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Vector Calculus 


Chapter 14introduced double and triple integrals. We went from dx to jj dx dy and 
JIJdx dy dz. All those integrals add up small pieces, and the limit gives area or volume 
or mass. What could be more natural than that? I regret to say, after the success of 
those multiple integrals, that something is missing. It is even more regrettable that 
we didn't notice it. The missing piece is nothing less than the Fundamental Theorem 
of Calculus. 

The double integral 11dx dy equals the area. To compute it, we did not use an 
antiderivative of 1. At least not consciously. The method was almost trial and error, 
and the hard part was to find the limits of integration. This chapter goes deeper, to 
show how the step from a double integral to a single integral is really a new form of 
the Fundamental Theorem-when it is done right. 

Two new ideas are needed early, one pleasant and one not. You will like vector 
fields. You may not think so highly of line integrals. Those are ordinary single integrals 
like J v(x)dx, but they go along curves instead of straight lines. The nice step dx 
becomes the confusing step ds. Where Jdx equals the length of the interval, J ds is 
the length of the curve. The point is that regions are enclosed by curves, and we have 
to integrate along them. The Fundamental Theorem in its two-dimensional form 
(Green's Theorem) connects a double integral over the region to a single integral along 
its boundary curve. 

The great applications are in science and engineering, where vector fields are so 
natural. But there are changes in the language. Instead of an antiderivative, we speak 
about a potential function. Instead of the derivative, we take the "divergence" and 
"curl." Instead of area, we compute flux and circulation and work. Examples come 
first. 

-1 FieldsVector
15.1 

For an ordinary scalar function, the input is a number x and the output is a number 
f(x). For a vector field (or vector function), the input is a point (x, y) and the output 
is a two-dimensional vector F(x, y). There is a "field" of vectors, one at every point. 549 
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In three dimensions the input point is (x, y, z) and the output vector F has three 
components. 

DEFINITION Let R be a region in the xy plane. A vectorfield F assigns to every point 
(x, y) in R a vector F(x, y) with two components: 

F(x, y) = M(x, y)i + N(x,  y)j. (1)  
This plane vector field involves two functions of two variables. They are the compo- 
nents M and N, which vary from point to point. A vector has fixed components, a 
vector field has varying components. 

A three-dimensional vector field has components M(x, y, z) and N(x, y, z) and 
P(x, y, 2). Then the vectors are F = Mi + Nj + Pk. 

EXAMPLE 1 The position vector at (x, y) is R = xi + yj. Its components are M = x 
and N = y. The vectors grow larger as we leave the origin (Figure 15.la). Their 
direction is outward and their length is IRI = J;i?;i = r, The vector R is boldface, 
the number r is lightface. 

EXAMPLE 2 The vector field R/r consists of unit vectors u,, pointing outward. We 
divide R = xi + yj by its length, at every point except the origin. The components 
of Rlr are M = xlr and N = y/r. Figure 15.1 shows a third field ~ / r ~ ,  whose length 
is 1 /r. 

Fig. 15.1 The vector fields R and R/r and R/r2 are radial. Lengths r and 1 and l / r  

EXAMPLE 3 The spin field or rotation field or turning field goes around the origin 
instead of away from it. The field is S. Its components are M = - y and N = x: 

S = - yi + xj also has length IS1 = J(-y)2 + x2 = r. (2) 
S is perpendicular to R-their dot product is zero: S R = (- y)(x) + (x)(y) = 0. The 
spin fields S/r and S/r2 have lengths 1 and llr: 

The unit vector S/r is u,. Notice the blank at (O,O), where this field is not defined. 

Fig. 15.2 The spin fields S and S/r and S/r2 go around the origin. Lengths r and 1 and l /r .  
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EXAMPLE 4 A gradientfield starts with an ordinary function f(x, y). The components 
M and PJ are the partial derivatives df/dx and dfldy. Then the field F is the gradient 
off: 

F = grad f = Vf= dfldx i + dfldy j. (3) 

This vector field grad f is everywhere perpendicular to the level curves f(x, y) = c. The 
length lgrad f 1 tells how fast f is changing (in the direction it changes fastest). Invent 
a function like f = x2y, and you immediately have its gradient field F = 2xyi + x2j. 
To repealt, M is df/dx and N is dfldy. 

For every vector field you should ask two questions: Is it a gradient field? If so, 
what is f? Here are answers for the radial fields and spin fields: 

M A  The radial fields R and R/r and ~ / r ~  are a11 gradient fields. 
The spin fields S and S/r  are not gradients of any f(x, y), 
The spin field S/r2 is the gradient of the polar angle 0 = tan- '(ylx). 

The derivatives off = f(x2+ y2) are x and y. Thus R is a gradient field. The gradient 
off = r is the unit vector R/r pointing outwards. Both fields are perpendicular to 
circles around the origin. Those are the level curves off = f r2 and f = r. 

Question Is every R/rn a gradient field? 
Answer Yes. But among the spin fields, the only gradient is S/r2. 

A ma-jor goal of this chapter is to recognize gradient fields by a simple test. The 
rejection of S and S/r will be interesting. For some reason -yi + xj is rejected and 
yi + xj is accepted. (It is the gradient of .) The acceptance of S/r2 as the 
gradient off = 0 contains a surprise at the origin (Section 15.3). 

Gradient fields are called conservative. The function f is the potential function. 
These words, and the next examples, come from physics and engineering. 

EXAMPLE5 The velocity field is V and the flow field is pV. 

Suppose: fluid moves steadily down a pipe. Or a river flows smoothly (no waterfall). 
Or the air circulates in a fixed pattern. The velocity can be different at different points, 
but there is no change with time. The velocity vector V gives the direction offlow 
and speed of Jow at every point. 

In reality the velocity field is V(x, y, z), with three components M, N, P. Those are 
the velocities v,, v2, v, in the x, y, z directions. The speed (VI is the length: IVI2 = 
v: + v: -t v:. In a "plane flow" the k component is zero, and the velocity field is 
v , i+v2j= M i +  Nj. 

gravity 

F = - R//." 

Fig. 15.3 A steady velocity field V and two force fields F. 
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For a compact disc or a turning wheel, V is a spin field (V =US, co = angular 
velocity). A tornado might be closer to V =S/r2 (except for a dead spot at the center). 
An explosion could have V =R/r2. A quieter example is flow in and out of a lake 
with steady rain as a source term. 

TheJlowJield pV is the density p times the velocity field. While V gives the rate of 
movement, pV gives the rate of movement of mass. A greater density means a greater 
rate IpVJof "mass transport." It is like the number of passengers on a bus times the 
speed of the bus. 

EXAMPLE 6 Force fields from gravity: F is downward in the classroom, F is radial 
in space. 

When gravity pulls downward, it has only one nonzero component: F = -mgk. This 
assumes that vectors to the center of the Earth are parallel-almost true in a class- 
room. Then F is the gradient of -mgz (note dfldz = -mg). 
In physics the usual potential is not -mgz but +mgz. The force field is minus grad f 
also in electrical engineering. Electrons flow from high potential to low potential. 
The mathematics is the same, but the sign is reversed. 

In space, the force is radial inwards: F = -mMGR/r3. Its magnitude is propor- 
tional to l/r2 (Newton's inverse square law). The masses are m and M, and the 
gravitational constant is G =6.672 x 10-"--with distance in meters, mass in kilo- 
grams, and time in seconds. The dimensions of G are (force)(di~tance)~/(mass)~.This 
is different from the acceleration g =9.8m/sec2, which already accounts for the mass 
and radius of the Earth. 

Like all radial fields, gravity is a gradient field. It comes from a potential f: 

EXAMPLE 7 (a short example) Current in a wire produces a magnetic field B. It is 
the spin field S/r2 around the wire, times the strength of the current. 

STREAMLINES AND LINES OF FORCE 

Drawing a vector field is not always easy. Even the spin field looks messy when the 
vectors are too long (they go in circles and fall across each other). The circles give a 
clearer picture than the vectors. In any field, the vectors are tangent to "jield linesw- 
which in the spin case are circles. 

DEFINITION C is afield line or integral curve if the vectors F(x, y) are tangent to C. 
The slope dyldx of the curve C equals the slope N/M of the vector F =Mi +Nj: 

We are still drawing the field of vectors, but now they are infinitesimally short. 
They are connected into curves! What is lost is their length, because S and S/r and 
S/r2 all have the same field lines (circles). For the position field R and gravity field 
R/r3, the field lines are rays from the origin. In this case the "curves" are actually 
straight. 

