

EXAMPLE 8 Show that the field lines for the velocity field ¥V = yi + xj are hyperbolas.

—=—=- = ydy=xdx =  }y*—3jx*=constant.
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Hg. 154 Velocity ficlds are tangent to streamlines. Gradient fields also have equipotentials.

At every point these hyperbolas line up with the velocity V. Eack particle of fluid
travels on a field line. In fluid flow those hyperbolas are called streamlines. Drop a
feaf into a river, and it follows a streamline. Figure 15.4 shows the streamlines for a
river going around a bend.

Don’t forget the essential question about each vector field. Is it a gradient field?
For ¥V = yi + xj the answer is yes, and the potential is /= xy:

the gradient of xy is (f/8x)i + (ffdy)j = yi + xj. N

When there is a potential, it has level curves. They connect points of equal potential,
so the curves f(x, y) = ¢ are called equipotentials. Here they are the curves xy=c¢—
also hyperboias. Since gradients are perpendicular to level curves, the streamlines are
perpendicalar to the equipotentials. Figure 15.4 is sliced one way by streamlines and
the other way by equipotentials,

A pradient field F = gffox i + &f/3y ] is tangent to the field lines (stream-
lines) and perpendicular to the equipotentials (level curves of f).

In the pradient direction f changes fastest. In the level direction f doesn’t change at
all. The chain rule along f{x, y) = proves these directions to be perpendicular:
Ads Fdy

s + aydt =0 or (grad f)-{tangent to level curve) =0.

EXAMPLE 9 The streamlines of S/r? are circles around (0, 0). The equipotentials are
rays & = c. Add rays to Figure 15.2 for the gradient field S$/r2.

For the gravity field those are reversed. A body is puiled in along the field lines (rays).
The equipotentials are the circles where = 1/r is constant. The plane is crisscrossed
by “orthogonal trajectories”—curves that meet everywhere at right angles,

If you bring a magnet near a pile of iron filings, a little shake will display the field
lines. In a force field, they are “lines of force.” Here are the other new words.

Vector field F(x, y, 1) = Mi+ Nj+ Pk Piane field F = M(x, y)i + N{x, vli
Radial field: multiple of R =xi + yj + zk Spin field: multiple of S = — yi + xj
Gradient field = conservative field: M = 3f/ a;, N =2dfldy, P=gf{dz

Potential f(x, y} (not a vector) Equipotential curves f(x, y)=¢

Streamline = field line = integral curve: a curve that has F{x, y} as its tangent
vectors.
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15.1

EXERCISES

Read-through questions

A vector field assigns a __a
In two dimensions F(x,y) =
the position field R=_d . Its magnitude is [R|=__e
and its direction is _ t . It i3 the gradient field for f=

g . Thelevel curves are _h ,and theyare _ 1 to
the vectors R.

to each point {x, y) or {x, ¥, 2).
b_i+__c j Anexample is

Reversing this picture, the spin fieldis S=__] . [ts mag-
nitude is |S§|=__k__ and its direction is __ | . It is not a
gradient field, because no function has gf/éx=_m _ and
dffdy=_n_ .S is the velocity field for flow going _o .
The streamlines or _ P lines orintegral _a _are __r
The flow field pV¥ gives the rate at which __s__ is moved
by the flow.

A gravity field from the origin is proportional to F=__t
which has |[F|=_ v . This is Newton’s __v__ square law,
It is a gradient field, with potential f=__ w . The equipoten-
tial curves f(x,y)=care _ x __ Theyare _ v to the field
lines which are __z . This illustrates that the _ A of a

function f{x, y)is _ B to its level curves.

The velocity field yi+ xj is the gradient of f=_ € . Its
streamnlines are __ D . The slope dy/dx of a streamline equals
the ratio __E _ of velocity components. The fieldis _ F to
the streamlines. Drop a leaf onto the flow, and it goes along

G

Find a potential f(x, y) for the gradient fields 1-8. Draw the
streamlines perpendicular to the equipotentials f(x, y) = c.

1 F=i+2j {constant field) 2 F=xi+j
IF=cos(x+yi+cos(x+y)i 4 F=(1/p)i—(x/y*)j
5 F =(2xi+ 2)/(x* + y* 6 F=x%+y?

8 F=./yi+ i

9 Draw the shear field F = xj. Check that it is not a gradient
field: If 3f{8x = 0 then &ffdy = x is impossible. What are the
streamlines (field lines) in the direction of F?

TF=xpy+ i

10 Find all functions that salisfy df/0x = — y and show that
nene of them satisfy 8f/8y=x. Then the spin field S=
— yi + xj is not a gradient field.

Compute 8f/0x and 3f/3y in 11-18. Draw the gradient field
F = grad f and the equipotentials f{x, y)=c:

11 f=3x 4y 12 f=x—3y

13 f=x +)* 14 f={x—1)*+y*
15 f=x2—y* 16 f=¢* cos y

17 f=&7 18 [=y/x

Find equations for the streamlines in 1924 by solving dy/dx =
NiM (including a constant C). Draw the streamlines,

19 F=i—j 20 F=i+xij
21 F =8 (spin feld) 22 F =S/r (spin field)
23 F = grad (x/y} 24 F = grad (2x + ).

25 The Earth's gravity field is radial, but in a room the feld
lines seem to go straight down into the floor. This is because
nearby field lines always look

26 A line of charges produces the electrostatic force field F =
R/r? = (xi + yj)/(x2 + y?). Find the potential f(x, y}. (F is also
the gravity field for a line of masses.)

In 27-32 write down the vector fields Mi + Ni.
27 F points radially away from the origin with magnitude 5.

28 The velocity is perpendicular to the curves x* -+ y? = c and
the speed is 1.

29 The gravitational force F comes from two unit masses at
(0,0) and (1, 0).

30 The streamlines are in the 45° direction and the speed is 4.

31 The streamlines are circles clockwise around the origin
and the speed is 1.

32 The equipotentials are the parabolas p = x*+ ¢ and F is
a gradient field.

33 Show directly that the hyperbolas xy =2 and x> —y* =13
are perpendicular at the point (2, 1), by computing both slopes
dy/dx and multiplying to get —1.

34 The derivative of f(x, y) = cis f, + f{dy/dx) = 0. Show that

the slope of this level curve is dy/dx = — M/N. It is perpendic-
ular to streamlines because (— M/N){N/M) =

35 The x and y derivatives of f{r) are 3fjéx = and
afidy = by the chain rule, (Test f=r2) The equi-
potentials are .

36 F=(ax+by)i +{bx +cy)j is a gradient field. Find the
potential f and describe the equipotentials.
37 True or folse:
1. The constant field i + 2k is a gradient field.
2. For non-gradient fields, equipotentials meet stream-
lines at non-right angles.
3. In three dimensions the equipotentials are surfaces
instead of curves.
4. F=x% +y% + 2’k points outward from (0,0,0)—
a radial field.

38 Create and draw f and F and your own equipotentials
and streamlines.
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39 How can different vector fields have the same streamlines? 40 Draw arrows at six or gight points to show the direction
Can they have the same equipotentials? Can they have the and magnitude of each field:
same f? {a)R+8 (b}Rir—S/r (&) xfi+x% (d)yi

I 15.2 Line Infegrals NN

A line integral is an integral along a curve. It can equal an area, but that is a special
case and not typical. Instead of area, here are two important line integrals in physics
and engineering:

Work aleng a curve = J
C

F'T ds Flow across a curve = J‘ F-nds.

¢
In the first integral, F is a force field. In the second integral, F is a flow field. Work
is done in the direction of movement, so we integrate F + T. Flow is measured through
the curve C, so we integrate F+n. Here T is the unit tangent vector, and F+T is the
force component along the curve. Similarly n is the unit normal vector, at right angies
with T. Then F -+ n is the component of flow perpendicular to the curve.