EXAMPLE 8 Show that the field lines for the velocity field V =yi +xj are hyperbolas. 

dy N x-- --- * y dy =x dx *y2 -$x2 =constant. 
~ X - M - ~  



15.1 Vector Fields 

reamlines x2 - y2  = C 

Fig. 15.4 Velocity fields are tangent to streamlines. Gradient fields also have equipotentials. 

At every point these hyperbolas line up with the velocity V. Each particle of fluid 
travels on afield line. In fluid flow those hyperbolas are called streamlines. Drop a 
leaf into a river, and it follows a streamline. Figure 15.4 shows the streamlines for a 
river going around a bend. 

Don't forget the essential question about each vector field. Is it a gradient field? 
For V = yi + xj the answer is yes, and the potential is f = xy: 

the gradient of xy is (8flax)i + (8flay)j = yi + xj. (7) 

When there is a potential, it has level curves. They connect points of equal potential, 
so the curves f (x, y) = c are called equipotentials. Here they are the curves xy = c- 
also hyperbolas. Since gradients are perpendicular to level curves, the streamlines are 
perpendicular to the equipotentials. Figure 15.4 is sliced one way by streamlines and 
the other way by equipotentials. 

A gradient field F = afldx i + afldy j is tangent to the field lines (stream- 
lines) and perpendicular to the equipotentials (level curves off). 

In the gradient direction f changes fastest. In the level direction f doesn't change at 
all. The chain rule along f (x, y) = c proves these directions to be perpendicular: 

af dx af d y  -- + - = 0 or (grad f )  (tangent to level curve) = 0. 
ax dt oy  dt 

EXAMPLE 9 The streamlines of S/r2 are circles around (0,O). The equipotentials are 
rays 0 = c. Add rays to Figure 15.2 for the gradient field S/r2. 

For the gravity field those are reversed. A body is pulled in along the field lines (rays). 
The equipotentials are the circles where f = l l r  is constant. The plane is crisscrossed 
by "orthogonal trajectories9'-curves that meet everywhere at right angles. 

If you bring a magnet near a pile of iron filings, a little shake will display the field 
lines. In a force field, they are "lines of force." Here are the other new words. 

Vector hid F, y, z) = Mi + Nj + Pk Plane field F = M(x, y)i + N(x, y)j 

Radial field: multiple of R = xi + yj + zk Spifl field: multiple of $ = - yi + xj 

Gradient ktd = conservative field: A4 = wax, N = af&, P = $18~ 

Potmtialf(x, yf (not a vector) Equipotential curves f(x, y) = c 

Streamline = field line = integral curve: a curve that has F(x, y) as its tangent 
vectors. 
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15.1 EXERCISES 

Read-through questions 

A vector field assigns a a to each point (x, y) or (x, y, z). 
In two dimensions F(x,y) = b i + c j. An example is 
the position field R = d . Its magnitude is IRI = e 

and its direction is f . It is the gradient field for f = 
g . The level curves are h , and they are i to 

the vectors R. 

Reversing this picture, the spin field is S = i . Its mag- 
nitude is IS1 = k and its direction is I . It is not a 
gradient field, because no function has af/ax = m and 
af/ay = n . S is the velocity field for flow going 0 . 
The streamlines or P lines or integral s are r . 
The flow field pV gives the rate at which s is moved 
by the flow. 

A gravity field from the origin is proportional to F = t 
which has IF1 = u . This is Newton's v square law. 
It is a gradient field, with potential f = w .The equipoten- 
tial curves f(x, y) = c are x . They are Y to the field 
lines which are . This illustrates that the A of a 
function f(x, y) is B to its level curves. 

The velocity field yi + xj is the gradient off = c . Its 
streamlines are D .The slope dyldx of a streamline equals 
the ratio E of velocity components. The field is F to 
the streamlines. Drop a leaf onto the flow, and it goes along 

G . 

Find a potential f(x, y) for the gradient fields 1-8. Draw the 
streamlines perpendicular to the equipotentials f(x, y) = c. 

1 F = i + 2j (constant field) 2 F = xi +j 

7 F=xyi+  j 8 F = & i +  j 

9 Draw the shear field F =xj. Check that it is not a gradient 
field: If af/ax =0 then af/ay =x is impossible. What are the 
streamlines (field lines) in the direction of F? 

10 Find all functions that satisfy af/ax = -y and show that 
none of them satisfy af/ay = x. Then the spin field S = 
-yi + xj is not a gradient field. 

Compute af/ax and af/ay in 11-18. Draw the gradient field 
F =padf and the equipotentials f(x, y) = c: 

15f=x2-y2  16 f = ex cos y 

Find equations for the streamlines in 19-24 by solving dyldx = 
N/M (including a constant C). Draw the streamlines. 

21 F =S (spin field) 22 F =S/r (spin field) 

23 F =grad (xly) 24 F =grad (2x + y). 

25 The Earth's gravity field is radial, but in a room the field 
lines seem to go straight down into the floor. This is because 
nearby field lines always look . 
26 A line of charges produces the electrostatic force field F = 
R/r2=(xi + yj)/(x2+ y2). Find the potential f(x, y). (F is also 
the gravity field for a line of =asses.) 

In 27-32 write down the vector fields Mi + Nj. 

27 F points radially away from the origin with magnitude 5. 

28 The velocity is perpendicular to the curves x3 + y3 =c and 
the speed is 1. 

29 The gravitational force F comes from two unit masses at 
(0,O) and (1,O). 

30 The streamlines are in the 45" direction and the speed is 4. 

31 The streamlines are circles clockwise around the origin 
and the speed is 1. 

32 The equipotentials are the parabolas y = x2+ c and F is 
a gradient field. 

33 Show directly that the hyperbolas xy = 2 and x2 -y2 = 3 
are perpendicular at the point (2, l), by computing both slopes 
dyldx and multiplying to get -1. 

34 The derivative off (x, y) = c isf, +f,(dy/dx) =0. Show that 
the slope of this level curve is dyldx = -MIN. It is perpendic- 
ular to streamlines because (- M/N)(N/M)= . 

35 The x and y derivatives of f(r) are dfldx = and 
dflay =-by the chain rule. (Test f =r2.) The equi- 
potentials are . 

36 F = (ax + by)i + (bx + cy)j is a gradient field. Find the 
potential f and describe the equipotentials. 

37 True or false: 
I.  The constant field i + 2k is a gradient field. 
2. For non-gradient fields, equipotentials meet stream- 
lines at non-right angles. 
3. In three dimensions the equipotentials are surfaces 
instead of curves. 
4. F = x2i+ y2j+ z2k points outward from (0,0,0)-
a radial field. 

38 Create and draw f and F and your own equipotentials 
and streamlines. 
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39 How can different vector fields have the same streamlines? 40 Draw arrows at six or eight points to show the direction 
Can they have the same equipotentials? Can they have the and magnitude of each field: 
same f?  (a) R + S  (b) Rlr -S/r (c) x2i+x2j (d)yi. 

15.2 Line Integrals 

A line integral is an integral along a curve. It can equal an area, 

.- 
but that is a special 

case and not typical. Instead of area, here are two important line integrals in physics 
and engineering: 

Work along a curve = F T ds Flow across a curve = 

In the first integral, F is a force field. In the second integral, F is a flow field. Work 
is done in the direction of movement, so we integrate F T. Flow is measured through 
the curve C, so we integrate F n. Here T is the unit tangent vector, and F T is the 
force cornponent along the curve. Similarly n is the unit normal vector, at right angles 
with T. Then F n is the component of flow perpendicular to the curve. 

We will write those integrals in several forms. They may never be as comfortable 
as J y(x) dx, but eventually we get them under control. I mention these applications 
early, so you can see where we are going. This section concentrates on work, and 
flow comes later. (It is also calledflux-the Latin word for flow.) You recognize ds 
as the step along the curve, corresponding to dx on the x axis. Where f dx gives the 
length of an interval (it equals b - a), 5 ds is the length of the curve. 

EXAMPLE 1 Flight from Atlanta to Los Angeles on a straight line and a semicircle. 

According to Delta Airlines, the distance straight west is 2000 miles. Atlanta is at 
(1000,O) and Los Angeles is at (-1000, O), with the origin halfway between. The 
semicircle route C has radius 1000. This is not a great circle route. It is more of a 
"flat circle," which goes north past Chicago. No plane could fly it (it probably goes 
into space). 

The equation for the semicircle is x2 + y2 = 10002. Parametrically this path is x = 
1000 cos t, y = 1000 sin t. For a line integral the parameter is better. The plane leaves 
Atlanta at t = 0 and reaches L.A. at t = n, more than three hours later. On the straight 
2000-mile path, Delta could almost do it. Around the semicircle C, the distance is 
lOOOn miles and the speed has to be 1000 miles per hour. Remember that speed is 
distance ds divided by time dt: 

dsldt = ,/(dx~dt)~ + (dyldt)' = l000,/(- sin t)2 + (cos t)2 = 1000. (1) 

The tangent vector to C is proportional to (dxldt, dyldt) = (-1000 sin t, 1000 cos t). 
But T is a unit vector, so we divide by 1000-which is the speed. 

Suppose the wind blows due east with force F = Mi. The components are M and 
zero. Foir M =constant, compute the dot product F * T  and the work -2000 M: 

F w T =  Mi*(-sin t i+cos  t j ) =  M(-sin t)+O(cos t ) =  - M sin t 
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Work is force times distance moved. It is negative, because the wind acts against the 
movement. You may point out that the work could have been found more simply- 
go 2000 miles and multiply by - M. I would object that this straight route is a 
dzrerent path. But you claim that the path doesn't matter-the work of the wind is 
-2000M on every path. I concede that this time you are right (but not always). 

Most line integrals depend on the path. Those that don't are crucially important. 
For a gradient field, we only need to know the starting point P and the finish Q. 

158 When F is the gradient of a potential function f (x, y), the work J, F T ds 
depends only on the endpoints P and Q. The work is the change in$ 

if F = afpx i + af/ay j then F T ds = f (Q) -f(P). 

When F = Mi, its components M and zero are the partial derivatives off = Mx. To 
compute the line integral, just evaluate f at the endpoints. Atlanta has x = 1000, Los 
Angeles has x = - 1000, and the potential function f = Mx is like an antiderivative: 

work = f (Q) - f (P) = M(- 1000) - M(1000) = - 2000M. (3) 

LAX LAX 
- 1000 , - 1000 1000 

J F . Tdr = - 2000M depends on path 

Fig. 15.5 Force Mi, work -2000M on all paths. Force Myi, no work on straight path. 

May I give a rough explanation of the work integral 5 F T ds? It becomes clearer 
when the small movement Tds is written as dx i + dy j. The work is the dot product 
with F: 

The infinitesimal work is df: The total work is 5 df= f(Q) - f (P). This is the Fundamen- 
tal Theorem for a line integral. Only one warning: When F is not the gradient of any 
f (Example 2), the Theorem does not apply. 

EXAMPLE 2 Fly these paths against the non-constant force field F = Myi. Compute 
the work. 

There is no force on the straight path where y = 0. Along the x axis the wind does 
no work. But the semicircle goes up where y = 1000 sin t and the wind is strong: 

F * T = ( M y i ) * ( - s i n t i + c o s t j ) =  -My sin t =  - lOOOM sin2t 

This work is enormous (and unrealistic). But the calculations make an important 
point-everything is converted to the parameter t. The second point is that F = Myi 
is not a gradient field. First reason: The work was zero on the straight path and 
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nonzero on the semicircle. Second reason: No function has df/ dx = My and df /dy = 

0. (The first makes f depend on y and the second forbids it. This F is called a shear 
force.) Without a potential we cannot substitute P and Q-and the work depends 
on the path. 

THE DEFINITION OF LINE INTEGRALS 

We go back to the start, to define F T ds. We can think of F T as a function g(x, y) 
along the path, 

IC 
and define its integral as a limit of sums: 

N 

g ( ~ ,  y) ds = limit of &xi, yi)Asi as (As),,,., -i 0. ( 5 )  
i=  1 

The points (xi, y,) lie on the curve C. The last point Q is (x,, y,); the first point P is 
(xo, yo). The step Asi is the distance to (xi, yi) from the previous point. As the steps 
get small (As -, 0) the straight pieces follow the curve. Exactly as in Section 8.2, the 
special case g = 1 gives the arc length. As long as g(x, y) is piecewise continuous 
(jumps allowed) and the path is piecewise smooth (corners allowed), the limit exists 
and defines the line integral. 

When g is the density of a wire, the line integral is the total mass. When g is F T, 
the integral is the work. But nobody does the calculation by formula (5). We now 
introduce a parameter t-which could be the time, or the arc length s, or the distance 
x along the base. 

The diflerential ds becomes (ds/dt)dt. Everything changes over to t: 

The curve starts when t = a, runs through the points (x(t), y(t)), and ends when t = b. 
The square root in the integral is the speed dsldt. In three dimensions the points on 
C are (x(t), y(t), z(t)) and (dz/dt)l is in the square root. 

EXAMPLE 3 The points on a coil spring are (x, y, z) = (cos t, sin t, t). Find the mass 
of two complete turns (from t = 0 to t = 4 4  if the density is p = 4. 

Solution 
fi. 

The key is ( d ~ / d t ) ~  + ( d ~ / d t ) ~  + ( d ~ l d t ) ~  = sin2t + cos2t + 1 = 2. Thus 
dsldt = To find the mass, integrate the mass per unit length which is g = p = 4: 

That is a line integral in three-dimensional space. It shows how to introduce t. But 
it misses the main point of this section, because it contains no vector field F. This 
section is about work, not just mass. 

DIFFERENT FORMS OF THE WORK INTEGRAL 

The work integral I F  T ds can be written in a better way. The force is F = Mi + Nj. 
A small step along the curve is dx i + dy j. Work is force times distance, but it is only 
the force component along the path that counts. The dot product F -Tds  finds that 
component automatically. 
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I 15C The vector to a point on C is R = xi + yj. Then dR = Tds = dx i + dy j: 

I Along a space curve the work is j F * ~ d s = f ~ * d ~ = j ~ d x + ~ d ~ +  ~ d z .  

The product M dx is (force in x direction)(movement in x direction). This is zero if 
either factor is zero. When the only force is gravity, pushing a piano takes no work. 
It is friction that hurts. Carrying the piano up the stairs brings in Pdz, and the total 
work is the piano weight P times the change in z. 

To connect the new I F dR with the old I F  * T  ds, remember the tangent vector 
T. It is dRlds. ~herefoie Tds is dR. The best for computations is dR, because the 
unit vector T has a division by dsldt = , / ( d ~ / d t ) ~  + ( d ~ l d t ) ~ .  Later we multiply by this 
square root, in converting ds to (dsldtjdt. It makes no sense to compute the square 
root, divide by it, and then multiply by it. That is avoided in the improved form 
~ M ~ x + N ~ Y .  

EXAMPLE 4 Vector field F = - yi + xj, path from (1,O) to (0, 1): Find the work. 

Note 1 This F is the spin field S. It goes around the origin, while R = xi + yj goes 
outward. Their dot product is F R = - yx + xy = 0. This does not mean that 
F dR = 0. The force is perpendicular to R, but not to the change in R. The work to 
move from (I, 0) to (0, I), x axis to y axis, is not zero. 
Note 2 We have not described the path C. That must be done. The spin field is not 
a gradient field, and the work along a straight line does not equal the work on a 
quarter-circle: 

straight line x = 1 - t, y = t quarter-circle x = cos t, y = sin t. 

Calculation of work Change F dR = M dx + N dy to the parameter t: 

Straight line: l - y dx + x dy = - t(- dt) + (1 - t)dt = 1 
lo1 

7T 
Quarter-circle: - y dx + x dy = -sin t(- sin t dt) + cos t(cos t dt) = -. 

2 

General method The 

S 
path is given by x(t) and y(t). Substitute those into M(x, y) 

and N(x, y)-then F is a function of t. Also find dxldt and dyldt. Integrate 
M dxldt + N dyldt from the starting time t to the finish. 

I work 7[: / 2 no work 
work F.dR = 1 

' 

Fig.15.6 T h r e e p a t h ~ f o r ~ F ~ d R = ~ - ~ d x + . u d y = l , n / 2 , 0 .  
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For practice, take the path down the x axis to the origin (x = 1 - t, y = 0). Then 
go up the y axis (x = 0, y = t - 1). The starting time at (1,O) is t = 0. The turning time 
at the origin is t = 1. The finishing time at (0, 1) is t = 2. The integral has two parts 
because this new path has two parts: 

Bent path: J -ydx+xdy=O+O (y=O on one part, then x=O). 