We will write those integrals in several forms. They may never be as comfortable
as jy(x} dx, but eventually we get them under control. I mention these applications
early, so you can see where we are going This section concentrates on work, and
flow comes later. (It is also called fux—the Latin word for flow.) You recognize ds
as the step atong the curve, corresponding to dx on the x axis. Where | dx gives the
length of an interval (it equals b — a), [ ds is the length of the curve.

EXAMPLE 1 Flight from Atlanta to Los Angeles on a straight line and a semicircle,

According to Delta Airlines, the distance straight west is 2000 miles. Atlanta is at
(1000, 0) and Los Angeles is at (—1000,0), with the origin halfway between. The
semicircle route C has radius 1000, This is not a great circle route. It is more of a
“flat circie,” which goes north past Chicago. No plane could fly it (it probabiy goes
into space).

The equation for the semicircle is x* + y* = 1000*. Parametrically this path is x =
1000 cos t, y = 1000 sin ¢. For a line integral the parameter is better. The plane leaves
Atlanta at t = 0 and reaches L.A. at t = x, more than three hours later. QOn the straight
2000-mile path, Delta could almost do it. Around the semicircle C, the distance is
10007 miles and the speed has to be 1000 miles per hour. Remember that speed is
distance ds divided by time dt:

ds/dt = /{dx/d1)* + (dyjdr)* = 1000 /(—sin 1)? + (cos 1)* = 1000. (1)

The tangent vector to C is proportional to (dx/dt, dy/dt) = (—1000 sin ¢, 1000 cos i).
But T is a unit vector, so we divide by 1000—which is the speed.

Suppose the wind blows due east with force F = Mi. The components are M and
zero. For M = constant, compute the dot product F - T and the work —2000 M:

F-T=Mi-(—sinti+costjj=M(—sin¢)+0(cost)= — Msint

o

" _{d " .
J‘ F-Tds =_[ {— M sin :)(d—: dr) =J —1000M sin ¢ de = — 2000M.
C =0
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Work is force times distance moved. It 1s ncgative, because the wind acts against the
movement. You may point out that the work could have been found more simply—
go 2000 miles and muitiply by —AM. | would object that this straight route is a
different path, But you claim that the path doesn’t matter—the work of the wind is
—2000M cn every path. I concede that this time you are right (but not always),

Most line integrals depend on the path. Those that don't are crucially important.
For a gradient field, we only need to know the starting point P and the finish @,

188 When F is the gradient of a potentiat function f(x, y), the work [¢F+T ds
depends only on the endpoints P and Q. The work is the change in

if F=2af/oxi+affdyj then J.F-T ds = f(Q) — f(P). )

When F = Mi, its components M and zero are the partial derivatives of f= Mx. To
compute the line integral, just evaluate f at the endpoints. Atlanta has x = 1000, Los
Angeles has x = — 1000, and the potential function { = Mx is like an antiderivative:

work = f(Q) — f(P) = M(—1000) — M(1000) = — 2000M. 3)

Tels

LAX [ Mi Tds | ATL LaX ATL
— 1000 1000 — 1000 1000

J F - Tds = 20000 depends on path

Fig. 15.5 Force Mi, work —2000M on all paths. Force Myi, no work on straight path.

May I give a rough explanation of the work integral | F - Tds” It becomes clearer
when the small movement T ds is written as dx i + dy j. The work is the dot preduct
with F:

F-Tds= (‘—f. + C—’{]) cdximdyj= T ax+ Lay=ar (4)
éx oy ix ey

The infinitesimal work is df. The total work is j df =fi0) — f(P). This is the Fundamen-

tel Theorem for a line integral. Only one warning: When F 1s not the gradient of any

f(Example 2), the Theorem does not apply.

EXAMPLE 2 Fly these paths against the non-constant force field F = Myi. Compute
the work.

There is no force on the straight path where y = 0. Along the x axis the wind does
no work. But the semicircle goes up where y = 1000 sin 1 and the wind is strong:

F-T=(Myi)(—sinti+costji= — My sin t = — 1000M sin*¢
i PN i Bas oin? T oae
F-Tds= | (—1000M sin“t)—dt = —10°M sin‘t dt = — - 10° M.
¢ o dt 0 2
This work is enormous (and unrealistic). But the calculations make an important
point—everything is converted to the parameter ¢. The second point is that F = AMyi
is not a gradient field. First reasom: The work was zero on the straight path and
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nonzero on the semicircle. Second reason: No function has 8f/dx = My and &f/dy =
0. (The first makes f depend on y and the second forbids it. This F is called a shear
Sorce.) Without a potential we cannot substitute P and ¢—and the work depends
on the path,

THE DEFINITION OF LINE INTEGRALS

We go back to the start, to define | F =T ds. We can think of F =T as a function g{x, y)
along the path, and define its integral as a limit of sums:

J‘ glx, y) ds = limit of )E gix;, y)As; as  (As)pay — 0. (5)
[ i=1

The points (x;, y;) lie on the curve C. The last point @ is (xy, yy); the first point P is
(xo, Yo). The step As; is the distance to (x;, y;) from the previous point. As the steps
get small {(As — 0) the straight pieces follow the curve. Exactly as in Section 8.2, the
special case g =1 gives the arc length. As long as g{x, y) is piecewise continuous
(jumps allowed) and the path is piecewise smooth (corners allowed), the limit exists
and defines the line integral,

When g is the density of a wire, the line integral is the total mass. When g is F =T,
the integral is the work. But nobody does the calculation hy formula (5). We now
introduce a parameter t—which could be the time, or the arc length s, or the distance
x along the base.

The differential ds becomes (ds/dt)dt. Everything changes over to &

1=b
J‘g{x, Yds = J‘ g(x(t), wt)) \/ (dx/dty* + (dy/dt)* dt. (6)

The curve starts when ¢ = g, runs through the points (x(z), W¢)), and ends when ¢t = b.
The square root in the integral is the speed ds/dt. In three dimensions the points on
C are (x(t), {t), z(1)) and (dz/d¥) is in the square root.

EXAMPLEJ The points on a coil spring are (x, y, z) = (cos t, sin ¢, t). Find the mass
of two complete turns (from ¢t =0 to ¢ = 4x) if the density is p = 4.

Solution The key is (dx/dt)* + (dy/dD)? + (dz/de)*> =sin®t + cos?t + 1 =2. Thus
dsjdt = ﬁ To find the mass, integrate the mass per unit length whichis g=p =4:

ax dS 4x
mass:J‘ pEdt=J‘ 4ﬁdt=16 2m
0

o

That is a line integral in three-dimensional space. It shows how to introduce t. But
it misses the main point of this section, because it contains no vector field F. This
section is ahout work, not just mass.

DIFFERENT FORMS OF THE WORK INTEGRAL

The work integral { F T ds can be written in a better way. The force is F = Mi + Nj.
A small step along the curve is dx i + dy j. Work is force times distance, but it is only
the force component along the patk that counts. The dot product F - Tds finds that
component automatically.
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45C The vector to a point on Cis R=xi+ yj. Then dR=Tds=dxi+dy}

work=J.F'dR=-|‘de+Ndy‘ (7
C C

Along a space curve the work is _[F-Tds=jF-dR=_[M dx+ Ndy+ P dz

The product M dx is (force in x direction){movement in x direction). This is zero if
cither factor is zero, When the only force is gravity, pushing a piano takes no work.
It is friction that hurts. Carrying the pianc up the stairs brings in Pdz, and the total
work is the piano weight P times the change in z.