Note 3 The answer depended on the path, for this spin field F = S. The answer did 
not depend on the choice of parameter. If we follow the same path at a different 
speed, the work is the same. We can choose another parameter 2, since (ds/dt)dt and 
(ds/dz)dz both equal ds. Traveling twice as fast on the straight path (x = 1 - 22, 
y = 22) we finish at t = 4 instead of t = 1. The work is still 1: 

CONSERVNION OF TOTAL ENERGY (KINETIC + POTENTIAL) 

When a force field does work on a mass m, it normally gives that mass a new velocity. 
Newton's Law is F =ma = mdvldt. (It is a vector law. Why write out three compo- 
nents?) The work F dR is 

J (m dvldt) (v dt) = *mv v]: = $mv(Q)12 - $mlv(P)12. 

The work equals the change in the kinetic energy 4mlv12. But for a gradient field the 
work is also the change in potential-with a minus sign from physics: 

Comparing (8) with (9), the combination $m1vl2 + f is the same at P and Q. The total 
energy, kinetic plus potential, is conserved. 

INDEPENDENCE OF PATH: GRADIENT FIELDS 

The work of the spin field S depends on the path. Example 4 took three paths- 
straight line, quarter-circle, bent line. The work was 1, 42 ,  and 0, different on each 
path. This happens for more than 99.99% of all vector fields. It does not happen for 
the most important fields. Mathematics and physics concentrate on very special 
fields-for which the work depends only on the endpoints. We now explain what 
happens, when the integral is independent of the path. 

Suppose you integrate from P to Q on one path, and back to P on another path. 
Combined, that is a closed path from P to P (Figure 15.7). But a backward integral 
is the negative of a forward integral, since dR switches sign. If the integrals from P 
to Q are equal, the integral around the closed path is zero: 

closed path 1 back path 2 path 1 path 2 

The circle on the first integral indicates a closed path. Later we will drop the P's. 
Not all closed path integrals are zero! For most fields F, different paths yield 

different work. For "conservative" fields, all paths yield the same work. Then zero 
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work around a closed path conserves energy. The big question is: How to decide 
which fields are conservative, without trying all paths? Here is the crucial information 
about conservative fields, in a plane region R with no holes: 

15D F = M(x,  y)i + N(x ,  y)j is a conservative field if it has these properties: 

A. The work J F dR around every closed path is zero. 

B. The work F d R depends only on P and Q, not on the path. 

C. F is a gradient field: M = df/ax and N = df/dy for some potential f ( x ,  y). 

D. The components satisfy dM/ay = (3Nldx. 

A field with one of these properties has them all. D is the quick test. 

These statements A-D bring everything together for conservative fields (alias gradient 
fields). A closed path goes one way to Q and back the other way to P. The work 
cancels, and statements A and B are equivalent. We now connect them to C. Note: 
Test D says that the "curl" of F is zero. That can wait for Green's Theorem in the 
next section-the full discussion of the curl comes in 15.6. 

First, a gradient field F = grad f is conservative. The work is f (Q) - f (P), by the 
fundamental theorem for line integrals. It depends only on the endpoints and not the 
path. Therefore statement C leads back to B. 

Our job is in the other direction, to show that conservative fields Mi + Nj are 
gradients. Assume that the work integral depends only on the endpoints. We must 
construct a potentialf, so that F is its gradient. In other words, dfldx must be M and 
dfldy must be N. 

Fix the point P .  Define f (Q) as the work to reach Q. Then F equals grad& 

Check the reasoning. At the starting point P, f is zero. At every other point Q, f is 
the work J M dx + N dy to reach that point. Allpathshsfom P to Q give the same f(Q), 
because the field is assumed conservative. After two examples we prove that grad f 
agrees with F-the construction succeeds. 

back path 2 - 

Fig. 15.7 Conservative fields: $ F d R  = 0 and j@ F d R = f ( Q )  - f (P ) .  Here f ( P )  = 0. 

EXAMPLE 5 Find f ( x ,  y) when F = Mi + Nj = 2xyi + x2j. We want (: f /ax = 2xy 
and df ldy = x2.  

Solution 1 Choose P = (0,O). Integrate M dx + N dy along to ( x ,  0) and up to (x, y) :  

S 
(x. 0 )  0, Y )  

2xy dx = 0 (since y = 0) x2dY = x 2 y  (which is f ). 
(0 .0 )  S (x, 0 )  

Certainly f = x2y meets the requirements: f, = 2xy and f, = x2. Thus F = gradf Note 
that dy = 0 in the first integral (on the x axis). Then dx = 0 in the second integral 
(X is fixed). The integrals add to f = x2y. 
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Solution 2 Integrate 2xydx  + x2dy on the straight line (x t ,  yt) from t = 0 to t = 1: 

2(xt)(yt)(x dt) + ( ~ t ) ~ ( yIol dt)= So13x2yt2dt= x2yt3]: = x2y. 

Most authors use Solution 1. I use Solution 2. Most students use Solution 3: 

Solution 3 Directly solve df /dx  = M = 2xy and then fix up dfldy = N = x2: 

af/dx = 2xy gives f = x2y (plus any function of y). 

In this example x2y already has the correct derivative dfldy = x2. No additional 
function of y is necessary. When we integrate with respect to x,  the constant of 
integration (usually C ) becomes a function C(y). 

You will get practice in finding f. This is only possible for conservative fields! I 
tested M = 2xy and N = x2 in advance (using D) to be sure that dM/dy = dN/dx.  

EXAMPLE 6 Look for f ( x ,  y) when Mi + Nj is the spin field -yi + xj. 

Attempted solution 1 Integrate -y dx  + x dy from (0,O) to (x ,  0 )  to (x ,  y): 

I(x, 0) 

- y d x = O  and I(x. Y) 

x dy = x y  (which seems like f ) .  
(0,O) (x. 0) 

Attempted solution 2 Integrate -y dx  + x dy on the line (x t ,  yt) from t = 0 to 1 : 

So1-(y t ) (x  dt) + (x t ) (y  dt) = 0 (a different f, also wrong). 

Aitempted solution 3 Directly solve dfldx = -y and try to fix up af/dy = x :  

af /dx  = -y gives f = -x y  (plus any function C(y)). 

The y derivative of this f is - x  + dC/dy. That does not agree with the required 
dfldy = x. Conclusion: The spin field -yi + xj is not conservative. There is no f. 
Test D gives dM/dy = - 1 and dN/dx = + 1.  

To finish this section, we move from examples to a proof. The potential f (Q)  is 
defined as the work to reach Q. We must show that its partial derivatives are M and 
N. This seems reasonable from the formula f (Q)  = I M dx  + N dy, but we have to 
think it through. 

Remember statement A, that all paths give the same f(Q). Take a path that goes 
from P to the left of Q. It comes in to Q on a line y = constant (so dy = 0). As the 
path reaches Q, we are only integrating M dx. The derivative of this integral, at Q, is 
df/ax = M. That is the Fundamental Theorem of Calculus. 

To show that af/ay= N, take a different path. Go from P to a point below Q. The 
path comes up to Q on a vertical line (so dx  = 0). Near Q we are only integrating 
N dy, so i?f/dy= N. 

The requirement that the region must have no holes will be critical for test D. 

EXAMPLE 7 Find f ( x ,  y) = x dx  + y dy. Test D is passed: aN/ax= 0= dM/dy. 

Solution 1 j:",: x dx  = +x2is added to j::;:; y dy = fy2. 

Solution 2 1; (x t ) (x  dt) + (y t ) (y  dt) = 1; (x2+ y2)t dt = f ( x 2+ y2). 

Solution 3 afjax = x gives f = +x2+ C(y).Then af/dy = y needs C(y)= :y2. 
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15.2 EXERCISES 

Read-through questions 

Work is the a of F dR. Here F is the b and R is 
the c . The d product finds the component of 
in the direction of movement dR = dxi + 17 For which powers n is S/rn a gradient by test D? 

dyj. The straight 
path (x, y) = (t, 2t) goes from f at t = 0 to g at t = 18 For which powers n is R/rn a gradient by test D? 
1 wi thdR=dt i+ h .TheworkofF=3i+j isjF=dR= 19 A a vertical circle x2 + . wire hoop around z2 = a2 has j i d t=  i density p = a + z. Find its mass M = pds. 

Another form of d R is T ds, where T is the k vector to 20 
= ,/T. A wire of constant density p lies on the semicircle 

the path and ds For the path (t, 2t), the unit vector x2 + = a2, y 3 0. Find its mass M and also its moment 
T i s  m andds= n dt.ForF=3i+j ,F*Tdsisst i l l  Y2 

Mx = py ds. Where is its center of mass 2 = My/M, j = Mx/ 
0 dt. This F is the gradient off = P 

1 . The change in M? 
f= 3x + y  from (0,O) to (1,2) is q . 