To conncct the new j F+dR with the old _[F T ds, remember the tangent vector
T. It is dR/ds. Therefore Tds is dR. The best for computations is dR, because the
unit vector T has a division by ds/dt = \/(dx;’dr)z + {dy/dt)?. Later we multiply by this
square root, in converting ds to {ds/de}dt. It makes no sense to compute the square
root, divide by it, and then multiply by it. That is avoided in the improved form
[ Mdx+ N dy.

EXAMPLE 4 Vector field F = — yi + xj, path from (1, 0) to (0, 1): Find the work.

MNote 1 This F is the spin field 8. It goes around the origin, while R = xi + yj gocs
outward, Their dot product is F+R= —yx+ xy=0. This does not mean that
F-dR =0. The force is perpendicular to R, but not to the change in R. The work to
move from (1, 0) to (0, 1), x axis to y axis, is not zero.

Note 2 We have not described the path C. That must be done. The spin field is not
a gradient ficld, and the work along a straight line does not equal the work on a
quarter-circle:

straight line x=1—-1t, y= quarter-circle x = cos t, y = sin L.

Calculation of work Change F-dR =M dx + N dy to the parameter

1
Straight line: -I‘— ydx +xdy= [ —tl—dt)+{l —t)dt =1
Jo
2

Quarter-circle: -I‘— ydx 4+ xdy =-|‘ —sin H—sin ¢t dt) + cos Heos ¢ dt) =
0

2l A

General method The path is given by x{t) and (). Substitute those inte M(x, y)
and N{x,y)—then F is a function of r. Also find dx/dt and dy/dr. Integrate
M dxjdt + N dy/de from the starting time ¢ to the finish.

work /2 no work

work J F-dR =1

Fig. 15.6 Three paths for [F-dR=f —ydx+xdy=1, 72,0
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For practice, take the path down the x axis to the origin (x=1—1t, y=0). Then
go up the y axis (x =0, y =t — 1). The starting time at (1, 0) is t = 0. The turning time
at the origin is ¢t =1, The finishing time at {0, 1) is t =2. The integral has two parts
because this new path has two parts:

Bent path: |—ydx+xdy=0+0 (y=0on one part, then x=0).

Note 3 The answer depended on the path, for this spin field F = 8. The answer did
not depend on the choice of parameter. If we follow the same path at a different
speed, the work is the same. We can choose another parameter z, since (ds/di)dt and
(ds/dt)dt both equal ds. Traveling twice as fast on the straight path (x=1-2r,
y = 21) we finish at T =4 instead of t = 1. The work is still 1:

j.— ydx + xdy= j.m(—Zt)(— 2d0)+ (1 —27)(2d7) = j.m 2dr=1
0 0

CONSERVATION OF TOTAL ENERGY (KINETIC + POTENTIAL)

When a force field does work on a mass m, it normaily gives that mass a new velocity.
Newton's Law is F = ma = mdv/dt. (It is a vector law. Why write out three compo-
nents?) The work [F-dR is

f(m dvjdi)- (v di) = hmv v | = §mivQ) — mIv(P)2 @®

The work equals the change in the kinetic emergy $m|v%. But for a gradient field the
work is also the change in potential—with a minus sign from physics:

work = j.F -dR= — j.df= f(P)—f(Q). )

Comparing (8) with (9), the combination §m|v|* + fis the same at P and Q. The total
energy, kinetic plus potential, is conserved.

INDEPENDENCE OF PATH: GRADIENT FIELDS

The work of the spin field § depends on the path. Example 4 took three paths—
straight line, quarter-circie, bent line. The work was 1, n/2, and 0, different on each
path. This happens for more than 99.99% of all vector fields. It does not happen for
the most important fields. Mathematics and physics concenirate on very special
fields—for which the work depends only on the endpoints. We now explain what
happens, when the integral is independent of the path.

Suppose you integrate from P to (2 on one path, and back to P on another path.
Combined, that is a closed path from P to P (Figure 15.7). But a backward integral
is the negative of a forward integral, since dR switches sign. If the integrals from P
to () are equal, the imtegral around the closed path is zero:

P o P Q Q

§ F-dR =j. F-dR + j. F:dR =j. F-dR—j. F'dR =0. {10)
P P g P P
closed path 1 back path 2 path 1 path 2

The circle on the first integral indicates a closed path. Later we will drop the P's.
Not all closed path integrals are zero! For most fields F, different paths yield
different work. For “conservative” fields, all paths yield the same work. Then zero

589
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work around a closed path conserves energy. The big question is: How fo decide
which fields are conservative, without trying all paths? Here is the crucial information
about conservative fields, in a plane region R with no holes:

15D F = M{x, y)i + N(x, y)j is a conservative field if it has these properties:
A. The work [F-dR around every closed path is zero.

B. The work jf F 4R depends only on P and @, not on the path.

C. F is a gradiem field M = éf/dx and N = £f/8y for some potential f(x, y).
D. The components satisfy dM/0y = EN/éx.

A field with one of these properties has them all. D is the quick test.

These statements A D bring everything together for conservative fields (alias gradient
ficlds). A closcd path goes one way to @ and back the other way to P. The work
cancels, and statements A and B are equivalent. We now connect them to C. Nore:
Test D says that the “carf” of F is zero. That can wait for Green’s Theorem in the
next section—the full discussion of the curl comes in 15.6.

First, a gradient field F = grad f is conservative. The work is fiQ)—f(P), by the
fundamental theorem for ling integrals. 1t depends only on the endpoints and not the
path. Therefore statement C leads back to B.

Our job is in the other direction, to show that conservative fields Mi+ Nj are
gradients. Assume that the work integral depends only on the endpoints. We must
construct a potential f; so that F is its gradient. In other words, ¢f/¢x must be M and
¢fi¢y must be N,

Fix the point P. Define [ (Q) as the work to reach Q. Then F equals prad f.

Check the reasoning. At the starting point P, f'is zero. At every other point @, [ is
the work | M dx + N dy to reach that point. All paths from P to Q give the same (),
because the field s assumed conservative. After two cxamples we prove that grad f
agrees with F—the construction succeeds.

back path 2

puath 2 ) ¢
@Gr=| F «R
§F - ar=0 0 e L ‘
}\*—/-}

< JR
¥ F

path |
Fig. 45.7 Conscrvative fields: §F-dR =0 and [$F -dR=£(Q) f{P). Here f(P}=0.

EXAMPLES Find f(x,y) when F = Mi+ Nj=2xvi+x?%. We want ¢f:fx =2xy
and &ficy = x2

Solution 1 Choose P ={0, 0). Integrate M dx + N dy along to (x. 0) and up to (x. v¥
[ENH] [ENY)
J. 2xy dx =0 (since y =0) J. *dy = x?y {which is f).
(0.1 tx.0)

Certainly /= x°y meets the requirements: f, = 2xy and f, = x*. Thus F = grad /. Note
that dy =0 in the first integral {on the x axis). Then dx =0 in the second integral
(x is fixed). The integrals add to f= x?3.
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Solution 2 Integrate 2xy dx + x2dy on the straight line (xt, yt) from r=0to t=1:

1

Jl 20c)(y0)(x dt) + (xt)(y de) = I 3x2ytide = x*y? ]} = x%y.
Q 0

Maost authors use Solution 1. 1 use Solution 2. Most students use Solution 3;
Solution 3  Directly solve 3f/0x = M = 2xy and then fix up 3f/3y = N = x%
affox =2xy gives f=x>y (plus any function of y).

In this example x’y already has the correct derivative 4f/8y =x2. No additional
function of y is necessary. When we integrate with respect 1o x, the constant of
integration {usually C) becomes a function C(y).

You will get practice in finding f. This is only possible for conservative fields! I
tested M = 2xy and N = x? in advance (using D) to be sure that dM/dy = IN/ox.

EXAMPLE § Look for f(x, y) when Mi+ Njis the spin field — yi + xj.
Aftemnpted solution 1 Integrate —ydx + xdy from (0, 0) to (x, 0) to (x, y):

(x, 0} (e8]
J —ydx=0 and J xdy=xy (which seems like f),
t L

0,0) x,0

Attempled solution 2 Integrate —ydx + xdy on the line {xt, yt) from ¢t =01to I:
1
J —(y){xdt)+ (xt){ydt)=0 ({a different f, also wrong).
0

Atternpted solution 3 Directly solve df/éx = — y and try to fix up 8f/dy = x:
dffdx=—y gives f=—xy (plus any function C(y)).

The y derivative of this fis —x + dC/dy. That does not agree with the required
dffdy = x. Conclusion: The spin field — yi + xj is not conservative. There is no f
Test D gives éM/dy= —1 and IN/ox= + 1.

To finish this section, we move from examples to a proof. The potential f{Q) is
defined as the work to reach . We must show that its partial derivatives are M and
N. This seems reasonable from the formula f(Q) = [ M dx + N dy, but we have to
think it through.

Remember statement A, that ail paths give the same f{Q). Take a path that goes
from P to the left of Q. It comes in to @ on a line y =constant (so dy = 0). As the
path reaches Q, we are only integrating M dx. The derivative of this integral, at Q, is
dff{ox = M. That is the Fundamental Theorem of Calculus.

To show that 3f/éy = N, take a different path. Go from P to a point below Q. The
path comes up to ¢ on a vertical line (so dx = 0). Near Q we are only integrating
Ndy, so éffdy= N. :

The requirement that the region must have no holes will be critical for test D.
EXAMPLE 7 Find f(x, y) = _[:;‘.{,’, xdx + ydy, Test D is passed: dN/Ox = 0= 8M/dy.

Solution 1 &%) xdx = $x? is added to [F%) ydy =}y2.
Solution 2[5 (xt)x dt) + (ye)(y dt) = [ (x? + y2)edt = $(x* + y?).

Solution 3 3f/dx = x gives f=4x? + C(y). Then 8f/3y = y needs C(y) = }y%
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15.2 EXERCISES

Read-through questions

Workisthe _ o of F-dR.Here Fisthe _b _and R is
the _e .The d  product finds the componentof _ e

in the direction of movement dR = dxi+dyj. The straight
path {x, ) ={(¢t,2f) goes from _ I _ati=0to_g _att=

| withdR =dti+_h__. The work of F=3i+jis [F-dR =
f_ 3 dt=_

Another form of dR is Tds, where T is the _ k_ vector to
the pathand ds = t _.Forthe path (¢, 21), the unit vector
Tis_m andds=__n dt For F=3i+j, F*Tdsis still

o dt. This F is the gradient of f=__ B . The change in

f=3x+yfrom {0,0)to (1, 2}is __a

When F=gradf, the dot product F-dR is (éf/dx)dx +

r__=df. The work integral from P to Q is [df=_s _.
In this case the work depends on the __t _ but not on the

u__. Around a closed path the work is _ ¥ . The field is
called _ w . F=(1+ y)li+ xj is the gradient of f=_ x

The work from (0, O}to (1,2)is__y _, the change in potential.

For the spin field S=_ z _, the work (does)(does not)
depend on the path. The path (x, y)={3cost, Isins) is a
circle with S-dR=_A . The work is _ B around the
complete circle. Formally {g(x, y)ds is the limit of the sum

c

The four equivalent properties of a conservative field F =
Mi+Njare A: _ 0 B:_E C:_F  andD:_¢
Test D is (passed}{not passed) by F =(y + 1)i + xj. The work
j' F+dR around the citcle (cos t, sint)is _ H . The work on
the upper semicircle equals the work on __1__, This field is

the gradient of f=_ 4 | so the work to (—1,0}is __K

Compute the line integrals in 1-6.
1 fcdsand [cdy: x=1,y=2t, 05t 5.
2 fexdsand [cxyds: x=cost, y=sint, 0 <t <nf2
3 (¢ xyds: bent line from (0,0} to (1, 1) to {1, 0).
4 [c ydx —xdy: any square path, sides of length 3.
5 fcdx and [¢ydx: any closed circte of radius 3.
6 jc(ds/dr) dr: any path of length 5.
7 Does [ xydy equal }xy?13?
8 Does {2xdx equal $x)8?
9 Does (e ds)? ={Jcdx)* +{{cdy)??

10 Does f(ds)? make sense?

In 11-16 find the work in moving from {1, 0} to {0, 1}. When F
is conservative, construct /. Choose your own path when F is
not conservative.

11 F=i+y 12 F=yi+j

13 F = xy%i + yx?
15 F = (x/r)i + (y/rij
17 For which powers n is §/r" a gradient by test D?

14 F= @i+ xe’]
16 F= —y2i 4+ x¥

18 For which powers n is Rfr" a gradient by test D?

19 A wire hoop around a vertical circle x* +2z* =4? has
density p =a + z. Find its mass M = § pds.

20 A wire of constant density p lies on the semicircle
x*+y*=a* y20. Find its mass M and also its moment
M,= _[py ds. Where is its center of mass X = M /M, j=M_/
M?
21 Iithe density around the circle x* + y* = a? is p = x?, what
ts the mass and where is the center of mass?
22 Find {F-dR along the space curve x=¢, y=1t% z=13,
0<eg 1,
{a) F=grad (xy +xz) (BIF=yi—xj+zk
23 {a) Find the unit tangent vector T and the speed ds/dt
along the path R = 2ti + .
(b) For F=3xi+4j, find F-Tds using (a) and F-dR
directly.
{c) What is the work from {2, 1} to (4, 4)?
24 If M(x, y, 5 + N{x, y, z)j is the gradient of f(x, y, z}, show
that none of these functions can depend on 2.

25 Find all gradient fields of the form M(yji + N(x)j.

26 Compute the work W(x,y)=[Mdx+Ndy on the
straight line path (xt, yt} from r =0to ¢ = 1. Test to see if W/
dx =M and dW/dy=N.
(2 M=y N=23xy’
(€} M =x/y, N=y/x

(b} M =x3 N =3px?
(d) M = &5*3, N = ¢=*

27 Find a field F whose work around the unit square (y =0
then x =1 then y =1 then x =0) equals 4.

28 Find a nonconservative F whose work around the unit
circle x* + y? =1 is zero.

in 29-34 compute [F - dR along the straight line R =i + 4
and the parabola R = ti + %}, from (0, 0) to {1, 1). When Fis a
gradient field, use its potential [(x, y).

9 F=i—2 30 F =x3
31 F =2xy%i 4 2yxY 32 F=x%i+xy?
I F=yi—x M F=(xi+ x> +y*+1)

35 For which numbers a and b is F=axyi +(x*+by)j a
gradient field?

36 Compute {— ydx+ xdy from (1,0) to (0, 1) on the lkine
x=1—12, y=1t* and the quarter-circle x = cos 2t, y = sin 2t.
Example 4 found 1 and =/2 with different parameters.
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Appiy the test N, = M, to 37-42. Find f when test D is passed. 43 Around the unit circle find §ds and ¢dx and § xds.

44 True or false, with reason:

(a) When F = yi the line integral {F-dR along a curve
from P to ) equals the usual area under the curve.

3 F=yle "i—2ye % 38 F = y2ei — 2yefi

_x+y grad xy
T )xi+ | = |grad xy| {b) That line integrzl depends only on P and {, not on the
CUrve.
41 F=R+S§ 42 F =(ax + byli+ (cx + dy)j {c) That line integral around the unit circle equals =.