21 If the density around the circle x2 + y2 = a2 is p = x2, what 
When F = gradf, the dot product F dR is (af/dx)dx + is the mass and where is the center of mass? 
r = df: The work integral from P to Q is j df = s . 

In this case the work depends on the t but not on the 22 Find F dR along the space curve x = t, y = t2, z = t3, 
u . Around a closed path the work is v . The field is O < t < l .  

called w . F = (1 + y)i + xj is the gradient off = x . (a) F = grad (xy + xz) (b) F = yi - xj + zk 
The work from (0,O) to (1,2) is Y , the change in potential. 

23 (a) Find the unit tangent vector T and the speed dsldt 
For the spin field S = 2 , the work (does)(does not) along the path R = 2t i + t2 j. 

depend on the path. The path (x, y) = (3 cos t, 3 sin t) is a (b) For F = 3xi + 4j, find F T ds using (a) and F dR 
circle with S g d R  = A . The work is B around the directly. 
complete circle. Formally jg(x, y)ds is the limit of the sum 

(c) What is the work from (2, 1) to (4,4)? c .  
24 If M(x, y, z)i + N(x, y, z)j is the gradient of f(x, y, z), show 

The four equivalent properties of a conservative field F = 
. that none of these functions can depend on z. 

Mi+ Nj are A: D , B: E , C: , and D: 
Test D is (passed)(not passed) by F = (y + 

F 

1)i + 
G 

xj. The work 25 Find all gradient fields of the form M(y)i + N(x)j .  
I F  dR around the circle (cos t, sin t) is H . The work on 

26 Compute the work W(x, y) = j M dx N dy on the the upper semicircle equals the work on I . This field is + 
. straight line path (xt, yt) from t = 0 to t = 1. Test to see if aW/ 

the gradient off = J , so the work to (- 1,0) is K 
ax = M and aWpy = N. 

Compute the line integrals in 1-6. (a) M = y3, N = 3xy2 (b) M = x3, N = 3yx2 

< ( c )M=x/y ,N=y/x  (d)M=ex+Y,N=e"+Y jcds and jcdy: x = t, y = 2t, 0 6 t 1. 
27 Find a field F whose work around the unit square (y = 0 fcxds and jcxyds: x=cost ,  y=sint ,  O<t<n/2.  
then x = 1 then y = 1 then x = 0) equals 4. 

S, xy ds: bent line from (0,O) to (1, 1) to (1,O). 
28 Find a nonconservative F whose work around the unit 

1, y dx - x dy: any square path, sides of length 3. circle x2 + y2 = 1 is zero. 

fc dx and jc y dx: any closed circle of radius 3. In 29-34 compute 1 F dR along the straight line R = ti + tj 
Jc (dsldt) dt: any path of length 5. and the parabola R = ti + t2j, from (0,O) to (1,l). When F is a 

Does if gradient field, use its potential f (x, y). 
xy dy equal f xy2]:? 

29 F = i - 2 j  30 F = x2j 
Does jfx dx equal fx2]:? 

Does (jc d ~ ) ~  = (IC d ~ ) ~  + (fC dy)l? 
33 F=yi -x j  34 F = (xi + yj)/(x2 + y2 + 1) 

Does jc ( d ~ ) ~  make sense? 
35 For which numbers a and b is F = axyi + (x2 + by)j a 

11-16 find the work in moving from (1,O) to (0,l). When F gradient field? 
is conservative, construct f: choose your own path when F is 36 Compute j - y dx + x dy from (1,O) to (0,l) on the line 
not conservative. x = 1 - t2, y = t2 and the quarter-circle x = cos 2t, y = sin 2t. 
11 F = i + y j  12 F = y i + j  Example 4 found 1 and n/2 with different parameters. 
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Apply the test N x  = My to 37-42. Find f when test D is passed. 43 Around the unit circle find 4 ds and $ dx and 8 xds. 

44 True or false, with reason: 
(a) When F = yi the line integral l F e d R  along a curve 

xi + xy from P to Q equals the usual area-under the curve. yj grad 
39 F=- + 40 I?=- That J# 1 grad XY 1 (b) line integral depends only on P and Q, not on the Ixi 

curve. 
41 F = R + S  42 F =(ax + by)i + (cx + dy)j (c) That line integral around the unit circle equals n. 

15.3 Green's Theorem 

This section contains the Fundamental Theorem of Calculus, extended to two dimen- 
sions. That sounds important and it is. The formula was discovered 150 years after 
Newton and Leibniz, by an ordinary mortal named George Green. His theorem 
connects a double integral over a region R to a line integral along its boundary C.  

The integral of dfldx equals f(b) - f (a). This connects a one-dimensional integral 
to a zero-dimensional integral. The boundary only contains two points a and b! The 
answer f (b) - f (a) is some kind of a "point integral." It is this absolutely crucial idea- 
to integrate a derivative from information at the boundary-that Green's Theorem 
extends into two dimensions. 

There are two important integrals around C. The work is I F T ds = I M dx + N dy. 
The flux is 1 F n ds = M dy - N dx (notice the switch). The first is for a force field, 
the second is for a flow field. The tangent vector T turns 90" clockwise to become 
the normal vector n. Green's Theorem handles both, in two dimensions. In three 
dimensions they split into the Divergence Theorem (1 5.5) and Stokes' Theorem (1 5.6). 

Green's Theorem applies to "smooth" functions M(x, y) and N(x, y), with con- 
tinuous first derivatives in a region slightly bigger than R. Then all integrals are well 
defined. M and N will have a definite and specific meaning in each application-to 
electricity or magnetism or fluid flow or mechanics. The purpose of a theorem is to 
capture the central ideas once and for all. We do that now, and the applications 
follow. 

1SE Green's TIreorm Suppose the region R is bounded by the simple 
closed piecewise smooth curve C. Thm an integral over R equals a line integral 
around C: 

A curve is "simple" if it doesn't cross itself (figure 8's are excluded). It is "closed" if 
its endpoint Q is the same as its starting point P. This is indicated by the closed circle 
on the integral sign. The curve is "smooth" if its tangent T changes continuously- 
the word "piecewise" allows a finite number of corners. Fractals are not allowed, but 
all reasonable curves are acceptable (later we discuss figure 8's and rings). First comes 
an understanding of the formula, by testing it on special cases. 
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x1d) x2dy
strip area (X2 -x1)dy

Fig. 15.8 Area of R adds up strips: x dy = ff dx dy and f y dx = -fI dy dx.

Special case 1: M = 0 and N = x. Green's Theorem with ON/ax = 1 becomes

x dy = ff1 dx dy (which is the area of R). (2)

The integrals look equal, because the inner integral of dx is x. Then both integrals
have x dy-but we need to go carefully. The area of a layer of R is dy times the
difference in x (the length of the strip). The line integral in Figure 15.8 agrees. It has
an upward dy times x (at the right) plus a downward -dy times x (at the left). The
integrals add up the strips, to give the total area.

Special case 2: M = y and N = 0 and fc y dx = fR(-1) dx dy= -(area of R).

Now Green's formula has a minus sign, because the line integral is counterclockwise.
The top of each slice has dx < 0 (going left) and the bottom has dx > 0 (going right).
Then y dx at the top and bottom combine to give minus the area of the slice in
Figure 15.8b.

Special case 3: f 1 dx = 0. The dx's to the right cancel the dx's to the left (the curve
is closed). With M = 1 and N = 0, Green's Theorem is 0 = 0.

Most important case: Mi + Nj is a gradient field. It has a potential function f(x, y).
Green's Theorem is 0 = 0, because aMlay = aN/ax. This is test D:

My Oy (a xa is the same as ax = 

ey /y y Fx Ox ax 
(3)

The cross derivatives always satisfy f,y =fx,. That is why gradient fields pass test D.
When the double integral is zero, the line integral is also zero: fc M dx + N dy = 0.

The work is zero. The field is conservative! This last step in A => B => C => D = A will
be complete when Green's Theorem is proved.

Conservative examples are fx dx = 0 and f y dy = 0. Area is not involved.

Remark The special cases x dy and - ydx led to the area of R. As long as
1 = aN/ax - aM/ay, the double integral becomes ff 1 dx dy. This gives a way to com-
pute area by a line integral.

The area ofR is xdy= - ydx= - (x dy - ydx). (4)

EXAMPLE 1 The area of the triangle in Figure 15.9 is 2. Check Green's Theorem.

The last area formula in (4) uses -S, half the spin field. N = ½x and M = - ½y yield
Nx - My = + 1 = 1. On one side of Green's Theorem is ff1 dx dy = area of triangle.
On the other side, the line integral has three pieces.
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(0, 2) (0, b)
os t
= b sin t

x=0 (a, 0)

(2, 0)
y=0

Fig. 15.9 Green's Theorem: Line integral around triangle, area integral for ellipse.