IR 153 Green’s Theorem NS

This section contains the Fundamental Theorem of Calculus, extended to two dimen-
sions. That sounds important and it is. The formula was discovered 150 years after
Newton and Leibniz, by an ordinary mortal named George Green. His theorem
connects a double integral over a region R to a line integral along its boundary C.

The integral of dffdx equals f{(b) — f(a). This connects a one-dimensional integral
to a zero-dimensional integral. The boundary only contains two points a and b! The
answer f(b) — f{a) is some kind of a “point integral.” It is this absolutely crucial idea—
to integrate a derivative from information at the boundary—that Green’s Theorem
extends into two dimensions.

There are two important integrals around C. The work is [F+ Tds = [ M dx + N dy.
The flux is [F-nds=[Mdy — N dx (notice the switch). The first is for a force field,
the second is for a flow field. The tangent vector T turns 90° clockwise to become
the normal vector n. Green’s Theorem handles both, in two dimensions. In three
dimensions they split into the Divergence Theorem (15.5) and Stokes’ Theorem (15.6).

Green's Theorem applies to “smooth” functions M(x, y) and N(x, y), with con-
tinuous first derivatives in a region slightly bigger than R, Then all integrals are well
defined. M and N will have a definite and specific meaning in each application—to
electricity or magnetism or fluid flow or mechanics. The purpose of a theorem is to
capture the central ideas once and for all. We do that now, and the applications
follow.

15E Green’s Theorem Suppose the region'R is bounded by the simple
closed piecewise smooth curve C. Then an integral aver R equals a line integral

around C:
N oM
§CMJX+ Ndy-—J.J.R(—é;—E;—)dxdy. {1)

A

A curve is “simple” if it doesn’t cross itself (figure 8’s are excluded). Tt is “closed™ if
its endpoint { is the same as its starling point P. This is indicated by the closed circle
on the integral sign. The curve is “smooth” if its tangent T changes continuously—
the word “piecewise” allows a finite number of corners. Fractals are not allowed, but
all reasonable curves are acceptable (later we discuss figure 8’s and rings). First comes
an understanding of the formula, by testing it on special cases.
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LA TR
o TR, .,

strip area (x5 — X )y

¥dx

Fig. 15.8 Area of R adds up strips: §x dy = [[ dx dy and § y dx = — [[ dy dx.
Special case I: M =0 and N = x. Green’s Theorem with dN/0x = 1 becomes

#; xdy= j] 1 dxdy (which is the area of R). (2)
c R

The integrals look equal, because the inner integral of dx is x. Then both integrals
have xdy—but we need to go carefully. The area of a layer of R is dy times the
difference in x (the length of the strip). The line integral in Figure 15.8 agrees. It has
an upward dy times x (at the right) plus a downward —dy times x (at the left). The
integrals add up the strips, to give the total area.

Special case 2: M =y and N =0 and §¢c ydx = [[5(—1) dxdy = — (area of R).

Now Green’s formula has a minus sign, because the line integral is counterclockwise.
The top of each slice has dx < 0 (going left) and the bottom has dx > 0 (going right).
Then ydx at the top and bottom combine to give minus the area of the slice in
Figure 15.8b.

Special case 3. §1dx =0. The dx’s to the right cancel the dx’s to the left (the curve
is closed). With M =1 and N =0, Green’s Theorem is 0 =0.

Most important case: Mi+ Nj is a gradient field. It has a potential function f(x, y).
Green’s Theorem is 0 =0, because dM/dy = dN/dx. This is test D:

aM - (i—’f) is the same as E;E = i—({—f) (3)

dy dy\dx ox  Ox\0y

The cross derivatives always satisfy f,, =f,,. That is why gradient fields pass test D.
When the double integral is zero, the line integral is also zero: §c M dx + N dy = 0.
The work is zero. The field is conservative! This last stepin A=B=C=D = A will
be complete when Green’s Theorem is proved.
Conservative examples are § xdx =0 and ¢ ydy = 0. Area is not involved.

Remark The special cases §xdy and — §ydx led to the area of R. As long as
1 =@N/0x — éM/0dy, the double integral becomes [{ 1 dx dy. This gives a way to com-
pute area by a line integral.

The area of R is EE

c

xdy = —Eﬁ ydx=%3g (xdy — ydx). )
c C

EXAMPLE 1 The area of the triangle in Figure 15.9 is 2. Check Green’s Theorem.

The last area formula in (4) uses S, half the spin field. N =4x and M = — 1y yield
N,—M,=%+%=1. On one side of Green’s Theorem is ([ 1dxdy = area of triangle.
On the other side, the line integral has three pieces.
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(0,2) (0, b)

X=acost
y=bhsint

(a,0)

2,0

Fig. 15.9 Green’s Theorem: Line integral around triangle, area integral for ellipse.

Two pieces are zero: x dy — ydx = 0 on the sides where x = 0 and y = 0. The sloping
side x=2—y has dx= —dy. The line integral agrees with the area, confirming
Green'’s Theorem:

2

1 1(? 1
i } — = — —_V ] = — 2 =2
ziﬁ‘xd} ydx 2-[ (2—y)dy+ ydy 2J‘ dy=2

p =10 0

EXAMPLE 2 The area of an ellipse is nab when the semiaxes have lengths a and b.

This is a classical example, which all authors like. The points on the ellipse are
x=acost, y=hsint, as t goes from 0 to 2z. (The ellipse has (x/a)*> + (y/b)*> = 1.)
By computing the boundary integral, we discover the area inside. Note that the
differential xdy — ydx is just ab dt:

(a cos t)(b cos t dt) — (b sin t)(—a sin t dt) = ab(cos*t + sin’t)dt = ab dt.

The line integral is %jg" ab dt = mab. This area mab is nr?, for a circle with a=b=r.

Proof of Green’s Theorem: In our special cases, the two sides of the formula were
equal. We now show that they are always equal. The proof uses the Fundamental
Theorem to integrate (6N/éx)dx and (éM/dy)dy. Frankly speaking, this one-dimen-
sional theorem is all we have to work with—since we don’t know M and N.

The proof is a step up in mathematics, to work with symbols M and N instead of
specific functions. The integral in (6) below has no numbers. The idea is to deal with
M and N in two separate parts, which added together give Green’s Theorem:

(.{[; Mdx= J.-[ = (j\f! dxdy and separately E%; Ndy= Jl[ (,—N dxdy. (5)
c R 0y c R OX

Start with a “very simple” region (Figure 15.10a). Its top is given by y =f(x) and
its bottom by y = g(x). In the double integral, integrate —@M/dy first with respect to
y. The inner integral is

'[‘.fl.t ) oM (%)

=y == M ) [ = = M f00) + M(x, ¢(3) (6)
glx) 44

The Fundamental Theorem (in the y variable) gives this answer that depends on x.

If we knew M and fand g, we could do the outer integral—{rom x = a to x = b. But

we have to leave it and go to the other side of Green’s Theorem—the line integral:

b

3EM dx = J‘ M(x, y)dx + '[ M(x, y)dx = J‘a M(x, f(x))dx +J M(x, g(x)dx. (7)
top bottom b

a

565
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v =g(x) J Mdx

Fig. 15.10 Very simple region (a—b). Simple region (c) is a union of very simple regions.

Compare (7) with (6). The integral of M(x, g(x)) is the same for both. The integral of
M(x, f(x)) has a minus sign from (6). In (7) it has a plus sign but the integral is from
b to a. So life is good.

The part for N uses the same idea. Now the x integral comes first, because
(6N/éx)dx is practically asking to be integrated—from x = G(y) at the left to x = F(y)
at the right. We reach N(F(y), y) — N(G(y), y). Then the y integral matches ¢ Ndy and
completes (5). Adding the two parts of (5) proves Green’s Theorem.