Two pieces are zero: x dy - y dx = 0 on the sides where x = 0 and y = 0. The sloping
side x = 2 - y has dx = - dy. The line integral agrees with the area, confirming
Green's Theorem:

xdy-ydx= f=(2 - y)dy + ydy = 2dy = 2.

EXAMPLE 2 The area of an ellipse is nrab when the semiaxes have lengths a and b.

This is a classical example, which all authors like. The points on the ellipse are
x = a cos t, y = b sin t, as t goes from 0 to 21r. (The ellipse has (x/a)2 + (y/b)2 = 1.)
By computing the boundary integral, we discover the area inside. Note that the
differential x dy - y dx is just ab dt:

(a cos t)(b cos t dt) - (b sin t)(- a sin t dt) = ab(cos2t + sin2 t)dt = ab dt.

The line integral is ab dt = 7nab. This area nab is 7rr2
_o2 , for a circle with a = b = r.

Proof of Green's Theorem: In our special cases, the two sides of the formula were
equal. We now show that they are always equal. The proof uses the Fundamental
Theorem to integrate (aN/ax)dx and (aM/dy)dy. Frankly speaking, this one-dimen-
sional theorem is all we have to work with-since we don't know M and N.

The proof is a step up in mathematics, to work with symbols M and N instead of
specific functions. The integral in (6) below has no numbers. The idea is to deal with
M and N in two separate parts, which added together give Green's Theorem:

fM dx a= dx dy and separately N dy= - dx dy. (5)
cdxJR - ay Nc y axJ

Start with a "very simple" region (Figure 15.10a). Its top is given by y =f(x) and
its bottom by y = g(x). In the double integral, integrate - aM/ay first with respect to
y. The inner Tf(x) integral is

dy M (x)

S.y = - M(x, Y) (x) = - M(x, f(x)) + M(x, g(x)). (6)
g(x) ay

The Fundamental Theorem (in the y variable) gives this answer that depends on x.
If we knew M and f and g, we could do the outer integral-from x = a to x = b. But
we have to leave it and go to the other side of Green's Theorem-the line integral:

M dx = M(x, y)dx + += bot M(x, y)dx f M(x, f(x))dx + fa M(x, g(x))dx. (7)
top bottomba
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P
- Mdx

-f Ndy r

J Mdx
y = gW() J Mdx•(x) 

Fig. 15.10 Very simple region (a-b). Simple region (c) is a union of very simple regions.

Compare (7) with (6). The integral of M(x, g(x)) is the same for both. The integral of
M(x,f(x)) has a minus sign from (6). In (7) it has a plus sign but the integral is from
b to a. So life is good.

The part for N uses the same idea. Now the x integral comes first, because
(0N/ax)dx is practically asking to be integrated-from x = G(y) at the left to x = F(y)
at the right. We reach N(F(y), y) - N(G(y), y). Then the y integral matches § Ndy and
completes (5). Adding the two parts of (5) proves Green's Theorem.

Finally we discuss the shape of R. The broken ring in Figure 15.10 is not "very
simple," because horizontal lines go in and out and in and out. Vertical lines do the
same. The x and y strips break into pieces. Our reasoning assumed no break between
y =f(x) at the top and y = g(x) at the bottom.

There is a nice idea that saves Green's Theorem. Separate the broken ring into
three very simple regions R 1, R2, R 3 . The three double integrals equal the three line
integrals around the R's. Now add these separate results, to produce the double
integral over all of R. When we add the line integrals, the crosscuts CC are covered
twice and they cancel. The cut between R1 and R2 is covered upward (around R1 )
and downward (around R 2). That leaves the integral around the boundary equal to
the double integral inside-which is Green's Theorem.

When R is a complete ring, including the piece R4 , the theorem is still true. The
integral around the outside is still counterclockwise. But the integral is clockwise
around the inner circle. Keep the region R to your left as you go around C. The
complete ring is "doubly" connected, not "simply" connected. Green's Theorem
allows any finite number of regions Ri and crosscuts CC and holes.

EXAMPLE 3 The area under a curve is jb y dx, as we always believed.

In computing area we never noticed the whole boundary. The true area is a line
integral - y dx around the closed curve in Figure 15.11 a. But y = 0 on the x axis.
Also dx = 0 on the vertical lines (up and down at b and a). Those parts contribute
zero to the integral of y dx. The only nonzero part is back along the curve-which
is the area - a y dx or I' y dx that we know well.

What about signs, when the curve dips below the x axis? That area has been
counted as negative since Chapter 1. I saved the proof for Chapter 15. The reason
lies in the arrows on C.

The line integral around that part goes the other way. The arrows are clockwise,
the region is on the right, and the area counts as negative. With the correct rules, a
figure 8 is allowed after all.
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b
-ydx dx =aydx = F= S/r 2

b f f=0=0
u I-V .=. ff= 6 = 2x

ix = 0infinite spin

tt e center a /F -dR = 2xr

Fig. 15.11 Closed path gives the sign of the area. Nonconservative field because of hole.

CONSERVATIVE FIELDS

We never leave gradients alone! They give conservative fields-the work around a
closed path is f(P) -f(P) = 0. But a potential function f(x, y) is only available when
test D is passed: If Of/ax = M and af/Oy = N then dM/ly = aN/ax. The reason is that

fxy =fx .
Some applications prefer the language of "differentials." Instead of looking for

f(x, y), we look for df:

DEFINITION The expression M(x, y)dx + N(x, y)dy is a differential form. When it
agrees with the differential df= (df/Ox)dx + (f/aOy) dy of some function, the form
is called exact. The test for an exact differential is D: ON/Ox = OM/ay.

Nothing is new but the language. Is y dx an exact differential? No, because My = 1
and Nx = 0. Is y dx + x dy an exact differential? Yes, it is the differential of f= xy.
That is the product rule! Now comes an important example, to show why R should
be simply connected (a region with no holes).

EXAMPLE 4 The spin field S/r 2 = (- yi + xj)/(x 2 + y 2) almost passes test D.

N= ( x -M-(8)x2  y 2 -x(2x) M a(-y + y 2 2(X2 
y 2)2  (X2 y)+y(2)2 y)

X• -~x~2 (X + 

Both numerators are y2- x2 . Test D looks good. To find f, integrate M = Of/ax:

f(x, y) = - y dx/(x2 + y2) = tan- (yx) + C(y).

The extra part C(y) can be zero--the y derivative of tan- '(y/x) gives N with no help
from C(y). The potentialf is the angle 0 in the usual x, y, r right triangle.

Test D is passed and F is grad 0. What am I worried about? It is only this,
that Green's Theorem on a circle seems to give 27r = 0. The double integral is
ff (Nx - My)dx dy. According to (8) this is the integral of zero. But the line integral is
27r:

F* dR = (- y dx + x dy)/(x 2 + y2)= 2(area of circle)/a 2 = 2ra2/a2 = 27. (9)

With x = a cos t and y = a sin t we would find the same answer. The work is 27r (not
zero!) when the path goes around the origin.

We have a paradox. If Green's Theorem is wrong, calculus is in deep trouble. Some
requirement must be violated to reach 27t = 0. Looking at S/r 2 , the problem is at the
origin. The field is not defined when r = 0 (it blows up). The derivatives in (8) are not
continuous. Test D does not apply at the origin, and was not passed. We could remove
(0, 0), but then the region where test D is passed would have a hole.

67



15 Vector Calculus 

It is amazing how one point can change everything. When the path circles the 
origin, the line integral is not zero. The potential function f 

I 
= 8 increases by 27r. That 

agrees with F d R = 27r from (9). It disagrees with I10 dx dy. The 27r is right, the zero 
is wrong. Nx - My must be a "delta function of strength 2n." 

The double integral is 27r from an infinite spike over the origin-even though N, = 
My everywhere else. In fluid flow the delta function is a ''vortex." 

FLOW ACROSS A CURVE: GREEN'S THEOREM TURNED BY 90" 

A flow field is easier to visualize than a force field, because something is really there 
and it moves. Instead of gravity in empty space, water has velocity M(x, y)i + N(x, y)j. 
At the boundary C it can flow in or out. The new form of Green's Theorem is a 
fundamental "balance equation" of applied mathematics: 

Flow through C (out minus in) = replacement in R (source minus sink). 

The flow is steady. Whatever goes out through C must be replaced in R. When there 
are no sources or sinks (negative sources), the total flow through C must be zero. 
This balance law is Green's Theorem in its "normal form" (for n) instead of its 
"tangential form" (for T): 

C 

15F For a steady flow field F = M(x, y)i + N(x, y)j, the flux 1 F n ds through 
the boundary C balances the replacement of fluid inside R: 

Figure 15.12 shows the 90" turn. T becomes n and "circulation" along C becomes 
flux through C. In the original form of Green's Theorem, change N and M to M and 
- N to obtain the flux form: 

Playing with letters has proved a new theorem! The two left sides in (1 1) are equal, 
so the right sides are equal-which is Green's Theorem (10) for the flux. The compo- 
nents M and N can be chosen freely and named freely. 

The change takes Mi + Nj into its perpendicular field - Ni + Mj. The field is turned 
at every point (we are not just turning the plane by 90"). The spin field S 

+ 
= - yi + xj 

changes to the position field R = xi yj. The position field R changes to -S. Stream- 
lines of one field are equipotentials of the other field. The new form (10) of Green's 

1 
circulation 

dy jdy idx Tdsy ky 
C 

j nds 

Fig. 15.12 The perpendicular component F n flows through C. Note n ds = d y  i - dx j. 



15.3 Green's Theorem 5

Theorem is just as important as the old one-in fact I like it better. It is easier to
visualize flow across a curve than circulation along it.

The change of letters was just for the proof. From now on F = Mi + Nj.

EXAMPLE 5 Compute both sides of the new form (10) for F = 2xi + 3yj. The region
R is a rectangle with sides a and b.

Solution This field has dM/ax + ON/ly = 2 + 3. The integral over R is f, 5 dx dy =
5ab. The line integral has four parts, because R has four sides. Between the left and
right sides, M = 2x increases by 2a. Down the left and up the right, fM dy = 2ab
(those sides have length b). Similarly N = 3y changes by 3b between the bottom and
top. Those sides have length a, so they contribute 3ab to a total line integral of 5ab.

Important: The "divergence" of a flow field is aM/ax + aNlay. The example has
divergence = 5. To maintain this flow we must replace 5 units continually-not just
at the origin but everywhere. (A one-point source is in example 7.) The divergence is
the source strength, because it equals the outflow. To understand Green's Theorem
for any vector field Mi + Nj, look at a tiny rectangle (sides dx and dy):

Flow out the right side minus flow in the left side = (change in M) times dy

Flow out the top minus flow in the bottom = (change in N) times dx

Total flow out of rectangle: dM dy + dN dx = (aM/ax + aN/ay)dx dy.

The divergence times the area dx dy equals the total flow out. Section 15.5 gives more
detail with more care in three dimensions. The divergence is Mx + N, + PZ.

flux 3ab F = 2xi

t A• t/t/ +3yj
b

flux
M 2ab

0
II __0
Fig. 15.13 Mx + N, = 2 + 3 = 5 yields flux = 5(area) = 5ab. The flux is dM dy + dN dx=

(Mx + NY) dx dy. The spin field has no flux.

EXAMPLE 6 Find the flux through a closed curve C of the spin field S = - yi + xj.

Solution The field has M = - y and N = x and Mx + N, = 0. The double integral is
zero. Therefore the total flow (out minus in) is also zero-through any closed curve.
Figure 15.13 shows flow entering and leaving a square. No fluid is added or removed.
There is no rain and no evaporation. When the divergence Mx + N, is zero, there is
no source or sink.

FLOW FIELDS WITHOUT SOURCES

This is really quite important. Remember that conservative fields do no work around
C, they have a potential f, and they have "zero curl." Now turn those statements
through 90', to find their twins. Source-free fields have no flux through C, they have
stream functions g, and they have "zero divergence." The new statements E-F-G-H
describe fields without sources.

69
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156 The field F = M(x, y)i + N(x, y)j is source-free if it has these properties: 

E The total flux f F n ds through every closed 

r: 
curve is zero. 

F Across all curves from P to Q, the ff ux F n ds is the same. 

G There is a stream function g(x, y), for which M = ag/dy and N = - agf ax. 

H The components satisfy aM/ax + aN/ay = 0 (the divergence is zero). 

A field with one of these properties has them all. H is the quick test. 

The spin field -yi + xj passed this test (Example 6 was source-free). The field 
2xi + 3yj does not pass (Example 5 had M, + N, = 5). Example 7 almost passes. 

EXAMPLE 7 The radial field R/r2 = (xi + yj)/(x2 + y2) has a point source at (0,O). 

The new test H is divergence = dM/dx + 

7 
dN/dy = 0. Those two derivatives are 

x2 - - -  ) + y2 - x(2x) 
ax and - - 

X~ + y2 - (x2 + y2). ay a ( x2 + y2 ) x2+y2-y(2y). (12) - 
- (x2 +y2)2 

They add to zero. There seems to be no source (if the calculation is correct). The flow 
through a circle x2 + y2 = a' should be zero. But it's not: 

A source is hidden somewhere. Looking at R/r2, the problem is at (0,O). The field is 
not defined when r = 0 (it blows up). The derivatives in (12) are not continuous. Test 
H does not apply, and was not passed. The divergence M, + N, must be a "delta 
function" of strength 211. There is' a point source sending flow out through all circles. 

I hope you see the analogy with Example 4,. The field S/r2 is curl-free except at r = 0. 
The field R/r2 is divergence-free except at r = 0. The mathematics is parallel and the 
fields are perpendicular. A potential f and a stream function g require a region without 
holes. 

THE BEST FIELDS: CONSERVATIVE AND SOURCE-FREE 

What if F is conservative and also source-free? Those are outstandingly important 
fields. The curl is zero and the divergence is zero. Because the field is conservative, it 
comes from a potential. Because it is source-free, there is a stream function: 

Those are the Cauchy-Riemann equations, named after a great mathematician of his 
time and one of the greatest of all time. I can't end without an example. 

EXAMPLE 8 Show that yi + xj is both conservative and source-free. Find f and g. 

Solution With M = y and N = x, check first that i?M/dy = 1 = dN/Zx. There must 
be a potential function. It is f = xy, which achieves af/ax = y and i?f/ay = x. Note 
that fxx +A, = 0. 

Check next that dM/dx + aN/dy = 0 + 0. There must be a stream function. It is 
g = f (y2 - x2), which achieves dg/ay = y aild dg/i?x = - x. Note that g,, + g,, = 0. 



15.3 Green's Theorem 

The curves f = constant are the equipotentials. The curves g = constant are the 
streamlines (Figure 15.4). These are the twin properties-a conservative field with 
a potential and a source-free field with a stream function. They come together into 
the fundamental partial differential equation of equilibrium-Laplace's equation 
fxx  +&y = 0. 

ISH There is a potential and stream function when My = Nx and Mx = - Ny. 
They satisfy LaplhceJs e 4 ~ i m :  

f,+f,=M,+Ny=O and g,+gyy=-Nx+My=O. (15) 

If we have f without g, as in f = x2 + y2 and M = 2x and N = 2y, we don't have 
Laplace's equation: f, + fyy =4. This is a gradient field that needs a source. 
If we have g without f; as in g = x2 + y2 and M = 2y and N = - 2x, we don't have 
Laplace's equation. The field is source-free but it has spin. The first field is 2R and 
the second field is 2s. 

With no source and no spin, we are with Laplace at the center of mathematics and 
science. 

Green's Theorem: Tangential form f F T ds and normal form f F n ds 

fcMdx+Ndy=J'Ji*.-M,)dxdy f c ~ d y - N ~ = f / R ( M x + N y ) d x d y  

work curl flux divergence 

Conservative: work = zero, Nx = My, gradient of a potential: M = fx and N =f, 
Sourcefree: h x  = zero, Mx = - Ny , has a stream function: M = gy and N = - gx 
Conservative + source-free: Cauchy-Rimann + Laplace equations for f and g. 

15.3 EXERCISES 
Read-through questions equals dy i - dx j. The divergence of Mi + Nj is Y . For F = 

8 For M dx + xi the double integral is . There @)(is not) a source. The work integral N dy equals the double integral 2 

F = yi the divergence is The divergence of ~ / r ~  is zero a by . A 
b 'sTheorem. ForF = 3i +4j the workis c 

. 
except at B . This field has a c source. For F = d and e ,the work equals the area of R. When 

M = af/ax and N = aflay, the double integral is zero because A field with no source has properties E = D , F = E , 
f . The line integral is zero because g . An example is G = F , H =zero divergence. The stream function g 

F = h . The direction on Cis i around the outside and satisfies the equations G . Then aM/ax + 
I around the boundary of a hole. If R is broken into very aNpy = 0 because a2g/axay = H . The example F = yi has 

simple pieces with crosscuts between them, the integrals of g = I . There (is)(is not) a potential function. The example 
k cancel along the crosscuts. F = xi - yj has g = J and also f = K . This f satisfies 

Laplace's , . equation 1 because the field F is both M 
Test D for gradient fields is I A field that passes this 

8 and N . . The functions f and g are connected by the 0 test has F dR = m There is a solution to f, = n and 
+ equations afpx = ag/ay and P 

P 
. f, = o . Then df = M dx N dy is an differential. 