Finally we discuss the shape of R. The broken ring in Figure 15.10 is not “very
simple,” because horizontal lines go in and out and in and out. Vertical lines do the
same. The x and y strips break into pieces. Our reasoning assumed no break between
y =f(x) at the top and y = g(x) at the bottom.

There is a nice idea that saves Green’s Theorem. Separate the broken ring into
three very simple regions R, R,, R5. The three double integrals equal the three line
integrals around the R’s. Now add these separate results, to produce the double
integral over all of R. When we add the line integrals, the crosscuts CC are covered
twice and they cancel. The cut between R, and R, is covered upward (around R,)
and downward (around R,). That leaves the integral around the boundary equal to
the double integral inside—which is Green’s Theorem.

When R is a complete ring, including the piece Ry, the theorem is still true. The
integral around the outside is still counterclockwise. But the integral is clockwise
around the inner circle. Keep the region R to your left as you go around C. The
complete ring is “doubly™ connected, not “simply” connected. Green’s Theorem
allows any finite number of regions R; and crosscuts CC and holes.

EXAMPLE 3 The area under a curve is j: y dx, as we always believed.

In computing area we never noticed the whole boundary. The true area is a line
integral — § ydx around the closed curve in Figure 15.11a. But y =0 on the x axis.
Also dx =0 on the vertical lines (up and down at b and a). Those parts contribute
zero to the integral of ydx. The only nonzero part is back along the curve—which
is the area — [§ ydx or [} ydx that we know well.

What about signs, when the curve dips below the x axis? That area has been
counted as negative since Chapter 1. I saved the proof for Chapter 15. The reason
lies in the arrows on C.

The line integral around that part goes the other way. The arrows are clockwise,
the region is on the right, and the area counts as negative. With the correct rules, a
figure 8 is allowed after all.
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h
§— vex =‘[ vex "
dv=0] + Q" a F=8/r-

. b
a y=0 ’_ ‘
ax=0 infinite spin

at the center

"\I"

Fig. 15.11 Closed path gives the sign of the area. Nonconservative field because of hole.

CONSERVAIIVE FIELDS

We never leave gradients alone! They give conservative fields—the work around a
closed path is f(P)—f(P) = 0. But a potential function f(x, y) is only available when
test D is passed: If df/ 6x = M and df/dy = N then M |dy = 6N /0x. The reason is that
fxy =j;~x-

Some applications prefer the language of “differentials.” Instead of looking for
[f(x, ), we look for df:

DEFINITION The expression M(x, y)dx + N(x, y)dy is a differential form. When it
agrees with the differential df= (6f/dx)dx + (df/dy)dy of some function, the form
is called exact. The test for an exact differential is D: 6 N/6x = ¢ M/éy.

Nothing is new but the language. Is ydx an exact differential? No, because M, =1
and N, =0. Is ydx + xdy an exact differential? Yes, it is the differential of f= xy.
That is the product rule! Now comes an important example, to show why R should
be simply connected (a region with no holes).

EXAMPLE 4 The spin field S/r* = (— yi + xj)/(x> + y?) almost passes test D.

0f x \_¥+y-x0)_, _0( -y \_-(*+y)+¥n2) ®)
x2+},2 = {xz_l_yz}z == J_'ay x2+y2 = .

N,.=—
T ox (x2+ y2)?

Both numerators are y* — x%. Test D looks good. To find f, integrate M = df/ dx:
flx,y)= j—y dx/(x* 4+ y*) =tan™'(y/x) + C(y).

The extra part C(y) can be zero—the y derivative of tan~!(y/x) gives N with no help
from C(y). The potential f is the angle 0 in the usual x, y, r right triangle,

Test D is passed and F is grad 6. What am I worried about? It is only this,
that Green's Theorem on a circle seems to give 2n=0. The double integral is
[ (N, — M,)dx dy. According to (8) this is the integral of zero. But the line integral is
2

§F *dR = §(‘— ydx + x dy)/(x* + y*) = 2(area of circle)/a® = 2na?/a* =2n. (9)

With x =acost and y =asin t we would find the same answer. The work is 2r (not
zero!) when the path goes around the origin.

We have a paradox. If Green’s Theorem is wrong, calculus is in deep trouble. Some
requirement must be violated to reach 2z = 0. Looking at S/r?, the problem is at the
origin. The field is not defined when r =0 (it blows up). The derivatives in (8) are not
continuous. Test D does not apply at the origin, and was not passed. We could remove
(0, 0), but then the region where test D is passed would have a hole.
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It is amazing how one point can change everything. When the path circles the
origin, the line integral is not zero. The potential function {= 0 increases by 2rn. That
agrees with {F -dR = 2z from (9). It disagrees with {{0dx dy. The 2x is right, the zero
is wrong. N, — M, must be a “delta fimction of strength 2n.”

The double integral is 2z from an infinite spike over the origin—even though N, =
M, everywhere else. In fluid flow the delta function is a “vortex.”

FLOW ACROSS A CURVE: GREEN'S THEOREM TURNED BY 90°

A fow field is easier to visualize than a force field, because something is really there
and it moves. Instead of gravity in empty space, water has velocity M(x, y)i + N(x, »}j.
At the boundary C it can flow in or out. The new form of Green’s Theorem is a
fundamental “balance equation” of applied mathematics:

Flaw through C (out minus in) = replacement in R (source minus sink).

The flow is steady. Whatever goes out through C must be replaced in R, When there
are no sources or sinks (negative sources), the total flow through € must be zero.
This balance law is Green’s Theorem in its “normal form” (for n) instead of ifs
“tangential form” {for T):

15F For a steady flow field F = M(x, y)i + N(x, y}j, the flux { F -n ds through
the boundary C balances the replacement of fluid inside R:

oM  oN
35.: Mdy— Ndx= J‘J‘R (E + a) dx dy. (10)

Figure 15.12 shows the 90° turn. T becomes n and “circulation” along C becomes
flux through C. In the original form of Green's Theorem, change N and M to M and
— N to obtain the Aux form:

§M dx+ Ndy—-> %—Ndx +Mdy J‘J‘(Nx — M )dxdy - J‘J‘{Mx + Njdxdy. (11)

Playing with letters has proved a new theorem! The two left sides in {11) are equal,
so the right sides are equal—which is Green’s Theorem (10) for the fiux, The compo-
nents M and N can be chosen freely and named freely.

The change takes Mi + Njinto its perpendicular field — Ni + Mj. The field is turned
at every point {(we are not just turning the plane by 90°). The spin field 8 = — yi + xj
changes to the position field R = xi + yj. The position field R changes to —8. Stream-
lines of one field are equipotentials of the other field. The new form (10) of Green's

circulation
FeTds = Mdx + Ndy g~ .
Tds c N
ds dy Jdy
idy
dx idx
C
—jdxr  nds Fends = Mdy - Ndx ™™ {lux

Fg. 1512 The perpendicular component F -n flows through C. Note ads=dyi—dxj



15.3 Green’s Theorem

Theorem is just as important as the old one—in fact I like it better. It is easier to
visualize flow across a curve than circulation along it.
The change of letters was just for the proof. From now on F = Mi + Nj.

EXAMPLE 5 Compute both sides of the new form (10) for F = 2xi + 3yj. The region
R is a rectangle with sides a and b.

Solution  This field has dM/dx + dN/dy = 2 + 3. The integral over R is [[z 5dxdy =
Sab. The line integral has four parts, because R has four sides. Between the left and
right sides, M = 2x increases by 2a. Down the left and up the right, { M dy =2ab
(those sides have length b). Similarly N = 3y changes by 3b between the bottom and
top. Those sides have length a, so they contribute 3ab to a total line integral of 5ab.