The spin field S/r2 passes test D except at s . Its potential 
f = r increases by s going around the origin. The Compute the line integrals 1-6 and (separately) the double integ- 
integral jj (N, - M,)dx dy is not zero but t . rals in Green's Theorem (1). The circle has x = a cos t, 

. y = a sin t. The triangle has sides x = 0, y = 0, x The flow form of Green's Theorem is u = v The + y = 1. 

normal vector in F n ds points w and In1 = x and n ds 1 8 x dy along the circle 2 8 x2y dy along the circle 
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3 8 x dx along the triangle 4 $ y dx along the triangle 23 Evaluate 8 a(x, y)dx + b(x, y)dy by both forms of Green's 

8 Theorem. The choice M = a, N $ = b in the work form gives 
5 x2y dx along the circle 6 x2y dx along the triangle the double integral . The choice M = b, N = - a in 
7 Compute both sides of Green's Theorem in the form (10): the flux form gives the double integral . There was 

(a) F = xi + only one Green. yj, R = upper half of the disk x2 + y2 Q 1. 
(b) F = x2i + xyj, C = square with sides y = 0, x = 1, y = 1, 24 Evaluate 8 cos3y dy - sin3x dx by Green's Theorem. 
x = 0. 

25 The field R/r2 in Example 7 has zero divergence except at 
8 Show that $,(x2y + 2x)dy + xy2dx depends only on the r = 0. Solve ag/ay = x/(x2 + y2) to find an attempted stream 

area of R. Does it equal the area? function g. Does g have trouble at the origin? 

9 Find the area inside the hypocycloid x = cos3t, y = sin3t 26 Show that S/r2 has zero divergence (except at r = 0). Find 
from +$ x dy - y dx. a stream function by solving ag/ay = y/(x2 + y2). Does g have 

trouble at the origin? 10 For constants b and c, how is $by dx + cx dy related to 
the area inside C? If b = 7, which c makes the integral zero? 27 Which differentials are exact: y dx - x dy, x2dx + y2dy, 

11 For F = grad ,/-, y2dx show in three ways that $F dR = 
+ x2dy? 

0 around x = cos t, y = sin t. 28 If Mx + N, = 0 then the equations dg/ay = and 
(a) F is a gradient field so ag/ax = yield a stream function. If also Nx = My, 

show that g satisfies Laplace's equation. (b) Compute F and directly integrate F dR. 
(c) Compute the double integral in Green's Theorem. 

Compute the divergence of each field in 29-36 and solve g, = 
12 Devise a way to find the one-dimensional theorem 
1: M and gx = - N for a stream function (if possible). 

(df/dx)dx = f (b) - f (a) as a special case of Green's Theorem 
when R is a square. 

13 (a) Choose x(t) and y(t) so that the path goes from (1,O) 
to (1,O) after circling the origin twice. 33 ex cos y i 
(b) Compute $ 

- ex sin y j 34 eX+y(i - j) 
y dx and compare with the area inside your 

path. 35 2yi/x + y2j/x2 36 xyi - xyj 

(c) Compute $ (y dx - x dy)/(x2 + y2) and compare with 271 37 Compute Nx- My for each field in 29-36 and find a 
in Example 7. potential function f when possible. 

14 In Example 4 of the previous section, the work I S  d R 38 The potential f(Q) is the work 1: F Tds to reach Q from 
between (1,O) and (0, 1) was 1 for the straight path and 7112 a fixed point P (Section 15.2). In the same way, the stream 
for the quarter-circle path. Show that the work is always twice function g(Q) can be constructed from the integral . 
the area between the path and the axes. Then g(Q) - g(P) represents the flux across the path from P to 

Q. Why do all paths give 
Compute both sides of 4 F n ds = (M, + the same answer? 

N,) dx dy in 15-20. 
+ i ~ ) ~  = x3 + + 39 The real part of (x 3ix2y - 3xy2 - iy3 is f = 

15 F = yi xj in the unit circle x3 - 3xy2. Its gradient field is F =grad f = . The 
16 F = xyi in the unit square 0 6 x, y 6 1 divergence of F is . Therefore f satisfies Laplace's 

equation fx, + it 
17 

fyy = 0 (check that does). 
F = Rlr in the unit circle 

40 Since div F = 0 in Problem 39, we can solve ag/ay = 
18 F = S/r in the unit square and ag/Jx = . The stream function is g = 

19 F = xZyj in the unit triangle (sides x = 0, y = 0, x + y = 1) . It is the imaginary part of the same (x + i ~ ) ~ .  Check 
that f and g satisfy the Cauchy-Riemann equations. 

20 F = grad r in the top half of the unit circle. 
41 The real part f and imaginary part g of (x + iy)" satisfy the 

21 Suppose div F = 0 except at the origin. Then the flux Laplace and Cauchy-Riemann equations for n = 1,2, .... 
$ F  nds is the same through any two circles around the (They give all the polynomial solutions.) Compute f and g for 
origin, because . (What is jj (M, + N,)dx dy between n=4. 
the circles?) 

42 When is M dy - N dx an exact differential dg? 
22 Example 7 has div F = 0 except at the origin. The flux 
through every circle x2 + y2 = a2 is 271. The flux through a 43 The potential f = ex cos y satisfies Laplace's equation. 
square around the origin is also 2n because . (Com- There must be a g. Find the field F = grad f and the stream 
pare Problem 2 1 .) function g(x, y). 
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44 Show that the spin field S does work around every simple inside R can be squeezed to a point without leaving R. Test 
closed curve. these regions: 

1. xy  plane without (0,O) 2. xyz space without (0, 0,O) 
45 For F =f(x) j  and R = unit square 0 < x  6 1, 0 < y <  1, 3. sphere x2 + y2 + z2 = 1 4.  a torus (or doughnut) 
integrate both sides of Green's Theorem (1). What formula is 

5. a sweater 6. a human body required from one-variable calculus? 
7. the region between two spheres 

46 A region R is "simply connected" when every closed curve 8. xyz space with circle removed. 

-[ 15.4 Surface Integrals 

The double integral in Green's Theorem is over a flat surface R. Now the region 
moves out of the plane. It becomes a curved surface S, part of a sphere or cylinder 
or cone. When the surface has only one z for each (x, y), it is the graph of a function 
z(x, y). In other cases S can twist and close up-a sphere has an upper z and a lower 
z. In all cases we want to compute area and flux. This is a necessary step (it is our 
last step) before moving Green's Theorem to three dimensions. 

First a quick review. The basic integrals are 1 dx and 11 dx dy and 111 dx dy dz. The 
one that didn't fit was Jds-the length of a curve. When we go from curves to 
surfaces, ds becomes dS. Area is JI dS m d  flux is IJ F n dS, with double integrals 
because the surfaces are two-dimensional. The main difficulty is in dS. 

All formulas are summarized in a table at the end of the section. 

There are two ways to deal with ds (along curves). The same methods apply to dS 
(on surfaces). The first is in xyz coordinates; the second uses parameters. Before this 
subject gets complicated, I will explain those two methods. 

Method 1 is for the graph of a function: curve y(x) or surface z(x, y). 

A small piece of the curve is almost straight. It goes across by dx and up by dy: 

length ds = J- = ,/i+(dyldx)2 dx. (1) 

A small piece of the surface is practically flat. Think of a tiny sloping rectangle. One 
side goes across by dx and up by (dz/dx)dx. The neighboring side goes along by dy 
and up by (az/dy)dy. Computing the area is a linear problem (from Chapter 1 I), 
because the flat piece is in a plane. 

Two vectors A and B form a parallelogram. The length of their cross product is the 
area. In the present case, the vectors are A = i + (az/ax)k and B = j + (az/ay)k. Then 
Adx and Bdy are the sides of the small piece, and we compute A x B: 

This is exactly the normal vector N to the tangent plane and the surface, from 
Chapter 13. Please note: The small flat piece is actually a parallelogram (not always 
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