Important: The “divergence” of a flow field is (M /dx + ¢N/dy. The example has
divergence = 5. To maintain this flow we must replace 5 units continually—not just
at the origin but everywhere. (A one-point source is in example 7.) The divergence is
the source strength, because it equals the outflow. To understand Green’s Theorem
Jor any vector field Mi+ Nj, look at a tiny rectangle (sides dx and dy):

Flow out the right side minus flow in the left side = (change in M) times dy
Flow out the top minus flow in the bottom = (change in N) times dx
Total flow out of rectangle: dM dy + dN dx =(0M/0x + dN[dy)dx dy.

The divergence times the area dx dy equals the total flow out. Section 15.5 gives more
detail with more care in three dimensions. The divergence is M, + N, + P..

flux 3ab F = 2xi N + dN
b > T
flux dy| M '1‘"1‘ =M+ dM "\]\
M 2ab 1 N \
0 a Cdx

Fig. 15.13 M.+ N,=2+3=5 yields flux = 5(area) = Sab. The flux is dM dy +dN dx =
(M, + N,)dx dy. The spin field has no flux.

EXAMPLE 6 Find the flux through a closed curve C of the spin field S = — yi + xj.

Solution The field has M = —y and N = x and M, + N, =0. The double integral is
zero. Therefore the total flow (out minus in) is also zero—through any closed curve.
Figure 15.13 shows flow entering and leaving a square. No fluid is added or removed.
There is no rain and no evaporation. When the divergence M .+ N, is zero, there is
no source or sink.

FLOW FIELDS WITHOUT SOURCES

This is really quite important. Remember that conservative fields do no work around
C, they have a potential f, and they have “zero curl.” Now turn those statements
through 90°, to find their twins. Source-free fields have no flux through C, they have
stream functions g, and they have “zero divergence.” The new statements E-F-G-H
describe fields without sources.

569



570

15 VYecior Calculus

15G The feid F = M(x, y)i + N(x, y)j is source-free if it has these properties:
E The total flux § F -n ds through every closed curve is zero.

F Across all curves from P to @, the flux {2F-n ds is the same.

G There is a stream function g{x, y), for which M = dg/dy and N = — dg/ox.
H The components satisfy dM/dx + dN/dy = 0 (the divergence is zero).

A field with one of these properties has them all. H is the quick test.

The spin field —yi+ xj passed this test (Example 6 was source-free). The field
2xi + 3yj does not pass (Example 5 had M, + N, = 5). Exampie 7 almost passes.
EXAMPLE 7 The radial field R/r® = (xi + yi){(x? + y?) has a point source at (0, 0).
The new test H is divergence = dM{dx + N /dy = 0. Those two derivatives are

0 x x* + y% — x(2x) il y xZ 4y — W2y
a(J‘2+y‘) S 5% I b ) A

They add to zero. There seems to be no source (if the calculation is correct). The flow
through a circle x? + y* = a? should be zero. But it’s not:

%M dy—Ndx = %(x dy — ydx)/(x? + y*) = 2(area of circle)/a® = 2x. (13)

A source is hidden somewhere. Looking at R/r?, the problem is at (0, 0). The field is
not defined when r = 0 (it blows up). The derivatives in (12} are not continuous. Test
H does not apply, and was not passed. The divergence M, + N, must be a “delta
function” of strength 2n. There is a point source sending flow out through all circles.

T hope you see the analogy with Example 4. The field S/r? is cutl-free except at r = 0.
The field R/r? is divergence-free except at = 0. The mathematics is parallel and the
fields are perpendicular. A potential fand a stream function g require a region without
holes.

THE BEST FIELDS: CONSERVATIVE AND SOURCE-FREE

What if F is conservative and also source-free? Those are outstandingly important
felds. The cutl is zero and the divergence is zero, Because the field is conservative, it
comes from a potential. Because it is source-free, there is a stream function:
¢ é
U § (14)

—g=@ and N=—"=

M=~ ~
éx &y Jy éx

Those are the Cauchy-Riemann eguations, named after a great mathematician of his
time and one of the greatest of all time. I can’t end without an example.

EXAMPLE 8 Show that yi + xj is both conservative and source-free. Find fand g.

Solution With M =y and N = x, check first that 6M/éy =1 = ¢N/dx. There must
be a potential function. It is f= xy, which achieves éf/x =y and ¢&f/dy = x. Note

that f,. + £, = 0.
Check next that dM/éx + éN/éy =0+ 0. There must be a stream function. It is
g =3¥(y* — x?), which achieves dg/dy =y and dg/éx = — x. Note that g, +g,,=0.
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The curves f=constant are the equipotentials. The curves g = constant are the
streamlines (Figure 15.4). These are the twin properties—a conservative field with
a potential and a source-free field with a stream function. They come together into
the fundamental partial differential equation of equilibrium— Laplace’s equation

Jex +£,,=0.

They satiefy Laplace’s equation.

154 There is a potential and stream function when M, =N_and M, = —N,.

Jutfy=M,+N,=0  and

Bxxt+8&y=—N.+M,=0. (19

If we have f without g, as in f=x?+y? and M =2x and N =2y, we don’t have
Laplace’s equation: f,,+f,,=4. This is a gradient ficld that needs a source.
If we have g without f, as in g=x?+ y? and M =2y and N = — 2x, we don’t have
Laplace’s equation. The field is source-free hut it has spin. The first field is 2R and

the second field is 28.

With no source and no spin, we are with Laplace at the center of mathematics and

science.

work curl

Green’s Theorem: Tangential form § F ~T ds and normal form §F ~nds

agde+Ndy=H (N.—M,)dxdy §Mdy—Ndx=H (M, + N,)dx dy
c R c R

Conservative: work = zero, N, = M, gradient of a potential: M =f, and N =J,
Source-free: flux = zero, M, = — N, has a stream function: M = g, and N = — g,
Conservative + source-free: Cauchy-Riemann + Laplace equations for fand g.

flux divergence

15.3 EXERCISES

Read-through questions

The work integral § M dx + N dy equals the double integeal
o by_ b ’sTheerem. ForF=3i+4jtheworkis__c
ForF=_d and_e , theworkequalstheareaof R. When
M = afjdx and N = éf}dy, the double integral is zero because
___.Theline integral is zero because _ g . Anexample is
F=_t_ _ ThedirectiononCis__ 1| _around the outsideand
| around the boundary of a hole. If R is broken into very
simple pieces with crosscuts between them, the integrals of

k__cance] along the crosscuts,

Test D for gradient fieldsis _ 1 . A field that passes this
testhas¢ F-dR=_m  Thereisasolutiontof,=_ n__and
fy=_o _ Thendf=Mdx+Ndyisan_p differential.
The spin field S/r* passes test D except at __q . Its potential
J=_1 _increases by _ s poing around the crigin. The

integral [[(N, — M,)dx dy is not zero but __t

¥ . The
and nds

The flow form of Green’s Theorem is _ v =
normal vectorin Fadspoints_ w  and[n|=_ »

equals dyi — dxj. The divergence of Mi+ Njis_y . ForF=
xithe double integralis __* . There (is)(is not) a source. For
F = yi the divergence is __A_ . The divergence of Rfr? is zero
exceptat _ B Thisfieldhasa_ € _ source.

A field with no source has propertiesE=_D F=_E |
G=_F , H=zero divergence. The stream function g
satisfies the equations 6 . Then daMfox+
dN/3y = 0 because *g/dxdy=_ H__.Theexample F = yi has
g=__1__. There(isj(is not) a potential function. The example
F=xi~yjhasg=_J andalsof=_ K . This [ satisfies
Laplace’s equation __ L, because the field F is both _ M
and _N__. The functions fand g are connected by the _ ©

equations df/dx = dg/dyand _ P

Compute the line integrals 1-6 and (separately) the double integ-
rals in Green’s Theorem (1). The circle has x =acost,
¥ =asin ¢. The triangle hassides x =0,y =0, x+ p=1.

1 §xdyalong the circle 2 §x?ydy along the circle
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3 $xdx along the triangle 4 §ydx along the triangle

5 §x*ydx along the circle 6 $x?ydxalong the triangle

7 Compute both sides of Green’s Theorem in the form (10);
(a) F = xi + ¥j, R = upper half of the disk x* + y? < 1.
(b) F = x%i + xyj, C =square with sides y=0,x= 1,y =1,
x=0.

8 Show that $c(x?y + 2x)dy + xy?dx depends only on the
area of R. Does it equal the area?

9 Find the area inside the hypocycloid x = cos®t, y =sint
from }$xdy— ydx.

10 For constants b and ¢, how is §bydx+ cxdy related to
the area inside C? If b =7, which ¢ makes the integral zero?

11 For F =grad./x* + y%,show in three ways that § F -dR =
0 around x =cost, y=sint.

(a} F is a gradient feld so

{b) Compute F and directly mlcgrate F-4R.

(c) Compute the double integral in Green’s Theorem.

12 Devise a way to find the one-dimensional theorem
|8 (df/dx)dx = f(b) — f(a) as a special case of Green's Theorem
when R is a square.

13 (a) Choose x(f) and »f) so that the path goes from (1, 0)
to (1, 0) after circling the ongin twice.

(b) Compute § ydx and compare with the area inside your
path.

(¢) Compute §(y dx — x dy)/{x* + y*} and compare with 2z
in Example 7.

14 In Example 4 of the previous section, the work [S-dR
between (1, 0) and (0, 1} was 1 for the straight path and =2
for the quarter-circle path. Show that the work is always twice
the area between the path and the axes.

Compute both sides of § F -n ds = [ (M, + N,)dxdy in 15-20.
15 F = yi + xj in the unit circle

16 F = xyi in the unit square 0 < x, y <1

17 F =R/r in the unit circle

18 F = §/r in the unit square

19 F = x?yj in the unit triangie {sides x=0, y=0, x + y = {}
20 F = grad r in the top half of the unit circle.

21 Suppose div F =0 except at the origin. Then the fux
$F-nds is the same through any two circles around the
origin, because (What s [[ (M. + N,)dx dy between
the circles?)

221 Example 7 has divF =0 except at the origin. The Aux
through every circle x> 4+ y* = a? is 2n. The flux through a
square around the origin is also 2 because . (Com-
pare Problem 21)

23 Evaluate $a(x, yMx + b(x, Yy by both forms of Green’s
Theorem, The choice M =a, N=>5 in the work form gives
the double integral . The choice M =b, N=—ain
the flux form gives the double integral . There was
only one Green.

24 Evaluate § cos’y dy — sin®x dx by Green’s Theorem.

15 The field R/r? in Example 7 has zero divergence except at
r=0. Solve dg/dy = x/(x* + y*) to find an attempted stream
function g, Does g have trouble at the origin?

26 Show that §/r% has zero divergence (except at r =0). Find
a stream function by solving dg/éy = y/{x? + ¥2). Does g have
trouble at the origin?

27 Which differentials are exact: ydx — xdy, x2dx+ ydy,
yidx + x2dy?

28 If M, + N, =0 then the equations dg/dy = and
Ogjdx = yield a stream function. If alse N, =M,
show that g satisfies Laplace’s equation.

Compute the divergence of each field in 29-36 and solve g, =
M and g, = — N for a stream function (if possible).

29 2xyi— ¥ 30 3yl — Y
31 %+ p¥ 32 yhi+x¥
33 & cos yi—e®sin yi M ENi )
35 2yi/x + yjix? 36 xyi—xy

37 Compute N,— M, for cach field in 29-36 and find a
potential function f when possible.

38 The potential f(Q) is the work {¢F + Tds to reach @ from
a fixed point P (Section 15.2). In the same way, the stream
function g(Q) can be constructed from the integral

Then g(Q) — g(P} represents the flux across the path from P to
Q. Why do all paths give the same answer?

39 The real part of {x + iy)* = x> + 3ixly - 3xp* iy’ is f=
x% — 3xy?. Its gradient field is F=grad f= . The
divergence of F is . Therefore f satisfies Laplace’s
equation [, +f,, =0 (check that it does).

40 Since divF =0 in Problem 3%, we can solve dg/dy =
and dg/éx = . The stream function is g =
.Itis the imaginary part of the same {x + iy)>. Check
that { and g satisfy the Cauchy-Riemann equations.

41 The real part fand imaginary part g of (x + iy)" satisfy the
Laplace and Cauchy-Riemann equations for n=1,2,
(They give all the polynomial solutions.) Compute f and g for
n=4.

42 When is M dy — N dx an exact differential dg?

43 The potential f=¢*cosy satisfies Laplace’s equation.
There must be a g. Find the field F =pgrad f and the stream
funclion g(x, y).
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44 Show that the spin field 8§ does work around every simple inside R can be squeezed to a point without leaving R. Test
closed curve. these regions:
1. xy plane without (0,0) 2. xyz space without (0,0, 0)

45 For F={(x)j and R=unit square 0<x<1, Osy<l, 3.sphere x>+ y2 + 2z =1 4.8 torus {or doughnut)

integrate both sides of Green’s Thecrem (1). What formula is

required from one-variable calculus? 3.2 sweat.er 6.2 human body
7. the region between two spheres
46 A region R is “simply connected” when every closed curve 8. xyz space with circle removed.

I 154 Surface Integrals NN

The doubie integral in Green’s Theorem is over a flat surface R, Now the region
moves out of the plane. It becomes a curved surface S, part of a sphere or cylinder
or cone. When the surface has only one z for each (x, y), it is the graph of a function
z(x, y). In other cases S can twist and close up—a sphere has an upper z and a iower
z. In all cases we want to compute area and flux. This is a necessary step (it is our
last step) belore moving Green’s Theorem to three dimensions.

First a quick review. The basic integrals are | dx and {{dxdy and {{fdx dydz. The
one that didn't fit was jds—the length of a curve. When we go from curves to
surfaces, ds becomes dS. Area is [{dS and flux is [[F -n dS, with double integrals
because the surfaces are two-dimensional. The main difficulty is in dS.

All formulas are summarized in a table at the end of the section.

There are two ways to deal with ds (along curves). The same methods apply to dS
{on surfaces). The first is in xyz coordinates; the second uses parameters. Before this
subject gets complicated, I will explain those two methods,

Method 1 is for the graph of a function: curve y{(x) or surface z(x, y).
A small piece of the curve is almost straight. It goes across by dx and up by dy:

length ds = ,/(dx)* + (dy)* = /1 + (dy/dx)? dx. )

A small piece of the surface is practically flat. Think of a tiny sloping rectangle. One
side goes across hy dx and up by (8z/dx)dx. The neighboring side goes along by dy
and up by (3z/dy)dy. Computing the area is a linear problem (from Chapter 11),
because the flat piece is in a plane,

Two vectors A and B form a parallelogram. The length of their cross product is the
area. In the present case, the vectors are A =i + (dz/éx)k and B =j + (9z/dy)k. Then
Adx and Bdy are the sides of the small piece, and we compute A x B:

i j k
AxB=|1 0 @z/dx|=—adzfoxi—édz/dyj+ k. (2)
0 1 dz/dy

This is exactiy the mormal vector N to the tangent plane and the surface, from
Chapter 13. Please note: The small flat piece is actually a parallelogram (not always
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